
FlowState: Sampling Rate Invariant Time Series Forecasting

Lars Graf1, 2, Thomas Ortner1, Stanisław Woźniak1, Angeliki Pantazi1
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Abstract
Foundation models (FMs) have transformed natural language
processing, but their success has not yet translated to time
series forecasting. Existing time series foundation models
(TSFMs), often based on transformer variants, struggle with
generalization across varying context and target lengths, lack
adaptability to different sampling rates, and are computation-
ally inefficient. We introduce FlowState1, a novel TSFM ar-
chitecture that addresses these challenges through two key
innovations: a state space model (SSM) based encoder and
a functional basis decoder. This design enables continuous-
time modeling and dynamic time-scale adjustment, allowing
FlowState to inherently generalize across all possible tempo-
ral resolutions, and dynamically adjust the forecasting hori-
zons. In contrast to other state-of-the-art TSFMs, which re-
quire training data across all possible sampling rates to mem-
orize patterns at each scale, FlowState inherently adapts its
internal dynamics to the input scale, enabling smaller models,
reduced data requirements, and improved efficiency. We fur-
ther propose an efficient pretraining strategy that improves ro-
bustness and accelerates training. Despite being the smallest
model, FlowState outperforms all other models and is state-
of-the-art for the GIFT-ZS and the Chronos-ZS benchmarks.
Ablation studies confirm the effectiveness of its components,
and we demonstrate its unique ability to adapt online to vary-
ing input sampling rates.

Introduction
Machine learning (ML) models are ubiquitously found in
many aspects of our daily lives. Especially foundation mod-
els (FMs), have received extensive research interest and
are today employed in various natural language process-
ing (NLP) tasks, such as text summarization, text genera-
tion or information retrieval from large, unstructured text
databases (Hadi et al. 2023). The astounding capabilities of
FMs are believed to arise in part from their specific training
process, in which the FMs are trained on a vast collection
of text-based data available on the public internet. Through
this approach, the model can learn the underlying founda-
tional principles of the data. Thus, we refer to this train-
ing procedure as the foundation model approach. Leverag-
ing this extracted information, the model can then address
various unseen downstream tasks, i.e., zero-shot generaliza-
tion (Bommasani et al. 2021).

1Currently under review

Despite their astonishing performance in NLP, FMs strug-
gle to be applied to other domains, such as time series pro-
cessing. NLP and time series processing are both sequence
processing tasks, but with major differences. In particular, a
token in NLP carries substantially more information than an
individual data point in time series. Furthermore, time series
data can be multivariate and vary strongly within and espe-
cially across domains, e.g., the electrical power consumption
of a city may look entirely differently than a stock price.

Therefore, other model capabilities compared to the NLP
domain are required, which resulted in different model ar-
chitectures to emerge as state-of-the-art (SOTA). For exam-
ple, while FMs for NLP have so far undoubtedly been dom-
inated by the transformer architecture, the same architecture
is performing poorly in time series tasks (Zeng et al. 2022).
Researchers have uncovered better architectures, based on
linear layers that mix over time and features (Chen et al.
2023; Ekambaram et al. 2023) in an alternating manner.
More recently, state space models (SSMs) (Gu et al. 2021)
have emerged as viable alternatives that currently represent
the SOTA in several time series tasks.

The above-mentioned challenges have for a long time
hindered the emergence of time series foundation models
(TSFMs). Only recently, researchers have found ways to uti-
lize the foundation model training approach also for time se-
ries data and successfully trained TSFMs (Auer et al. 2025;
Ansari et al. 2024; Ekambaram et al. 2024; Das et al. 2023;
Liang et al. 2024). Still, these approaches are quite limited in
their usability. For example, a TSFM should be able to pro-
cess time series data of a particular length—the context—
and produce a forecast of a different and potentially varying
length—the target. However, most TSFMs currently employ
a linear decoder of a fixed size, matched to the target, to
produce their forecast. This results in the models being in-
herently specialized to a specific target length. On top of
that, TSFM should generalize well to varying context and
target lengths, where current TSFMs often struggle with. Fi-
nally, current TSFMs don’t have a direct way to adjust to the
specific characteristics of the time series encountered during
evaluation, such as a change in sampling rate.

