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ABSTRACT

In “Large Associative Memory Problem in Neurobiology and Machine Learning,”
Dmitry Krotov and John Hopfield introduced a general technique for the system-
atic construction of neural ordinary differential equations with non-increasing en-
ergy or Lyapunov function. We study this energy function and identify that it is
vulnerable to the problem of dead neurons. Each point in the state space where the
neuron dies is contained in a non-compact region with constant energy. In these
flat regions, energy function alone does not completely determine all degrees of
freedom and, as a consequence, can not be used to analyze stability or find steady
states or basins of attraction. We perform a direct analysis of the dynamical system
and show how to resolve problems caused by flat directions corresponding to dead
neurons: (i) all information about the state vector at a fixed point can be extracted
from the energy and Hessian matrix (of Lagrange function), (ii) it is enough to
analyze stability in the range of Hessian matrix, (iii) if steady state touching flat
region is stable the whole flat region is the basin of attraction. The analysis of
the Hessian matrix can be complicated for realistic architectures, so we show that
for a slightly altered dynamical system (with the same structure of steady states),
one can derive a diverse family of Lyapunov functions that do not have flat re-
gions corresponding to dead neurons. In addition, these energy functions allow
one to use Lagrange functions with Hessian matrices that are not necessarily posi-
tive definite and even consider architectures with non-symmetric feedforward and
feedback connections.

1 INTRODUCTION

Associative or content-addressable memory is a system that retrieves the most appropriate stored
pattern based on a partially known or distorted input pattern. One particularly influential realization
of associative memory was proposed by John Hopfield in [Hopfield| (1982) for discrete variables
and in Hopfield| (1984)) for continuous variables. Both models are distinguished by their biological
plausibility, autonomy, asynchronous operations of constituent parts, robustness to noise, and strong
theoretical guarantees. Later in |Krotov & Hopfield| (2020), it was shown that one could develop a
general biologically plausible model that unites many previously known models and allows building
novel associative memory systems |Krotov| (2023)).

The model in Krotov & Hopfield| (2020) is based on the nonlinear dynamical system that evolves
in time from a given initial state. Nonlinear dynamical systems show an exceptionally diverse set
of behavior [Strogatz| (2018), so one needs to select an appropriate class of ordinary differential
equations suitable to model associative memory. The most crucial requirement is the ability of the
system to evolve to a single state from many initial conditions that are close according to some
problem-specific metrics. This fact suggests one should use a dynamical system with many stable
steady states. If one selects such a system, each stable steady state corresponds to a particular
memory and basin of attraction — all initial conditions that evolve to a selected state — defines a
measure of similarity between states.

The technique of choice to study the stability of steady state is to construct energy or Lyapunov func-
tion [Lyapunov| (1992). This function, defined on the state of a dynamical system, is non-increasing
on trajectories of a dynamical system. If it is possible to find such a function, its isolated local
minima will correspond to steady states. Different variants of energy functions with this property
are available in all previous works on associative memory |Hopfield|(1982)), Hopfield|(1984), Krotov
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(a) Energy function from Krotov & Hopfield| (2020). (b) Energy function proposed in this article.

Figure 1: Vector fields of dynamical systems (top row) and level sets of energy functions (bottom
row) for energy functions (2) (the one from Krotov & Hopfield| (2020)) and (I0) (proposed in this
article). Vector fields suggest that all steady states are stable, but energy function (Z) does not
indicate that. The reason is energy function has non-compact flat regions touching each point
where one or more neurons die (see PropositionE]for precise statement).

& Hopfield| (2016) and recent work Krotov & Hopfield| (2020) provides the most general energy
function that embraces all previous ones.

Since associative memory from |[Krotov & Hopfield| (2020) has an associated energy function, one
can argue that it is a member of a broad family of energy-based models |[LeCun et al.| (2006)), in-
cluding the diffusion models [Hoover et al.| (2023). In addition to that, the dynamical system used
is clearly related to another subfield of machine learning known as Neural Ordinary Differential
Equation [Chen et al|(2018). Finally, in Krotov| (2021)), Hoover et al.| (2022) it was shown that one
can select parameters of model [Krotov & Hopfield (2020) in such a way that dynamical variables
correspond to the activation pattern of deep neural network with feedback connection. Given that,
one can argue that modern Hopfield associative memory Krotov & Hopfield|(2020) is uniquely tying
up several major paradigms in deep learning.

In this article, we study the Lyapunov function proposed in [Krotov & Hopfield| (2020) and later
adopted and modified in other recent papers, e.g.,[Hoover et al.|(2024),/[Hoover et al.|(2022)), Millidge
et al.| (2022a). Our main observation is that energy function is vulnerable to the problem of dead
neuron Lu et al.[{(2019), which result in a flat energy direction. We illustrate this in the left panel of
Figure[l| where one can find both the vector field of the dynamical system and isolines of the energy
function. Clearly, the energy function from Krotov & Hopfield| (2020) does not ensure stability and
is not helpful in identifying a steady state when dead neurons are present.

As a remedy, we propose a slightly modified dynamical system that has no flat direction (see right
panel of Figure[T) but retains other good properties of the Krotov and Hopfield model. In particular,
it is still an energy-based model, neural ODE, and has steady states related to deep neural networks.

A more detailed breakdown of our contribution is below:
1. In Section 2] we provide examples of flat energy directions caused by dead neurons (Fig-

ure [T} Examples [2] [3| @) and formally characterize architectures that are vulnerable to that
problem in Proposition

lUsually, neurons are called dead when activation function saturates, e.g., * < 0 for ReLu or z > 1 for
sigmoid. In this article we use an extended definition of dead neurons and say that a neuron is dead when it
is impossible to reconstruct input to activation function from its output. This is explained in more detail in
Section 2}
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2. Flat energy directions, as we show in Section [3] cause several undesirable consequences
for sensitivity and stability:

(a) Problems with sensitivity described in Section include: (i) energy is completely
independent of degrees of freedom corresponding to dead neurons, because of that
activation functions are effectively invertible and energy function presented in [Krotov
& Hopfield (2020) is completely equivalent to the old one given in [Hopfield, (1984);
(i1) In the flat regions energy function is not sensitive to the change in bias term (Sec-
tion [3.1).

