Memory Based Reinforcement Learning
with Transformersfor Long Horizon
Timescales and Continuous Action Spaces

Shweta Singh shwetasingh@rde.gov.in shweta.singh@research.iiit.ac.in, Sudaman Katti
sudaman.kattil9@vit.edu

Abstract— The most well known sequence models make use of
complex recurrent neural networks in an encoder-decoder
configuration. The model used in this research makes use of a
transformer,which is based purely on self-attention mechanism,
without relying on recurrence at all. More specifically, encoders
and decoders which make use self attention and operate based on
a memory are used. In this research work, results for various 3D
visual and non-visual reinforcement learning tasks designed in
Unity software were obtained. Convolutional neural networks,
more specifically, nature CNN architecture is used for input
processing in visual tasks and comparison with standard long
short-term memory (LSTM) architecture is performed for both
visual tasks based on CNNs and non-visual tasks based on
coordinate inputs. This research work combines the transformer
architecture with the proximal policy optimization technique
used popularly in reinforcement learning for stability and better
policy updates while training, especially for continuous action
spaces, which are used in this research work. Certain tasks in this
paper are long horizon tasks which carry on for a longer duration
and require extensive use of memory based functionalities like
storage of experiences and choosing of appropriate actions based
on recall. The transformer, which makes use of memory and self-
attention mechanism in an encoder-decoder configuration proved
to have better performance when compared to LSTM in terms of
exploration and rewards achieved. Such memory based
architectures can be used extensively in the field of cognitive
robotics and reinforcement learning.

Keywords— Convolutional neural networks, Reinforcement
learning, Self-Attention, Transformers, Unity

I. INTRODUCTION

In various sequence-to-sequence problems such as the
neural machine translation, the popular approaches were
based on the use of RNNs in an encoder-decoder fashion.
However, these architectures have a great limitation when
working with long sequences, their ability to retain
information from the first elements gets lost when new
elements are incorporated into the sequence. In the encoder,
the hidden state in every step is associated with a certain
element in the input sentence, usually based on how recent
it is. Therefore, if the decoder only accesses the last hidden
state of the decoder, it will lose the important information
about the first elements of the sequence. Thus, to deal with
this problem, a novel concept was introduced: the attention
mechanism.

Instead of paying attention to the last state of the encoder as
in the case of RNNSs, in each step of the decoder. all the

states of the encoder which are able to access information
about all the elements of the input sequence are
considered. This is the main working principle of the
attention mechanism. This mechanism allows the decoder
to assign greater weight or importance to a specific
element of the input for each element of the output.
Learning is done in every step to focus on the right element
of the input to predict the next output element.

Il. METHODOLOGY

Fig.1 Biped Model

This research work makes use of the ML agents toolkit
in unity for implementation of reinforcement learning
algorithms through python. The environments for all
the tasks were created in Unity. A model of a simple
Biped robot which can transverse across planes was
used as the agent for all the tasks. Continuous action
spaces were used. Nature CNN architecture was used
for input preprocessing in case of visual tasks.

A. Proximal Policy Optimisation- Proximal Policy
Optimisation (PPO) is a fairly recent advancement in
the field of Reinforcement Learning, which provides
an upgrade on Trust Region Policy Optimization
(TRPO). PPO aims to strike a balance between key
factors like ease of implementation and tuning, sample
complexity, sample efficiency and trying to compute
updates at each step that minimizes the cost function

mailto:shwetasingh@rde.gov.in
mailto:shweta.singh@research.iiit.ac.in
mailto:sudaman.katti19@vit.edu

PPO was chosen for this research work as opposed to
standard methods like DQN as it effective for continuous
action spaces

B. Episodic scene Memory- The scene memory consists of
all past observations per time step in an embedded form and
the memory is updated at each time step. The decoder of the
attention-based policy network makes use of the updated
scene memory to compute a distribution over actions. the
memory grows linearly with the episode length. Each
observation is stored separately in the memory and
aggregation of the information is only done when
computing an action. As each received observation is
embedded into low dimensional vectors, one can easily
store hundreds of time steps on the hardware devices. While
RNNs are restricted to a fixed-size state vector, which
usually can only capture short-term dependencies.