In this work, we propose a novel TSFM, called FlowState,
that addresses these shortcomings. In particular, FlowState is
based on an SSM, which naturally allows to process varying
context lengths. Moreover, we introduce a novel functional
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basis decoder (FBD) which leverages a set of basis functions
to create a continuous forecast. The combination of the SSM
encoder with the FBD allows to seamlessly adjust FlowState
to the specific characteristics of the context time series, most
importantly, its specific sampling rate. FBD also enables the
model to produce varying target lengths, without retraining.
Finally, we designed a massively parallel training scheme,
that concurrently trains the model on a variety of context
lengths for superior generalization capabilities.

In summary, we make the following key contributions:

• FlowState: We present an SSM-based time series founda-
tion model that can be dynamically adjusted to the spe-
cific characteristics of the time series during evaluation

• Functional basis decoder (FBD): We propose a novel de-
coder, as a critical component of FlowState, that utilizes
a set of continuous basis functions to allow seamless ad-
justment to specific input characteristics and to produce
forecasts for varying target lengths

• Training approach with parallel predictions: We intro-
duce a foundation model training scheme leveraging par-
allel predictions to enable efficient training and model
robustness to varying context lengths

Background
Time Series Forecasting
Time series data is omnipresent in various domains and there
are several tasks that can be performed with this data, such
as anomaly detection, pattern search within time series, time
series forecasting, etc. Although our model could be applied
to several of these tasks, we specifically focus on time series
forecasting. The model receives an input time series X ∈
RL×c = {x1, ...,xL} = x1:L, where xt ∈ Rc is the c-
channel multivariate time series at timestep t and L is the
context length. Given this input data, the task of the model is
to produce a forecast for the proceeding T timesteps, i.e., to
produce Ŷ ∈ RT×c = {ŷ1, ..., ŷT } = ŷ1:T = xL+1:L+T ,
where T is the forecasting length. The quality of the forecast
can be measured by comparing it against the ground truth
Y ∈ RT×c using various metrics, such as the mean absolute
error (MAE) or the mean squared error (MSE).

Models for time series data
Traditionally time series forecasting tasks have been ad-
dressed with classic machine learning models, such as the
ARIMA model (Box et al. 2015), which to this day presents
a strong baseline in some cases.

The successes of the transformer architecture in the NLP
domain have inspired researchers to apply them to time se-
ries data, yet vanilla transformers were outperformed by
simpler architectures (Zeng et al. 2022). Combining sev-
eral timesteps to patches (Nie et al. 2023), or performing the
self-attention alternatingly along the time and the feature di-
mension (Liu et al. 2024), improved their performance over
classic baselines for some datasets. However, they still strug-
gle on certain datasets and suffer from a high computational
cost. This has inspired researchers to develop simpler ap-
proaches, solely based on multi-layer perceptrons (MLPs),

that outperform transformers with a smaller computational
footprint (Chen et al. 2023; Ekambaram et al. 2023).

Recently, State Space Models have emerged as another
viable alternative. SSMs have a long history in control the-
ory, are successfully applied to NLP tasks, and slowly make
their way into other domains as well (Liu, Zhang, and Zhang
2024; Rahman et al. 2024; Wang et al. 2025). In contrast
to the transformer- and MLP-based architectures, SSMs are
stateful models more similar to the classic recurrent neural
networks (RNNs), which in the past also served as strong
baselines in time series tasks (Siami-Namini, Tavakoli, and
Namin 2019; Che et al. 2018). Researchers have developed
several SSM variants for NLP tasks, such as S4 (Gu, Goel,
and Re 2022), S5 (Smith, Warrington, and Linderman 2023),
S6 (Gu and Dao 2023) or Mamba2 (Dao and Gu 2024),
which successively enhanced the model’s capabilities and
performance. A main advantage of SSMs over RNNs is
that while the state update in conventional RNNs, such as
LSTMs or GRUs, contains nonlinearities, the state update of
SSMs block is linear, and only the output of the SSM con-
tains a nonlinear activation. Thus, SSMs can be parallelized,
which leads to a reduced time complexity compared to se-
quential RNNs.

