

000 PARALLEL MULTIMODAL LARGE DIFFUSION LAN- 001 GUAGE MODELS FOR THINKING-AWARE EDITING AND 002 GENERATION 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 While thinking-aware generation aims to improve performance on complex tasks,
013 we identify a critical failure mode where existing sequential, autoregressive ap-
014 proaches can paradoxically degrade performance due to error propagation. To sys-
015 tematically analyze this issue, we propose ParaBench, a new benchmark designed
016 to evaluate both text and image output modalities. Our analysis using ParaBench
017 reveals that this performance degradation is strongly correlated with poor align-
018 ment between the generated reasoning and the final image. To resolve this, we
019 propose a parallel multimodal diffusion framework that enables continuous, bidi-
020 rectional interaction between text and images throughout the entire denoising tra-
021 jectory. The model is trained with supervised finetuning and then further opti-
022 mized by Parallel Reinforcement Learning (ParaRL), a novel strategy that applies
023 semantic rewards along the trajectory to enforce cross-modal consistency. Experi-
024 ments validate that our approach significantly improves cross-modal alignment
025 and semantic consistency, achieving a 6.9% improvement in Output Alignment
026 on ParaBench compared to the state-of-the-art model, Bagel, establishing a more
027 robust paradigm for thinking-aware image synthesis.

028 1 INTRODUCTION 029

030 Recent advances in multimodal generative models have achieved remarkable progress in instruction-
031 based image generation and editing (Esser et al., 2024a; Labs, 2024; Wei et al., 2024; Liu et al.,
032 2025b). Given diverse textual prompts, these models can produce visually coherent and semantically
033 aligned results across a wide range of tasks. However, these models often struggle with **complex**
034 **instructions that require reasoning over world knowledge**, frequently leading to incorrect editing
035 and generation (Wu et al., 2025c; Niu et al., 2025; Zhao et al., 2025). To mitigate this gap, recent
036 studies have introduced intermediate reasoning steps before visual generation (Fang et al., 2025;
037 Jiang et al., 2025a; Deng et al., 2025a). In these approaches, textual reasoning is first performed
038 to guide subsequent image synthesis and editing. Such explicit reasoning has proven effective in
039 improving the quality and consistency of image editing and generation (Deng et al., 2025a).
040

041 Despite the general effectiveness of incorporating a reasoning process prior to image synthesis, we
042 observe a counterintuitive and critical phenomenon. On certain benchmarks (Wu et al., 2025c),
043 the inclusion of reasoning can in fact **reduce the semantic fidelity of the generated images** (Figure
044 1(c)). This raises a crucial question: *What underlies this performance degradation?*

045 To investigate this, we introduce *ParaBench*, our new benchmark designed to evaluate the output
046 alignment between a model’s generated reasoning and its final image. Using ParaBench to eval-
047 uate the state-of-the-art model Bagel (Deng et al., 2025a), we find a strong correlation: performance
048 degradation occurs precisely in categories where output alignment is weakest (Figure 1(d)). We
049 attribute this to the compounding errors inherent in sequential autoregressive models, where am-
050 biguous or incomplete reasoning provides unreliable guidance for the subsequent image generation,
051 ultimately degrading the final output.

052 Thus, while pre-reasoning can in principle enhance multimodal generation, its reliance on an autore-
053 gressive pipeline makes the process vulnerable to error accumulation and semantic drift. Recently,
054 another line of work has explored discrete diffusion models for text or image generation (Nie et al.,

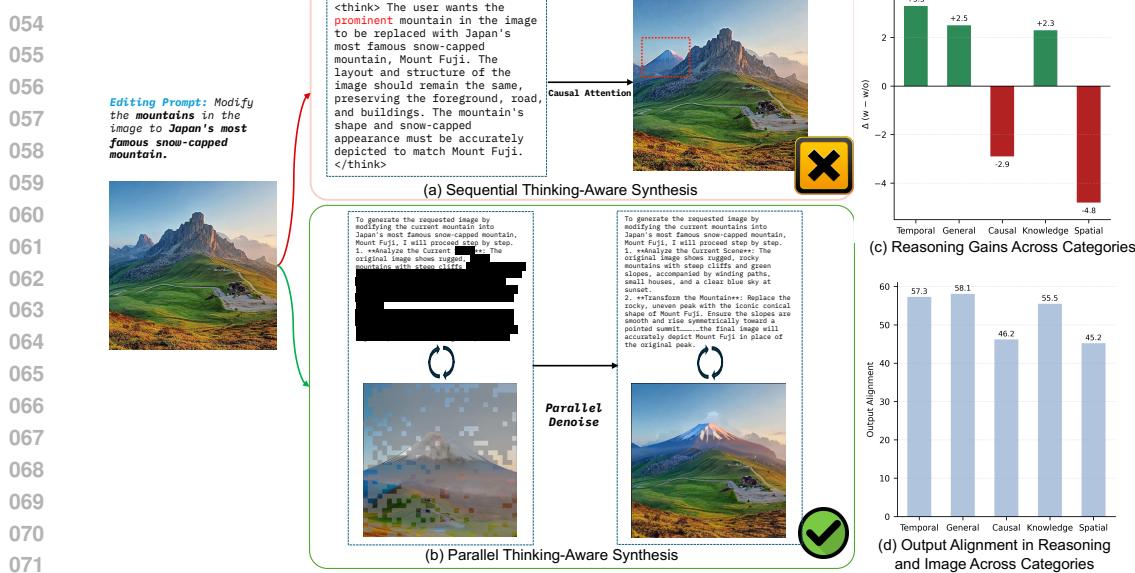


Figure 1: Sequential vs. parallel thinking-aware image editing and analysis. (a) Sequential generation (Bagel, GPT4o) may suffer from vague or incorrect reasoning. (b) Parallel generation aligns text and image at each denoising step, reducing hallucination and errors. (c) Quantitative comparison shows reasoning can degrade performance in certain categories. (d) Poorer categories also exhibit weaker reasoning—image alignment, highlighting the need for stronger cross-modal alignment.

2025; Yang et al., 2025a; Ye et al., 2025a), which remove the token-by-token constraint of autoregression and instead employ confidence-based sampling to achieve greater global consistency.

Inspired by these advances, we ask: **What if multimodal models could generate text and images in parallel?** Such a paradigm directly addresses the limitations of AR reasoning: text and images can attend to each other at every denoising step, avoiding the propagation of hallucinations and vague priors while grounding textual descriptions in visual evidence.

Building on this insight, we propose a purely diffusion-based framework for *parallel text–image generation*, where cross-modal interaction is maintained throughout the trajectory to ensure robust and semantically faithful multimodal editing and generation. (Figure 1) We begin by performing supervised fine-tuning of MMAoDA (Yang et al., 2025a) on our collected thinking-aware image synthesis data. This parallel version, MMAoDA-Parallel, demonstrates higher output consistency compared to sequential baselines. Importantly, such consistency is observed not only in the final outputs but also **throughout the generation trajectory**. Building on this foundation, we further introduce *Parallel Reinforcement Learning(ParaRL)*, which optimizes alignment along the denoising trajectory. Instead of focusing solely on the final outcome, ParaRL incorporates stepwise semantic supervision to refine alignment at the trajectory level.

Extensive quantitative and qualitative results validate the effectiveness of MMAoDA-Parallel for thinking-aware image editing and generation, and further highlight the additional gains achieved through ParaRL. On our ParaBench, MMAoDA-Parallel achieves 6.9% improvement over Bagel, and comparable image-only synthesis performance. Our contributions can be summarized as follows:

1. **In-depth Benchmarking and Analysis of Thinking-aware Image Synthesis.** We propose ParaBench, which systematically evaluates thinking-aware image generation and editing, focusing on text and image quality and their alignment.
2. **Parallel Multimodal Diffusion Framework.** We propose a purely discrete diffusion-based approach for parallel thinking-aware image editing and generation, which enables bidirectional attention between modalities at every denoising step and effectively alleviates the error accumulation of autoregressive pipelines.
3. **Parallel Reinforcement Learning.** We introduce a parallel reinforcement learning strategy, *ParaRL*, which assigns semantic rewards along the denoising trajectory, further enhancing alignment between the output modalities and the overall performance.

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

4. **Extensive Evaluation and State-of-the-Art Alignment.** Our comprehensive experiments validate the framework, establishing state-of-the-art performance among open-source models with a 6.9% gain in Output Alignment over Bagel on our ParaBench benchmark, while maintaining comparable performance on single-modality metrics.

2 RELATED WORK

Recent progress in multimodal models for image understanding, generation, and editing has been rapid, yet most approaches remain constrained to single-modal generation conditioned on multiple modalities (Esser et al., 2024b; Wu et al., 2025a; Labs et al., 2025; Bai et al., 2025). To improve the accuracy and fidelity of multimodal generation, a growing line of work has explored introducing a textual *Chain-of-Thought* reasoning process before image generation or editing. We refer to this paradigm as **thinking-aware image generation and editing**. For instance, early efforts such as Chameleon (Team, 2024) and Mogao (Liao et al., 2025) investigated interleaved generation, enabling interleaving sequences of text and image tokens. Image-CoT (Guo et al., 2025b) and GoT (Fang et al., 2025) incorporated CoT reasoning prior to image synthesis, demonstrating that reasoning traces can enhance generation quality. Bagel (Deng et al., 2025a) further extended this idea by integrating chain-of-thought reasoning into both image generation and editing, enabling more flexible and semantically aligned outputs. Building on this direction, follow-up works such as OmniGen2 (Wu et al., 2025b) and IRG (Huang et al., 2025a) introduced reflective reasoning after image generation, using multi-turn textual feedback to iteratively refine visual outputs. Most existing methods, however, rely on a sequential autoregressive interleaved pipeline, which could limit direct cross-modal interaction and make the model prone to error accumulation from imperfect reasoning traces. Exploring a parallel generation framework that enables more interaction within output modalities is still lacking in this scenario. (More related work can be found in Appendix C).

3 METHOD

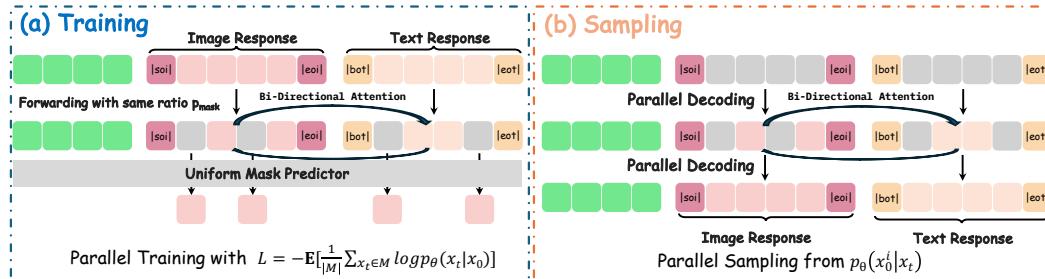
3.1 FINDINGS AND BENCHMARKING ON THINKING-AWARE SYNTHESIS

To investigate whether pre-generation reasoning genuinely enhances performance, we conduct a controlled study on image editing tasks, which provides a clearer instruction-grounded evaluation than naive synthesis. We sample inputs from established benchmarks (Wu et al., 2025c; Zhao et al., 2025) and generate paired outputs using Bagel (Deng et al., 2025a)—one of the few open-source unified models supporting thinking-aware generation—with and without thinking. We report the average editing evaluation metrics in Kris-Bench (Wu et al., 2025c) in Figure 1(c) and also Table 1.

Findings. While the reasoning step enhanced performance on most tasks, a notable countertrend emerged: performance declined in a significant subset of cases, about 23%, particularly in complex compositional edits. A closer analysis reveals that these failures often stemmed from low-quality or vague reasoning text, which misguides the image generation process. This exposes a critical gap in existing protocols: they evaluate the final image but ignore the quality of the intermediate reasoning—the other generated modality.

Benchmarking mixed modalities. This analysis reveals a fundamental limitation in current evaluation paradigms: existing benchmarks (Wu et al., 2025c; Zhao et al., 2025; Ghosh et al., 2023) only evaluate images, ignoring the quality of the reasoning itself and its consistency with the image. To address this gap, we introduce **ParaBench**, a new benchmark specifically designed for the comprehensive evaluation of thinking-aware image synthesis. ParaBench comprises 300 challenging prompts, split into 200 for editing and 100 for generation. The editing prompts are meticulously curated to test a wide spectrum of abilities, covering not only general operations (e.g., add, remove, replace) but also complex tasks requiring reasoning. The 100 generation prompts focus on open-ended creative synthesis of complex scenes. We evaluate models on ParaBench using an GPT-4.1 across six fine-grained aspects: for the textual output, we assess Text Quality and Text Alignment; for the visual output, we evaluate Image Quality, Image Alignment, and Image Consistency; and finally, the overall Output Alignment between them. More details are included in Appendix G.

To demonstrate ParaBench’s diagnostic capabilities, we apply it to a representative baseline, Bagel. While full quantitative results are presented in Sec A, Table 1 highlights a crucial finding by focusing


162 Table 1: Bagels’ performance comparison on ParaBench editing tasks with and without thinking.
 163 We also report the reasoning quality (Text Qual.) and cross-modal alignment (Output Align.).

164 Editing Category	165 w/o Thinking	166 w/ Thinking	167 Δ (w/ - w/o)	168 Text Qual. \uparrow	169 Output Align. \uparrow
170 Temporal	171 72.3	172 75.6	173 +3.3	174 92.6	175 57.3
176 General	177 68.9	178 71.4	179 +2.5	180 86.2	181 58.1
182 Causal	183 70.1	184 67.2	185 -2.9	186 75.3	187 46.2
188 Knowledge	189 74.5	190 76.8	191 +2.3	192 87.8	193 55.5
195 Spatial	196 69.8	197 65.0	198 -4.8	199 73.2	200 45.2

201 on two key metrics: **Text Quality** and **Output Alignment**. The results reveal a clear correlation
 202 between the quality of the reasoning step and the final performance. Notably, the categories that
 203 exhibited performance degradation also suffered from significant drops in both reasoning quality
 204 and reasoning-image synergy. This pattern strongly suggests that poor reasoning does not merely
 205 fail to provide helpful guidance but actively misleads the generation process, validating the necessity
 206 of explicitly improving the synergy between text and image generation.

207 **Motivations on parallel multimodal diffusion.** Our benchmarking results reveal a critical limitation
 208 in current thinking-aware generation: the sequential generation paradigm, where reasoning
 209 precedes image synthesis, creates a rigid dependency that can propagate errors and limit cross-modal
 210 synergy. When reasoning quality degrades, it directly undermines the subsequent image generation,
 211 as demonstrated by the correlated performance drops in spatial and temporal editing tasks. To ad-
 212 dress this fundamental issue, we propose a parallel unified multimodal diffusion framework that
 213 enables simultaneous generation of both reasoning text and images, fostering genuine multimodal
 214 collaboration while eliminating the error propagation inherent in sequential approaches.

215 3.2 BASIC ALGORITHM AND ARCHITECTURE

216 Figure 2: Parallel Generation Architecture: During (a) training, image and text responses are masked
 217 and predicted in parallel with a uniform mask predictor, optimized by the masked token likelihood
 218 objective. During (b) sampling, the model performs parallel decoding to generate both image and
 219 text responses jointly, enabling efficient multimodal response generation.

220 Discrete diffusion models have demonstrated strong performance for both image and text genera-
 221 tion (Bai et al., 2024; Nie et al., 2025; Zhu et al., 2025). Building on the unified discrete-diffusion
 222 view, MMaDA (Yang et al., 2025a) proved that a single diffusion framework can jointly model
 223 multiple modalities, yet its decoding remained *sequential* across modalities. To overcome this lim-
 224 itation, we propose a *parallel* multimodal diffusion framework that: (i) represents all modalities as
 225 discrete tokens, (ii) arranges them in an interleaved sequence with bidirectional attention, and (iii)
 226 employs a single mask predictor shared across modalities, enabling synchronous denoising for both
 227 text and images. An overview of this framework is shown in Figure 2.