(b) Stability is discussed in Section with the following main takeaways: (i) for steady
state with dead neurons, stability condition can not be ensured from the Lyapunov
function alone; (ii) independent analysis of dynamical system shows dead neurons do
not compromise stability, and only the motion in the range of Hessian of Lagrange
function is relevant; (iii) if the steady state is stable, the whole flat direction belongs to
the basin of attraction; (iv) if in addition of energy, the range of the Hessian is available
(e.g., as the orthogonal projector), this information is enough to restore degrees of
freedom that energy alone misses at steady state.

3. As a remedy, in Section ] we define a slightly modified dynamical system and a fam-
ily of energy functions with good properties: (i) proposition [5] shows that in general one
may construct a large family of Lyapunov function with no flat directions; (ii) example [3]
shows several concrete choices of Lyapunov functions for symmetric weight matrices with
no restriction Hessian matrix of Lagrange function; (iii) examples [6] and [7] further relax
restriction on parameters and allow one to consider memory models with non-symmetric
weight matrices.

2 DEAD NEURONS

In Krotov & Hopfield| (2020) authors proposed to rewrite activation function g(y) as gradient of

Lagrange function L(y), i.e., g(y) = 8@—5’). This formalism allows to describe a large class of

memory models with Lyapunov function on the common grounds. Results that we obtain in the
article are applicable to all of them, but for simplicity we consider dense model taken from (Krotov,
2021} Equation (2)) (see Appendix |A|or further discussion on relations between different models).
This model reads:

Y(t) = Wg(y(t)) — y(t) + b, y(0) = yo, (1)
E(y) = (y—b) g(y) ~ Ly) - 5 (9() Wa(y). )

Equation (I)) describes a temporal dynamics of feature vector y starting from yo. The equation
contains weights W, bias b and activation function g(y). Energy function is non-increasing

on trajectories of (1) if and only if W = W T and Hessian of Lagrange function A = 628Ly(zy) is

positive semi-definite (see (Krotov & Hopfield, 2020, Equation (4), Appendix A) and (Krotov, 2021,
Equation (4), Appendix A)).

Dynamical system (I]) has several favorable properties (see discussion in Section [I] and [Krotov &
Hopfield (2020) , [Krotov| (2021)): (i) steady states can be used as memory vectors, (ii) dynamics
in the basins of attraction naturally model memory recovery process, (iii) energy function can be
used to ensure the existence of steady states and basins of attraction, (iv) memory is related to neural
ODE:s so can be trained end-to-end, (v) with a special choice of W steady states resemble activation
pattern of classical deep learning architectures. The example below illustrates the last point (see
(Krotov}, 2021}, Section 3)).

Example 1 (MLP with feedback connections). For simplicity, we consider four layers, extensions to
a larger number of layers are straightforward. Weights and state vectors are partitioned on blocks
of conformable size

0 Wia Y1 bl
War 0 Was Y2 bo
— - b—
w Wi, 0 Wy )Y ys |’ bs
Wi 0 Yq by
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Note that W is symmetric so W1y = W, With that choice dynamical system (1)) becomes

Ui =Wiiag (Y1) + Wiin1g (yir1) —yi + bi, 1= 2,3
Y1 = Wiag (y2) —y1 + b1, 94 = Wiysg (y3) — ya + by,

so steady-state indeed resembles MLP but with feedback connections that are symmetric.

Besides MLP described in Example [T] associative memory (I)) leads to many more interesting and
fruitful connections. In |Krotov & Hopfield (2020) it allowed the authors to reconstruct dense asso-
ciative memory Krotov & Hopfield (2016) and modern Hopfield network Ramsauer et al.[(2020). In
Krotov|(2021) and [Hoover et al.|(2022) it was used to build a memory model with dense hidden lay-
ers and convolution neural networks with pooling layers. In/Hoover et al.| (2024) authors introduced
an energy transformer using the same formalism. The authors of [Tang & Kopp|(2021)) also noticed
that MLP-mixer [Tolstikhin et al.| (2021)) is related to associative memory (1. Clearly, the technique
is valuable and versatile.

As we have seen, steady states of dynamical systems are important to emulate deep learning ar-
chitectures and classical memory models. The role of the Lyapunov function is to ensure stability.
Unfortunately, if one looks closer at the energy function (2)), it becomes clear that it shows some
pathological behavior. Before providing a formal description, we illustrate this with three examples.

Example 2 (flat energy with ReLU activations). Lagrange function L(y) = Zfil 1 (ReLU ()

corresponds to fully-connected neural network with N neurons and ReLU(z) = 1 (z+ |z|)

nonlinearity. Energy function becomes E(y) = (y —b)' ReLU(y) — Zivzl i (ReLU(y;))* —
z (ReLU(y))T W ReLU(y). It is easy to see that if neuron i dies, i.e., y; < 0, energy becomes
zero for all y = y + ae;, where o < 0. e; is a i-th columns of identity matrix and y is a state vector

with y; < 0. In other words, energy is non-discriminative in a non-compact region of state space.

Example 3 (flat energy with sigmoid activations). For sigmoid activation function o(x) =
(14 exp(—z))~" Lagrange function reads L(y) = > log (1 +e¥), and the energy is E(y) =

(y—b) oy) — Silog(1+e¥)—1 (o(y))" W a(y). Neuron i dies when sigmoid saturate
for some y; > 1. After that for all y = y + ae;, with a > 0 the energy has flat region, i.e.,
E(y) = E(y()) for all admissible c.

Example 4 (flat energy with softmax activations). Activation softmax (y) = exp(y)/ Zfil exp(y;)
corresponds to L(y) = log (Zil exp(y,;)) and energy E(y) = (y—b)' softmax(y) —
log (Zf\il exp(yi)) — 1 (softmax (y))' W softmax (y). Consider variable §(c) = y + ¢, where
c is a vector with all components equal ¢ € R. So constant shift, softmax (y) = softmax (y(c)),

Lagrange function shifts on ¢ and ﬂ(c)Tsoftmax(ﬂ(c)) = y ' softmax(y) + ¢, so overall energy
remains the same, i.e., E(y) = E(y(c)) for arbitrary c.

The examples above demonstrate that energy function (2)) fails to distinguish states on a large frac-
tion of state space. In Examples [2] and [3] this happens because the activation function saturates for
some inputs, and in Example {4 this is a consequence of invariance. The latter case is typically not
considered as a dead neuron, but since the number of degrees of freedom decreases by one we call
this “effective neuron” dead all the sameE] The formal definition of dead neurons appears below (see
Maas et al.| (2013)), [Lu et al.| (2019)), |(Cu1 & Fearn| (2018)) for the discussion of dead neurons in the
context of ReLLU activation function).