Lastly, TiRex (Auer et al. 2025), a stateful model based
on xLSTMs (Beck et al. 2024), has emerged and became
state-of-the-art in several benchmarks. In addition, it intro-
duced a capability to deal with various forecasting lengths
by applying a novel Multi-Patch-Inference (MPI) process.

Autoregressive Forecasting and Multi-Patch-Inference
Typically TSFMs use autoregressive techniques to extend
their forecasting horizon. Namely, they produce several
shorter forecasts of size p < T sequentially, always append-
ing their forecast to the original context. Auer et al. (2025)
have improved this autoregressive technique with MPI. In
particular, they adopt contiguous patch masking (CPM) dur-
ing training, which accustoms the model to make a predic-
tion after a certain number of unknown timesteps. This setup
enables MPI to forecast future patches by treating interme-
diate ones as missing. The main advantage of MPI / CPM
over autoregressive forecasting is the increased model’s ro-
bustness to noise and uncertain data, as well as the ability to
propagate uncertainty over multiple forecasting patches.

FlowState
Our proposed model, FlowState, is an encoder-decoder ar-
chitecture, employing an S5-based encoder and a functional
basis decoder. Figure 1a shows an overview of its architec-
ture. The input time series with length L is first normalized
in a causal manner. This causality is critical, because of the
parallel forecasts our model carries out during training, see
Section “Parallel forecasts”. Afterwards, the normalized in-
puts are embedded linearly and then provided to the SSM
encoder directly without any patching, see Section “SSM
Encoder” for more details. Importantly, while the time series
before being processed by the SSM are considered to be in
the feature space, where each element of the input represents
features of the time series, the SSM encodes this information
into a coefficient space, where it operates on coefficients of
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Figure 1: Architecture overview. a Overview of the FlowState architecture. The input context in the feature space (orange
color) gets normalized, embedded and then processed by the SSM encoder. The SSM encoder transforms the input into the
coefficient space (blue color) and provides the final encodings to the functional basis decoder, which then produces the final
forecast. Modules with trainable parameters are highlighted in black rectangular blocks. b The SSM encoder consists of N S5
layers, each composed of an S5 block extended with an MLP layer. A skip connection is used to allow inputs to propagate
also to later encoder layers. c The functional basis decoder interprets the outputs ol

t of the SSM encoder as coefficients of a
functional basis and creates a continuous output, which can be sampled at regular intervals ∆ to produce the forecast.

continuous basis functions. The final output of the SSM en-
coder forms the basis for the FBD, see Section “Functional
Basis Decoder” for details, whose outputs are then inverse
normalized, using the inverse method of the input normal-
ization, and form the forecasts of our model. Importantly,
the FBD maps from the coefficient space back to the fea-
ture space to provide the forecasts. Furthermore, the SSM
encoder, as well as the FBD are controlled by an additional
scaling factor s∆, that allows to adjust these components to
the sampling rate of the input data.

SSM Encoder
FlowState utilizes a stack of S5 layers to form the SSM en-
coder, see Figure 1b. One S5 layer l consists of an S5 block,
followed by an MLP. The dynamics of the S5 block can be
described through these governing equations:

slt = Ālslt−1 + B̄lxl−1
t (1)

hl
t = C̄lslt + D̄lxl−1

t (2)

where Āl ∈ RP×P , B̄l ∈ Rc×P , C̄l ∈ RP×H and D̄l ∈
Rc×H are the state transition, the input, the output and the
skip connections matrices of layer l, m and n are the hidden
state size and the output size of the SSM block and slt and hl

t
are the state and the output of the SSM block at timestep t.
Note that the input is denoted as x0

t . As reported in (Smith,
Warrington, and Linderman 2023), the matrices of the S5
block l can be computed as

Āl = eA
l∆, B̄l = Al−1 (

Āl − 1
)
Bl, C̄l = Cl, D̄l = Dl,

where Al ∈ RP×P , Bl ∈ Rc×P , Cl ∈ RP×H and
Dl ∈ Rc×H are the actual trainable parameters of the S5
and initialized using the HiPPO method (Gu et al. 2023).