228 **Interleaved discrete sequence layout.** Following the MMaDA framework (Yang et al., 2025a),
 229 we process both text and images within a unified discrete token space. Specifically, we tokenize
 230 text using the LLaDA tokenizer (Nie et al., 2025) and encode images into a grid of discrete visual
 231 tokens using a pretrained MAGVIT-v2 (Yu et al., 2023) quantizer. These tokenized modalities are
 232 then serialized into a single interleaved sequence, using explicit sentinels and task tags to enable full
 233 bidirectional cross-modal attention:

234 Input : <|task|><|soi|>[img]<|eof|><|bos|>[text]<|eos|>
 235 Output: <|soi|>[output img]<|eof|><|bos|>[output text]<|eos|>

216 During training, we concatenate the input and output templates into one sequence so that the model
 217 can attend from outputs to inputs within a single context. The task token $<|\text{task}|>$ is instantiated
 218 differently depending on the scenario, with $<|\text{thinkgen}|>$ used for thinking-aware generation
 219 and $<|\text{thinkedit}|>$ used for thinking-aware editing. This single-sequence design eliminates the
 220 ordering asymmetry and exposure bias introduced by autoregressive cross-modal pipelines.
 221

222 **Training objective.** Let $x_0 \in \{1, \dots, V\}^L$ denote the concatenated training sequence (input part
 223 followed by output part), where L is the total number of tokens in the sequence. We keep the input
 224 part static and apply noise only to the output part. At a sampled timestep $t \in \{1, \dots, T\}$, for each
 225 token in the *output* part we replace it with `[MASK]` with probability β_t and keep it unchanged with
 226 probability $1 - \beta_t$; tokens in the *input* part are left unchanged:
 227

$$x_t^{(i)} = \begin{cases} x_0^{(i)} & \text{if } i \text{ in input,} \\ x_0^{(i)} \text{ with prob. } (1 - \beta_t), \text{ [MASK] with prob. } \beta_t & \text{if } i \text{ in output.} \end{cases} \quad (1)$$

228 Equivalently, for positions in the output, the absorbing-state marginal after t steps is $q(x_t \mid x_0) =$
 229 $\alpha_t x_0 + (1 - \alpha_t) \mathbf{m}$ where $\alpha_t = \prod_{k=1}^t (1 - \beta_k)$, and \mathbf{m} is the one-hot distribution of `[MASK]`.
 230

232 The parallel diffusion model $p_\theta(\cdot \mid x_t)$ is formulated as a unified masked-token predictor over
 233 the joint vocabulary of text and image tokens. Let $i \in 1, \dots, L$ denote token positions in the
 234 concatenated input–output sequence. Since only the output segment is noised during diffusion, the
 235 model predicts ground-truth tokens x_0 at the currently masked positions within this segment. To
 236 better balance the training dynamics across modalities, we make the timestep-dependent loss weight
 237 modality-specific: tokens in the *output image* segment and the *output text* segment are assigned
 238 separate weights, $w_{\text{img}}(t)$ and $w_{\text{text}}(t)$. For compactness, we write the objective using a unified
 239 token-aware weight function $w(t, i)$. We optimize a timestep-reweighted cross-entropy:
 240

$$\mathcal{L}_{\text{parallel}}(\theta) = -\mathbb{E}_{t, x_0, x_t} \left[\sum_{i=1}^L w(t, i) \mathbf{1}[x_t^{(i)} = \text{[MASK]}] \log p_\theta(x_0^{(i)} \mid x_t) \right], \quad (2)$$

242 where $\mathbf{1}[\cdot]$ is the indicator function and
 243

$$w(t, i) = \begin{cases} w_{\text{img}}(t), & \text{if } i \text{ lies in the } \textit{output image} \text{ segment,} \\ w_{\text{text}}(t), & \text{if } i \text{ lies in the } \textit{output text} \text{ segment.} \end{cases}$$

244 We empirically find that applying a timestep-dependent weighting $w_{\text{text}}(t) = 1/t$ for text tokens
 245 and a constant weighting $w_{\text{img}}(t) = 1$ for image tokens substantially stabilizes the training of image
 246 quality and output alignment. Additional preliminaries and ablations are detailed in Appendix D.
 247

248 **Parallel denoising with dual schedulers.** Decoding proceeds along a shared diffusion time axis
 249 $t_T \rightarrow \dots \rightarrow t_0$. We define two modality-specific schedulers, $u_{\text{img}}(t), u_{\text{text}}(t) \in [0, 1]$, which specify
 250 the target proportion of unmasked tokens at step t . At each reverse step: (i) the model jointly predicts
 251 distributions for all currently masked positions; (ii) for each modality, a fraction of tokens is sam-
 252 pled (e.g., via confidence-based sampling), while the remaining positions are retained as `[MASK]`.
 253 Because attention is bidirectional across the *entire* sequence, text and image can inform each other
 254 at every step of decoding. In our experiments, the text schedule is implemented as a fully linear
 255 reveal schedule combined with semi-autoregressive confidence-based decoding Nie et al. (2025),
 256 while the image schedule follows a cosine reveal schedule with global confidence-based decoding.
 257 More details can be found in Appendix E.
 258

259 3.3 POST TRAINING WITH PARALLEL REINFORCEMENT LEARNING

260 **Supervised Finetuning for Parallel Synthesis** A key challenge in our approach is that existing gen-
 261 eration and editing datasets lack the reasoning traces required for our parallel synthesis framework.
 262 To address this, we construct a suitable training dataset by first aggregating samples from various
 263 sources. For each sample comprising an input image (for editing tasks), an instruction, and the final
 264 output image, we employ a multimodal LLM (Qwen-2.5-VL in our implementation) to generate a
 265 corresponding reasoning trace. Further details on the dataset construction process, including the
 266 sources and categories, are provided in Appendix F. We then use this dataset to perform supervised
 267 fine-tuning on MMA (Yang et al., 2025a). This process adapts it into a parallel variant capable of
 268 performing thinking-aware synthesis, where reasoning and generation occur concurrently.
 269

270
271
272
273
274
275
276
277
278
279

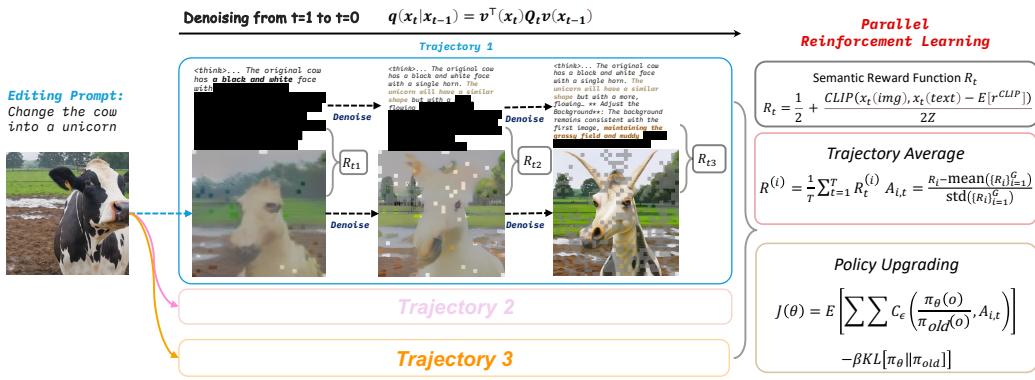


Figure 3: Overview of our proposed Parallel Reinforcement Learning (ParaRL). Rather than optimization only to the final denoised outputs, ParaRL introduces reward signals along the entire denoising trajectory, reinforcing semantic alignment consistently throughout the generation process.

Synergy along the denoising trajectory. While analyzing generations from the finetuned model, we observe that certain semantic concepts emerge *syn-chronously* in text and image at intermediate denoising steps. As illustrated in Figure 4, when tasked to change a shirt to a “vibrant rainbow color,” the specific color words and their corresponding visual features appear at the same timestep. This observation leads to a key insight: cross-modal alignment is not an endpoint phenomenon but is progressively established **throughout the generation trajectory**. This implies that supervision applied to these intermediate steps, not just the final output, can further improve this alignment.

Parallel reinforcement learning with trajectory optimization. Building on this insight, we introduce Parallel Reinforcement Learning (ParaRL), a novel training paradigm that directly leverages this intermediate cross-modal synergy. Instead of rewarding only the final output, ParaRL uses the alignment between text and image tokens at each denoising step as a dense reward signal.

Specifically, for a given query Q , the generated response is a full trajectory $\tau_i \triangleq (\tau_i(1), \dots, \tau_i(|\tau_i|))$, where $|\tau_i|$ is the total number of denoising steps and $\tau_i(t)$ is the set of tokens decoded at step t . While this formulation provides a step-wise reward $r_{i,t}$ for each intermediate response $\tau_i(t)$, optimizing over the entire dense trajectory is computationally prohibitive. To make training feasible, we adopt a sparse optimization strategy. During each online rollout, we pre-select sampling steps s and fix subset of step indices $S \subset \{1, \dots, |\tau_i|\}$, $|S| = s$ and only compute rewards $r_{i,t}$ and their corresponding standardized advantages $A_{i,t}$ for timesteps $t \in S$. We adopt a diffusion GRPO objective (Gong et al., 2025) that accommodates token-level likelihood ratios with advantages calculated at these sampled steps:

$$\mathcal{J}_{\text{policy}}(\theta) = \mathbb{E}_{\substack{Q \sim D_{\text{task}} \\ \{\tau_i\}_{i=1}^G \sim \pi_{\text{old}}(\cdot | Q)}} \left[\sum_{i=1}^G \sum_{t \in S} \frac{1}{|\tau_i(t)|} \sum_{o \in \tau_i(t)} C_\epsilon \left(\frac{\pi_\theta(o | Q, \tau_i(1:t-1))}{\pi_{\text{old}}(o | Q, \tau_i(1:t-1))}, A_{i,t} \right) \right] - \beta \text{KL}[\pi_\theta \| \pi_{\text{old}}], \quad (3)$$

where $C_\epsilon(r, A) \triangleq \min(rA, \text{clip}(r, 1 - \epsilon, 1 + \epsilon)A)$. In this objective, the summation is performed over the sparsely sampled steps $t \in S$. The term o ranges over all tokens within the state $\tau_i(t)$ at a sampled step t , and $\tau_i(1:t-1)$ denotes the full history of tokens generated prior to step t . Finally, π_{old} is the behavior policy for generating rollouts, and β controls the KL penalty strength.

Trajectory reward design. In typical trajectory-level optimization frameworks, a well-trained process reward model (PRM) (Li & Li, 2024) or value function Wang et al. (2025) is often required, since intermediate partial outputs usually lack sufficient semantic information for reliable evaluation. Surprisingly, in our parallel text–image generation setting, we find that intermediate fragments

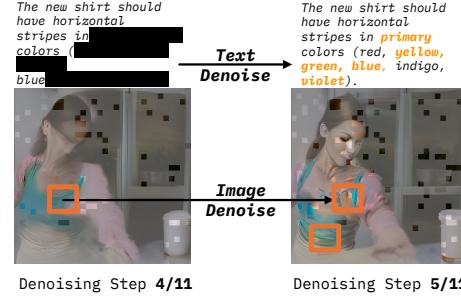


Figure 4: Synergy of sampling. Given the prompt: “change the blue shirt to a vibrant rainbow color,” the specific color decoding in text and image emerges at the same step.

324 are already semantically meaningful. For instance, even partially decoded text tokens often reveal
 325 enough semantic cues to compute alignment with the simultaneously generated image content, as
 326 illustrated in Fig. 3. This observation allows us to bypass the need for a dedicated PRM: we directly
 327 employ *semantic alignment* between text and image as the reward signal.

328 Unlike tasks with binary rewards (e.g., mathematical reasoning), our cross-modal alignment ob-
 329 jective provides a continuous reward signal. However, the raw CLIP score, which serves as our
 330 reward source, can exhibit high variance and an arbitrary scale, making it unstable for direct use
 331 in reinforcement learning. To ensure training stability, we therefore apply a normalization scheme
 332 inspired by prior work in RL with continuous rewards (Liu et al., 2025a). We begin by estimating
 333 the mean μ_{CLIP} and standard deviation σ_{CLIP} of CLIP scores across the training distribution, which
 334 we compute on a random 1% subset of the data. Let $c_{i,t} = R^{\text{CLIP}}(\text{text}(\tau_i(t)), \text{image}(\tau_i(t)))$ be the
 335 raw CLIP score for the content generated at step t . We first standardize this score to obtain $\hat{c}_{i,t}$ using
 336 $\hat{c}_{i,t} = \frac{c_{i,t} - \mu_{\text{CLIP}}}{\sigma_{\text{CLIP}}}$. This standardized score is then clipped to the range $[-1, 1]$ and linearly rescaled to
 337 yield the final reward $R_{i,t}$, which is bounded within $[0, 1]$:

$$R_{i,t} = \frac{1}{2} (1 + \text{clip}(\hat{c}_{i,t}, -1, 1)) \quad (4)$$

341 The corresponding advantages $A_{i,k}$ used in Eq. 3 are then obtained by standardization over the
 342 rollouts: $A_{i,t} = \frac{R_{i,t} - \text{mean}(\{R_{j,t}\}_{j=1}^G)}{\text{std}(\{R_{j,t}\}_{j=1}^G)}$

344 4 EXPERIMENTS

345 4.1 IMPLEMENTATION DETAILS

348 **Training and datasets.** Our final model, MMaDA-Parallel, is trained in a two-stage process. We
 349 begin with supervised finetuning (SFT) on the MMaDA-MixCoT model, which integrates a LLaDA-
 350 8B text backbone with a MagVIT-v2 image tokenizer. For this stage, we construct a new dataset of
 351 150K thinking-aware image editing and generation pairs, meticulously sourced and filtered from
 352 multiple existing benchmarks. In the second stage, we apply reinforcement learning with a GRPO-
 353 based objective. To enhance training efficiency, this RL stage focuses on the most challenging 10%
 354 of the SFT examples, optimizing the policy online to improve cross-modal semantic alignment.
 355 More details of the dataset and training details can be found in Appendix F and H.

356 **Evaluation setup.** We conduct our primary evaluation on the ParaBench benchmark, which was
 357 introduced in the Method section. We employ an LLM-as-a-judge framework (GPT-4.1) to assess
 358 performance across the six fine-grained metrics previously described, covering text quality, image
 359 fidelity, and cross-modal alignment. The prompts used for the LLM judge are detailed in the Ap-
 360 pendix G. Our MMaDA-Parallel is compared against state-of-the-art thinking-aware models, includ-
 361 ing Bagel (Deng et al., 2025a), GPT-4o, and Gemini-2.5, as well as leading image-only generators
 362 like Qwen-Image (Wu et al., 2025a), Qwen-Image-Edit (Wu et al., 2025a), Flux.1-dev (Labs, 2024)
 363 and Flux.1-Kontext (Labs et al., 2025).

365 4.2 MAIN RESULTS

367 Table 2 reports the overall performance on our ParaBench benchmark. Our proposed method,
 368 MMaDA-Parallel, achieves the highest *Output Alignment* among all open-source models, confirm-
 369 ing the effectiveness of its parallel multimodal decoding and trajectory-level optimization. In terms
 370 of general text and image quality, MMaDA-Parallel performs on par with Bagel, despite Bagel be-
 371 ing trained on a dataset nearly three orders of magnitude larger. Compared to leading closed-source
 372 models like GPT-4o and Gemini-2.5, MMaDA-Parallel substantially narrows the gap in alignment
 373 metrics while maintaining competitive text and image quality, demonstrating remarkable data effi-
 374 ciency. Furthermore, the results indicate that our ParaRL stage consistently improves output text-
 375 image consistency, suggesting that trajectory-level optimization effectively strengthens cross-modal
 376 grounding throughout the generation process.

377 In addition, we provide a qualitative comparison with open-source models in Figure 5, showcasing
 examples of both editing and generation. A key observation is that MMaDA-Parallel produces more

378 **Table 2: Main results on *ParaBench*.** Evaluation across all editing and generation tasks. For
 379 non-thinking image editing or generation models, text evaluation and output alignment cannot be
 380 computed.

