
Memory Based Reinforcement Learning

with Transformers for Long Horizon

Timescales and Continuous Action Spaces

Shweta Singh shwetasingh@rde.gov.in shweta.singh@research.iiit.ac.in, Sudaman Katti

sudaman.katti19@vit.edu

Abstract— The most well known sequence models make use of

complex recurrent neural networks in an encoder-decoder

configuration. The model used in this research makes use of a

transformer,which is based purely on self-attention mechanism,

without relying on recurrence at all. More specifically, encoders

and decoders which make use self attention and operate based on

a memory are used. In this research work, results for various 3D

visual and non-visual reinforcement learning tasks designed in

Unity software were obtained. Convolutional neural networks,

more specifically, nature CNN architecture is used for input

processing in visual tasks and comparison with standard long

short-term memory (LSTM) architecture is performed for both

visual tasks based on CNNs and non-visual tasks based on

coordinate inputs. This research work combines the transformer

architecture with the proximal policy optimization technique

used popularly in reinforcement learning for stability and better

policy updates while training, especially for continuous action

spaces, which are used in this research work. Certain tasks in this

paper are long horizon tasks which carry on for a longer duration

and require extensive use of memory based functionalities like

storage of experiences and choosing of appropriate actions based

on recall. The transformer, which makes use of memory and self-

attention mechanism in an encoder-decoder configuration proved

to have better performance when compared to LSTM in terms of

exploration and rewards achieved. Such memory based

architectures can be used extensively in the field of cognitive

robotics and reinforcement learning.

Keywords— Convolutional neural networks, Reinforcement

learning, Self-Attention, Transformers, Unity

I. INTRODUCTION

In various sequence-to-sequence problems such as the
neural machine translation, the popular approaches were
based on the use of RNNs in an encoder-decoder fashion.
However, these architectures have a great limitation when
working with long sequences, their ability to retain
information from the first elements gets lost when new
elements are incorporated into the sequence. In the encoder,
the hidden state in every step is associated with a certain
element in the input sentence, usually based on how recent
it is. Therefore, if the decoder only accesses the last hidden
state of the decoder, it will lose the important information
about the first elements of the sequence. Thus, to deal with
this problem, a novel concept was introduced: the attention
mechanism.

Instead of paying attention to the last state of the encoder as
in the case of RNNs, in each step of the decoder. all the

states of the encoder which are able to access information
about all the elements of the input sequence are
considered. This is the main working principle of the
attention mechanism. This mechanism allows the decoder
to assign greater weight or importance to a specific
element of the input for each element of the output.
Learning is done in every step to focus on the right element
of the input to predict the next output element.

II. METHODOLOGY

Fig.1 Biped Model

This research work makes use of the ML agents toolkit
in unity for implementation of reinforcement learning
algorithms through python. The environments for all
the tasks were created in Unity. A model of a simple
Biped robot which can transverse across planes was
used as the agent for all the tasks. Continuous action
spaces were used. Nature CNN architecture was used
for input preprocessing in case of visual tasks.

A. Proximal Policy Optimisation- Proximal Policy
Optimisation (PPO) is a fairly recent advancement in
the field of Reinforcement Learning, which provides
an upgrade on Trust Region Policy Optimization
(TRPO). PPO aims to strike a balance between key
factors like ease of implementation and tuning, sample
complexity, sample efficiency and trying to compute
updates at each step that minimizes the cost function

mailto:shwetasingh@rde.gov.in
mailto:shweta.singh@research.iiit.ac.in
mailto:sudaman.katti19@vit.edu

PPO was chosen for this research work as opposed to
standard methods like DQN as it effective for continuous
action spaces

B. Episodic scene Memory- The scene memory consists of
all past observations per time step in an embedded form and
the memory is updated at each time step. The decoder of the
attention-based policy network makes use of the updated
scene memory to compute a distribution over actions. the
memory grows linearly with the episode length. Each
observation is stored separately in the memory and
aggregation of the information is only done when
computing an action. As each received observation is
embedded into low dimensional vectors, one can easily
store hundreds of time steps on the hardware devices. While
RNNs are restricted to a fixed-size state vector, which
usually can only capture short-term dependencies.