C. Attention-based Policy Network-

The policy network m(alo, M) makes use of the current
observation and the scene memory to compute a
distribution over the action space. Firstly, encoding of the
memory by transforming each memory element in the
context of all other elements is done. This step has the
potential to capture the spatio-temporal dependencies in the
environment. Then, an action is decoded according to the
current observation, using the encoded memory as the
context.

Observations Embeddings Encoded Memory

[@HD{e o) .

Layer
(e,) B)
H : 7—{mm- —~ 3 I Decoder f=f t—
: : :
3 : : f
D, D)
Action

Figure 2. The Transformer architecture

Attention mechanism- The transformer model uses self-
attention for encoding of the memory M. More specifically,
M is used as both inputs to the attention block. This
transforms each embedded observation by using its
correlation with other past observations. This is because the
three vectors U, K and V responsible for self attention are
defined based on the inputs to the attention block (through
weights), which in this case are M and M. Furthermore, a
modified version of ResNet was used for better input
processing.

wie) C
Figure 3. Attention mechanism

Encoder- The Transformer model makes use of self-
attention to encode the memory M. More specifically,
M is used as both inputs of the attention block. This
transforms each embedded observation by using its
relations to other past observations: Encoder (M) =
AttBlock (M, M)

Decoder- The decoder is supposed to produce actions
based on the current observation given the context C,
which in this case, is the encoded memory. It applies
similar machinery as the encoder, with the notable
difference that the query in the attention layer is the
embedding of the current observation (o).

D. Implementation Details-

At each timestep, the observation space will consist of
the (X, y, z) coordinate values of the agent in the
environment. The action space here is continuous in
nature with three possible actions- movement in X
direction, movement in Z direction and rotation
around Z axis (turning). Results with memory size of
1 and 128 were plotted and comparison was done with
LSTM. Training in all 3 cases was done for 10000
timesteps.

Transformer parameters for non visual task-
embedding size=2,
transformer_ff_dim=32,
transformer_nbr_heads=1,
transformer_nbr_encoders=3,
transformer_nbr_decoders=3,

Figure 4. Transformer parameters for non visual task
Transformer parameters for visual task-

embedding_size=512,
transtormer_f+_dim=512,
transformer_nbr_heads=3§,
transtormer_nbr_encoders=o,

transformer_nbr_decoders=6,

Figure 5. Transformer parameters for visual task

I1l. RESULTS AND DISCUSSIONS

A. Maze Task-

The goal of the agent in this maze navigation
environment is to navigate to the goal and get a reward
of 2000. Every time this happens, the episode will end.

Figure 6. Maze Task Environment

The agent will also get a reward of 0.2 everytime it touches
the wall right to the left of the goal, Using the Stable
Baselines Package, a custom policy for a 3D environment
which combines a transformer and memory architecture
was created and implemented through the proximal policy
optimisation algorithm in Stable Baselines. Comparison
with LSTM was done.

smp

smp128

Figure 7. Comparison of rewards during training

The above graph represents the episodic rewards during
training for transformer based memory and LSTM. The
blue line corresponds to the transformer with memory size
of 1 while the green line corresponds to the transformer
with memory size of 128. The orange line corresponds to
LSTM. Amongst the three, the transformer with a memory
size of 128 managed to reach the goal and get the reward of
2000 more consistently throughout training. LSTM
converged to a fixed path without trying to maximize the
goal from the adjacent wall. This convergence was not
observed in the case of the transformer. Overall, higher
rewards were observed in the case of the transformer with
memory architecture.

smp.
Istm
smp128

Figure 8. Comparison of episode lengths during training

The above graph represents the episode durations
during training for Transformer and LSTM. Since the
episode ends once the agent reaches the goal, this
graph also represents the path length taken to reach the
goal. The blue line corresponds to Transformer with
memory size of 1 whereas the green line corresponds
to Transformer with memory size of 128. The orange
line corresponds to LSTM. Convergence to a fixed
path was observed in case of LSTM. The transformer
tried multiple variations of paths and tried to touch the
adjacent wall multiple times as compared to LSTM in
order to maximize the reward. As a result,
convergence to a fixed path was not observed.
However, these variations in path taken were
considerably lower in the case of LSTM

B. Exploration Task-

Figure 9. Exploration task environment

The main aim of this task is to move through the arena
and explore as much of it as possible. These black tiles
totalling at 242 are present throughout the arena and
provide a reward of 1 when the agent touches them.
This task tests the agent's ability to explore. Visual
inputs of size 300 * 300 with 3 color channels (RGB)
were used here and nature CNN architecture was used
for input preprocessing. For both the transformer and

LSTM, training was done for 50000 timesteps and the
amount of covered tiles were plotted.

