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Abstract— The most well known sequence models make use of 

complex recurrent neural networks in an encoder-decoder 

configuration. The model used in this research makes use of a 

transformer,which is based purely on self-attention mechanism, 

without relying on recurrence at all. More specifically, encoders 

and decoders which make use self attention and operate based on 

a memory are used. In this research work, results for various 3D 

visual and non-visual reinforcement learning tasks designed in 

Unity software were obtained. Convolutional neural networks, 

more specifically, nature CNN architecture is used for input 

processing in visual tasks and comparison with standard long 

short-term memory (LSTM) architecture is performed for both 

visual tasks based on CNNs and non-visual tasks based on 

coordinate inputs. This research work combines the transformer 

architecture with the proximal policy optimization technique 

used popularly in reinforcement learning for stability and better 

policy updates while training, especially for continuous action 

spaces, which are used in this research work. Certain tasks in this 

paper are long horizon tasks which carry on for a longer duration 

and require extensive use of memory based functionalities like 

storage of experiences and choosing of appropriate actions based 

on recall. The transformer, which makes use of memory and self-

attention mechanism in an encoder-decoder configuration proved 

to have better performance when compared to LSTM in terms of 

exploration and rewards achieved. Such memory based 

architectures can be used extensively in the field of cognitive 

robotics and reinforcement learning. 
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I. INTRODUCTION 

In various sequence-to-sequence problems such as the 
neural machine translation, the popular approaches were 
based on the use of RNNs in an encoder-decoder fashion. 
However, these architectures have a great limitation when 
working with long sequences, their ability to retain 
information from the first elements gets lost when new 
elements are incorporated into the sequence. In the encoder, 
the hidden state in every step is associated with a certain 
element in the input sentence, usually based on how recent 
it is. Therefore, if the decoder only accesses the last hidden 
state of the decoder, it will lose the important information 
about the first elements of the sequence. Thus, to deal with 
this problem, a novel concept was introduced: the attention 
mechanism. 

Instead of paying attention to the last state of the encoder as 
in the case of RNNs, in each step of the decoder. all the  

 

states of the encoder which are able to access information 
about all the elements of the input sequence are 
considered. This is the main working principle of the 
attention mechanism. This mechanism allows the decoder 
to assign greater weight or importance to a specific 
element of the input for each element of the output. 
Learning is done in every step to focus on the right element 
of the input to predict the next output element. 

II. METHODOLOGY 

 
 

Fig.1 Biped Model 

 
This research work makes use of the ML agents toolkit 
in unity for implementation of reinforcement learning 
algorithms through python. The environments for all 
the tasks were created in Unity. A model of a simple 
Biped robot which can transverse across planes was 
used as the agent for all the tasks. Continuous action 
spaces were used. Nature CNN architecture was used 
for input preprocessing in case of visual tasks. 

 
 

A. Proximal Policy Optimisation- Proximal Policy 
Optimisation (PPO) is a fairly recent advancement in 
the field of Reinforcement Learning, which provides 
an upgrade on Trust Region Policy Optimization 
(TRPO). PPO aims to strike a balance between key 
factors like ease of implementation and tuning, sample 
complexity, sample efficiency and trying to compute 
updates at each step that minimizes the cost function 
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PPO was chosen for this research work as opposed to 
standard methods like DQN as it effective for continuous 
action spaces 

B. Episodic scene Memory- The scene memory consists of 
all past observations per time step in an embedded form and 
the memory is updated at each time step. The decoder of the 
attention-based policy network makes use of the updated 
scene memory to compute a distribution over actions. the 
memory grows linearly with the episode length. Each 
observation is stored separately in the memory and 
aggregation of the information is only done when 
computing an action. As each received observation is 
embedded into low dimensional vectors, one can easily 
store hundreds of time steps on the hardware devices. While 
RNNs are restricted to a fixed-size state vector, which 
usually can only capture short-term dependencies. 

C. Attention-based Policy Network- 

The policy network π(a|o, M) makes use of the current 
observation and the scene memory to compute a 
distribution over the action space. Firstly, encoding of the 
memory by transforming each memory element in the 
context of all other elements is done. This step has the 
potential to capture the spatio-temporal dependencies in the 
environment. Then, an action is decoded according to the 
current observation, using the encoded memory as the 
context. 

 

 

Figure 2. The Transformer architecture 

Attention mechanism- The transformer model uses self- 
attention for encoding of the memory M. More specifically, 
M is used as both inputs to the attention block. This 
transforms each embedded observation by using its 
correlation with other past observations. This is because the 
three vectors U, K and V responsible for self attention are 
defined based on the inputs to the attention block (through 
weights), which in this case are M and M. Furthermore, a 
modified version of ResNet was used for better input 
processing. 