In contrast to several other state-of-the-art works (Auer
et al. 2025; Ekambaram et al. 2024; Ansari et al. 2024; Co-
hen et al. 2024), FlowState processes the time series as-is
and does not perform any quantization or patching.

Subsequently, the output of each SSM block is further
processed by an MLP layer, see Figure 1b.

The S5 architecture can naturally be adjusted to a change
of the input sampling rate (Smith, Warrington, and Linder-
man 2023). For example, an S5 model pretrained on data
with a particular sampling rate can generalize without re-
training to data with a different sampling rate. By supplying
a different quantization parameter ∆, the SSM can produce
similar representations, irrespective of the sampling rate.
While this effect can be beneficial for classification or re-
gression tasks (Smith, Warrington, and Linderman 2023), it
is insufficient for time series forecasting tasks. In particular,
current decoders cannot distinguish those similar representa-
tions, hence they cannot adjust the forecasting sampling rate
properly. To remedy this issue, we propose a novel decoder.

Functional Basis Decoder
For the functional basis decoder, we take inspiration from
how SSMs are initialized from an input sequence. The
HiPPO approach ensures that their hidden state expresses
coefficients of a polynomial basis, which optimally approx-
imates the input sequence. In particular, Gu et al. (2020)
demonstrated a possibility to use the hidden state of their



SSM at timestep t to reconstruct the input sequence until t
with a functional basis. We adopt this approach for our de-
coder, but instead of extracting coefficients that can be used
to reconstruct the input, we use a continuous functional basis
to construct the forecast from the final outputs of the SSM
encoder oN

L , see Figure 1c. In particular, our proposed FBD
interprets the final outputs of the SSM encoder, oN

L , as co-
efficients of a functional basis, which can in turn be used to
produce a continuous output function. To obtain the forecast
with a desired quantization ∆, this continuous output is then
sampled at an equally spaced interval, with the spacing ∆.
The FBD can be formalized as follows:

ci = oNL,i (3)

ỹ =

n∑
i=1

cipi(a, b) (4)

ŷ = sample(ỹ,∆), (5)

where pi(·, ·) is the i-th basis function evaluated at an in-
terval [a, b], ỹ is the continuous forecast and sample(·,∆)
samples the argument equally spaced with ∆.

Our functional basis decoder offers several key advan-
tages. Firstly, it produces a continuous forecast, which can
then be sampled with any desired sampling rate. Secondly,
it draws inspiration from a well-established procedure to
map from coefficient to feature space, and thus can leverage
various functional basis functions, depending on the task.
For our main experiments, we use the Legendre polynomi-
als to be consistent with the SSM input encoding used by
the HiPPO initialization. Another viable option is to use the
Fourier basis functions to better match periodic signals. Fi-
nally, and most importantly, it enables the decoder to pro-
duce forecasts at the correct sampling rate, based on the cur-
rent parameter ∆. Note that although we introduce the FBD
as part of FlowState, it is a separate component and can be
combined with other encoder architectures as well.

Adjusting ∆ for unseen sampling rates
As described above, the dynamics of the SSM encoder and
the FBD can be adjusted to the input sampling rate by modi-
fying ∆. Typically, ∆ is only adjusted, as a trainable param-
eter, during training, while during inference, the parameter
remains fixed. In order to enable adjustments to the sampling
rates during inference, we modify the parameter ∆ with an
additional scaling parameter s∆, in particular:

∆̄ = f (∆, s∆) = s∆ ·∆. (6)

The adaptation of the parameter ∆ by multiplication with
the correct scale factor s∆ is crucial, because it is used to
discretize the continuous SSM for a given sampling rate.

Parallel forecasts
To enable efficient training of FlowState and to enhance its
robustness to varying context lengths, we introduce an ad-
vanced foundation training scheme. In particular, it utilizes
multiple parallel forecasts with increasingly longer contexts,
ranging from Lmin to L, see Figure 2.