Definition (dead neurons). At a given point y € RY activation function g has k dead neurons if it
is possible to find V' € RN*¥ such that g (y + V) = g (y) forall c € RE.

The examples above hint that most of the activation functions will lead to dead neurons. The first
large class is activation functions with saturation: hyperbolic tangent, sigmoid, ReLU, GELU, SiL.U,

2Formally, the sigmoid function saturates in the limit y — Zo0o. However, for computations in floating-
point arithmetic it is safe to say that sigmoid saturates when the absolute value of the argument is sufficiently
large but finite.

30ne can also say that softmax is always saturated. If we consider input y in the new basis where 71 =
>, Vi, it is easy to see that after the softmax this component becomes 1 regardless of the input.
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Figure 2: Sketch of three problematic energy functions: (a) unbounded from below with two stable
states (we analyze this situation in Appendix [C)), (b) bounded from below but with compact flat re-
gion, (c) bounded from below but with non-compact flat region. According to Proposition|[T]case (c)
is realized in models Krotov & Hopfield| (2020) when neurons die. In red regions stability proper-
ties do not follow from Lyapunov theorems. LaSalle’s invariance principle (Haddad & Chellaboina,
2008, Theorem 3.3) ensures that in case (b) isolated steady states are stable, but for the case (c)
separate stability analysis is needed (see Section@for details).

SELU, Gaussian, etcE] The second class is activation functions with symmetries, e.g., softmax and
layer norm. With the definition of dead neurons, we can formalize a pathological behavior of energy
function (2).

Proposition 1. Ifat a given point y activation function g has k dead neuron defined by V' &
energy function (|2) has constant value in a subspace D = {y +Vec:ce Rﬁ}

RNXIC’

Proof: Appendix|B}

Flat energy directions are illustrated in Figure [T] and Figure Intuitively, it is clear that having
large regions with flat energy is not good. In the next section, we explain in detail what will go awry.

As illustrated in Figure [J] energy function can appear problematic for reasons not directly related
to dead neurons. We argue that these two situations are less grim. Energy illustrated in Figure
can still be utilized with proper initial conditions, e.g., ||yo|l, < R for some small R. Besides,
we demonstrate in Appendix [C|that restricting parameters to ensure energy is bounded from below
can lead to catastrophic capacity reduction. Energy from Figure [2b|is less problematic for stability
analysis because invariance principle (Haddad & Chellaboinal 2008} Theorem 3.3) can be used.

3 CONSEQUENCES OF DEAD NEURONS

Proposition [I] implies that for most architectures used in practice, there are large regions of state
space with flat energy functions. This has several negative consequences that we somewhat arbitrar-
ily classify as problems with sensitivity and stability.

3.1 SENSITIVITY
As evident from Figure [T] energy is flat in directions V corresponding to dead neurons. This can

be formalised if one considers new variables yg = VV 'y, y, = (I — VV ) y corresponding to
dead and alive neurons. Since y = yq + Yq, the energy (2)) becomes

5 (9(ua) " Walua)
= (e~ 1) 9(u) ~ L) — 5 (9ua)) Walua),

where we used g(ya + Ya) = 9(¥a) and L(yq + ¥Ya) = L(Ya) + 9(ya) " ya-

E(Ya,Ya) = (Ya+Ya—b) " g(ya) — L(ya +ya) —

*For sigmoid, hyperbolic tangent and Gaussian function the saturation is precise only in the limit z — 4-o0.
However, as explained in the Example[3]in the floating-point arithmetics these functions effectively saturate for
finite values of the argument. Moreover, even with arbitrary precision, approximately flat direction can not be
used to reliably store any information since it will require weights with exponentially large magnitudes.
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We see that energy does not depend on variables y, corresponding to dead neurons, which means
the effective number of degrees of freedom is decreased from N to N — k where k is the number of
dead neurons. If only energy is available it is not possible to recover values on y4 and steady states
can not be found as in examples from Figure [T}

Variables y, are from the kernel of g which means the activation function becomes effectively
invertible. In Hopfield (1984), the energy function for this situation has already been introduced.
It is instructive to compare a new energy function Krotov & Hopfield (2020) with the old one.
Lyapunov function from the 1984 paper, in the notation used in this article, reads
gi(us)
1

= - T
=Y [ g ) 0Tgtw) ~ § (9w Wotu), ®
L
and dynamical system is precisely the same as (I). Activation functions g; are invertible and mono-
tone by assumption. In Appendix [D| we explain precisely how to adapt the model from |Hopfield
(1984) to our context. The first term of (3)) is seemingly distinct from any term of ). To show that
this is an illusion we simplify integrals as follows

u

(u) u u
drg~'(r) = dpg (p)p = — dpg(p) + pg(p)ly-1(0) = — dpg(p) + ug(u),
[~ [ amion=- | -]

g=1(0 g71(0) g71(0)
where in the first step we used 7 = ¢(p). Using this simplification and additional definition of
Lagrange function L(u) : g(u) = %ﬁ:‘) we immediately recognize that energy function from

Krotov & Hopfield| (2020) is precisely the same as from Hopfield (1984) but without the assumption
that g should be invertible. New energy from Krotov & Hopfield (2020) does not formally contain
the inverse of the activation function, but as we see still implies that g is invertible.

Besides insensitivity to values of dead neurons, there is another problematic fact. Proposition
implies that, when at least one neuron is dead, the energy function has invariant transformation
E(y) = E(y + V). The steady state of dynamical system does not have this symmetry,
so, when one transforms y — y + V'c and preserve energy, this corresponds to a new dynamical
system with b — b — V'c. In other words, in the regions when dead neurons are present, energy is
not sensitive to the changes in the bias term.

We summarise arguments made in this section in the proposition below
Proposition 2. For energy function (2)) the following is true:

1. Energy function does not depend on variables from the kernel of g, so one can always
assume that activation function g is invertible.

2. Suppose at a given point y dead neurons are described by matrix V.€ RN**_ In this case

energy function E(y) is Lyapunov function for dynamical systems (1)) with b = b—Ve for
any c € Rf_.

3.2 STABILITY OF DYNAMICAL SYSTEM

One of the main applications of the Lyapunov function is to perform stability analysis Haddad &
Chellaboinal (2008)). This part is relevant for predictive coding and related approaches Xie & Seung
(2003)), Millidge et al.| (2022b) to ensure the existence of at least some steady states. Besides, when
associative memory is considered, one can only recover stable steady states, so stability directly
influences memory capacity. Lyapunov function also characterizes a basin of attraction for a given
steady state. In the context of associative memory, basins of attraction define a measure of similarity
between inputs, since inputs from the same basin result in the recovery of the same memory. Below,
we will show that in the regions with dead neurons, Lyapunov function (2Z)) alone fails to help in
stability analysis.