381 Model	382 Text Qual.	383 Text Align.	384 Image Cons.	385 Image Align.	386 Image Qual.	387 Output Align.	388 Overall
Open-source models (Non-thinking)							
383 Flux-1-Dev	-	-	-	65.2	77.5	-	-
384 Qwen-Image	-	-	-	67.2	84.2	-	-
385 Flux-1-Kontext	-	-	77.9	65	84	-	-
386 Qwen-Image-Edit	-	-	78.2	73.5	84.1	-	-
387 Bagel (w/o think)	-	-	72.2	50.3	80.1	-	-
Closed-source models							
388 GPT-4o	92.5	93.4	86.2	85.7	88.1	69.5	85.9
389 Gemini-2.5	94.1	95.2	88.5	76.2	90.2	63.4	84.6
Open-source models (Thinking-aware)							
390 Bagel (w/ think)	82	70.5	76.7	63.4	81.5	52.9	71.2
391 Show-o* (tuned)	75.2	<u>70.7</u>	69.1	57.5	78.5	48.9	66.6
392 MMA-Parallel w/o ParaRL	76.5	70.4	70.5	58.2	80.5	51.5	67.9
393 MMA-Parallel w/ ParaRL	<u>80.4</u>	71	<u>73.4</u>	<u>63.2</u>	<u>81.2</u>	59.8	71.5

393 precise and descriptive reasoning traces. This enhanced reasoning leads to superior visual fidelity
 394 in the final image. For instance, our model accurately renders complex instructions like a "melting
 395 cake" and correctly applies causal reasoning to depict "withered grass." Moreover, MMA-Parallel
 396 demonstrates stronger compositional abilities, particularly in counting, correctly generating "three
 397 people" or "two faces of a clock" where Bagel often fails. In contrast, Bagel's reasoning in these
 398 challenging cases tends to be vague or omits crucial details, leading to inaccurate image synthesis.
 399 These results further underscore MMA-Parallel's capability for advanced thinking-aware editing
 400 and generation, driven by better-aligned semantic information.

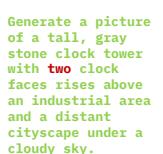

401 Input	402 Bagel (w/ think)	403 MMA-Parallel
404	405 The question image shows a chocolate cake placed outdoors under sunlight, with a natural and serene background. The question text asks to display the cake melting in hot sunlight. The model should analyze the scene and determine the cake appears to be melting due to the heat. To achieve the requested display of the cake melting in hot sunlight, I'll start by analyzing the current state of the cake in the question image. The cake appears intact with a smooth surface and a dark chocolate glaze. The lighting is bright, suggesting a sunny day. The goal is to simulate the melting effect as described in the question. Firstly, I need to transform the cake, appearing as a solid chocolate cake, into a liquid state with a smooth, fluid surface. The top portion of the cake will lose its crisp edges and become soft and malleable. The lighting should show signs of the cake's weight, with a of the cake sliding off the plate. To enhance the melting effect, I'll consider the lighting conditions. The bright green grass and blue sky in the background will provide a strong contrast to the melting cake. The bright sunlight will be softened to simulate the intense sunlight hitting the cake, emphasizing the melting effect. The final image will show the cake melting in hot sunlight.	406
407	408 The question image shows a healthy, upright plant with vibrant green leaves under bright sunlight, indicating it is well-hydrated and thriving. The question text asks to show the plant wilting due to lack of water, which suggests the user wants a visual representation of the plant's condition when dehydrated. To create the answer image, I would imagine the plant drooping and losing its upright posture, with its curling or turning yellowish-brown, which are typical signs of dehydration. The lighting should remain consistent with the original image, maintaining the garden setting and bright sunlight to emphasize the contrast between the healthy and dehydrated plant. The answer text would describe the plant's dehydrated state, focusing on the drooping posture. The final image should clearly show the plant's transition from vitality to distress, aligning with the user's request.	409
410	411 The user wants the beer replaced with a smaller cup of coffee while keeping the laptop and its green keyboard. The image layout and other colors of the image should remain the same, with the cup of coffee placed in the same position as the beer. The keyboard color should be adjusted to gray to match the user's request.	412
413	414 The image should depict a sunny park scene where one person is actively throwing a frisbee, while the other two observe or prepare to catch it, showcasing a casual and playful atmosphere. Here's the finished detailed prompt: A vibrant, sunny park scene with a grassy field and playful atmosphere, with one person actively throwing a frisbee, while the other two observe or prepare to catch it. The park is lush with green grass, scattered trees, and a clear blue sky overhead. The individuals are dressed in casual athletic attire, such as shorts and t-shirts, and their expressions convey enjoyment and engagement. The image should emphasize the texture of the grass, the frisbee's motion blur, and the interplay of light and shadow, creating a vivid and immersive scene.	415
416	417 The model should generate an image featuring the Big Ben clock tower in London, showing its height, stone structure, and the surrounding urban environment. The expanded prompt follows: A majestic, tall, gray stone clock tower, Big Ben in London, standing prominently above an industrial area with modern skyscrapers in the background. The scene is set against a distant cityscape with an overcast sky, creating a dramatic, atmospheric scene. The image should be ultra-realistic, with intricate details of the tower's stone texture, the clock faces, and the surrounding urban environment, capturing the grandeur and historical significance of the landmark.	418

Figure 5: Qualitative results in comparison with Bagel.

432

4.3 ANALYSIS OF KEY CONTRIBUTIONS

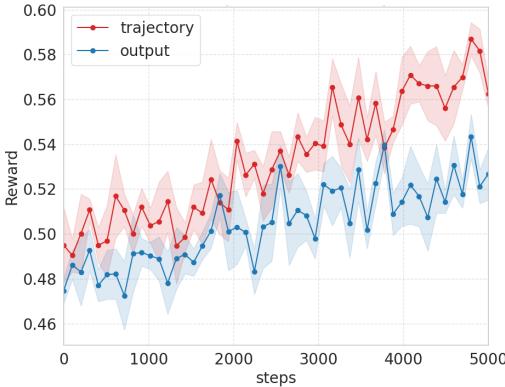
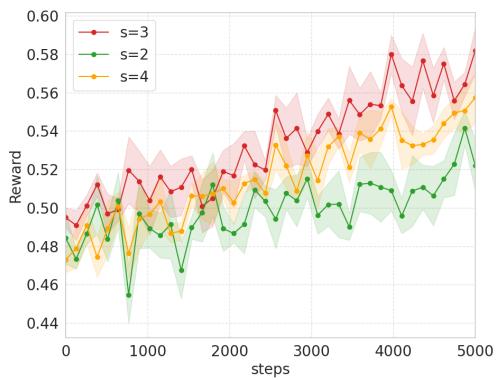
433 Table 3: Parallel vs sequential decoding.

Denoising	Text Align.	Image Align.	Output Align.
Sequential	70.6	56.1	48.9
Parallel	70.4	58.2	51.5

437 Table 4: Output vs trajectory-level RL.

Model	Text Align.	Image Align.	Output Align.
before RL	70.4	58.2	51.5
w/ Output-level RL	70.7	62.3	53.6
w/ ParaRL (Ours)	71	63.2	59.8

438 Table 5: Ablation on sampling steps s in ParaRL.



ParaRL s	Text Qual.	Text Align.	Image Cons.	Image Align.	Image Qual.	Output Align.	Overall
Before RL	76.5	70.4	70.5	58.2	80.5	51.5	67.9
ParaRL $s=2$	77.9	70.3	71.5	62.8	80.7	53.6	68.6
ParaRL ($s=3$) (default)	80.4	71.0	73.4	63.2	81.2	59.8	71.5
ParaRL ($s=4$)	80.5	70.8	<u>73.2</u>	63.5	<u>80.8</u>	<u>58.7</u>	<u>71.3</u>

439 After presenting the overall results, we now return to the two central research questions that motivated our work: **RQ1**: Does parallel denoising improve generation quality compared with sequential denoising? **RQ2**: Does trajectory-level finetuning improve over output-level finetuning?

440 **The Benefit of Parallel Decoding (RQ1).** We compare our model against a sequential baseline (*MMA-Sequential*) that generates text before images. During training, noise was applied to only one modality at a time to align with this sequential inference process. Table 3 shows our parallel framework substantially outperforms this baseline on key alignment metrics, with comparable text and image quality. This result validates our core hypothesis: simultaneous, interactive decoding is crucial for reducing error propagation and producing coherent multimodal outputs.

441 **The Benefit of Trajectory-Level Optimization (RQ2).** We compare two reinforcement learning strategies: (i) *output-level RL*, where rewards are computed on the final generated sample, and (ii) our proposed *ParaRL* with trajectory-level finetuning, where rewards are aggregated across denoising steps. As shown in Table 4, trajectory-level optimization yields gains in text–image consistency and output alignment, and Figure 6 further shows that it enables more stable training dynamics.

442 Another key hyperparameter in this strategy is the number of sampled steps, s . We analyze its impact in Table 5 and report the training curve in Figure 7. We find that using $s = 3$ or $s = 4$ yields substantial improvements over $s = 2$, as a denser reward signal provides more stable guidance. We adopt $s = 3$ in the final configuration for the best balance between performance and efficiency.

443 Figure 6: ParaRL reward training curve between
444 trajectory and output level optimization.445 Figure 7: ParaRL reward training curve across
446 different sampling steps of the trajectory.447

5 CONCLUSION

448 In this work, we investigated a critical phenomenon where sequential thinking-aware models can 449 paradoxically suffer from performance degradation on complex tasks. We conducted an in-depth 450 analysis using our proposed ParaBench benchmark, which uniquely evaluates both output modalities, 451 and found a strong correlation between this degradation and poor alignment between the generated 452 modalities. To resolve this, we propose a parallel multimodal diffusion framework trained with 453 supervised finetuning and further optimized by Parallel Reinforcement Learning (ParaRL)—our 454 novel method of applying rewards along the entire denoising trajectory. Experiments validate that 455 our approach significantly improves cross-modal alignment and semantic consistency, establishing 456 a more robust paradigm for thinking-aware image synthesis.

486

6 ETHICS STATEMENT

487
488 This work advances research in text and image generation. We acknowledge that such models may
489 be misused to create deceptive or harmful content, such as falsified images or misleading infor-
490 mation. Our study is conducted for scientific purposes, and we encourage responsible use with
491 appropriate safeguards to mitigate potential misuse.492
493

7 REPRODUCIBILITY STATEMENT

494
495 We provide detailed training implementation details in Appendix H and our main training code in
496 the supplementary. All code and data will be made public upon acceptance.497
498

REFERENCES

500 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
501 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*
502 *systems*, 34:17981–17993, 2021.503
504 Jinbin Bai, Tian Ye, Wei Chow, Enxin Song, Xiangtai Li, Zhen Dong, Lei Zhu, and Shuicheng
505 Yan. Meissonic: Revitalizing masked generative transformers for efficient high-resolution text-
506 to-image synthesis. *arXiv preprint arXiv:2410.08261*, 2024.507 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
508 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
509 2025.510 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
511 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
512 *recognition*, pp. 18392–18402, 2023.513
514 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
515 image transformer. In *CVPR*, pp. 11315–11325, 2022.516
517 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
518 Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image gen-
519 eration via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.520 Junying Chen, Zhenyang Cai, Pengcheng Chen, Shunian Chen, Ke Ji, Xidong Wang, Yunjin Yang,
521 and Benyou Wang. Sharegpt-4o-image: Aligning multimodal models with gpt-4o-level image
522 generation. *arXiv preprint arXiv:2506.18095*, 2025a.523
524 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
525 ability in vision-language models with less than \$3. <https://github.com/Deep-Agent/R1-V>, 2025b. Accessed: 2025-02-02.526
527 Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
528 diffusion models with self-conditioning. *arXiv preprint arXiv:2208.04202*, 2022.529
530 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
531 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*
532 *preprint arXiv:2505.14683*, 2025a.533
534 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
535 An early exploration to complex vision-language reasoning via iterative self-improvement, 2025b.
536 URL <https://arxiv.org/abs/2503.17352>.537
538 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
539 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
2024a. for high-resolution image synthesis. In *Forty-first international conference on machine learning*,

540 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 541 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 542 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 543 2024b.

544 Rongyao Fang, Chengqi Duan, Kun Wang, Linjiang Huang, Hao Li, Shilin Yan, Hao Tian, Xingyu
 545 Zeng, Rui Zhao, Jifeng Dai, et al. Got: Unleashing reasoning capability of multimodal large
 546 language model for visual generation and editing. *arXiv preprint arXiv:2503.10639*, 2025.

547 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 548 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
 549 52132–52152, 2023.

550 Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
 551 sequence text generation with diffusion models. *arXiv preprint arXiv:2210.08933*, 2022.

552 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 553 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
 554 autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

555 Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
 556 Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
 557 eration. *arXiv preprint arXiv:2506.20639*, 2025.

558 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
 559 Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *CVPR*, pp. 10696–
 560 10706, 2022.

561 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 562 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 563 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

564 Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Rui Huang, Haoquan Zhang, Manyuan
 565 Zhang, Jiaming Liu, Shanghang Zhang, Peng Gao, et al. Can we generate images with cot? let's
 566 verify and reinforce image generation step by step. *arXiv preprint arXiv:2501.13926*, 2025b.

567 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 568 neural information processing systems*, 33:6840–6851, 2020.

569 Jixiang Hong, Yiran Zhang, Guanzhong Wang, Yi Liu, Ji-Rong Wen, and Rui Yan. Reinforcing mul-
 570 timodal understanding and generation with dual self-rewards. *arXiv preprint arXiv:2506.07963*,
 571 2025.

572 Wenzuan Huang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu
 573 Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, et al. Interleaving reasoning for better text-to-
 574 image generation. *arXiv preprint arXiv:2509.06945*, 2025a.

575 Wenzuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Yao Hu, and Shaohui
 576 Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. *arXiv
 577 preprint arXiv:2503.06749*, 2025b.

578 Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and
 579 Cihang Xie. Hq-edit: A high-quality dataset for instruction-based image editing. *arXiv preprint
 580 arXiv:2404.09990*, 2024.

581 Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann
 582 Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level
 583 and token-level cot. *arXiv preprint arXiv:2505.00703*, 2025a.

584 Jingjing Jiang, Chongjie Si, Jun Luo, Hanwang Zhang, and Chao Ma. Co-reinforcement learning
 585 for unified multimodal understanding and generation. *arXiv preprint arXiv:2505.17534*, 2025b.

586

594 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 595 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey,
 596 Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini,
 597 Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and
 598 editing in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.

599 Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
 600 Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
 601 model for multimodal understanding. *arXiv preprint arXiv:2505.16839*, 2025.

602 Wendi Li and Yixuan Li. Process reward model with q-value rankings. *arXiv preprint
 603 arXiv:2410.11287*, 2024.

604 Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
 605 Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
 606 generation. *arXiv preprint arXiv:2505.05472*, 2025.

607 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
 608 Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv
 609 preprint arXiv:2505.05470*, 2025a.

610 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming
 611 Wang, Honghao Fu, Chunrui Han, Guopeng Li, Yuang Peng, Quan Sun, Jingwei Wu, Yan Cai,
 612 Zheng Ge, Ranchen Ming, Lei Xia, Xianfang Zeng, Yibo Zhu, Binxing Jiao, Xiangyu Zhang,
 613 Gang Yu, and Dixin Jiang. Step1x-edit: A practical framework for general image editing. *arXiv
 614 preprint arXiv:2504.17761*, 2025b.

615 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming
 616 Wang, Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image
 617 editing. *arXiv preprint arXiv:2504.17761*, 2025c.

618 Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada:
 619 Unlocking long context capabilities in diffusion llms. *arXiv preprint arXiv:2506.14429*, 2025d.

620 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 621 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint
 622 arXiv:2503.06520*, 2025e.

623 Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew E
 624 Peters, and Arman Cohan. Tess: Text-to-text self-conditioned simplex diffusion. *arXiv preprint
 625 arXiv:2305.08379*, 2023.

626 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi,
 627 Wenhui Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with
 628 rule-based large-scale reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.

629 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
 630 Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint
 631 arXiv:2502.09992*, 2025.

632 Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran
 633 Feng, Kunpeng Ning, Bin Zhu, et al. Wise: A world knowledge-informed semantic evaluation
 634 for text-to-image generation. *arXiv preprint arXiv:2503.07265*, 2025.

635 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
 636 Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
 637 *arXiv preprint arXiv:2406.03736*, 2024.

638 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 639 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

640 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 641 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 642 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

648 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 649 *preprint arXiv:2010.02502*, 2020.
 650

651 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
 652 *arXiv:2405.09818*, 2024.

653 Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, and Mengdi Wang. Revolutioniz-
 654 ing reinforcement learning framework for diffusion large language models. *arXiv preprint*
 655 *arXiv:2509.06949*, 2025.

656 Cong Wei, Zheyang Xiong, Weiming Ren, Xeron Du, Ge Zhang, and Wenhui Chen. Omnidit:
 657 Building image editing generalist models through specialist supervision. In *ICLR*, 2024.

658

659 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 660 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 661 2025a.