These various forecasts can be formulated as
ŷt+1:t+T = FBD

(
SSM

(
x0
1:t

))
, (7)

where t ∈ [Lmin, L]. Importantly, because FlowState is an
SSM-based architecture, the inputs can be processed in par-
allel and in turn also the multiple forecasts can be pro-
duced in parallel. Thus, this approach allows to produce
(L − Lmin) forecasts from any given context-target pair,
while other models traditionally only produce a single fore-
cast per context-target pair. Depending on the choice of L
and Lmin, this amount can be very large, for example for
L = 2048 and Lmin = 20, as was used for our main results,
FlowState produces 2028 forecasts per sample in parallel.

The benefits of this training scheme can either materialize
in significantly reduced training times, because one can iter-
ate through the dataset faster using a larger stride to the next
context-target pair, or in an increased number of training ex-
amples, when the original stride to the next context-target
pair is kept constant. Another advantage of this training pro-
cedure is that the model inherently learns to produce fore-
casts from varying context lengths. This naturally increases
the models’ generalization capabilities and robustness. Note
that our novel training scheme is not limited to the FlowState
architecture but can be applied to any causal architecture that
can produce multiple forecasts in parallel.

Note, parallel forecasting can also speed-up inference if
combined with MPI.

Causal normalization
For parallel forecasting to work properly an architecture has
to be strictly causal. Otherwise, the model may learn to ex-
ploit this information leakage during training. In particu-
lar, the prediction ŷt+1:t+T should only use the data from
x0
≤t. The SSM and FBD of FlowState naturally satisfy this

requirement, but the commonly applied normalization and
inverse normalization technique, RevIN (Kim et al. 2022),
would violate it.

RevIN normalizes every context-target pair, based on the
mean and the standard deviation of the entire context x0

1:L,
see Eq. 2 of (Kim et al. 2022). However, this would result
in information from x0

>t to influence ŷt+1:t+T . For exam-
ple, if the average of the normalized sequence µt = x̃0

1:t is
negative, the model will learn that positive values are to be
expected for x̃0

>t, because, per definition, RevIN produces a
zero mean for the whole time series.

To address this problem, we use a causal form of RevIN.
Specifically, instead of using the average and standard devia-
tion of the entire context to normalize, we leverage a running
mean and a running standard deviation. Each element of the
input at time t is then normalized using these quantities at
time t. This can be formulated as

µr,t =
cumsum

(
x0
1:t

)
t

(8)

σ2
r,t =

cumsum
((

µr,t − x0
1:t

)2)
t

(9)

x̃0
1:t =

x0
1:t − µr,t

σr,t
, (10)



SSM encoder

Parallel predictions
starting at            

Input sequence Target

FBD

Target 3

Input sequence may also serve as target

FBD FBD

Encoder output

Target 1 Target 2

Figure 2: Schematic illustration of our parallel prediction training scheme. The input sequence x0
1:T is encoded in parallel

using the SSM encoder. Starting from Lmin, multiple forecasts are produced in parallel, where each forecast has its own target
and is based on an increasing context length. In particular, a prediction is made for every timestep after Lmin, but for clarity only
three are shown. For example, for the first forecast (green color) only the first three timesteps x0

1,2,3 are used as the context,
while for the last prediction (purple color) the full context x0

1:T , is used. Note that for some of the forecasts the input sequence
itself serves as the target and thus a causal processing of the input is essential to avoid information leakage.

where cumsum(·) is the cumulative sum function.
Similarly, each forecast of the FBD is de-normalized by

the statistics of the last timestep of the context. For example,
ŷt:t+T is de-normalized with µr,t and σr,t.

Experiments
We pretrain the proposed FlowState model and then evaluate
its forecasting capabilities on two commonly used bench-
marks: GIFT-Eval2 (Aksu et al. 2024), and Chronos Bench-
mark (II)3 (Ansari et al. 2024) referred to as Chronos-ZS,
as described in detail below.

For pretraining we consider two distinct corpora:

• GIFT-Eval-Pretrain: The official GIFT-Eval pretraining
split, which ensures no data leakage into the GIFT-Eval
benchmark. Models trained on this corpus are referred to
as FlowState(G).