Stability analysis with the Lyapunov function boils down to the study of the energy landscape near
the steady state. Using the Taylor series, we find

" ey _ &7 OE(u) 1
B(y* +6) - B(y") =8 — BEL

u=y

T+ 0?E(u)
ou?

d,1(d,y") € (0,1),
u=y*+td
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where y* : Wg(y*) — y* + b = 0. Computing derivatives, we find E(y* + 0) — E(y*) =
57 (A(y*) — A(y*)WA(y*))d,]|8], < 1. For stability in the vicinity of a steady state, it is
sufficient that the matrix above is positive definite, and for instability, it is sufficient that at least
one eigenvalue of this matrix is negative. In situations such as in Figure [T] and Figure 2c] when
energy has a flat direction nothing can be said about the dynamics in this regiorﬂ It is easy to show
that if dead neurons are present at point w, matrix V' lays in zero eigenspace of A(u). To show
this we consider the Taylor series g(u + Ve) = g(u) + A(u +tVe)Ve, t € (0,1), and since
g(u + V) = g(u) we confirm that AV = 0, i.e., zero eigenspace is always present.

Since energy is insufficient to analyze stability, we need to use a dynamical system (I) directly. We
suppose that in the region of interest V', matrix that describes dead neurons, does not change and
use Y4, Yq defined in the previous section. With that, one can show that dynamical system becomes

Ya(t) = PLWG(ya(t)) — Ya + Pub, Ya(t) = PiW g(ya(t)) — ya + Pab, 4)

where P, =VV ' 'and P, =1— PdE] One can immediately see that dead neurons do not influence
stability and, when steady state y is reached, one can find y} = P;Wg(y}) + P;b. Moreover,
when y, (¢) reaches steady state y,(t) converges exponentially from the arbitrary starting point, i.e.,
the whole flat region is a basin of attraction.

The sufficient condition for stability/instability of y, can be obtained from with linearisation.
More specifically, stability is defined by matrix S = VJ_T WVLVJ_T AV, - T =W, A, —TIc¢
RWV=R)x(N=k) where V| € RN¥N*N—F is a matrix with orthogonal columns such that P, =
vV, Vj. When matrix S does not have eigenvalues with a positive real part, the steady state is
stable; in case there is at least one eigenvalue with a positive real part, the steady state is unstable
(see (Haddad & Chellaboinal, 2008|, Theorem 3.19)).

The structure of matrix S suggests that, in fact, dynamics is stable when energy function indicates
that. Indeed, Ai/ % lAi/ % has the same spectrum as W, A |, so sufficient condition for S is

equivalent to sufficient condition for Ai/ ‘W, Ai/ _I Finally since A | is full rank we find that if
A W, A, — A is negatively stable (has non-positive eigenvalues), the dynamics of y, is stable.
Since this matrix is a restriction of AW A — A on the range of Hessian we conclude that one can
analyze the stability of steady-state using energy if projector on the range of Hessian is known.
It is important to note that matrix AW A — A can have other flat directions not corresponding to
nullspace of Hessian, these directions will cause instability, so one need to distinguish them from
directions corresponding to dead neurons.

Clearly, zero modes of A do not negatively affect the spectrum of matrix S. On the contrary, one
may expect a stabilizing effect since Cauchy interlacing theorem (Horn & Johnson, [2012, Theorem
4.3.28, Corollary 4.3.37) ensures that the spectrum of W is in-between minimal and maximal
eigenvalues of W. So when A\ (W A) > 1 itis likely that A(W, A ) < 1. To demonstrate
the effect, one needs to make some assumptions about the spectrum of W. Given a standard deep
learning practice to use random matrices for initialization of model weights|Glorot & Bengio|(2010),
He et al.| (2015), it is natural to assume that W is drawn from Gaussian orthogonal ensemble. Under
this condition, one may show a stabilization effect, as demonstrated next.

Proposition 3. Suppose W € RN*N is a matrix from a Gaussian orthogonal ensemble. If k

neurons are dead E ||W _ ||, = /1 — £ E||W||, holds for large N.
Proof: Appendix|F]

We gather the main results of this section in the proposition that follows.

Proposition 4. For energy function () the following is true:

1. Flat directions of dead neurons characterised by V' form nullspace of Hessian A.

>Note, however, that for the face given in Figure [2b] it is possible to construct a positively invariant set
based on energy levels. After that LaSalle’s invariance principle (Haddad & Chellaboinal [2008, Theorem 3.3)
guarantees that isolated steady states are asymptotically stable. This material is standard and covered in many
books, e.g., (Haddad & Chellaboina, 2008} Section 3.3.).

SWe assume for simplicity that V has orthonormal columns.
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2. Steady state is stable if energy function predicts local stability in the range of Hessian, i.e.
if matrix AW A — A restricted on the range of Hessian is positive definite.

3. If one performed direct optimization of the energy function and found that y corresponds to
the minimum, it is possible to recover the steady state of dynamical system (|l}) as follows:
(i) compute the projector Py on the nullspace of A; (ii) steady state of dynamical system
reads y =y + Py (Wg(y) + b).

4. When steady state (y,y}) is stable, the whole non-compact flat region (yj;,y5 + V) is
basin of attraction.

4  ASSOCIATIVE MEMORIES WITHOUT DEAD NEURONS

We have seen that dead neurons present certain problems for energy function (2): (i) flat regions
make optimization and analysis of energy cumbersome; (ii) one needs to distinguish between harm-
less flat direction of Hessian and other flat direction of energy that can compromise stability; (iii)
energy do not contain full information and one need to build a projector on the nullspace of Hessian
to restore the whole state. The last point implies that one needs Hessian even when stability analysis
is not performed and one merely wants to compute a local minimum of energy which can often be
done successfully with first-order methods.

To avoid these difficulties we will slightly modify the dynamics of associative memory to
minimally alter steady states and get a better energy function. In a simplified terms, our
idea is to modify right-hand side of (I) such that it becomes conservative vector field. If this
is the case, flat energy directions disappear. For example, the simplest model of this kind is

a(t) = WTg(Waul(t) + b) — u(t) = — 220 with energy E(u) = JuTu — L(Wu + b).
A more general dynamical system along the same lines reads:
u(t) = R(u) (g(Wu(t) +b) —u(t), u(0) = uo, (5)

where R(u) is a matrix-valued function to be specified later.