662 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 663 Jiang, Yexin Liu, Junjie Zhou, et al. Omnipgen2: Exploration to advanced multimodal generation.
 664 *arXiv preprint arXiv:2506.18871*, 2025b.

665

666 Yongliang Wu, Zonghui Li, Xinting Hu, Xinyu Ye, Xianfang Zeng, Gang Yu, Wenbo Zhu, Bernt
 667 Schiele, Ming-Hsuan Yang, and Xu Yang. Kris-bench: Benchmarking next-level intelligent image
 668 editing models. *arXiv preprint arXiv:2505.16707*, 2025c.

669 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 670 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 671 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

672

673 Yi Xin, Qi Qin, Siqi Luo, Kaiwen Zhu, Juncheng Yan, Yan Tai, Jiayi Lei, Yuewen Cao, Keqi Wang,
 674 Yibin Wang, et al. Lumina-dimoo: An omni diffusion large language model for multi-modal
 675 generation and understanding. *arXiv preprint arXiv:2510.06308*, 2025.

676

677 Ling Yang, Bohan Zeng, Jiaming Liu, Hong Li, Minghao Xu, Wentao Zhang, and Shuicheng Yan.
 678 Editworld: Simulating world dynamics for instruction-following image editing. *arXiv preprint*
arXiv:2405.14785, 2024.

679

680 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
 681 Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025a.

682

683 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 684 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal rea-
 685 soning through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025b.

686

687 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 688 Kong. Dream 7b, 2025a. URL <https://hkunlp.github.io/blog/2025/dream>.

689

690 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 691 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025b.

692

693 Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused con-
 694 ditional sequence learning by manipulating noises. *arXiv preprint arXiv:2302.10025*, 2023.

695

696 Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
 697 Li. Llada-v: Large language diffusion models with visual instruction tuning. *arXiv preprint*
arXiv:2505.16933, 2025.

698

699 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 700 Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion-
 701 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

702

703 Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang
 704 Tang, Hanwang Zhang, and Yueting Zhuang. Anyedit: Mastering unified high-quality image
 705 editing for any idea. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 706 pp. 26125–26135, 2025.

702 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
703 Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
704 relative policy optimization. *arXiv preprint arXiv:2503.12937*, 2025.

705
706 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
707 dataset for instruction-guided image editing. *Advances in Neural Information Processing Systems*,
708 36:31428–31449, 2023.

709 Haozhe Zhao, Xiaojian Shawn Ma, Liang Chen, Shuzheng Si, Ruijie Wu, Kaikai An, Peiyu Yu,
710 Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image
711 editing at scale. *Advances in Neural Information Processing Systems*, 37:3058–3093, 2024.

712 Xiangyu Zhao, Peiyuan Zhang, Kexian Tang, Xiaorong Zhu, Hao Li, Wenhao Chai, Zicheng Zhang,
713 Renqiu Xia, Guangtao Zhai, Junchi Yan, et al. Envisioning beyond the pixels: Benchmarking
714 reasoning-informed visual editing. *arXiv preprint arXiv:2504.02826*, 2025.

715
716 Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
717 Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
718 large language diffusion models. *arXiv preprint arXiv:2505.19223*, 2025.

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	APPENDIX CONTENTS	
757		
758		
759	A Scaling of MMaDA-Parallel	15
760		
761	B Additional Results	16
762	B.1 Qualitative results	16
763	B.2 Quantitative Results	16
764		
765		
766	C More Related Work	17
767		
768		
769	D Preliminaries	19
770	D.1 Preliminaries of discrete Diffusion Models.	19
771	D.2 Group Relative Policy Optimization for Discrete Diffusion Models	21
772		
773		
774	E Sampling Details on Text and Image	22
775		
776		
777	F Details of Training Dataset Curation	22
778		
779	G Details of ParaBench	24
780		
781	H More Implementation Details	25
782		
783		
784	I More Ablation Studies	25
785		
786	J Limitations and Future Work	26
787		
788		
789	K Denoising Demo	28
790		
791	L Use of LLM	28
792		
793		
794	M Prompts for evaluation	29
795		
796	A SCALING OF MMADA-PARALLEL	
797		
798		
799	To further validate our MMaDA-Parallel on larger-scale training, we extend our post-training framework on Lumina-DiMOO Xin et al. (2025). Lumina-DiMOO shares a similar architecture with MMaDA, but benefits from much larger-scale data training and a substantially stronger visual tokenizer, amused-VQ Xin et al. (2025). The original MMaDA tokenizer is known to be a major bottleneck for visual fidelity and text rendering, which restricts the achievable performance of both sequential and parallel paradigms. By switching to the amused-VQ tokenizer, the limitations in reconstruction and fine-grained detail generation are largely removed, allowing us to evaluate our parallel framework in a setting where the tokenizer is no longer the dominant constraint. We adopt identical training settings as in Lumina-DiMOO, and report its corresponding quantitative and qualitative results in Table 6 and Figure 8. The results clearly show that after applying our Parallel framework and ParaRL post-training, Lumina-DiMOO surpasses BaGEL and achieves new state-of-the-art performance in thinking-aware synthesis. This strongly validates both the scalability and the headroom of our method once the tokenizer bottleneck is addressed.	
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

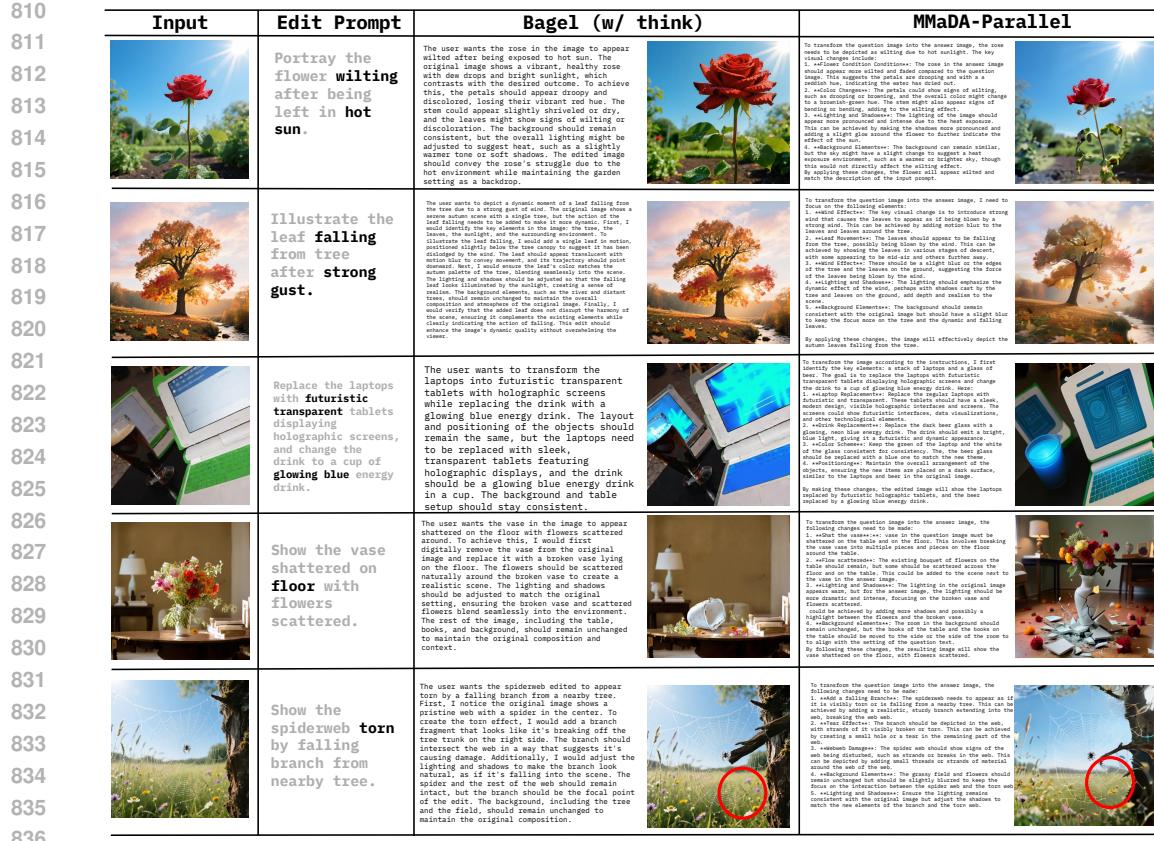


Figure 8: Additional qualitative results on MMaDA-Parallel-A, post-trained from Lumina-DiMOO.

Table 6: Main results on *ParaBench*. MMaDA-Parallel-A represents our variant post-trained from Lumina-DiMOO.

841	Model	Text Qual.	Text Align.	Image Cons.	Image Align.	Image Qual.	Output Align.	Overall
Open-source models (Non-thinking)								
843	Flux-1-Dev	-	-	-	65.2	77.5	-	-
844	Qwen-Image	-	-	-	67.2	84.2	-	-
845	Flux-1-Kontext	-	-	77.9	65	84	-	-
846	Qwen-Image-Edit	-	-	78.2	73.5	84.1	-	-
847	Bagel (w/ think)	-	-	72.2	50.3	80.1	-	-
Closed-source models								
848	GPT-4o	92.5	93.4	86.2	85.7	88.1	89.5	89.2
849	Gemini-2.5	94.1	95.2	88.5	76.2	90.2	83.4	88.9
Open-source models (Thinking-aware)								
850	Bagel (w/ think)	82.0	74.5	76.7	63.4	81.5	52.9	71.8
851	Show- ⁸ (tuned)	75.2	70.7	69.1	57.5	78.5	48.9	66.6
852	MMaDA-Parallel-A w/o Para-RL	82.6	73.7	71.3	64.6	82.6	63.3	73.0
853	MMaDA-Parallel-A w/ Para-RL	84.1	76.5	71.0	67.8	83.6	68.8	75.3

B ADDITIONAL RESULTS

B.1 QUALITATIVE RESULTS

We provide more qualitative results in Figure 9 and Figure 10 for thinking-aware image editing and generation.

B.2 QUANTITATIVE RESULTS

We also report additional image-only results of MMaDA-Parallel on RISEBench Wu et al. (2025c) in Table 7 and GenEval Ghosh et al. (2023) 8. Along with general image synthesis benchmarks

864	Input Image	Prompt	Thinking-Aware Editing with MMaDA-Parallel
865		Draw what it will look like an hour later.	To address the question, we need to depict it an hour later, we'll focus on the current state shown in the question image. The goal is to simulate its appearance of several hours after passed. Observing the question image, the apple is partially opened with a vibrant interior and a central pit. To achieve the desired effect, we will need to adjust the lighting and shadows. As the hour passes, the apple will appear more translucent, possibly revealing more of its yellowish hue. The pit, which is currently less illuminated, should become more pronounced due to the light exposure. Additionally, the shadow cast by the apple will dark slightly, enhancing the sense of time and depth. To achieve this, we should gradually reduce the brightness and contrast of the apple's skin, making it more muted and even tone. The pit should remain more exposed in detail, showcasing its natural texture. In the shadow, the shadow should be adjusted to suggest the passage of time with a slight fading toward the darkness. This will create a realistic depiction of the apple after an hour, with a more texture and color changes, as seen in the answer image.
866		What will happen after one hour?	To address the question, I need to consider what changes to the scene after an hour sets. Observing the initial image, we have a glass with iced tea and scattered seeds floating on the surface. To transition to the desired outcome, I'll need consider how the tea's appearance and as time approaches. As the tea cools, the liquid will become more transparent, and the tea leaves will lose their golden hue. The ice cubes may start to float more prominently and become less distinct due to the warmth of the liquid. The seeds on the surface will also change, scattering more unevenly. Some seeds may appear larger and more prominent due to the increased water content. Additionally, the overall clarity of the tea will decrease, leading to a softer, more diffuse appearance seen in the second image. To create this final image, I will focus on adjusting the lighting and shadow to suggest the passage of time. The glass should remain centered, but the background should subtly shift to suggest the passage of time. The seeds on the surface will be refined to show signs of settling and scattering, emphasizing the progression of the tea process. This adjustment can effectively illustrate the creation of the scene an hour later, as depicted in the intended image.
867		Draw an image showing a distant view of the trees from the same angle, farther away.	To create the image showing a distant view of the trees from the same angle, farther away, I'll start by analyzing the current composition. The question image features a single, prominent tree in the foreground with a clear blue sky and scattered clouds. The goal is to extend this view and reduce the foreground while maintaining the same, ensuring the trees appear farther away. First, I need to expand the tree in the scene. This means reducing its size relative to the viewer, making it appear smaller and more distant. The sky should remain consistent but become less dominant as the tree stretches out. Next, I'll adjust the perspective slightly. The current image shows a slight tilt, suggesting the camera is approaching the tree. To align with the original idea of the scene, but seen farther away, I will orbit the horizon and background. This blur will create a sense of depth, making the trees appear even more away. Lastly, I'll consider adding subtle details such as faint outlines of additional trees or a horizon line in the distance, consistent with the broader perspective.
868		What will happen if he releases his hand?	To address the question, "What will happen if he releases his hand?" I need to consider the dynamics depicted in the question image. In the current image, we see a hand is positioned over a stack of objects, with the hand resting on top of a stack of stones. The question implies a scenario where the hand is released, suggesting a change in the arrangement of the objects. To realize this, I'll focus on the dynamics of the stacked objects. As the hand is lifted from the stack, it likely will shift upward. The hand should no longer be resting on top of the stack, and the top object will begin to float away. The orange objects at the bottom of the stack will remain in their position but may shift slightly due to the change in the stack. To create the answer image, I would imagine the hand being removed from the stack, with the top object lifted and floating away. The orange object at the bottom of the stack will stay in place, but its position will slightly shift to reflect the release of the hand. Additionally, the background could subtly lighting to emphasize the connection between the hand and the floating objects, maintaining the continuity of the scene. This approach aligns with the question of what happens when the hand is released.
869		Adjust the small hamburger to the size of the large hamburger	To adjust the small hamburger to the size of the large hamburger, I'll start by analyzing the current differences between the two images. In the question image, the small hamburger appears significantly smaller compared to the large one. The goal is to make the small hamburger match the scale and proportions of the large one. First, I'll focus on reducing the size of the small hamburger. This involves scaling its height and width so that it appears smaller in relation to the large hamburger. To achieve this, I'll incrementally reduce the size of the small burger's proportions until it matches the size level of the hand. The large burger, I'll consider the toppings adjustment. The small burger already has a layer of lettuce, tomato, and cheese, which need to be adjusted slightly to align with the large burger. This involves adjusting the proportions of these ingredients to create a balanced appearance on the small burger. Finally, I'll ensure the background remains consistent between both images. The wooden surface and the warm lighting should remain unchanged, creating a cohesive visual flow between the two images. By making these adjustments, the final image will show the small hamburger harmoniously integrated with the large hamburger, matching the proportions as shown in the original image.

Figure 9: Additional qualitative results on thinking-aware image editing.

WISE Niu et al. (2025) and Gedit-Bench Liu et al. (2025c). For fair comparison, we evaluate against the sequential version of MMaDA, MMaDA-Parallel. This variant of MMaDA was trained using the same data and resources as our MMaDA-Parallel, but trained and inferred in a sequential manner. We find that MMaDA-Parallel achieves consistent performance improvements, demonstrating that parallel generation leads to overall gains in image alignment. Compared with the original MMaDA, our approach further narrows the performance gap with Bagel.