• TiRex Pretraining Data: The same pretraining corpus
used by TiRex, except for the synthetic data, which in-
cludes a subset of the GIFT-Eval-Pretrain data and the
full Chronos pretraining dataset. This setup avoids data
leakage into the Chronos-ZS benchmark and is used to
train models referred to as FlowState(T).

We additionally added synthetic time series generated
via Gaussian Processes, following the methodology of Ker-
nelSynth (Ansari et al. 2024) to both corpora. All data—
real and synthetic—is further enhanced using augmentation
techniques introduced in Auer et al. (2025). For all models,

2https://huggingface.co/spaces/Salesforce/GIFT-Eval
3https://huggingface.co/spaces/autogluon/fev-leaderboard

except one ablation, CPM is used during pretraining, which
allows for MPI, as introduced in the Background section.

Evaluation Setup
We assess the forecasting performance of FlowState mod-
els in a zero-shot setting, following the standard evaluation
protocols of both benchmarks.

Avoiding data overlap We observed that several state-
of-the-art models, including TiRex—the current benchmark
leader—use parts of the GIFT-Eval evaluation set dur-
ing pretraining. The primary source of this overlap is the
Chronos pretraining data corpus, which includes several
GIFT-Eval tasks.

To ensure a fair comparison with all baseline models, we
evaluate all models on a subset of GIFT-Eval consisting of
all 79 out of 97 tasks that are not part of the Chronos pre-
training corpus. We refer to this subset as GIFT-ZS, and all
results reported in the Results section are based on this zero-
shot evaluation protocol. Note that Auer et al. (2025) uses
a different GIFT-ZS benchmark. In particular, we exclude
three additional tasks—Solar/H short, medium, and long—
which were present in the Chronos pretraining data but were
not excluded in the GIFT-ZS from Auer et al. (2025).

Chronos-ZS has a lot of overlap with the GIFT-Eval
pretraining data corpus, which is why only FlowState(T)
models—trained without access to Chronos-ZS data—are
evaluated on this benchmark.

Metrics Both benchmarks use a probabilistic evaluation
metric based on the Weighted Quantile Loss (WQL). While
GIFT-Eval refers to this metric as CRPS, the underlying



formulation is equivalent, as WQL can be interpreted as a
quantile-based approximation of the CRPS.

For each time series, we generate probabilistic fore-
casts and compute two normalized metrics: Mean Abso-
lute Scaled Error (MASE) measures point forecast accuracy,
while CRPS and WQL measure the probabilistic forecast ac-
curacy. Both metrics are normalized per task using a Sea-
sonal Naive baseline. Final scores are reported as the geo-
metric mean across tasks. For consistency with the leader-
boards, we refer to the normalized probabilistic metric as
CRPS in GIFT-ZS and WQL in Chronos-ZS. The normal-
ized and averaged MASE are simply referred to as MASE.

Temporal Scaling FlowState’s continuous-time formula-
tion introduces two key considerations during evaluation.
First, we determine a suitable scale factor for each dataset.
Since datasets vary in both sampling rates and temporal dy-
namics, we base this factor on seasonality rather than raw
sampling frequency. For example, hourly temperature data
typically exhibits a 24-step daily cycle, while weekly peak
temperatures follow a seasonal pattern of 365/7 ≈ 52 steps.
Even though a week contains 168 hours, a more appropri-
ate scale factor between these two examples is determined
by the ratio of their relative seasonality. We define a base
seasonality of 24 and compute the scale factor as:

s∆ =
Base Seasonality

Seasonality
This ensures that all datasets are mapped to a common

temporal scale in the model’s continuous space.

Context and Forecasting Length FlowState’s architec-
ture enables flexible adaptation of both context and fore-
casting lengths across datasets with diverse temporal resolu-
tions. Unlike discrete models, where these lengths are fixed,
FlowState operates in a scale-adjusted latent space, repre-
senting continuous signals. To maintain consistency with
pretraining, we define effective lengths which the model ac-
tually uses, relative to the scale factor s∆, corresponding to
the pretraining context length of 2048 steps, and to the base
forecasting length T = 24 (=one season). Depending on s∆
these effective lengths will change. In particular, the effec-
tive context length Leff and forecasting length Teff are com-
puted as:

Leff =
L

s∆
, Teff =

T

s∆

This formulation is particularly beneficial for datasets
with large seasonality, which typically require longer histor-
ical context and benefit from extended forecasting horizons.
As seasonality increases, s∆ decreases, resulting in larger
Leff and Teff. This allows FlowState to forecast far into the
future for such datasets—precisely where long-range predic-
tions are often most valuable.