If one assumes that it is possible to select R(w) that has empty nullspace for all u, i.e., that informa-
tion is not lost after multiplication by R(w), the condition that we will verify later, steady states of
the newly introduced system (5)) follows from the old one with affine transformation y = Wu + b.
This means all architectures possible with the old model (TJ) are also possible with the new one (3).
More precisely, the structure of steady state is the same for memory (I)) and memory (3)), but the
structure of basins of attraction is different owing to the matrix R(w) absent in model

Dynamical systems (3 and (I)) have equivalent steady states, but (5) allows to construct of a large
set of Lyapunov functions with good properties in a systematic manner.

Proposition 5. For a parametric energy function
E(u;a, 8,7, 8) = abi(u) + BEz(u) + 7E3(w; S), o, 8,7 € R,
Fr(u) = u Wg (Wu+b) — L(Wu+b) — %g (Wu+b) Wg(Wu+b),
Es(u) = %uTWu —L(Wu+b), E5(u; S) = % (u—g(Wu+b) S(u—g(Wu+b))
(6)
the following is true:

1. E(u;a, B,7,8) is a Lyapunov function for dynamical system () if one can find Q > 0,
R(u), S = ST such that for all u

R'F(u)+ F(u)' R> Q,F(u) = WA (Wu +b) (aW —~8) + SW +~8. (7)

2. For arbitrary parameters o, 3,7, S one can always find orthogonal matrix R(u) such that
E(u;a, 8,7, 8) is a Lyapunov function for dynamical system ().

3. E3(u) and E5(u; S) does not have flat directions corresponding to dead neurons.
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4. Sufficient condition for stability of steady-state u* : u* = g (Wu* + b) is
F(u) (I - A(Wu'+b) W)+ (I - WA (Wu* +b)) (Fu) >0 (8
Proof: Appendix|E]

Proposition [5]allows one to make several useful conclusions.

First, the construction of the Lyapunov function boils down to the analysis of matrix inequality (7).
In general, this inequality is nonlinear, but in particular cases, it reduces to a Sylvester equation
which can be systematically analyzed [Simoncini| (2016). Below we will provide several explicit
choices of R that result in a valid Lyapunov function.

The second point of Proposition [5] shows that suitable R always exist. Moreover, this R does not
alter the steady state, since it is an orthogonal matrix. Whether this choice of R is practical depends
on the parametrization of weights and other details of the model.

The third point shows that unless 8 = v = 0, the energy function does not have a flat direction, and
the fourth point gives a sufficient condition for the stability of a particular state. This part is harder
to analyze in general, so we will discuss this condition for selected examples below.

Finally, Proposition [5] does not require Hessian to be positive definite which allows one to use a
richer set of activation functions.

Example 5 (& = v =0, 8 = 1). In this case E = Fs condition (@ becomes R'TW + W R > 0.
There are many strategies to select R and W :

1. The simplest choice is to take R = W since in this case condition @ reduces to W2 > ()
which is true for arbitrary symmetric matrix.

2. Unfortunately, if matrix W has low rank and one takes R = W, dynamical system
can lead to false memories whenever f(u(t)) reaches a nullspace of W. To exclude this
possibility one can parametrize W = OP in terms of its polar decomposition and select
R = O. With that choice condition ([7) becomes P > 0 which automatically follows from
polar decomposition.

3. We can restrict W to be positive definite by taking W = KK for some full-rank K.
In this case, a large set of positive definite matrices R exists such that RW + W R > 0.
More specifically, one needs to restrict the condition number of R as explained in/Nicholson
(1979).

4. If W is positive definite the other option is to select arbitrary Q > 0 and consider Lya-
punov equation RW + W R = Q which is known to have unique solution for arbitrary
Q > 0. One can explicitly provide it in many forms Lancaster|(1970), |Simoncini| (2016)),
for example R = [ dr exp(—mW)Q exp(—TW).

Condition for the stability of state @) in this case reduces to W — WA (Wu*+b)W > 0.
Note that nullspace of A does not compromise stability since it does not transfer to nullspace of

W —-WAW.

Interestingly, one can also construct associative memory with non-symmetric weights as explained
in the next two examples.

Example 6 (0« = 3 = 0,7y = L and W # W ). Es is the only energy function that is de-
fined for W # W . If we account for that in Proposition |3 existence condition @ becomes
RT (I — WTA) S+ S (I —AW)R > 0. Two examples of suitable R, S, W are given below:

1. The simplest choice is to take S = I and R = I — W T A. One also may ensure that R is
invertible with |W ||, < || A]l;".

2. Another possible choice is to take R = A, and ensure A — %A (W + WT) A >0, which
can be simplified 10 w(W) < Apin(A)/Amax(A?) where w(W) is numerical abscissa
Ww(W) = Apax(W + WT)/Q. For example, if A > 0 any W with non-positive real part
of the spectrum suffices.
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Example 7 (associative memory with smooth Leaky ReLU). Here we build a concrete example
of hierarchical associative memory |Krotov|(2021) with smooth Leaky ReLU |Biswas et al.|(2021) to
avoid dealing with ODE having a non-smooth right-hand side. The activation function reads g(u) =
u (5 + 3erf (3u/8)) /8 and its derivative is g (u) = g(u)/u + 9uexp (—9u?/64) / (32y/7),
where all operations are pointwise and erf is error function. Weights and state vector are selected
as in Examplebut without requirement W; ;1 = WTH’Z». After that we select R=1 — W TA

and obtain the following dynamical system '
a(t) = (1- W7 o g (Wult) + b)) (g(Wult) + b) - u(t)) , u(0) = uo.

For this system Lyapunov function Ey = % (g(Wu(t) + b) — uw(t) (g(Wu(t) +b) — u(t)) is
non-increasing on trajectories. Matrix (I ~WT og (Wu(t) + b)) can in principle have non-
trivial nullspace. To avoid this one observes that [|W ||, < max; [|[W; ;i 1|, + max; [[Wi 1],
(the bound is tight) and take W ;1 = ﬁ//}’iil/ (2 Hﬁv/”ﬂ H2>, for some W with the same block

structure. Note, that in this construction A is not positive definite, and W' is not symmetric.