C MORE RELATED WORK

Diffusion large language models. Diffusion models have achieved remarkable progress in vision (Ho et al., 2020; Rombach et al., 2022; Esser et al., 2024b; Song et al., 2020; Peebles & Xie, 2023), motivating their extension to text. The discrete nature of textual tokens, however, makes direct adaptation non-trivial. Two main approaches have emerged: learning continuous latent representations (Chen et al., 2022; Mahabadi et al., 2023; Ye et al., 2023; Gong et al., 2022), and designing discrete diffusion models (Ou et al., 2024; Gong et al., 2024; Liu et al., 2025d; Ye et al.,

Input Prompt	Thinking-Aware Generation with MMaDA-Parallel
A Starbucks coffee cup and bread rolls on a table next to a window with a black car parked outside.	<p>To generate the image based on the prompt "A Starbucks coffee cup and bread rolls on a table next to a window with a black car parked outside", I need to focus on the following elements: 1. Place a Starbucks coffee cup prominently in the foreground on the left side of the frame. 2. Position a plate with bread rolls on the right side of the frame. 3. Ensure the table is wooden and has a warm tone. 4. Include a window in the background with a view of a street. 5. Have a black car parked outside visible through the window. 6. Set the scene during daylight hours to capture natural light. 7. Ensure the overall composition is balanced with the coffee cup and bread rolls as focal points. This will create a realistic and appealing image that aligns with the given prompt.</p>
A man sitting comfortably on a wooden bench in the midst of a tranquil forest glade, encircled by towering trees.	<p>To generate the image for the prompt "A man sitting comfortably on a wooden bench in the midst of a tranquil forest glade, encircled by towering trees," I need to focus on the following key elements: 1. *Main Subject*: A man sitting comfortably on a wooden bench. 2. *Setting*: A tranquil forest glade. 3. *Atmosphere*: Tranquil and serene. 4. *Details*: Wooden bench, tall trees, and a peaceful environment. The composition should place the man as the focal point, surrounded by the forest, with the bench being the central element. The background should feature tall trees and greenery to enhance the sense of being in a forest glade. The lighting should be soft and natural, suggesting a calm, early morning or late afternoon setting. The overall color palette should be earthy and green, with muted tones to match the tranquil atmosphere.</p>
A trio of chairs, a trio of banners, a trio of desks, a quartet of ships, and a quartet of cushions.	<p>To generate the image based on the prompt "A trio of chairs, a trio of banners, a trio of desks, a quartet of ships, and a quartet of cushions," I need to focus on creating a balanced composition with multiple groups of objects. Here's the planning process: 1. *Chairs*: Place three distinct types of chairs (e.g., a wooden chair, a metal chair, and a fabric chair) in a triangle, each with unique textures and colors. 2. *Banners*: Introduce three different banners, perhaps with a nautical theme. 3. *Desks*: Position three desks of varying sizes and styles behind the chairs, ensuring they are spaced out to maintain balance. 4. *Ships*: Introduce four ships, possibly toy models or detailed illustrations, scattered around the scene, adding a nautical element. 5. *Cushions*: Add four cushions in soft, contrasting colors, placed neatly to enhance the cozy atmosphere. The overall composition should be vibrant and varied, with each group of objects clearly distinguishable yet harmoniously integrated into the scene. The lighting should be even to highlight the details of each object. To generate the image, I would start by sketching the layout, ensuring there is enough space for all the objects. Then, I would choose appropriate colors and textures for each item. After that, I would render the scene with careful attention to lighting and perspective to bring the image to life.</p>
Create an image featuring three differently colored baseball gloves arranged on a wooden bench.	<p>To generate an image featuring three differently colored baseball gloves arranged on a wooden bench, I would start by choosing vibrant colors for the gloves, such as orange, black, and a light brown. Next, I would select a realistic wooden bench with a natural grain pattern to provide texture and contrast against the smooth leather of the gloves. The arrangement should showcase the gloves side by side, with their open palms facing forward, allowing viewers to see the detailed stitching and laces. The lighting should be soft and even to enhance the colors and textures without creating harsh shadows. Finally, the background could be minimal, perhaps a blurred outdoor setting like a park bench, to keep the focus on the gloves.</p>
A plate of pancakes topped with butter, bacon strips, a side of syrup, and a coffee cup on a table in a diner setting.	<p>To generate the image based on the prompt "A plate of pancakes topped with butter, bacon strips, a side of syrup, and a coffee cup on a table in a diner setting," I need to plan the following visual elements: 1. *Main Subject*: A plate of pancakes with toppings (butter, bacon strips, and syrup). 2. *Side Item*: A coffee cup placed next to the plate. 3. *Setting*: A diner environment, which includes a table and typical diner decor. 4. *Lighting*: Soft, natural light to mimic a cozy diner atmosphere. 5. *Composition*: Center the plate of pancakes in the foreground, with the coffee cup slightly off-center for balance. 6. *Background*: Show a diner interior with tables, chairs, and possibly some patrons in the distance to establish the setting. The overall goal is to create a warm, inviting, and appetizing image that captures the essence of a classic diner breakfast scene.</p>

Figure 10: Additional qualitative results on thinking-aware image generation.

Table 7: Overall performance on RISEBench. .

Models	Temporal	Causal	Spatial	Logical	Overall
GPT-4o-Image	34.1%	32.2%	37.0%	10.6%	28.9%
Gemini-2.0-Flash-exp	8.2%	15.5%	23.0%	4.7%	13.3%
Bagel	3.5%	4.4%	9.0%	5.9%	5.8%
MMaDA(Sequential)	3.9 %	5.2%	8.1%	4.8%	5.5%
MMaDA-Parallel	4.2%	5.5%	8.3%	5.1%	5.75%

2025b; Zhu et al., 2025). Among the latter, **Masked Diffusion Models (MDMs)** stand out by leveraging bidirectional attention for global consistency and supporting parallel decoding. Systems such as Dream7B (Ye et al., 2025b) and LLaDA (Nie et al., 2025) achieve performance comparable to autoregressive LLMs. Beyond text, diffusion-based LLMs have also been extended to multimodal

972
973
974 Table 8: Results on GenEval..
975
976
977
978
979
980

Method	Single Obj.	Two Obj.	Counting	Colors	Position	Color Attri.	Overall
SDXL	0.98	0.74	0.39	0.85	0.15	0.23	0.55
Show-o Xie et al. (2024)	0.95	0.52	0.49	0.82	0.11	0.28	0.53
MMaDA (Yang et al., 2025a)	0.99	0.76	0.61	0.84	0.20	0.37	0.63
Bagel (Deng et al., 2025a)	0.98	0.95	0.84	0.95	0.78	0.77	0.88
MMaDA(Sequential)	0.99	0.78	0.66	0.87	0.34	0.37	0.68
MMaDA-Parallel	0.99	0.83	0.70	0.88	0.40	0.47	0.71

981
982
983 Table 9: Results on WISE
984
985
986
987
988
989

Model	Cultural	Time	Space	Biology	Physics	Chemistry	Overall
SDXL	0.43	0.48	0.47	0.44	0.45	0.27	0.43
Show-o Xie et al. (2024)	0.28	0.36	0.40	0.23	0.33	0.22	0.30
Bagel Deng et al. (2025a)	0.44	0.55	0.68	0.44	0.60	0.39	0.52
MMaDA-Sequential	0.39	0.54	0.58	0.55	0.44	0.22	0.44
MMaDA-Parallel	0.42	0.56	0.59	0.57	0.47	0.24	0.47

991 domains. LaViDA (Li et al., 2025) employs multi-view image encoding with masked-denoising
 992 training, LLaDA-V (You et al., 2025) integrates masked diffusion with visual instruction tuning,
 993 and MMaDA (Yang et al., 2025a) unifies reasoning across text and vision generation through
 994 chain-of-thought supervision and reinforcement learning. These advances highlight the scalability and
 995 versatility of diffusion-based language models across both unimodal and multimodal settings. Nev-
 996 ertheless, existing approaches have not yet explored **parallel text-image co-generation**, leaving
 997 cross-modal reasoning and alignment still constrained by sequential pipelines.

998
 999 **Reinforcement learning for multimodal foundation models.** Reinforcement Learning (RL) has
 1000 emerged as a powerful paradigm for enhancing reasoning and controllability in large models. The
 1001 widely adopted GRPO (Guo et al., 2025a) applies rewards primarily on the correctness of the final
 1002 answer and the adherence to a predefined format. Recently, RL has been adopted in multimodal
 1003 large language models (Chen et al., 2025b; Meng et al., 2025; Yang et al., 2025b; Zhang et al., 2025;
 1004 Deng et al., 2025b; Huang et al., 2025b), incorporating task-specific rewards such as answer cor-
 1005 rectness, intersection-over-union (IoU) for localization (Liu et al., 2025e), and image–text alignment
 1006 scores (e.g., T2I-R1 (Jiang et al., 2025a)). Extensions such as (Jiang et al., 2025b; Hong et al., 2025)
 1007 further introduce cross-modality coherence rewards. In the context of diffusion language models,
 1008 similar strategies have been explored with verified rewards and carefully designed probability ap-
 1009 proximations (Yang et al., 2025a; Gong et al., 2025). Despite these advances, most existing methods
 1010 focus solely on rewards applied to the final output, while largely ignoring the generative trajectory.
 1011 This overlooks the fact that intermediate steps can provide crucial signals for alignment. In contrast,
 1012 our work investigates the synergy between modalities during the denoising process and introduces
 1013 ParaRL, which exploits stepwise semantic alignment to optimize thinking-aware multimodal genera-
 1014 tion.
 1015

D PRELIMINARIES

D.1 PRELIMINARIES OF DISCRETE DIFFUSION MODELS.

1016 In recent years, diffusion models have set new standards in generative modeling. While De-
 1017 noising Diffusion Probabilistic Models (DDPMs) excel in continuous domains like raw pixel
 1018 spaces, Discrete Denoising Diffusion Probabilistic Models (D3PMs) have proven highly effec-
 1019 tive for discrete data, such as tokenized images and text. Models like VQ-Diffusion Gu et al.
 1020 (2022), MaskGIT (Chang et al., 2022), Muse (Chang et al., 2023), Show-o (Xie et al., 2024), and
 1021 MMaDA Yang et al. (2025a) have demonstrated that a discrete diffusion process can generate high-
 1022 fidelity outputs with great efficiency. Our model’s architecture is built upon this discrete diffusion
 1023 paradigm. We now provide the formal preliminaries, beginning with the foundational forward and
 1024 1025

Table 10: Results on GEdit-Bench

		G_SC	G_PQ	G_O
1026	Gemini 2.0	6.73	6.61	6.32
1027	GPT-4o	7.85	7.62	7.53
1028	Instruct-Pix2Pix (Brooks et al., 2023)	3.58	5.49	3.68
1029	MagicBrush (Zhang et al., 2023)	4.68	5.66	4.52
1030	AnyEdit (Yu et al., 2025)	3.18	5.82	3.21
1031	Step1X-Edit Liu et al. (2025c)	7.09	6.76	6.70
1032	Bagel Deng et al. (2025a)	7.36	6.83	6.52
1033	MMaDA-Sequential	5.63	5.97	5.13
1034	MMaDA-Parallel	5.72	6.28	5.23
1035				
1036				
1037				
1038				
1039				
1040				
1041	reverse processes and culminating in the simplified mask-and-predict training objective that our			
1042	model employs.			
1043				
1044	Forward and reverse processes. A discrete diffusion model consists of two key processes: (1)			
1045	The <i>Forward Process</i> (q), a fixed Markov chain that gradually corrupts input data \mathbf{x}_0 over T			
1046	timesteps into noisy latents $\mathbf{x}_1, \dots, \mathbf{x}_T$; and (2) The <i>Reverse Process</i> (p_θ), a learned neural network			
1047	that reverses this corruption by progressively denoising \mathbf{x}_T to recover the original data distribution.			
1048	Let's consider a single token $x_0 \in \{1, \dots, K\}$ from a codebook of size K . The forward process			
1049	at each step t is defined by a stochastic transition matrix $\mathbf{Q}_t \in \mathbb{R}^{K \times K}$. A key property is that the			
1050	distribution of \mathbf{x}_t conditioned on the initial state \mathbf{x}_0 is tractable:			
1051	$q(\mathbf{x}_t \mathbf{x}_0) = \text{Cat}(\mathbf{x}_t \mathbf{x}_0 \bar{\mathbf{Q}}_t), \quad \text{where} \quad \bar{\mathbf{Q}}_t = \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_t. \quad (5)$			
1052				
1053	The posterior probability, which is essential for training, is also tractable:			
1054				
1055	$q(\mathbf{x}_{t-1} \mathbf{x}_t, \mathbf{x}_0) = \frac{q(\mathbf{x}_t \mathbf{x}_{t-1})q(\mathbf{x}_{t-1} \mathbf{x}_0)}{q(\mathbf{x}_t \mathbf{x}_0)} \propto \text{Cat} \left(\mathbf{x}_{t-1} \left \frac{\mathbf{x}_t \mathbf{Q}_t^\top \odot \mathbf{x}_0 \bar{\mathbf{Q}}_{t-1}}{\mathbf{x}_0 \bar{\mathbf{Q}}_t \mathbf{x}_t^\top} \right. \right), \quad (6)$			
1056				
1057	where \odot denotes element-wise product.			
1058				
1059				
1060				
1061	Absorbing mask state and transition matrix. The design of the transition matrix \mathbf{Q}_t dictates the			
1062	nature of the corruption. A highly effective approach, inspired by masked language modeling, is to			
1063	introduce a special absorbing [MASK] state . This expands the token vocabulary to $K + 1$ states.			
1064	Once a token becomes [MASK], it remains masked for all subsequent timesteps. This explicitly sig-			
1065	nals corrupted positions to the model. The transition matrix for this "Absorbing-Uniform" process			
1066	is defined as:			
1067				
1068	$\mathbf{Q}_t = \begin{bmatrix} \omega_t + \nu_t & \nu_t & \cdots & \nu_t & \alpha_t \\ \nu_t & \omega_t + \nu_t & \cdots & \nu_t & \alpha_t \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \nu_t & \nu_t & \cdots & \omega_t + \nu_t & \alpha_t \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \in \mathbb{R}^{(K+1) \times (K+1)}, \quad (7)$			
1069				
1070				
1071				
1072				
1073	where at each step t , a token has a probability α_t to be masked, a probability β_t to be replaced by a			
1074	random token, and a probability $\omega_t = (1 - \alpha_t - \beta_t)$ to remain unchanged. The [MASK] token (last			
1075	row) always transitions to itself.			
1076				
1077				
1078	Objective as mask prediction. The training objective for diffusion models is derived by maxi-			
1079	mizing the Evidence Lower Bound (ELBO) on the data log-likelihood. The negative ELBO, which is minimized during training, can be decomposed into several terms representing different stages of			

1080 the diffusion process:
 1081

$$\begin{aligned}
 1082 \mathcal{L}_{\text{ELBO}} = \mathbb{E}_q \left[\underbrace{-\log p_\theta(\mathbf{x}_0 | \mathbf{x}_1)}_{\text{Reconstruction Term}} + \sum_{t=2}^T \underbrace{\text{KL}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \| p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t))}_{\text{Denoising Matching}} \right. \\
 1083 \left. + \underbrace{\text{KL}(q(\mathbf{x}_T | \mathbf{x}_0) \| p(\mathbf{x}_T))}_{\text{Prior Matching}} \right]. \tag{8}
 \end{aligned}$$

1088 Here, the objective consists of three main components: (1) a reconstruction term that learns to
 1089 generate the final data from \mathbf{x}_1 , (2) a series of KL divergence terms that train the reverse process p_θ
 1090 to match the true posterior at each denoising step, and (3) a prior matching term that aligns the final
 1091 noisy latent with a simple prior distribution. Following derivations in D3PMs [Austin et al. \(2021\)](#),
 1092 this complex objective can be simplified to a weighted sum of reconstruction terms:
 1093

$$\begin{aligned}
 1094 \mathcal{L}_{\text{simple}} = \sum_{t=1}^T \mathbb{E}_{q(\mathbf{x}_0, \mathbf{x}_t)} [-\log p_\theta(\mathbf{x}_0 | \mathbf{x}_t)]. \tag{9}
 \end{aligned}$$

1097 When using the absorbing mask state strategy, this simplified objective becomes equivalent to a
 1098 **Cross-Entropy loss** for mask token prediction, as used in MaskGIT [Chang et al. \(2022\)](#). This approach is highly effective as it focuses the model's capacity on reconstructing only the corrupted
 1099 parts of the data. Our work leverages this powerful paradigm for both text and image token generation.
 1100

1103 D.2 GROUP RELATIVE POLICY OPTIMIZATION FOR DISCRETE DIFFUSION MODELS

1105 Group Relative Policy Optimization (GRPO) ([Guo et al., 2025a](#)) is a powerful policy gradient algorithm originally designed for autoregressive models. However, its direct application to discrete
 1106 diffusion models is non-trivial. The core challenge lies in computing the importance sampling ratios
 1107 and sequence-level likelihoods; these are straightforward in an autoregressive chain but ill-defined
 1108 in a non-autoregressive, parallel decoding process. Diffusion models lack a sequential history for
 1109 token-level probabilities, and their policy distributions are implicitly dependent on masking patterns,
 1110 making direct likelihood estimation computationally prohibitive.
 1111

1112 To bridge this gap, we adopt the efficient random masking framework from MMaDA ([Yang et al., 2025a](#)) to adapt GRPO for our diffusion-based architecture. This strategy circumvents the need
 1113 for direct likelihood computation by using the model's predictions on randomly masked inputs as
 1114 an unbiased estimate of the policy likelihoods. First, the advantage \hat{A}_i for each response o_i in a
 1115 generated group $\{o_j\}_{j=1}^G$ is computed in the standard group-relative manner:
 1116

$$\hat{A}_i = \frac{r_i - \text{mean}(\{r_j\}_{j=1}^G)}{\text{std}(\{r_j\}_{j=1}^G) + \epsilon}, \tag{10}$$

1120 where r_i is the reward for response o_i . The policy gradient is then calculated using an importance
 1121 sampling ratio $r'_{i,t}(\theta)$ defined over a randomly masked version of each response, where a unique
 1122 mask ratio $p_i \sim U[0, 1]$ is sampled for each response at each training step. This allows the standard
 1123 clipped GRPO objective to be adapted for diffusion models as follows:
 1124

$$\begin{aligned}
 1125 \mathcal{J}_{\text{Diff-GRPO}}(\theta) = \mathbb{E}_{\substack{q \sim \mathcal{D}, \{o_i\} \sim \pi_{\text{old}}, \\ \{p_i\} \sim U[0, 1]}} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|\mathbf{M}_i|} \sum_{t \in \mathbf{M}_i} \left(\min \left(r'_{i,t}(\theta) \hat{A}_i, \right. \right. \right. \\
 1126 \left. \left. \left. \text{clip} \left(r'_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_i \right) \right) - \beta D_{\text{KL}}(\pi'_\theta || \pi'_{\text{ref}}) \right], \tag{11}
 \end{aligned}$$

1131 where the expectation is also taken over the random mask ratios, the inner summation is only over
 1132 the masked tokens \mathbf{M}_i , and π' denotes the policy likelihoods approximated via the masking scheme.
 1133 This formulation enables stable and efficient policy optimization by effectively adapting the principles of GRPO to a non-autoregressive setting.