200 1

150 1

100 +

tl) 1000 7060 30'00 4000 5000 f.COO 70'00
Figure 10. Comparison of LSTM and transformer

In the above figure, the orange line represents LSTM and
the blue line represents the transformer. LSTM managed to
cover 209 tiles whereas the transformer based memory
architecture managed to cover 219 tiles.

° TABLE ONE - PERCENTAGE OF COVERAGE-
Algorithm Percentage of covered tiles

Transformer based memory 90.4 % (219)

LSTM 86.3 % (209)

In the coverage task, the transformer agent performed
higher exploration as compared to LSTM, thus the
transformer memory had a more varied set of observations
to update from.

C. The Long Horizon Search Task-

In this task, the main goal of the agent is to discover new
objects. For this purpose, the agent makes use of 300 by 300
visual observations with 3 color channels (RGB). 4
categories of objects with different colors are used-
cylinder, capsule, sphere and cube. The arena consists of 4
rooms and no room consists of all 4 categories. The agent
gets a reward of 2000 every time it discovers a new
category. Therefore, the maximum reward that can be
achieved for an episode is 8000.

After 1 million training steps, since considerable decrease
in entropy was observed, we decided to stop the training
and move on to testing.

Test 1- The first test involved performing the search task in
the same environment with all the objects being at the same
place as in training. For this purpose, the trained SMT
model was loaded first. 5 episodes were observed. The
following were the results-

Figure 11- Test 1 results

The camera view of the agent was also displayed
throughout training as shown in the subsequent figure.

-
vecenv

(x=234, y=272) ~ R:104 G:129 B:165

Figure 12- Agents camera view

The agent managed to get the reward of 8000 and thus
discovered all 4 object classes for all 5 episodes. One
more important characteristic observed was that once
the agent got the object of a particular class, it avoided
other objects of that class. In this case however, the
movements were quick and following a trajectory.

Test 2- In this scenario, the arrangement was the same
as during training with the exception that the position
of two objects was changed slightly. The following the
results-

-]
-]
-]
-]
-]
-]
-]
-]
-]
-]
-]
-]
-]
-]
]

Figure 13- Test 2 results

The agent managed to get a reward of 8000 for 9 episodes
and a reward of 6000 for 6 episodes. Since the visual
observations, especially from a distance, were not that
different from training in this case, the agent decided to
stick to its training trajectory. The small variations in
positions probably went unnoticed due to the agent looking
the wrong way or some other reasons in some episodes
resulting in 6000 reward. The agent in this case followed
the fixed trajectory from training and only changed after not
getting the anticipated trajector reward

Test 3-

In this scenario, the positioning and arrangement of objects
for all 4 rooms was changed internally. Testing was done
for 30 episodes. The agent managed to get a reward of 8000
for 26 out of 30 episodes, the reward was 6000 for the
remaining 4 episodes

Figure 14. Original scenario for search task during training

Figure 15. Scenario for search task during test 3

In this case, since the visual observations for all the rooms
were considerably distinct, the agent decided to not go with
its default training trajectory. The movements were not

swift and a lot of time was spent in observation and
alignment with respect to targets. However, the agent
managed to successfully detect targets and get a
reward of 8000 for 26 out of 30 episodes and a reward
of 6000 for all other episodes.

8000 1
7750 1
7500 1
7250 1
7000 1
6750 1
6500 1
6250 1
6000 -

0 5 10 15 2 >
Figure 16. Test 3 results

Test 4-

In this scenario, the spawn location of the agent was
changed, the arrangement of the objects in each room
was also changed drastically. The episode duration
was doubled in this case.

Figure 17. Scenario for search task during test 4

Swapping of objects between rooms was also done.
Testing was done for 15 episodes.

Out of 15 episodes, the agent managed to get a reward
of 8000 (discover all 4 target classes) for 10 episodes.
The rest of the episodes had a reward of 6000.