All theoretical statements that we derived are valid only for modified dynamical system[5] However,
it is easy to see that energy function Es5 from Proposition[5]can be adopted for the original temporal
dynamics (I). The resulting energy function and dynamical system reads

y(t) = R(y(t)) (Wg(y(t)) —yt) +b), y(0) = yo, ©)
Es(y) = % (Wa(y(t)) —y(t) +b) S(Wa(y(t)) —y(t) +b). (10)

We used temporal dynamics (9) with R = I — W A(y) and energy function with § = I to
generate results given in Figure [T} One can also prove results similar to Proposition [5 for energy
function (I0) but since the extension is straightforward we do not pursue this further.

5 CONCLUSIONS

We describe the effect of dead neurons on the energy landscape of associative memory, analyze the
consequences for stability, and provide several remedies, including new dynamical systems with
good energy functions. We think it is appropriate to discuss the overall significance of the Lyapunov
function for associative memory. Is it necessary to have this function at all? How is this function
used in practice?

One may observe that, currently, the Lyapunov function is underutilized. As a rule, one uses several
steps or even a single step of temporal dynamics of ODE during training and inference Hoover et al.
(2024), Hoover et al.| (2022), Millidge et al.| (2022a)), Ramsauer et al.| (2020), [Krotov & Hopfield
(2016). The role of Lyapunov’s function is merely to provide comfort that some steady states may
exist somewhere. As we show in this article, it is often a false comfort.

It is important to note, that the Lyapunov function in itself does not ensure stability: (i) it may be
the case that no steady state exists, (ii) limit cycles may still be present, (iii) all steady states may be
unstable. Besides that, for any steady state, the Lyapunov function can be constructed (by solving
the Lyapunov equation) even when the “global” Lyapunov function is unavailable.

The Lyapunov function, as it is currently considered, is not of huge help. We can suggest several
appropriate use cases: (i) model parameters may be adjusted on the training stage to make the Lya-
punov function unstable for particular states — something that can not be easily done by integrating
the dynamical system alone. This may help to learn from negative and adversarial examples Wang
et al.| (2024)),|Goodfellow et al.| (2014); (ii) Lyapunov function may help in theoretical understanding
of memory capacity, e.g., in the present article we have already shown that a whole flat direction cor-
responds to the basin of attraction, and can not support more than a single memory; (iii) Lyapunov
function may be directly used to compute and manipulate basins of attraction, potentially speeding
up learning and making memory more robust to adversarial attacks.

All in all, we think that the Lyapunov function is a powerful tool that can lead to novel theoretical
results and practical learning techniques in the field of associative memory. We hope that our results
will inspire further research in this direction.

10
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A RELATIONS BETWEEN MEMORY MODELS

Our model is most directly related to Dense Associative Memory described in (Krotov, 2021} Equa-
tion (2)). This equation reads

dz
I
T———E Wrirgs —x
L 2 1797 I

where x;, I = 1,..., N are activities of individual neurons, g; = % is activation function
which is a gradient of Lagrange function L that depends on all activities, and 7; control relaxation
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time of individual neurons. Energy function used in this work is available in equation (Krotov, 2021,
Equation (3)) and is given below:

N

N
1
E = E Qf[g]—L—§ E g[WIJgJ.
I=1 I,J=1

It is easy to see that there is a direct relation between dynamical system and the model we
use in the article and the ones from Krotov|(2021): W7 are the elements of matrix W, activities x
are components of y. Two differences between the model from that article and Dense Associative
Memory are: bias term that we use b is absent from Dense Associative Memory Krotov| (2021)), time
scales 77 are absent from our model. The bias term can be simply removed by taking b = 0 and
since it is not used in the stability analysis, this does not affect our results. Observe, that if b = 0
the energy that we use (2) is precisely the same as in Krotov| (2021). Similarly, time scale 7; are
absent from the definition of energy function in Krotov| (2021) so they do not influence flat energy
regions. However, they mildly influence stability analysis since after linearisation Jacobian will by
multiplied by D~! where D is a diagonal matrix containing time scales on the diagonal.

Next we discuss the relation to model (Krotov & Hopfield, [2020, Equation (1)). This model seems
to be quite different from our formulation, but it is a specific case of Dense Associative Memory
(Krotov, 2021}, Equation (2)) with bias term. To see this we describe model given in (?, Equation (1))
In the article Krotov & Hopfield (2020) authors split neurons on two parts: activations of memory
neurons are b, = 1,..., N, and activations of feature neurons are v;,¢ = 1,..., Ny. These
neurons has distinct activations function f,, = f(h,) and g; = g(h ) which are defined as derivatives

of corresponding Lagrange functions f, = M and g; Ly {v D (Krotov & Hopfield,

2020, Equation (3)). Dynamical equations for these activations (Krotov & Hopfield, [2020, Equation
(1)) is reproduced below

dv; Al
Tf dtZ Z gwfu v; + 1,
Nf
ClhM
Th% = ng’gi - huy

i=1
where §,,; = ;,, are symmetric weights describing “weights of synapses” and I; is “the input current
into feature neurons.” Lyapunov function given in (Krotov & Hopfield, 2020, Equation (2)) reads

Ny Np,
E= Z(Uz - Ii)gi —L,| + Z hufp, - L - qufuigi-
i=1 pn=1 %

To see that this model is related to (Krotov, 2021}, Equation (2)) , consider a special weight matrix
Wr s, xg, 71 that have the following block structure

0 f v
wefer i)e= ()= ()

where e, and e;, are identity vector of sizes Ny, Nj,. With this split and Lagrangian L({z}) =
Ly ({vi}) + Ly ({hyu}) we have

Z Wrigs —z1 = Wa (gOT g) (?%) - (Z)

so we see that we reproduce (Krotov & Hopfield, 2020, Equation (1)) without bias term [;. The
same way we reproduce the energy function but without I;.

Given that, both models (Krotov & Hopfield, 2020, Equation (1)), (Krotov, 2021, Equation (2)) are
directly related to (T). The only difference is these models contain 7 variable that speed up or slow
down temporal dynamics for selected neurons. Importantly, energy functions from models |[Krotov
& Hopfield| (2020), Krotov| (2021) are equivalent to @I)

Note that other modifications of memory models are available. The main problematic part that lead
to flat energy is a Lagrange function introduced in Krotov & Hopfield (2020). So, whenever this

13
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function is used, the energy will have non-compact flat regions corresponding to dead neurons. To
give an example, in |Millidge et al.[ (2022a) authors build a modified model but used a non-trivial
Lagrange function L, in Equation (3). If f(h) = sep(h) can produce dead neurons, the energy from
Millidge et al.| (2022a) will have a non-compact flat region. One such situation occurs when the
softmax function is used as sep(h) in (Millidge et al., 2022al Equation (5)).