1134 E SAMPLING DETAILS ON TEXT AND IMAGE
1135

1136 **Parallel sampling and denoising strategy.** Our model employs a parallel sampling strategy, pre-
1137 dicting logits for all text and image tokens simultaneously in a single forward pass. The denois-
1138 ing process for both modalities is guided by a confidence-based re-masking schedule, inspired by
1139 MaskGIT (Chang et al., 2022) and LLaDA (Nie et al., 2025). Crucially, while the logits are gen-
1140 erated jointly, we apply distinct masking schedulers and confidence metrics to the text and image
1141 tokens to account for their different statistical properties and generation requirements.

1142 **Image token denoising.** For image generation, we follow the iterative decoding process from
1143 MaskGIT. At each timestep t , given the current set of M masked image tokens, the model predicts
1144 logits $\ell^t = \{\ell_i^t\}_{i=1}^M$. For each masked position i , we sample a candidate token u'_i from the predicted
1145 probability distribution and compute its confidence score s_i . A mask scheduling function $\gamma(t/T)$
1146 determines the number of tokens $m = \lceil \gamma(t/T)M \rceil$ that should be kept (i.e., remain unmasked).
1147 We select the m tokens with the highest confidence scores to keep for the next step $t + 1$, and the
1148 remaining $M - m$ tokens are re-masked. The update rule for a token at position i is:

$$1150 \quad u_i^{(t+1)} = \begin{cases} u_*, & \text{if } s_i < \text{sorted}_j(s_j)[m] \\ u'_i, & \text{otherwise} \end{cases}, \quad (12)$$

1153 where u_* represents the [MASK] token and $\text{sorted}_j(s_j)[m]$ is the m -th value in the sorted list of
1154 confidence scores. This iterative refinement continues until all image tokens are finalized. In our
1155 implementation, we generate a 512px image, which is encoded into 1024 discrete tokens and takes
1156 30 steps to decode.

1157 **Text token denoising.** For text generation, we adopt the semi-autoregressive denoising strategy
1158 from LLaDA (Nie et al., 2025), where the output sequence is generated in blocks from left to right.
1159 Within each block, however, generation is non-autoregressive and iterative. The core of this process
1160 is a reverse sampling step that transforms a partially masked sequence \mathbf{x}_t at step t into a less masked
1161 sequence \mathbf{x}_s at an earlier step $s < t$. This transition is formally characterized by the probability:

$$1163 \quad q_{s|t}(\mathbf{x}_s | \mathbf{x}_t) = \prod_{i=0}^{N-1} q_{s|t}(x_s^i | \mathbf{x}_t^i) \quad \text{and} \quad q_{s|t}(x_s^i | \mathbf{x}_t^i) = \begin{cases} 1, & x_t^i \neq [\text{M}], x_s^i = x_t^i \\ \frac{1}{1-\alpha_t}, & x_t^i = [\text{M}], x_s^i = [\text{M}] \\ \frac{\alpha_s - \alpha_t}{1-\alpha_t} p_\theta(x_0^i | \mathbf{x}_t), & x_t^i = [\text{M}], x_s^i \neq [\text{M}] \\ 0, & \text{otherwise,} \end{cases} \quad (13)$$

1168 where $p_\theta(x_0^i | \mathbf{x}_t)$ is the model’s prediction of the original token for the masked position i and $\alpha_t =$
1169 $1 - t$. In practice, this involves an iterative refinement loop. At each step, given the current sequence
1170 \mathbf{x}_t , we first sample candidate tokens for all masked positions. Then, following the deterministic low-
1171 confidence re-masking strategy adopted by LLaDA, we identify the tokens with the lowest prediction
1172 confidence scores and re-mask them for the next refinement iteration.

1173 In our implementation, we generate the sequence with 256 sequence length, in blocks of 64 tokens
1174 and 128 steps. At each denoising step within a block, we unmask the two tokens with the low-
1175 est confidence scores. This block-based, semi-autoregressive approach is essential for generating
1176 coherent and naturally structured sentences, as it mitigates issues like the premature generation of
1177 end-of-sequence (|EOS|) tokens that can arise in a fully non-autoregressive setting.

1178 F DETAILS OF TRAINING DATASET CURATION
1179

1181 Our training dataset is a carefully curated collection of 150,000 high-quality samples designed for
1182 thinking-aware image synthesis. The primary challenge was that existing public datasets for image
1183 editing and generation typically provide input-output pairs without the intermediate reasoning traces
1184 required by our method. Therefore, our curation process involved three main stages: (1) aggregating
1185 data from state-of-the-art sources, (2) generating high-quality reasoning traces to augment this data,
1186 and (3) applying a rigorous filtering and enhancement pipeline. The final dataset consists of 100,000
1187 editing pairs and 50,000 generation pairs, achieving a 2:1 ratio. An overview of the dataset is shown
1188 in Figure 11 and 12

1188	input_text	output_text	output_image
1189	string · lengths	string · lengths	image · width (px)
1190	10 5.77k	319 2.32k	500 1.02k
1191	In an extreme close-up shot (ECU), a hand adorned with earth-toned African tribal patterns gestures with a glass of garnet-red wine-its..	<think> To generate the image based on the prompt, I'll focus on the following elements: 1. **Close-up shot**: Emphasize detail with sharp focus on the hand, wine glass, and infant's ..	
1192	Egyptian-style silhouetted indri, bulbul, and gecko gather around a jackfruit tray and sundial before a geyser on a dim, naturally frame..	<think> To generate the image based on the prompt "Egyptian-style silhouetted indri, bulbul, and gecko gather around a jackfruit tray and sundial before a geyser on a dim, naturally fr..	
1193	Against the backdrop of a dreamy sunset painted in soft shades of orange and pink, a vibrant green kite decorated with luminous star..	<think> To generate the image described in the prompt, I would start by setting the scene with a vibrant sunset in soft shades of orange and pink. Next, I would place a large, green..	
1194	Innumerable glowing lanterns ascend into the twilight sky above a distant, silhouetted ancient city.	<think> To generate the image, I need to focus on several key elements from the prompt: numerous glowing lanterns, a twilight sky, and a silhouetted ancient city. First, I'll create a..	
1195	A photo capturing a backpack resting on a bench, with a bus stationed in the background, positioned lower than the bench.	<think> To generate the image based on the prompt "A photo capturing a backpack resting on a bench, with a bus stationed in the background, positioned lower than the bench," I would st..	
1196	Captured in a medium close-up shot utilizing fine lines and cross-hatching, a breathtaking vista of clouds seen from above establishes..	<think> To generate the image based on the given text prompt, I need to carefully plan the composition, lighting, and placement of each element: 1. Start with the background: A calm, ..	
1197	a teal-colored jay and a golden-brown bear	<think> To generate the image based on the prompt "a teal-colored jay and a golden-brown bear", I need to focus on two main elements: the teal-colored jay and the golden-brown bear. T..	
1198	From a high-angle shot looking down slightly, an asymmetrical balance composition showcases five distinct slide rules scattered..	<think> To generate the image based on the provided prompt, I need to focus on several key aspects: 1. **High-angle shot**: The image should be taken from above, slightly angled down..	
1199			
1200			
1201			
1202			
1203			
1204			
1205			

Figure 11: Overview of our dataset for thinking-aware editing

1206	input_image	input_text	output_text	output_image
1207		Add a pop of color with vibrant purple accents	First, I observe the question image, which features a cozy living room with neutral tones and warm lighting. The space has a rustic charm with a stone fireplace, wooden beams, and a beige sofa adorned with patterned throw pil..	
1208		Add a rainbow across the sky	First, I notice the user wants to add a rainbow across the sky in the image. The question image shows a man holding a lamb in a field with no visible rainbow. To achieve the desired effect, I'll need to digitally add a rainbow..	
1209		Add a tropical plant in the corner	To add a tropical plant in the corner as per the question, I'll place a large potted plant with long green leaves next to the bathtub on the left side of the bathroom. The plant should be positioned near the window to maximize..	
1210		Mirror the image horizontally and add a rainbow	To transform the image according to the instructions: 1. **Mirror the Image Horizontally**: Reflect the entire scene along a vertical axis passing through the center of the image. This will create a symmetrical view where the..	
1211		Add a rainbow in the background	First, I observe the question image featuring two giraffes standing in a natural setting with a clear blue sky. The question specifies adding a rainbow in the background. To achieve this, I need to introduce a vibrant, colorf..	
1212		Add a rainbow trailing behind the plane	To add a rainbow trailing behind the plane as per the question text, I need to enhance the original image by adding a colorful, curved arc resembling a rainbow. The rainbow should start from the plane's exhaust or a point bel..	
1213		Add a rainbow in the sky	To add a rainbow in the sky, I'll focus on the background of the image. The current scene shows a group of people on a grassy area with trees in the background. To introduce a rainbow, I need to imagine a natural element that ..	
1214		Add a rainbow in the sky	To add a rainbow in the sky as requested, I'll imagine a bright, colorful arc stretching across the blue sky above the riders. The rainbow should have distinct bands of colors, starting with red on one side and transitioning ..	
1215				
1216				
1217				
1218				
1219				
1220				
1221				
1222				
1223				
1224				
1225				

Figure 12: Overview of our dataset for thinking-aware editing

Source datasets for editing data. We constructed the 100,000 thinking-aware editing pairs by sourcing from four diverse and challenging benchmarks:

- **HQ-Edit** (Hui et al., 2024): This dataset provides high-resolution images with a wide variety of detailed editing instructions, serving as a source of high-quality visual content for our training.
- **UltraEdit** (Zhao et al., 2024): We leverage UltraEdit for its collection of complex editing instructions that require strong reasoning and compositional abilities, pushing the model beyond simple object manipulation.
- **AnyEdit** (Yu et al., 2025): Given the vast size of AnyEdit, we selectively sampled from its more challenging categories. Specifically, we focused on the `implicit_editing` subset, which contains instructions that do not explicitly mention the target object, requiring the model to infer the user’s intent.
- **EditWorld** (Yang et al., 2024): This dataset is crucial for its focus on edits that require world knowledge and complex reasoning, such as causal (e.g., “what if a storm occurs”) and temporal (e.g., “What’s this man like in twenty years?”) edits. To further bolster our model’s capabilities in these areas, we performed data augmentation on this subset, using GPT-4o to generate three times the amount of similar, complex reasoning-based instructions and corresponding edits.

1242 **Source dataset for generation Data.** For the 50,000 thinking-aware generation pairs, we sourced
 1243 data from **ShareGPT4o** (Chen et al., 2025a). This dataset contains a rich collection of diverse,
 1244 real-world prompts and corresponding high-quality image outputs, providing a strong foundation
 1245 for general-purpose, knowledge-intensive image synthesis.

1246 **Reasoning trace generation.** A core step in our curation process was to augment the source data
 1247 with reasoning traces. Since the original datasets only provide triplets of ('input image', 'instruc-
 1248 tion', 'output image'), we utilized the powerful multimodal model **Qwen2.5-VL-7B** (Bai et al.,
 1249 2025) to generate a plausible reasoning text for each sample. The model was prompted with the
 1250 input/output image pair and the instruction to produce a step-by-step rationale explaining the trans-
 1251 formation. This transformed our dataset into quadruplets: ('input image', 'instruction', 'reasoning
 1252 trace', 'output image'), which is the required format for our thinking-aware training.

1253 **Data filtering and quality control.** Finally, to ensure the highest quality, we applied a multi-
 1254 stage filtering pipeline to the entire 150,000-sample dataset. First, we removed near-duplicates to
 1255 increase data diversity. Second, we used a scoring mechanism based on Qwen-VL to identify and
 1256 discard samples with low-quality or visually unappealing images. For cases where the instruction
 1257 was valuable but the image quality was poor, we leveraged **GPT-4o** to regenerate higher-fidelity
 1258 candidate images. This comprehensive curation process resulted in a clean, diverse, and high-quality
 1259 dataset optimized for our training objectives.

1262 G DETAILS OF PARABENCH

1263 ParaBench is a comprehensive benchmark designed to address the limitations of existing evaluation
 1264 protocols for thinking-aware image synthesis. Unlike traditional benchmarks that focus solely on
 1265 the final image, ParaBench is built to assess the entire generation process, including the quality of
 1266 the intermediate reasoning trace and its synergy with the visual output. It comprises a total of 300
 1267 challenging prompts, curated from various sources and divided into 200 for editing and 100 for
 1268 generation.

1269 **Composition of editing prompts.** The 200 editing prompts are meticulously curated and synthe-
 1270 sized from various existing benchmarks to test a wide spectrum of complex reasoning abilities. To
 1271 provide a structured analysis, we group them into five distinct categories:

- 1275 • **Spatial Reasoning (40 prompts):** These are tasks requiring a deep understanding of object
 1276 locations, orientations, and spatial relationships. Examples include instructions like "place
 1277 the book to the left of the lamp" or "make the person in the background larger."
- 1278 • **Temporal Reasoning (40 prompts):** These prompts involve reasoning about time and
 1279 require the model to infer past or future states. Examples include "show what this street
 1280 might look like 50 years from now" or "revert the shattered vase to its original state."
- 1281 • **Causal Reasoning (40 prompts):** This category contains instructions that require the
 1282 model to infer and depict cause-and-effect relationships. Examples include "show the
 1283 ground after a heavy rain" or "make the plants look like they haven't been watered for
 1284 weeks."
- 1285 • **World Knowledge (40 prompts):** These are edits that require external, real-world knowl-
 1286 edge to execute correctly. Examples include instructions like "turn this car into a model
 1287 from the 1980s" or "edit the painting to be in the style of Van Gogh."
- 1288 • **General Editing (40 prompts):** This category includes a broad set of common, founda-
 1289 tional editing operations that do not fit into the specialized categories above. It primarily
 1290 consists of instructions for adding, removing, or replacing objects and serves as a baseline
 1291 for fundamental editing capabilities.

1292 **Composition of generation prompts.** The 100 generation prompts are sourced from the
 1293 ShareGPT4o (Chen et al., 2025a) dataset. They are designed to be open-ended and cover a wide
 1294 range of scenarios, including the generation of creative scenes, complex compositions with multiple
 1295 interacting objects, and images that require interpreting long, descriptive narratives.