C. Attention-based Policy Network-

The policy network π(a|o, M) makes use of the current
observation and the scene memory to compute a
distribution over the action space. Firstly, encoding of the
memory by transforming each memory element in the
context of all other elements is done. This step has the
potential to capture the spatio-temporal dependencies in the
environment. Then, an action is decoded according to the
current observation, using the encoded memory as the
context.

Figure 2. The Transformer architecture

Attention mechanism- The transformer model uses self-
attention for encoding of the memory M. More specifically,
M is used as both inputs to the attention block. This
transforms each embedded observation by using its
correlation with other past observations. This is because the
three vectors U, K and V responsible for self attention are
defined based on the inputs to the attention block (through
weights), which in this case are M and M. Furthermore, a
modified version of ResNet was used for better input
processing.

Figure 3. Attention mechanism

Encoder- The Transformer model makes use of self-
attention to encode the memory M. More specifically,
M is used as both inputs of the attention block. This
transforms each embedded observation by using its
relations to other past observations: Encoder (M) =
AttBlock (M, M)

Decoder- The decoder is supposed to produce actions
based on the current observation given the context C,
which in this case, is the encoded memory. It applies
similar machinery as the encoder, with the notable
difference that the query in the attention layer is the
embedding of the current observation ψ(o).

D. Implementation Details-

At each timestep, the observation space will consist of
the (x, y, z) coordinate values of the agent in the
environment. The action space here is continuous in
nature with three possible actions- movement in X
direction, movement in Z direction and rotation
around Z axis (turning). Results with memory size of
1 and 128 were plotted and comparison was done with
LSTM. Training in all 3 cases was done for 10000
timesteps.

Transformer parameters for non visual task-

Figure 4. Transformer parameters for non visual task

Transformer parameters for visual task-

Figure 5. Transformer parameters for visual task

III. RESULTS AND DISCUSSIONS

A. Maze Task-

The goal of the agent in this maze navigation

environment is to navigate to the goal and get a reward

of 2000. Every time this happens, the episode will end.

Figure 6. Maze Task Environment

The agent will also get a reward of 0.2 everytime it touches

the wall right to the left of the goal, Using the Stable

Baselines Package, a custom policy for a 3D environment

which combines a transformer and memory architecture

was created and implemented through the proximal policy

optimisation algorithm in Stable Baselines. Comparison

with LSTM was done.

Figure 7. Comparison of rewards during training

The above graph represents the episodic rewards during

training for transformer based memory and LSTM. The

blue line corresponds to the transformer with memory size

of 1 while the green line corresponds to the transformer

with memory size of 128. The orange line corresponds to

LSTM. Amongst the three, the transformer with a memory

size of 128 managed to reach the goal and get the reward of

2000 more consistently throughout training. LSTM

converged to a fixed path without trying to maximize the

goal from the adjacent wall. This convergence was not

observed in the case of the transformer. Overall, higher

rewards were observed in the case of the transformer with

memory architecture.

Figure 8. Comparison of episode lengths during training

The above graph represents the episode durations

during training for Transformer and LSTM. Since the

episode ends once the agent reaches the goal, this

graph also represents the path length taken to reach the

goal. The blue line corresponds to Transformer with

memory size of 1 whereas the green line corresponds

to Transformer with memory size of 128. The orange

line corresponds to LSTM. Convergence to a fixed

path was observed in case of LSTM. The transformer

tried multiple variations of paths and tried to touch the

adjacent wall multiple times as compared to LSTM in

order to maximize the reward. As a result,

convergence to a fixed path was not observed.

However, these variations in path taken were

considerably lower in the case of LSTM

B. Exploration Task-

Figure 9. Exploration task environment

The main aim of this task is to move through the arena

and explore as much of it as possible. These black tiles

totalling at 242 are present throughout the arena and

provide a reward of 1 when the agent touches them.