 

Figure 3. Attention mechanism 

Encoder- The Transformer model makes use of self- 
attention to encode the memory M. More specifically, 
M is used as both inputs of the attention block. This 
transforms each embedded observation by using its 
relations to other past observations: Encoder (M) = 
AttBlock (M, M) 

 
 

Decoder- The decoder is supposed to produce actions 
based on the current observation given the context C, 
which in this case, is the encoded memory. It applies 
similar machinery as the encoder, with the notable 
difference that the query in the attention layer is the 
embedding of the current observation ψ(o). 

 
 

D. Implementation Details- 

At each timestep, the observation space will consist of 
the (x, y, z) coordinate values of the agent in the 
environment. The action space here is continuous in 
nature with three possible actions- movement in X 
direction, movement in Z direction and rotation 
around Z axis (turning). Results with memory size of 
1 and 128 were plotted and comparison was done with 
LSTM. Training in all 3 cases was done for 10000 
timesteps. 

Transformer parameters for non visual task- 
 

 

Figure 4. Transformer parameters for non visual task 

 

Transformer parameters for visual task- 
 

 
Figure 5. Transformer parameters for visual task 

III. RESULTS AND DISCUSSIONS 

 
A. Maze Task- 

The goal of the agent in this maze navigation 

environment is to navigate to the goal and get a reward 

of 2000. Every time this happens, the episode will end. 



  
Figure 6. Maze Task Environment 

 

The agent will also get a reward of 0.2 everytime it touches 

the wall right to the left of the goal, Using the Stable 

Baselines Package, a custom policy for a 3D environment 

which combines a transformer and memory architecture 

was created and implemented through the proximal policy 

optimisation algorithm in Stable Baselines. Comparison 

with LSTM was done. 
 

Figure 7. Comparison of rewards during training 

The above graph represents the episodic rewards during 

training for transformer based memory and LSTM. The 

blue line corresponds to the transformer with memory size 

of 1 while the green line corresponds to the transformer 

with memory size of 128. The orange line corresponds to 

LSTM. Amongst the three, the transformer with a memory 

size of 128 managed to reach the goal and get the reward of 

2000 more consistently throughout training. LSTM 

converged to a fixed path without trying to maximize the 

goal from the adjacent wall. This convergence was not 

observed in the case of the transformer. Overall, higher 

rewards were observed in the case of the transformer with 

memory architecture. 

Figure 8. Comparison of episode lengths during training 

The above graph represents the episode durations 

during training for Transformer and LSTM. Since the 

episode ends once the agent reaches the goal, this 

graph also represents the path length taken to reach the 

goal. The blue line corresponds to Transformer with 

memory size of 1 whereas the green line corresponds 

to Transformer with memory size of 128. The orange 

line corresponds to LSTM. Convergence to a fixed 

path was observed in case of LSTM. The transformer 

tried multiple variations of paths and tried to touch the 

adjacent wall multiple times as compared to LSTM in 

order to maximize the reward. As a result, 

convergence to a fixed path was not observed. 

However, these variations in path taken were 

considerably lower in the case of LSTM 

B. Exploration Task- 
 

Figure 9. Exploration task environment 

 
The main aim of this task is to move through the arena 

and explore as much of it as possible. These black tiles 

totalling at 242 are present throughout the arena and 

provide a reward of 1 when the agent touches them. 

This task tests the agent's ability to explore. Visual 

inputs of size 300 * 300 with 3 color channels (RGB) 

were used here and nature CNN architecture was used 

for input preprocessing. For both the transformer and 



LSTM, training was done for 50000 timesteps and the 

amount of covered tiles were plotted. 

 

Figure 10. Comparison of LSTM and transformer 

 
In the above figure, the orange line represents LSTM and 

the blue line represents the transformer. LSTM managed to 

cover 209 tiles whereas the transformer based memory 

architecture managed to cover 219 tiles. 

 

● TABLE ONE - PERCENTAGE OF COVERAGE- 
 

Algorithm Percentage of covered tiles 

Transformer based memory 90.4 % (219) 

LSTM 86.3 % (209) 

 

In the coverage task, the transformer agent performed 

higher exploration as compared to LSTM, thus the 

transformer memory had a more varied set of observations 

to update from. 

C. The Long Horizon Search Task- 

In this task, the main goal of the agent is to discover new 

objects. For this purpose, the agent makes use of 300 by 300 

 

 
Figure 11- Test 1 results 

 

The camera view of the agent was also displayed 

throughout training as shown in the subsequent figure. 
 

Figure 12- Agents camera view 

 

The agent managed to get the reward of 8000 and thus 

discovered all 4 object classes for all 5 episodes. One 

more important characteristic observed was that once 

the agent got the object of a particular class, it avoided 

other objects of that class. In this case however, the 

movements were quick and following a trajectory. 