Results
We evaluate two variants of our model: a smaller FlowState-
2.6M and a larger FlowState-9.1M, with 2.6M and 9.1M pa-
rameters, respectively.

GIFT. Table 1 presents the normalized MASE and CRPS
metrics for GIFT-ZS, alongside the top seven models ranked
by ascending MASE score on the full GIFT-Eval bench-
mark as of July 31, 2025. Despite its compact size, Flow-
State consistently outperforms much larger models. Notably,
both FlowState(T)-9.1M and FlowState(G)-9.1M surpass all
previously reported baselines, including TiRex, the current
benchmark leader. Moreover, the FlowState-2.6M variants
are by far the smallest models among the top performing
ones, yet they perform on par with TiRex and much better
than the other models. These results highlight the efficiency
and scalability of our architecture.

Table 3 summarizes the full GIFT-Eval benchmark.
Among all models without test data leakage, FlowState
has the strongest forecasting performance. When comparing
to models with test data leakage, FlowState still performs
roughly on par with TiRex. However, we have not yet ex-
tensively analyzed the full GIFT-Eval and have already ob-
served room to improve FlowState further.

Chronos-ZS. Table 2 presents the normalized MASE
and WQL metrics, alongside the top seven models ranked
by ascending MASE score on the Chronos-ZS bench-
mark as of July 31, 2025. Similarly to the GIFT-ZS re-
sults, FlowState(T)-9.1M outperforms current state-of-the-
art models. In fact, our variant trained on the same data as
TiRex, performs significantly better on the MASE and the
WQL metric. Note, for Chronos-ZS we only evaluate our
model variants without data leak, i.e., the models trained

Model #Par. MASE↓ CRPS↓
FlowState(T)-9.1M 9.1M 0.719 0.489
FlowState(G)-9.1M 9.1M 0.728 0.491
FlowState(T)-2.6M 2.6M 0.731 0.498
TiRex 35M 0.733 0.497
FlowState(G)-2.6M 2.6M 0.733 0.502
Toto-Open-Base-1.0 151M 0.737 0.497
Sundial-Base 128M 0.755 0.552
TabPFN-TS 11M 0.762 0.531
TimesFM-2.0 500M 0.764 0.549
YingLong 300M 0.796 0.537
Chronos-bolt-b 205M 0.832 0.582

Table 1: GIFT-ZS results, sorted by ascending MASE.

Model #Par. MASE↓ WQL↓
FlowState(T)-9.1M 9.1M 0.755 0.580
FlowState(T)-2.6M 2.6M 0.777 0.614
TiRex 35M 0.778 0.599
TimesFM-2.0 500M 0.789 0.700
Moirai-l 311M 0.791 0.631
Chronos-bolt-b 205M 0.795 0.624
Chronos-b 200M 0.818 0.643
Moirai-b 91M 0.819 0.637
Chronos-bolt-s 48M 0.823 0.636

Table 2: Chronos-ZS results, sorted by ascending MASE.



Model #Par. MASE↓ CRPS↓ TDL
FlowState(G)-9.1M 9.1M 0.738 0.508 NO
Toto-Open-Base-1.0 151M 0.750 0.517 NO
Sundial-Base 128M 0.750 0.559 NO
FlowState(G)-2.6M 2.6M 0.752 0.522 NO
TabPFN-TS 11M 0.771 0.544 NO
YingLong 300M 0.798 0.548 NO
TiRex 35M 0.724 0.498 YES
FlowState(T)-9.1M 9.1M 0.728 0.504 YES
FlowState(T)-2.6M 2.6M 0.741 0.515 YES
TimesFM-2.0 500M 0.758 0.550 YES
Chronos-bolt-b 205M 0.808 0.574 YES

Table 3: Full GIFT-Eval results, sorted by ascending MASE.
TestData Leakage (TDL) indicates whether a model has seen
parts of the evaluation data during pretraining.