This task tests the agent's ability to explore. Visual

inputs of size 300 * 300 with 3 color channels (RGB)

were used here and nature CNN architecture was used

for input preprocessing. For both the transformer and

LSTM, training was done for 50000 timesteps and the

amount of covered tiles were plotted.

Figure 10. Comparison of LSTM and transformer

In the above figure, the orange line represents LSTM and

the blue line represents the transformer. LSTM managed to

cover 209 tiles whereas the transformer based memory

architecture managed to cover 219 tiles.

● TABLE ONE - PERCENTAGE OF COVERAGE-

Algorithm Percentage of covered tiles

Transformer based memory 90.4 % (219)

LSTM 86.3 % (209)

In the coverage task, the transformer agent performed

higher exploration as compared to LSTM, thus the

transformer memory had a more varied set of observations

to update from.

C. The Long Horizon Search Task-

In this task, the main goal of the agent is to discover new

objects. For this purpose, the agent makes use of 300 by 300

Figure 11- Test 1 results

The camera view of the agent was also displayed

throughout training as shown in the subsequent figure.

Figure 12- Agents camera view

The agent managed to get the reward of 8000 and thus

discovered all 4 object classes for all 5 episodes. One

more important characteristic observed was that once

the agent got the object of a particular class, it avoided

other objects of that class. In this case however, the

movements were quick and following a trajectory.

Test 2- In this scenario, the arrangement was the same

as during training with the exception that the position

of two objects was changed slightly. The following the

results-

visual observations with 3 color channels (RGB). 4

categories of objects with different colors are used-

cylinder, capsule, sphere and cube. The arena consists of 4

rooms and no room consists of all 4 categories. The agent

gets a reward of 2000 every time it discovers a new

category. Therefore, the maximum reward that can be

achieved for an episode is 8000.

After 1 million training steps, since considerable decrease

in entropy was observed, we decided to stop the training

and move on to testing.

Test 1- The first test involved performing the search task in

the same environment with all the objects being at the same

place as in training. For this purpose, the trained SMT

model was loaded first. 5 episodes were observed. The

following were the results-

Figure 13- Test 2 results

The agent managed to get a reward of 8000 for 9 episodes

and a reward of 6000 for 6 episodes. Since the visual

observations, especially from a distance, were not that

different from training in this case, the agent decided to

stick to its training trajectory. The small variations in

positions probably went unnoticed due to the agent looking

the wrong way or some other reasons in some episodes

resulting in 6000 reward. The agent in this case followed

the fixed trajectory from training and only changed after not

getting the anticipated trajector reward

Test 3-

In this scenario, the positioning and arrangement of objects

for all 4 rooms was changed internally. Testing was done

for 30 episodes. The agent managed to get a reward of 8000

for 26 out of 30 episodes, the reward was 6000 for the

remaining 4 episodes

Figure 14. Original scenario for search task during training

Figure 15. Scenario for search task during test 3

In this case, since the visual observations for all the rooms

were considerably distinct, the agent decided to not go with

its default training trajectory. The movements were not

swift and a lot of time was spent in observation and

alignment with respect to targets. However, the agent

managed to successfully detect targets and get a

reward of 8000 for 26 out of 30 episodes and a reward

of 6000 for all other episodes.

Figure 16. Test 3 results

Test 4-

In this scenario, the spawn location of the agent was

changed, the arrangement of the objects in each room

was also changed drastically. The episode duration

was doubled in this case.

Figure 17. Scenario for search task during test 4

Swapping of objects between rooms was also done.

Testing was done for 15 episodes.

Out of 15 episodes, the agent managed to get a reward

of 8000 (discover all 4 target classes) for 10 episodes.

The rest of the episodes had a reward of 6000.

D. The Long Horizon Multistage Task-

The multistage task consists of 3 phases out of which,

the middle one is a distractor phase.