B PROOF OF PROPOSITION I} DEAD NEURONS LEAD TO NON-COMPACT FLAT
ENERGY REGIONS

We assume that we are at point y in the region where neurons are dead, so there is V' such that
g(y + Ve) = g(y) for arbitrary ¢ with positive components. We substitute y + V¢ into the
definition of energy to obtain

1
E(y+Ve)=(y+Ve—b) g(y+Ve)—L(y+Ve)— §(g(y+Vc))TWg(y+Vc)-
First, we use g(y + V¢) = g(y) to remove shift from activation functions
1
E(y+Ve)=(y+Ve-b)"g(y) -Lly+Ve)-(g(y) Waly).

2
Next, we use Taylor series with mean-value reminder to expand Lagrange function

T
) Ve, 7€ (0,1).
z=y+7Ve

the expression above can be presented as follows

OL(z)
0z

L(y+Vc):L(y)+<

OL(y)
oy

Liy+Ve) =Ly +(gy+7Ve) Ve, 7€ (0,1).
Now, since 7 > 0 we use g(y + 7V'¢) = g(y) to remove shift and obtain

Ly+Ve)=L(y)+(g(y) Ve

We substitute this to the last expression for energy which gives

Since by definition g(y) =

E(y+Ve)=(y+Ve-b)gy) - Ly —(g(y) Ve- ! (g(y) Wg(y).

2
Two remaining terms containing ¢ are (Ve)' g (y) and — (g (y)) ' Ve cancel each other, so we
obtain 1

E(y+Ve)=(y—b) g(y)—L(y) - =

5 (g () Wg(y) = E(y),

as claimed in the proposition.

C EXAMPLE OF MEMORY CAPACITY DEGRADATION FOR ENERGY FUNCTION
BOUNDED FROM BELOW

Figure [2a shows an energy function that is unbounded from below but supports two stable states. In
this section we argue that the unbounded energy is not problematic. Moreover, if one is too strict
about this property, memory can severely degrade in capacity.

It is easy to find papers on associative memory that claim that it is necessary to have energy function
bounded from below to ensure stable memory recovery, e.g., see discussion after equation (4) (in
both cases) in |[Krotov| (2021)) and |Krotov & Hopfield (2020). In [Xie & Seung| (2003) authors even
incorrectly claim “Furthermore, with appropriately chosen fy, such as sigmoid functions, F(z) is
also bounded below, in which case E(z) is a Lyapunov function”. Clearly, the Lyapunov function
is not required to be bounded.

We certainly agree that if the energy function is bounded and informative (not flat), the memory
vector will be recovered eventually from arbitrary initial conditions. However, we have several
arguments again the overall importance of this condition:

14



Published as a conference paper at ICLR 2025

1. Unbounded at infinity only. Activation functions used for associative memory are at least
continuous, meaning energy can be unbounded only when the activities of neurons reach
infinity. This kind of run-away behavior is very easy to detect and prevent when one uses
actual implementation of associative memory.

2. Finite number of updates in practice. In practice ODE is not integrated for a very long
time. As we discuss in Section [5one usually performs a small number of steps for discre-
tised dynamics, e.g., 10 or even 1 step. Under these conditions it is not possible to diverge
using ODEs considered in this article.

3. Stability is a local condition. For associative memory one cares more about local stability
in the basins of attraction, and the fact that energy is bounded from below is a global
information, which is seldom important for local stability (with the important exception
discussed below). In practice one can always rescale input vectors (initial conditions) to
localize it on a sufficiently small sphere with radius R. Memory trained and used this way
has little chance to diverge.

4. Extra constraints can compromise capacity. If we require energy to be bounded from be-
low we will put extra constraints on parameters of associative memory. These constraints,
as we will show below, can decrease capacity dramatically.

The last point, the decrease in capacity, is especially interesting. We will illustrate it with ReLU
memory model
dy(t)

L — WRLU (y(1) — y(6) + b, y(0) = w0,

that has energy
1 1
E(y) = (y — b)" ReLU(y) — > _ 5 (ReLU(1:))” — 5 (ReLU(y)) ' W ReLU(y).
=1

To analyze this energy function we observe that y TReLU(y) = (ReLU(y)) ' ReLU(y). This fact
allows us to simplify energy to

E(y) = % (ReLU(y))" (I — W) ReLU(y) — b ReLU(y).

It is possible to bound this energy function from below using spectral radius p of W

1—p(W)
E(y) > s

note that this bound is tight unless we restrict allowed weights, since it is saturated for W = o[ for
scalar «.. From this lower bound we can observe that memory is bounded from below if p(W) < 1.
Moreover, in light of our previous comment, it is a necessary and sufficient condition.

(ReLU(y))" ReLU(y) — b ReLU(y),

Suppose now we restrict W such that p(W') = 1 — e with arbitrary small but nonzero e. In this case
ReLU memory has a single memory vector.

We start by showing that a steady state of temporal dynamics exists. For that we consider a discrete
iteration

Y+ = WReLU (™)) +b.
Observe that right-hand side is a Lipschitz function with Lipschitz constant 1 — e:

[[WReLU (c1) + b — (WReLU (c2) + b)||, = [|[W (ReLU (¢1) — ReLU (c2))||5
< [[W][; [[(ReLU (1) — ReLU (e2)ly < [Wly fler — e2ll; = (1 =€) [[er — e2|,

Given that, by Banach fixed point theorem [Palais|(2007) these iterations has unique fixed point. This
fixed point is a steady state since

y* = WReLU (y*) + b= WReLU (y*) —y*+b=0
so the right-hand side of the dynamical system is zero.

Now, we will show that this steady state is unique. For that we consider two trajectories starting
from (arbitrary) distinct initial conditions 1 (¢), y2(t): y1(0) = yg, y2(0) = y2. We will show that
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the distance between y1 (¢) and y2(t) decreases with time. To do that we consider derivative of this
distance:

%% [y (t) = ma(t)]l3 = (w1 (1) — w2(1)) " (dy;t(t) N dycjt(t)>

= (y1(t) — y2(t)) " (WReLU (y1(t)) — 91 (t) — WReLU (y2(t)) + ya(t))
—llyr(t) = 2 ()5 + (y1(t) — 2(t)) " (WReLU (y1(t)) — WReLU (y2(t))).