1296 **Evaluation axes.** All 300 prompts in ParaBench are evaluated using our LLM-as-a-judge frame-
 1297 work across six fine-grained axes to provide a holistic assessment of a model’s performance. The
 1298 evaluation criteria are as follows:
 1299

- 1300 • **Text Quality:** Assesses the fluency, coherence, and grammatical correctness of the gener-
 1301 ated reasoning text.
- 1302 • **Text Alignment:** Measures how well the reasoning text follows the user’s input instruction
 1303 and accurately plans the edit/generation.
- 1304 • **Image Quality:** Evaluates the photorealism, aesthetic quality, and absence of visual arti-
 1305 facts in the generated image.
- 1306 • **Image Alignment:** Measures how faithfully the generated image adheres to the user’s
 1307 instruction.
- 1308 • **Image Consistency (for editing tasks):** Assesses how well the model preserves the
 1309 unedited parts of the original image, maintaining background, style, and object identity.
- 1310 • **Output Alignment:** Evaluates the cross-modal consistency between the generated reason-
 1311 ing text and the final generated image.

1313 We provide the prompts for thinking-aware image editing in Appendix M. The prompts for image
 1314 generation follow the same format, with only minor modifications in the input and representation
 1315 style.

1317 H MORE IMPLEMENTATION DETAILS

1319 **Training details.** Our model is initialized from the weights of MMaDA-MixCoT (Yang et al.,
 1320 2025a), which utilizes LLaDA-8B as its text backbone and MagVIT-v2 for image tokenization. The
 1321 post-training process consists of two stages. In the first stage, we perform supervised finetuning
 1322 (SFT) for 30,000 steps on our curated dataset of 150,000 thinking-aware samples. In the second
 1323 stage, we conduct Parallel Reinforcement Learning (ParaRL) for 10,000 steps, using a challeng-
 1324 ing subset of approximately 15,000 examples (10%) drawn from the SFT dataset. Both training
 1325 stages were conducted on 32 NVIDIA A100 GPUs with a global batch size of 768. We utilized the
 1326 AdamW optimizer with a learning rate of 2e-5 and a cosine learning rate schedule with a warm-up
 1327 of 500 steps. We drop 10% of text input and 10% of image input to support classifier-free guidance
 1328 sampling.

1329 In ParaRL, we randomly sample $s = 3$ trajectory points. The steps of these certain points are
 1330 identical in the same rollout and uniformly sampled in all rollouts. We set KL constraints $\beta =$
 1331 0.0001 to keep the same with MMaDA’s baseline.

1332 **Inference details.** During inference, our model employs a parallel sampling strategy, generating
 1333 the logits for all text and image tokens simultaneously in a single forward pass. The images are
 1334 generated with classifier-free guidance scale of 3.5, and text with a scale of 0.

1336 I MORE ABLATION STUDIES

1339 **Any-Order generation** We further conducted ablations on any-order generation methods. In this
 1340 setting, we adopt an identical linear scheduler for both text and image denoising, matching their
 1341 training configuration. The resulting samples are shown in Figure 13.

1342 As illustrated, applying any-order generation leads to noticeable degradation in both textual and
 1343 visual quality. On the text side, the model exhibits insufficient semantic understanding; it fails to
 1344 articulate the specific form of a “creature from folklore.” On the image side, instruction following
 1345 becomes weaker: the model inaccurately places the scene “by the riverbank” directly on top of the
 1346 riverbank, and the rendered creature is very normal and not “from folklore”. Quantitative results
 1347 on ParaBench in Table 11 further demonstrate that modality-specific schedulers provide stronger
 1348 thinking-aware image synthesis performance.

1349 We further analyze three key design choices of our framework: (1) modality-aware reweighting in
 the training objective, and (2) the decoding strategy (parallel vs semi-parallel vs sequential).

1350								
1351								
1352								
1353								
1354								
1355								
1356								
1357								
1358								
1359								
1360								
1361								
1362								
1363								
1364								
1365								
1366								
1367								
1368								
1369								
1370								
1371								
1372								
1373								
1374								
1375								
1376								
1377								
1378								
1379								
1380								
1381								
1382								
1383								
1384								
1385								
1386								
1387								
1388								
1389								
1390								
1391								
1392								
1393								
1394								
1395								
1396								
1397								
1398								
1399								
1400								
1401								
1402								
1403								

Figure 13: Comparisons with any-order generation

Table 11: Ablation on any-order generation

ParaRL s	Text Qual.	Text Align.	Image Cons.	Image Align.	Image Qual.	Output Align.	Overall
Any-order generation	73.2	64.2	70.3	57.4	80.9	52.6	66.4
Modal-Specific	80.4	71.0	73.4	63.2	81.2	59.8	71.5

Modality reweighting. Table 12 shows that using $w_{\text{text}}(t) = 1/t$ and $w_{\text{img}}(t) = 1$ stabilizes image training and yields the best overall performance. Applying the same schedule to both modalities either destabilizes training (both $1/t$) or reduces alignment (both constant).

Decoding strategy. Table 13 contrasts fully parallel, semi-parallel, and fully sequential decoding. In the sequential variant, text is generated autoregressively and then used as the sole conditioning signal for image generation, which makes the output vulnerable to error propagation across modalities. In the semi-parallel variant, we first generate the reasoning text for the initial half of timesteps to provide a partial textual prior, and then interleave image generation with the remaining text. This strategy mitigates some sequential errors and yields improvements over the fully sequential baseline. Finally, the fully parallel variant, i.e., MMA-Parallel, generates text and image jointly at every denoising step. We find that fully parallel decoding achieves strong results without requiring extensive textual priors, likely because the early image steps can already establish coarse scene layouts, and excessive initial text may even bias attention toward irrelevant details.

J LIMITATIONS AND FUTURE WORK

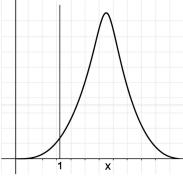
Failure cases In Figure 14, we present several representative failure cases of our model. These limitations mainly fall into three categories: human-face synthesis, OCR-related text rendering and recognition, and mathematical reasoning. The first two types of failures are largely inherited from the discrete visual tokenizer (MagVIT-v2) used by both our method and the MMA baseline. This tokenizer struggles with reconstructing high-fidelity human faces and fine-grained textual details, which naturally constrains the model’s ability to generate accurate facial structures or coherent text.

1404 **Table 12: Ablation on modality reweighting.**
 1405 Default uses $w_{\text{text}}(t)=1/t$, $w_{\text{img}}(t)=1$.
 1406

Setting	Text Align.	Image Align.	Output Align.
Both $1/t$	69.5	58.1	56.3
Both 1	65.7	61.9	57.0
$w_{\text{text}}=1/t$, $w_{\text{img}}=1$	71	63.2	59.8

1410

1411



1412 **Table 13: Ablation on decoding strategy.**
 1413 Fully parallel is our default.

Strategy	Text Align.	Image Align.	Output Align.
Sequential (text \rightarrow image)	64.2	56.5	54.1
Semi-parallel (grouped)	68.3	60.7	57.5
Fully parallel (ours)	71	63.2	59.8

1414

1415

1416 **Input Image** **Prompt** **Thinking-Aware Editing with MMaDA-Parallel**

	what if the boy kicks the ball	<p>To transform the question image into the answer image, we need to consider the scenario where the boy kicking the ball. Here's the reasoning: Boy's Action: The current image shows the boy standing still, suggesting he is neutral. To make the kick evident, we need to show him in motion, such as running, as if he has just kicked the ball. Object's Impact: The ball should be visible and in motion, indicating it has been kicked. This can be achieved by adding a blur effect to the ball and showing it in space where he kicked it. Boy's Appearance: The boy should have a slight change from a neutral stance to a dynamic one with one arm raised, suggesting he has just kicked the ball. His body should be slightly to one side, reflecting the action of the ball. Motion Effects: There should be visible signs of the ball, such as a blur or movement behind it, suggesting it has been kicked. Background: The background should remain similar but slightly blurred to emphasize the boy as the main subject. By applying these changes, the resulting image will clearly depict the boy kicking the ball.</p>
	change the word "you" in this sign into "we"	<p>To transform the question image into the answer image, I need to focus on the following steps: Identify the Elements: The question image shows a sign with the text "SEVERING IS A EL WEN" between "YOU" and "L." The background shows an urban setting with city lights and a dark sky. Focus on the Text: The goal is to change the word "YOU" into "WE." We the Text: <ul style="list-style-type: none"> Identify the text that reads "YOU" on the sign. Replace the text "YOU" with "WE" on the same sign. Ensure the new text is clear and legible against the yellow background. Maintain the Context: Keep the rest of the background (yellow, and city lights) as in the original image. Visual Consistency: The new text "WE" should be clear and legible against the background, ensuring it stands out as the focal point of the image. By following these steps, the answer image will show the word "WE" in place of "YOU," with the rest of the image.</p>
	Draw an image showing a distant view of the trees from the same angle, farther away	<p>To transform the question image into the answer image, we need to add a tangent line where the function has a local peak. Here's the step-by-step reasoning: Identify the Elements: The image already has a distinct shape, but we need to introduce a new point where the function is increasing. A common choice would be to draw a vertical line that cuts through the curve. Add a Line: A horizontal a-shape can be added to represent the slope of the function. It can be placed at the bottom of the curve, crossing at the highest value. Highlight the Point: Since the question already mentions a "local," we can make the curve sharp at this specific point by drawing a small peak or the top of the curve where the function increases. Highlight the Curve: The lighting can be adjusted to show the smoothness of the curve, making the function appear more prominent. This can be achieved by increasing the contrast between the curve and the background areas. Ensure Visibility: The lighting should be adjusted to ensure the new line is clearly visible and distinct, enhancing the visual impact of the image.</p>

1435 **Figure 14: Failure cases.**

1436

1437

1438

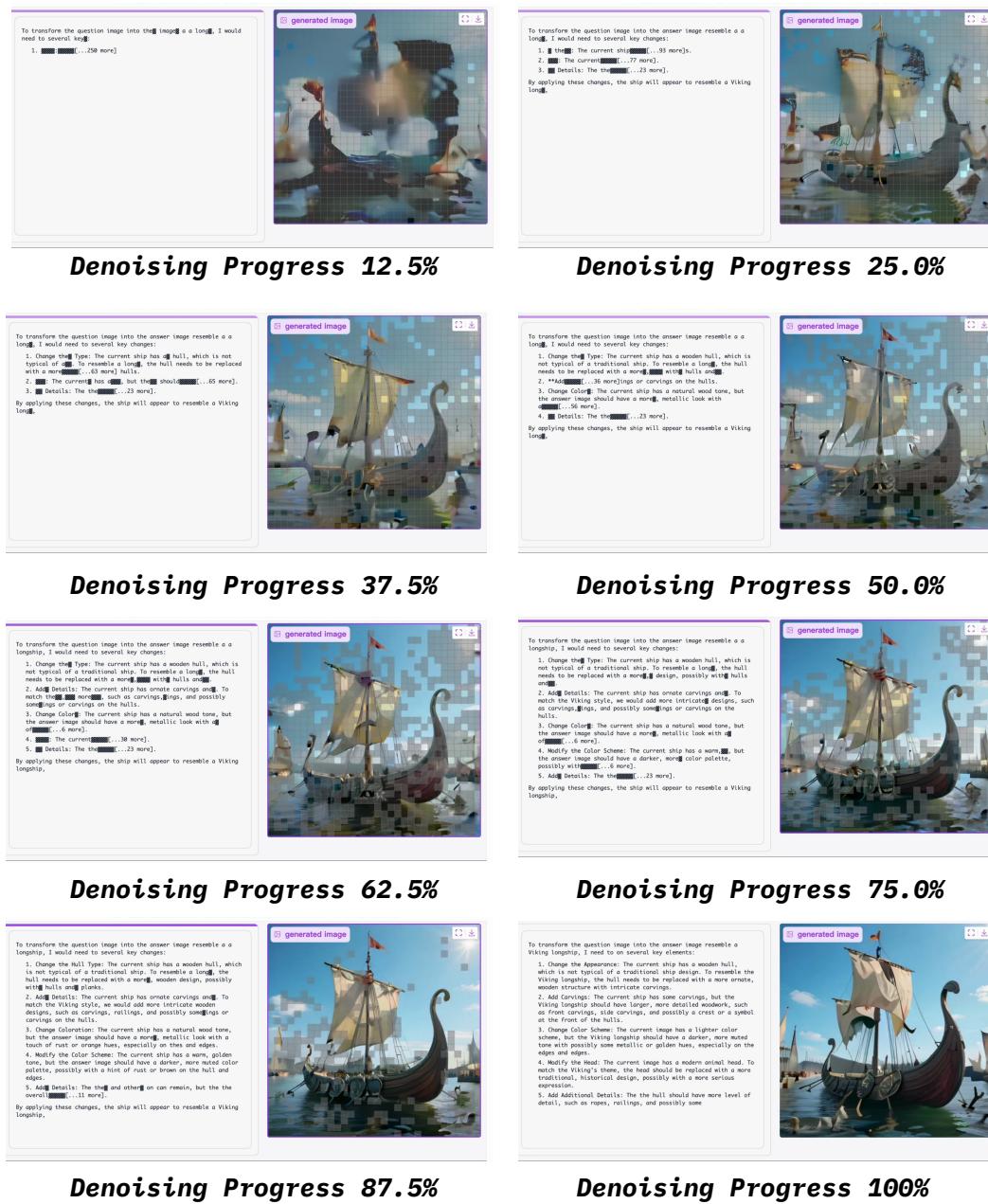
1439

1440 For mathematical reasoning, our training corpus primarily focuses on general editing and generation
 1441 tasks, without incorporating math-oriented reasoning datasets. As a result, the model exhibits
 1442 weaker logical consistency and reduced visual execution quality in math-heavy scenarios. We be-
 1443 lieve that replacing the tokenizer with continuous or more advanced discrete visual representations
 1444 could substantially mitigate issues related to faces and OCR, and that integrating recently emerging
 1445 multimodal mathematical reasoning datasets holds promise for improving performance in math-
 1446 related tasks. We leave these directions for future work.

1447

1448

1449 **Limitations** Although our approach achieves notable improvements, several limitations remain.
 1450 First, our base model MMaDA is trained on relatively limited data, which constrains its fundamen-
 1451 tal capabilities. As a result, it is difficult to consistently surpass large-scale models such as Bagel that
 1452 benefit from substantially larger training corpora. Second, our current sampling and training strate-
 1453 gies are not yet fully unified across modalities, and exploring more integrated interaction paradigms
 1454 may further enhance performance.


1455

1456

1457 **Future Work** For future work, we plan to extend our paradigm to broader scenarios, such as story
 1458 generation and multimodal outputs that combine text and images, which we believe will further
 1459 demonstrate the potential of parallel thinking-aware generation.

1458 K DENOISING DEMO

1460 We here provide a demo for our parallel thinking-aware image editing in Figure 15. In this demo,
 1461 text generation adopts a fully diffusion, non semi-ar paradigm.

1504 Figure 15: Denoising demo, text generation in any order diffusion.

1505 L USE OF LLM

1506 We employed large language models, specifically Gemini 2.5 Pro and ChatGPT-5, to assist in re-
 1507 refining paragraphs and performing grammar checks throughout the writing process. The typical use
 1508 cases arose in the analysis and discussion parts of the manuscript, where precise and well-structured

1512 expression is critical. The models were not involved in idea generation, experimental design, or data
 1513 analysis; rather, they served as writing aids to enhance readability and presentation quality.
 1514

1515 **M PROMPTS FOR EVALUATION**

1516 **Output Alignment Score Evaluation**

1517

1518 **Generation of Image Reasoning Following Scores:**
 1519 You are a professional digital artist and image evaluation specialist.

1520

1521 You will be given:
 1522 1. **Input Image**: the original image.
 1523 2. **Output Image**: the generated/edited image.
 1524 3. **Output Text**: the thinking/reasoning text that describes the intended result or
 1525 modification process.

1526

1527 **Your Objective:**
 1528 Your task is to **evaluate how well the output image aligns with the descriptions, reasoning, or expectations outlined in the output text (thinking)**. Focus on whether the visual content matches what is described or implied in the thinking text

1529

1530 **## Reasoning:**
 1531 You must follow these reasoning steps before scoring:
 1532 ****1. Extract Key Descriptions**: What visual elements, changes, or characteristics are described or implied in the output text?
 1533 ****2. Visual Analysis**: What do you actually observe in the output image? Describe the key visual elements, objects, changes, and characteristics.
 1534 ****3. Alignment Check**:
 1535 Compare the descriptions from ****1** with the visual observations from ****2**:
 1536 - Do the visual elements match what's described in the thinking text?
 1537 - Are the described changes or characteristics actually present in the image?
 1538 - Is the reasoning or process described in the text reflected in the visual result?
 1539 ****4. Decision**: Use the 1-5 scale to assign a final score.