In the first phase the agent is supposed to go to any of the 4

capsules in front of it. After this, the agent is transported to

the distractor phase wherein it gets a reward of 1 every time

it touches a white cube, of which there are multiple

throughout the phase.

Figure 18- Multistage Task, 2nd phase

Figure 19. Multistage Task, distractor phase

Once the agent gets a reward of 45 in this phase, it is

transported to the third phase in which it is supposed to

recall the capsule it picked in phase one and go towards it

purely based visual inputs processed by nature cnn

architecture.

The distractor phase in this task acts as a mechanism which

makes the agents forget its main goal and acts as a test of

its memory, the agent managed to perform the task

appropriately despite this forced forgetting.

Results-

The model, which works based on visual inputs with 3 color

channels and nature cnn preprocessing was trained for 1

million steps with a continuous action space. Proximal

policy approximation algorithm was used. The trained

model was then loaded and tested for 12 episodes.

The arrangement of the objects was different in the first and

third phase, the distractor phase tested the agent’s ability to

recall information across longer timesteps and take

appropriate action

Figure 20. Multistage Task Results

The agent correctly identified the object in phase 3 for

11 out of 12 episodes. Further research will be done

for more dynamic testing conditions.

IV. CONCLUSION

● Even with changing spawn location and

arrangement of objects in each room as compared to

training during the search task, the transformer

managed to discover all four classes successfully. This

proves that transformer based memory in combination

with proximal policy optimisation is generalizable.

● In the maze task, the transformer displayed

higher levels of rewards as the tendency to touch the

adjacent wall with small reward as many times as

possible only grew with training, this was not

observed in case of LSTM. The transformer also

showed higher levels of exploration during training.

● In the exploration task, the transformer

displayed a higher level of coverage compared to

LSTM, the tendency to visit new tiles was observed to

be higher in the case of the transformer.

● In the search task, the transformer showed an

ability to generalize across different training and

testing conditions

● The transformer based memory managed to

avoid the rooms which only consisted of objects from

already discovered classes.

● In the distractor task, despite the forced

forgetting mechanism of the distractor phase, the

transformer based memory managed to perform the

identification perfectly.

ACKNOWLEDGMENT

This research was supported/partially supported by

DRDO Dighi, Vishwakarma Institute of technology,

Indian Institute of Information Technology

Hyderabad. We are thankful towards M.M Kuber, Dr. S E

Talole and all our colleagues who provided expertise that

greatly assisted the research.

REFERENCES

[1] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese, “Scene

memory transformer for embodied agents in long-horizon tasks,” in

CVPR,2019.

[2] “Learning to navigate in cities without a map,” in NeurIPS,

2018.

[3] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese,

“Gibson env: Real-world perception for embodied agents,” in CVPR,

2018.

[4] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric

topological memory for navigation,” in ICLR, 2018.

[5] N. Tomatis, I. Nourbakhsh, and R. Siegwart, “Combining

topological and metric: A natural integration for simultaneous localization

and map building,” in Proc. European Workshop on Advanced Mobile

Robots (Eurobot). ETH-Zurich, 2001. ̈

[6] P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K.

Anderson, D. Teplyashin, K. Simonyan, A. Zisserman, and R. Hadsell,

[7] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search

on the replay buffer: Bridging planning and reinforcement learning,” in

NeurIPS, 2019.

[8] Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D.

Hassabis, D. Wierstra, and C. Blundell. Neural episodic control. In

Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pages 2827–2836. JMLR.org, 2017.

[9] Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. J.

Rezende, A. P. Badia, O. Vinyals, N. Heess, Y. Li, et al. Imagination-

augmented agents for deep reinforcement learning. In Advances in neural

information processing systems, pages 5690–5701, 2017.

[10] A. Miyake and P. Shah. Models of working memory:

Mechanisms of active maintenance and executive control. Cambridge

University Press, 1999. doi: 10.1017/CBO9781139174909.