D. The Long Horizon Multistage Task-

The multistage task consists of 3 phases out of which,
the middle one is a distractor phase.

In the first phase the agent is supposed to go to any of the 4
capsules in front of it. After this, the agent is transported to
the distractor phase wherein it gets a reward of 1 every time
it touches a white cube, of which there are multiple
throughout the phase.

Figure 18- Multistage Task, 2nd phase

Figure 19. Multistage Task, distractor phase

Once the agent gets a reward of 45 in this phase, it is
transported to the third phase in which it is supposed to
recall the capsule it picked in phase one and go towards it
purely based visual inputs processed by nature cnn
architecture.

The distractor phase in this task acts as a mechanism which
makes the agents forget its main goal and acts as a test of
its memory, the agent managed to perform the task
appropriately despite this forced forgetting.

Results-

The model, which works based on visual inputs with 3 color
channels and nature cnn preprocessing was trained for 1
million steps with a continuous action space. Proximal
policy approximation algorithm was used. The trained
model was then loaded and tested for 12 episodes.

The arrangement of the objects was different in the first and
third phase, the distractor phase tested the agent’s ability to
recall information across longer timesteps and take
appropriate action

[2240.]
[2240.]
[2240.]
[2240.]
[240.]

[2240.]

[2240.]
[2240.]
[2240.]
[2240.]
[2240.]
[2240.]
Figure 20. Multistage Task Results

The agent correctly identified the object in phase 3 for
11 out of 12 episodes. Further research will be done
for more dynamic testing conditions.

IV. CONCLUSION

° Even with changing spawn location and
arrangement of objects in each room as compared to
training during the search task, the transformer
managed to discover all four classes successfully. This
proves that transformer based memory in combination
with proximal policy optimisation is generalizable.

° In the maze task, the transformer displayed
higher levels of rewards as the tendency to touch the
adjacent wall with small reward as many times as
possible only grew with training, this was not
observed in case of LSTM. The transformer also
showed higher levels of exploration during training.

° In the exploration task, the transformer
displayed a higher level of coverage compared to
LSTM, the tendency to visit new tiles was observed to
be higher in the case of the transformer.

° In the search task, the transformer showed an
ability to generalize across different training and
testing conditions

° The transformer based memory managed to
avoid the rooms which only consisted of objects from
already discovered classes.

° In the distractor task, despite the forced
forgetting mechanism of the distractor phase, the
transformer based memory managed to perform the
identification perfectly.

ACKNOWLEDGMENT

This research was supported/partially supported by
DRDO Dighi, Vishwakarma Institute of technology,
Indian Institute of Information Technology

Hyderabad. We are thankful towards M.M Kuber, Dr. S E
Talole and all our colleagues who provided expertise that
greatly assisted the research.

REFERENCES

[1] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese, “Scene
memory transformer for embodied agents in long-horizon tasks,” in
CVPR,2019.

[2] “Learning to navigate in cities without a map,” in NeurlPS,
2018.
[3] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese,

“Gibson env: Real-world perception for embodied agents,” in CVPR,
2018.

[4] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric
topological memory for navigation,” in ICLR, 2018.
[5] N. Tomatis, I. Nourbakhsh, and R. Siegwart, “Combining

topological and metric: A natural integration for simultaneous localization
and map building,” in Proc. European Workshop on Advanced Mobile
Robots (Eurobot). ETH-Zurich, 2001. ~

[6] P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K.
Anderson, D. Teplyashin, K. Simonyan, A. Zisserman, and R. Hadsell,
[7] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search

on the replay buffer: Bridging planning and reinforcement learning,” in
NeurlIPS, 2019.

[8] Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D.
Hassabis, D. Wierstra, and C. Blundell. Neural episodic control. In
Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 2827-2836. JMLR.org, 2017.

[9] Racaniere, T. Weber, D. Reichert, L. Buesing, A. Guez, D. J.
Rezende, A. P. Badia, O. Vinyals, N. Heess, Y. Li, et al. Imagination-
augmented agents for deep reinforcement learning. In Advances in neural
information processing systems, pages 5690-5701, 2017.

[10] A. Miyake and P. Shah. Models of working memory:
Mechanisms of active maintenance and executive control. Cambridge
University Press, 1999. doi: 10.1017/CB09781139174909.