To bound second term we use that a < |a| and Cauchy-Schwarz inequality

5 55 1) — w203 < ~ 1) — w2013+ (w1 (6) — 92(6)) (WReLU (y (1)) ~ WReLU (y(1))

<~ lly1(t) = y2 (D5 + 1) = y2(£)l, [WReLU (y1(t)) — WReLU (y2(1))ll -

Finally, we use result that W ReLU(+) is Lipschitz with Lipschitz constant 1 — € to obtain

1d
5 1910 = w2013 < = l91(6) = w3+ 11 (1) = w2(OI3 (1= ) = —€ s (1) — w2013
Using Gronwal inequality we obtain

1d 9 o1l d 9

—— - < —— - .

5 7 191() = m2()5 < €75 2 [ly1(0) — m2(0)]l;

In other words, separated trajectories converge exponentially fast. Since there is a fixed point one
of the trajectories might as well start from y* which means this fixed point is the only one, and it is
exponentially stable.

The result that we demonstrate here means one should be careful restricting parameters of associative
memory, since it may lead to degradation of capacity to a single memory. The proof above is not
working for p(W') = 1, but since € can be arbitrary slow one can recover the same result in a limit
e — 0.

D MEMORY MODEL FROM HOPFIELD| (1984

In this section we align our notation with the one from |Hopfield| (1984). The model of interest is
given in (Hopfield, |1984, Equation (5)). We replicated this model below

dui
Cir = z]:T”V] —ui/Ri + 1,

ui:gi_l(‘/i)v

where u; is an instantaneous input to neuron ¢, V; is the output or “short term average of the firing rate
of the cell 77, g; is an activation function or “the input-output characteristic of a nonlinear amplifier
with negligible response time”, T;; are weights and T;l “finite impedance between the output V
and the cell body of cell i, R; is “transmembrane resistance” and C; is “input capacitance”, I; is
bias or “any other (fixed) input current to neuron z”.

If we put aside the biological content of [Hopfield| (1984), this equation is already very similar to
all models we discussed in Appendix |A] To make the resemblance even more evident observe that
R; can be removed without the loss of generality, since we can multiply on them and redefine
C; = R,C;, Ty; — RTy;, I; — Ril;. After that we also substitute V; = g(u;) and obtain the
following equation
dui
i = > Tiig;(ug) — i+ I,
J

which is precisely the Dense Associative Memory (Krotov, 2021, Equation (2)) with weights T},
time variables C; extra bias term I;. Since we already discussed the relation of Dense Associative
Memory to our model in Appendix [A] we can be sure that model from [Hopfield (1984) is in the
same class of memory models.
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Dynamical system (Hopfield, [1984) Equation (5)) comes with the energy function (Hopfield, |1984,

Equation (7)):
1 1 [V .
E= —§;Timvj +¥Ri/0 v g; (V) +;IZ-VZ-,

Using V; = g;(u;) we obtain

B Y Tann) + Y o [ Ve )+ Y ke

2 ZJ ]9 7 7 2 - RZ 0 7 - 1J1 1)
In addition to that we can drop R; for the reason explained above
1 i o
FE = —5 ZTijgi(ui)gi(ui) + Z/ dVgZ 1(V) + Zligi(ui).
ij i 70 i

The first and last sums are easily mapped on our notation and the second sum is explained in Sec-
tion [3.1)).

All in all, one can say that our model is similar to the one from Hopfield (1984) but with C; = R; =
1. As we argued, R; is irrelevant and C; does not appear in the energy function.

E PROOF OF PROPOSITION 3 STABILISATION OF DYNAMICS FOR RANDOM
MATRICES

Matrix W can be written as DT OT W OD where O is orthogonal full rank matrix and D is
first N — k columns of I. Since GOE is invariant under orthogonal transformations O ' WO is
also a matrix from GOE. The effect of D is to select a principal submatrix with N — k rows and
columns. Given that W is also from GOE but with N — k rows and columns. For GOE with
large N, the distribution of leading eigenvalue quickly converges to Tracy—Widom distribution (see
Chiani (2014) equation (50) and numerical results), so, on the average, spectral radius of a matrix

with N — k rows and columns is \/2(N — k) (see below) and E |[W ||, /E || W ||, = /1 — £.

To obtain an average spectral radius for the GOE matrix M we will use the theory described in
Section 4 of [Chiani| (2014). Let A; be a spectral radius of matrix M & RV*N " We define a
Gaussian orthogonal ensemble as a set of random symmetric matrices with independently identically
normally distributed entries (for upper diagonal part) with variances 1 and 1 / 2 for entries on and off
the diagonal respectively. For sufficiently large NV it is known that

A1 :/JJ,]V+MTW10';Va (1)

where )\; is a mean value of spectral radius, pirw, ~ —1.2 is a mean value of Tracy—Widom distri-
bution and

/—2N1iN1_%—>2N1~/—iN—%—>o (12)
HN = 210 2 N T '

So we see that for large IV the average spectral radius of the GOE matrix is v 2N.

F PROOF OF PROPOSITION 3 ASSOCIATIVE MEMORY WITHOUT DEAD
NEURONS
Observe that W =Wg(Wu+b)and W =A(Wu+bdb)W.

1. Using the identities above we find

OB,

%: (I-WA(Wu+1b))S(u—g(Wu+b)).

0,

=W (u— g(Wu+bd)),
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Multiplying gradients on «, /3,y and adding them gives mgiu) = F(u)f (u). Since u =

—R(u)f(u(t)) where f(u(t)) = u — g(Wu+b) from E = uTg—ﬁ we obtain

E=—f@)' (RTF(u)+(Fw) R)f().

If one can find positive semidefinite matrix @ such that RT F(u) + (F(u))' R > Q,
energy is non-increasing on trajectories since in this case £ < —f ' Qf <0

2. Consider polar decomposition of matrix F'(u) = O(u)P(u) and take R(u) = O(u).
Since P(u) > 0 we have RT F(u) + (F(u))' R=2P(u) > 0and E < 0.

3. From the proof of Proposition [T| we know that if Wu + b — Wwu + b + V¢, Lagrange
function shifts on g (Wu + b) Ve. The first term in the energy function @ is quadratic
and does not contain g so in general energy F5 does not have flat directions. Similarly,

Ej3 has a form f(u)" S f(u) where f is not invariant under transformation Wu + b —
Wu + b+ Ve meaning Fs is not invariant as well.

4. Since 2E = F(u)f(u) and f(u*) = 0 we find for sufficiently small &

ou
Of (u)

E(u* +8) — E(u*) = 8" F(u*) T

4.

u=u*

For stability one needs this quadratic form to be positive definite, which gives (8).
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