 

Test 2- In this scenario, the arrangement was the same 

as during training with the exception that the position 

of two objects was changed slightly. The following the 

results- 

visual observations with 3 color channels (RGB). 4 

categories of objects with different colors are used- 

cylinder, capsule, sphere and cube. The arena consists of 4 

rooms and no room consists of all 4 categories. The agent 

gets a reward of 2000 every time it discovers a new 

category. Therefore, the maximum reward that can be 

achieved for an episode is 8000. 

After 1 million training steps, since considerable decrease 

in entropy was observed, we decided to stop the training 

and move on to testing. 

Test 1- The first test involved performing the search task in 

the same environment with all the objects being at the same 

place as in training. For this purpose, the trained SMT 

model was loaded first. 5 episodes were observed. The 

following were the results- 
 

Figure 13- Test 2 results 



The agent managed to get a reward of 8000 for 9 episodes 

and a reward of 6000 for 6 episodes. Since the visual 

observations, especially from a distance, were not that 

different from training in this case, the agent decided to 

stick to its training trajectory. The small variations in 

positions probably went unnoticed due to the agent looking 

the wrong way or some other reasons in some episodes 

resulting in 6000 reward. The agent in this case followed 

the fixed trajectory from training and only changed after not 

getting the anticipated trajector reward 

Test 3- 

 

In this scenario, the positioning and arrangement of objects 

for all 4 rooms was changed internally. Testing was done 

for 30 episodes. The agent managed to get a reward of 8000 

for 26 out of 30 episodes, the reward was 6000 for the 

remaining 4 episodes 

 
 

Figure 14. Original scenario for search task during training 

 

Figure 15. Scenario for search task during test 3 

 
In this case, since the visual observations for all the rooms 

were considerably distinct, the agent decided to not go with 

its default training trajectory. The movements were not 

swift and a lot of time was spent in observation and 

alignment with respect to targets. However, the agent 

managed to successfully detect targets and get a 

reward of 8000 for 26 out of 30 episodes and a reward 

of 6000 for all other episodes. 

 

Figure 16. Test 3 results 

 
Test 4- 

In this scenario, the spawn location of the agent was 

changed, the arrangement of the objects in each room 

was also changed drastically. The episode duration 

was doubled in this case. 

 

Figure 17. Scenario for search task during test 4 

 
Swapping of objects between rooms was also done. 

Testing was done for 15 episodes. 

 
Out of 15 episodes, the agent managed to get a reward 

of 8000 (discover all 4 target classes) for 10 episodes. 

The rest of the episodes had a reward of 6000. 

 
D. The Long Horizon Multistage Task- 

 
The multistage task consists of 3 phases out of which, 

the middle one is a distractor phase. 



In the first phase the agent is supposed to go to any of the 4 

capsules in front of it. After this, the agent is transported to 

the distractor phase wherein it gets a reward of 1 every time 

it touches a white cube, of which there are multiple 

throughout the phase. 

 

Figure 18- Multistage Task, 2nd phase 

 
 

Figure 19. Multistage Task, distractor phase 

 

Once the agent gets a reward of 45 in this phase, it is 

transported to the third phase in which it is supposed to 

recall the capsule it picked in phase one and go towards it 

purely based visual inputs processed by nature cnn 

architecture. 

 

The distractor phase in this task acts as a mechanism which 

makes the agents forget its main goal and acts as a test of 

its memory, the agent managed to perform the task 

appropriately despite this forced forgetting. 

 

Results- 

The model, which works based on visual inputs with 3 color 

channels and nature cnn preprocessing was trained for 1 

million steps with a continuous action space. Proximal 

policy approximation algorithm was used. The trained 

model was then loaded and tested for 12 episodes. 

 

The arrangement of the objects was different in the first and 

third phase, the distractor phase tested the agent’s ability to 

recall information across longer timesteps and take 

appropriate action 

 

 
Figure 20. Multistage Task Results 

 
 

The agent correctly identified the object in phase 3 for 

11 out of 12 episodes. Further research will be done 

for more dynamic testing conditions. 

IV. CONCLUSION 

 
● Even with changing spawn location and 

arrangement of objects in each room as compared to 

training during the search task, the transformer 

managed to discover all four classes successfully. This 

proves that transformer based memory in combination 

with proximal policy optimisation is generalizable. 

● In the maze task, the transformer displayed 

higher levels of rewards as the tendency to touch the 

adjacent wall with small reward as many times as 

possible only grew with training, this was not 

observed in case of LSTM. The transformer also 

showed higher levels of exploration during training. 

● In the exploration task, the transformer 

displayed a higher level of coverage compared to 

LSTM, the tendency to visit new tiles was observed to 

be higher in the case of the transformer. 

● In the search task, the transformer showed an 

ability to generalize across different training and 

testing conditions 

● The transformer based memory managed to 

avoid the rooms which only consisted of objects from 

already discovered classes. 

● In the distractor task, despite the forced 

forgetting mechanism of the distractor phase, the 

transformer based memory managed to perform the 

identification perfectly. 
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