9.1M
9.1M

Figure 3: MAE performance across various sampling fre-
quencies on the Loop Seattle dataset.

with the data from TiRex.

Robustness to Unseen Sampling Rates To assess the ro-
bustness of FlowState to varying temporal resolutions, we
conduct a controlled experiment on the Loop Seattle dataset.
Originally sampled at 5-minute intervals, we subsample the
data to create versions with sampling intervals ranging from
5 to 65 minutes in 5-minute increments. We then evaluate
FlowState-9.1M, TiRex, Chronos-bolt-b, and Toto on each
version using the standard GIFT-Eval evaluation framework
and a target length of 480 timesteps.

Figure 3 shows the MAE of all models for each sam-
pling frequency. FlowState-9.1M consistently outperforms
all baselines across most frequencies, with a particularly
large margin at uncommon sampling intervals. The only
exceptions are at 15T, 30T, and 60T—common frequen-
cies likely seen during pretraining—where baseline mod-
els briefly close the gap. These results highlight FlowState’s
ability to generalize to unseen sampling rates without requir-

Model Variant MASE CRPS
FlowState(G)-2.6M (baseline) 0.733 0.502
Core Architectural Components

w/o time-scale adjustment 0.808 0.544
w/o parallel predictions 0.757 0.523

Decoder Variants
Fourier basis 0.736 0.505
Half-Legendre basis 0.737 0.504

CPM
Autoregressive instead of MPI 0.738 0.528
No CPM training, longer target 0.731 0.510

Table 4: Ablation results on FlowState(G)-2.6M.

ing exposure to every possible frequency during training.
Loop Seattle was selected because none of the baselines

use it during pretraining, and due to its small original sam-
pling rate, and long time series, making it well-suited for
controlled subsampling experiments.

Ablation Study To understand the contributions of indi-
vidual components in FlowState, we conduct a series of ab-
lations using the FlowState(G)-2.6M model. The results are
summarized in Table 4, and organized into the following cat-
egories:

Core Architectural Components. This group isolates
the impact of FlowState’s key design choices. Removing the
time-scale adjustment mechanism leads to a significant drop
in performance, confirming its importance for generalization
across sampling rates. Disabling parallel predictions, by al-
ways only predicting from the last context point, also signif-
icantly degrades performance, though to a lesser extent.

Decoder Variants. We evaluate two alternative sets of ba-
sis functions to the default Legendre basis: a Fourier basis,
and a Legendre basis defined over the interval [0, 1] instead
of [−1, 1] (referred to as “Half-Legendre”). Both sets of ba-
sis functions have performed similarly well to FlowState(G)-
2.6M, only resulting in minor performance decrease.

CPM Mechanism. We assess the impact of the CPM /
MPI mechanism by evaluating FlowState(G)-2.6M, which
was trained with CPM, autoregressively, instead of using
MPI. This leads to a substantial performance drop. However,
when we retrain the model without CPM, and using a longer
base target length of 60 instead of 24, MASE performance
recovers to a level even slightly above the original model.
CRPS remains worse, highlighting the importance of MPI
for accuracy of long probabilistic predictions.

Conclusion
We introduce FlowState, a time series foundation model,
that can dynamically adjust to the unique characteristics of
the input time series, such as the specific sampling rate. To
do so, we developed a functional basis decoder (FBD), a
novel component that leverages a set of basis functions to
create continuous forecasts. FlowState’s combination of an
SSM encoder and the FBD enables the seamless adjustment



and the production of forecasts of varying lengths. To further
enhance FlowState’s efficiency and robustness, we propose
a training scheme that through multiple parallel predictions
exposes the model to diverse context lengths during train-
ing. FlowState establishes the new state-of-the-art on the
GIFT-ZS and the Chronos-ZS benchmarks, outperforming
strong baselines that are up to 192× larger. Finally, Flow-
State demonstrates superior robustness and adaptability to
unseen sampling rates and our ablation studies confirm the
individual and collective benefits of our proposed compo-
nents.
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