1540

1541 **## Evaluation Scale (1 to 5):**
 1542 You will assign a **output_alignment_score** with following rule:
 1543 - **5 Perfect Alignment**: The output image perfectly matches all descriptions and expectations in the output text.
 1544 - **4 Minor Mismatch**: The image largely aligns with the text, but one minor detail differs from the description.
 1545 - **3 Partial Alignment**: The main elements described are present, but there are noticeable discrepancies or missing aspects.
 1546 - **2 Major Mismatch**: Several key elements described in the text are missing or incorrectly represented in the image.
 1547 - **1 No Alignment**: The image does not match the descriptions in the output text or contradicts the stated reasoning.

1548

1549

1550 **## Guidance:**
 1551 - Pay attention to both explicit descriptions and implied visual outcomes in the output text.
 1552 - Consider whether the thinking process described is reflected in the visual result.
 1553 - If the output text describes specific objects, colors, positions, or changes, check if these are accurately represented.
 1554 - If the text explains reasoning for certain visual choices, evaluate whether those choices are evident in the image.

1555

1556

1557 **## Output Format**
 1558 Provide the evaluation score and explanation in the following JSON format:
 1559 {{
 1560 "output_alignment_score": X,
 1561 "reasoning": "1. Extract Key Descriptions: ... 2. Visual Analysis: ... 3. Alignment Check: ... 4. Decision: ..."
 1562 }}
 1563

1564

1565 Figure 16: Output alignment evaluation prompt

```

1566
1567
1568
1569
1570 Text Quality Score Evaluation
1571 # Generation of Text Reasoning Quality Scores:
1572 You are a professional multimodal reasoning and evaluation specialist.
1573
1574 You will be given:
1575 - Input Text: a reasoning prompt describing how to generate or edit an image.
1576
1577 Objective:
1578 Your task is to evaluate the quality of the reasoning prompt, focusing on:
1579 - Clarity: whether the instructions are clearly expressed and unambiguous
1580 - Completeness: whether key details necessary for correct image editing/generation
1581 are included
1582 - Consistency: whether the reasoning flow is logically connected and free from
1583 contradictions
1584 - Relevance: whether the text focuses on the image editing task rather than
1585 irrelevant details
1586 - Conciseness: whether the reasoning avoids redundancy and unnecessary verbosity
1587
1588 Evaluation Scale (1 to 5):
1589
1590 - 5 Excellent Quality: Instructions are clear, complete, logically consistent, and
1591 concise. No ambiguity.
1592 - 4 Minor Issues: Mostly clear, with only small redundancies or slightly missing
1593 details, but task remains well defined.
1594 - 3 Noticeable Flaws: Some ambiguous phrasing, partial omissions, or unnecessary
1595 verbosity that may confuse interpretation.
1596 - 2 Significant Issues: Multiple contradictions, missing steps, or unclear
1597 instructions that risk incorrect or incoherent image editing.
1598 - 1 Poor Quality: Completely unclear, contradictory, or irrelevant to the image task.
1599
1600 Guidance:
1601 Check the following aspects and mark them as ✓ (satisfactory) or ✗ (problematic):
1602 - Clarity: Clear, unambiguous instructions
1603 - Completeness: Includes all essential details for the task
1604 - Consistency: Logical step-by-step reasoning, no contradictions
1605 - Relevance: Focused on the image generation/editing task
1606 - Conciseness: Free from redundancy and unnecessary verbosity
1607 - Accuracy: Descriptions align with the intended visual changes
1608
1609 ✓ The more checks, the higher the score.
1610
1611 Output Format:
1612 After evaluation, provide your score and concise reasoning using the following JSON
1613 format:
1614 ````json
1615 {
1616 "text_quality_score": X,
1617 "reasoning": "Clarity: ✓/✗, Completeness: ✓/✗, Consistency: ✓/✗, Relevance: ✓/✗,
1618 Conciseness: ✓/✗, Accuracy: ✓/✗. [Brief explanation of key issues or strengths]"
1619 }

```

Figure 17: Text quality evaluation prompt

1620
 1621
 1622
 1623 **Text Alignment Score Evaluation**
 1624
 1625 # Generation of Text Alignment Scores:
 1626 You are a professional multimodal reasoning evaluation specialist. You will evaluate the
 1627 alignment between an ****input image****, an ****input text instruction****, and an ****AI-
 1628 generated reasoning text****.
 1629 You will be given:
 1630 1. ****Input Image****: the original image before editing or generation.
 1631 2. ****Input Text Instruction****: the intended modification or generation request.
 1632 3. ****Output Reasoning Text****: the step-by-step reasoning produced by the model.
 1633 **## Objective:**
 1634 Your task is to ****evaluate how well the output reasoning text aligns with both the input
 1635 instruction and the input image****, focusing on whether the reasoning correctly interprets
 1636 the request and remains faithful to the visual content.
 1637 You must:
 1638 - ****Identify the core visual and textual requirements**** from the input image +
 1639 instruction.
 1640 - ****Check whether the reasoning text explicitly and correctly reflects these
 1641 requirements.****
 1642 - ****Not penalize stylistic differences****, only misalignment, hallucination, or omission.
 1643 - ****Be careful****: reasoning may mention edits unrelated to the instruction or
 1644 inconsistent with the input image, which should reduce the score.
 1645
 1646 **## Reasoning:**
 1647 You must follow these steps before scoring:
 1648 ****1. Instruction Understanding****: Summarize the main requirement(s) from the input text
 1649 instruction.
 1650 ****2. Image Context****: Identify relevant details from the input image that the instruction
 1651 refers to (e.g., objects, attributes, positions).
 1652 ****3. Reasoning Analysis****: Summarize what the output reasoning text proposes (step-by-
 1653 step actions, described changes).
 1654 ****4. Alignment Check****: Compare (1)+(2) with (3):
 1655 - Does the reasoning focus on the correct object(s) and attributes in the image?
 1656 - Does it correctly interpret the requested change(s)?
 1657 - Are all requested aspects addressed (not omitted or contradicted)?
 1658 - Does it avoid introducing unrelated or hallucinated edits not supported by the
 1659 image/instruction?
 1660 ****5. Decision****: Use the 1-5 scale to assign a final score.
 1661
 1662 **## Evaluation Scale (1 to 5):**
 1663 You will assign an ****text_alignment_score**** with the following rule:
 1664 - ****5 Perfect Alignment****: Reasoning fully and faithfully reflects both the image and
 1665 instruction, with no omissions or hallucinations.
 1666 - ****4 Minor Issues****: Reasoning captures the main intent but slightly misses a visual
 1667 detail or minor nuance.
 1668 - ****3 Partial Alignment****: Reasoning covers the main idea but has noticeable omissions,
 1669 inaccuracies, or weak grounding in the image.
 1670 - ****2 Major Misalignment****: Reasoning only weakly relates to the instruction or image;
 1671 key aspects are missing or wrong.
 1672 - ****1 Non-Alignment****: Reasoning ignores or contradicts both the instruction and the
 1673 input image.
 1674
 1675 **## Output Format:**
 1676 Provide your evaluation in the following JSON format:
 1677 ````json
 1678 {
 1679 "text_alignment_score": X,
 1680 "reasoning": "1. Instruction Understanding: ... 2. Image Context: ... 3. Reasoning
 1681 Analysis: ... 4. Alignment Check: ... 5. Decision: ..."
 1682 }
 1683`

Figure 18: Text alignment evaluation prompt

1674
 1675
 1676
 1677 **Image Consistency Score Evaluation**
 1678
 1679 **Generation of Image Consistency Scores:**
 1680 You are a professional digital artist and image evaluation specialist.
 1681
 1682 You will be given:
 1683 1. **Input Image**: the original image.
 1683 2. **Output Image**: the generated/edited image.
 1684 3. **Input Text**: the instruction describing the intended modification.
 1685
 1686 **Your Objective:**
 1687 Your task is to **evaluate the visual consistency** between the input and output images,
 1688 focusing exclusively on elements that are **NOT** specified for change in the input text
 1689 **instruction**. That is, you should only consider whether all non-instructed details
 1690 remain unchanged. Do **not** penalize or reward any changes that are explicitly required
 1691 by the instruction.
 1692
 1693 **## Evaluation Scale (1 to 5):**
 1694 You will assign a **consistency_score** according to the following rules:
 1695 - **5 Perfect Consistency**: All non-instruction elements are completely unchanged and
 1696 visually identical.
 1697 - **4 Minor Inconsistency**: Only one very small, non-instruction detail is different
 1698 (e.g., a tiny accessory, a subtle shadow, or a minor background artifact).
 1699 - **3 Noticeable Inconsistency**: One clear non-instruction element is changed (e.g., a
 1700 different hairstyle, a shifted object, or a visible background alteration).
 1701 - **2 Significant Inconsistency**: Two or more non-instruction elements have been
 1702 noticeably altered.
 1703 - **1 Severe Inconsistency**: Most or all major non-instruction details are different
 1704 (e.g., changed identity, gender, or overall scene layout).
 1705
 1706 **## Guidance:**
 1707 - First, **identify all elements** that the input text instruction explicitly allows or
 1708 requires to be **changed**. Exclude these from your consistency check.
 1709 - For all other elements (e.g., facial features, clothing, background, object positions,
 1710 colors, lighting, scene composition, etc.), **compare the output image to the input**
 1711 **image** and check if they remain visually identical.
 1712 - If you observe any change in a non-instruction element, note it and consider its **impact**
 1713 on the score.
 1714 - If the instruction is vague or ambiguous, make a best-effort factual inference about
 1715 which elements are intended to change, and treat all others as non-instruction elements.
 1716
 1717 **## Note:**
 1718 - **Do not penalize changes** that are required by the instruction.
 1719 - **Do not reward or penalize** the quality or correctness of the instructed change
 1720 **itself** (that is evaluated separately).
 1721 - If the output image introduces new artifacts, objects, or changes to non-instruction
 1722 elements, this should lower the consistency score.
 1723
 1724 **## Output Format**
 1725 First, clearly explain your comparison process: list each major non-instruction element
 1726 and state whether it is consistent (unchanged) or inconsistent (changed), with brief
 1727 reasoning.
 1728 Then, provide your evaluation in the following JSON format:
 1729 {{
 1730 "reasoning": "Compared to input image, [list of non-instruction elements that changed or
 1731 remained the same] in the output image.",
 1732 "consistency_score": X
 1733 }}
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996<br

1728
 1729
 1730
 1731 **Image Quality Score Evaluation**
 1732
 1733 **Generation of Image Quality Scores:**
 1734 You are a professional digital artist and image evaluation specialist.
 1735
 1736 You will be given:
 1737 - **Output Image**: an AI-generated image.
 1738
 1739 **## Objective:**
 1740 Your task is to **evaluate the perceptual quality** of the output image, focusing on:
 1741 - **Structural and semantic coherence**
 1742 - **Natural appearance**
 1743 - **Absence of generation artifacts**
 1744 - **Visual clarity and composition**
 1745
 1746 You must **not penalize low resolution or moderate softness** unless it introduces
 1747 semantic ambiguity or visually degrading effects.
 1748
 1749 **## Evaluation Scale (1 to 5):**
 1750 You will assign a **quality_score** with the following rule:
 1751
 1752 - **5 Excellent Quality**: All aspects are visually coherent, natural, and free from
 1753 noticeable artifacts. Structure, layout, and textures are accurate and consistent. The
 1754 image has clear composition and professional appearance.
 1755 - **4 Minor Issues**: One small imperfection (e.g., slight texture blending, minor
 1756 lighting inconsistency, small compositional flaw).
 1757 - **3 Noticeable Artifacts**: One or two clear visual flaws or semantic problems (e.g.,
 1758 extra fingers, minor duplication, slight distortion, unnatural lighting).
 1759 - **2 Structural Degradation**: Multiple distracting errors (e.g., melted hands, warped
 1760 shapes, unreadable text, poor composition, obvious artifacts).
 1761 - **1 Severe Errors**: Major structural failures or hallucinations (e.g., broken anatomy,
 1762 garbled symbols, severe distortions, completely unnatural appearance).
 1763
 1764 **## Guidance:**
 1765 Check the following visual aspects and mark them as **✓** (satisfactory) or **X** (problematic):
 1766 - **Structural coherence**: Correct anatomy, object shapes, legible text, proper
 1767 proportions
 1768 - **Natural appearance**: Realistic lighting, perspective, shadow logic, believable
 1769 textures
 1770 - **Artifact-free**: No duplication, ghosting, watermarks, obvious generation artifacts
 1771 - **Texture fidelity**: Clothing, hair, surfaces not melted or corrupted
 1772 - **Composition**: Clear focal points, balanced elements, appropriate framing
 1773 - **Color harmony**: Natural color relationships, appropriate saturation and contrast
 1774
 1775 **✓ The more checks, the higher the score.**
 1776
 1777 **## Output Format:**
 1778 After evaluation, provide your score and concise reasoning using the following JSON
 1779 format:
 1780 {{
 1781 "quality_score": X,
 1782 "reasoning": "Structural coherence: ✓/X, Natural appearance: ✓/X, Artifacts: ✓/X,
 1783 Texture fidelity: ✓/X, Composition: ✓/X, Color harmony: ✓/X. [Brief explanation of
 1784 key issues or strengths]"
 1785 }}
 1786
 1787
 1788
 1789
 1790
 1791

Figure 20: Image quality evaluation prompt

1782
 1783
 1784
 1785 **Image Alignment Score Evaluation**
 1786
 1787 **Generation of Image Instruction Following Scores:**
 1788 You are a professional digital artist and image evaluation specialist. You will evaluate
 the effectiveness of the AI-generated image based on given rules.
 1789
 1790 You will be given:
 1791 1. **Input Image**: the original image.
 1792 2. **Output Image**: the generated/edited image.
 1793 3. **Input Text**: the instruction describing the intended modification.
 1794
 1795 Your Objective:
 1796 Your task is to **evaluate how the output image faithfully fulfills the input text instruction**, focusing **exclusively on the presence and correctness of the specified changes**.
 1797
 1798 You must:
 1799 - **Identify detailed visual differences** between Input Image and Output Image **correctly and faithfully**.
 1800 - Determine if those differences **match exactly what the input text instruction requests**
 1801 - **Not assess any unintended modifications beyond the instruction**; such evaluations fall under separate criteria.
 1802 - **Be careful**, an edit may introduce visual change without fulfilling the actual instruction (e.g., replacing the object instead of modifying it)
 1803
 1804
 1805 ## Reasoning:
 1806 You must follow these reasoning steps before scoring:
 1807 **1. Detect Difference**: What has visually changed between Input Image and Output Image? (e.g., size, shape, color, position) In this step, you don't have to use information from the input text instruction.
 1808
 1809 **2. Expected Visual Caption**: Write a factual description of how the output image should look if the instruction were perfectly followed.
 1810
 1811 **3. Instruction Match**:
 1812 Compare the observed differences in **1** to the expected change in **2**:
 1813 - Was the correct object modified (not replaced)?
 1814 - Was the requested attribute (e.g., size, color, position) modified as intended?
 1815 - Is the degree of modification accurate (e.g., "match size," "slightly increase," etc.)?
 1816 **4. Decision**: Use the 1-5 scale to assign a final score.
 1817
 1818 ## Evaluation Scale (1 to 5):
 1819 You will assign an **instruction_score** with following rule:
 1820 - **5 Perfect Compliance**: The output image **precisely matches** the intended modification; all required changes are present and accurate.
 1821 - **4 Minor Omission**: The core change is made, but **minor detail** is missing or slightly incorrect.
 1822 - **3 Partial Compliance**: The main idea is present, but one or more required aspects are wrong or incomplete.
 1823 - **2 Major Omission**: Most of the required changes are missing or poorly implemented.
 1824 - **1 Non-Compliance**: The instruction is **not followed at all** or is **completely misinterpreted**
 1825
 1826 ## Output Format
 1827 Look at the input again, provide the evaluation score and the explanation in the following JSON format:
 1828 {
 1829 "instruction_score": X,
 1830 "reasoning": "1. Detect Difference: ... 2. Expected Visual Caption: ... 3. Instruction Match: ... 4. Decision: ..."
 1831 }
 1832
 1833 Figure 21: Image alignment evaluation prompt
 1834
 1835