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ABSTRACT

For gradient-based machine learning (ML) methods commonly adopted in practice
such as stochastic gradient descent, the de facto differential privacy (DP) technique
is perturbing the gradients with random Gaussian noise. Data valuation attributes
the ML performance to the training data and is widely used in privacy-aware
applications that require enforcing DP such as data pricing, collaborative ML, and
federated learning (FL). Can existing data valuation methods still be used when
DP is enforced via gradient perturbations? We show that the answer is no with
the default approach of injecting i.i.d. random noise to the gradients because the
estimation uncertainty of the data value estimation paradoxically linearly scales
with more estimation budget, producing estimates almost like random guesses.
To address this issue, we propose to instead inject carefully correlated noise to
provably remove the linear scaling of estimation uncertainty w.r.t. the budget with
some assumptions on the gradient distribution. We also empirically demonstrate
that our method gives better data value estimates on various ML tasks and is
applicable to use cases including dataset valuation and FL.

1 INTRODUCTION

With growing data privacy regulations (Bukaty, 2019; Council of European Union, 2014) and
machine learning (ML) model attacks (Shokri et al., 2017), privacy has become a primary concern
in many scenarios such as collaborative ML (Sim et al., 2020; Xu et al., 2021) and federated
learning (FL) (McMahan et al., 2017; Yang et al., 2019). Differential privacy (DP) (Dwork & Roth,
2014) is commonly adopted as the de facto framework to provide privacy protection for training data
with theoretical guarantees. In deep learning, DP is typically achieved by perturbing the gradients
w.r.t. the model’s loss on the training data (Abadi et al., 2016).

Data valuation (Ghorbani & Zou, 2019) has received increased interest from providing attribution for
parties in collaborative ML (Sim et al., 2022) and identifying data quality for data curation (Ghorbani
& Zou, 2019) and data marketplace (Agarwal et al., 2019). Data values are often estimated with
sampling-based methods such as Monte Carlo (Castro et al., 2009) on user statistics, e.g. gradients
of user data (Ghorbani & Zou, 2019). However, the sensitive nature of the user statistics requires
privacy during data valuation to protect the data of participants in collaboration (Sim et al., 2023)
or to facilitate interaction between data buyers and sellers in a marketplace (Chen et al., 2023).
Specifically, enforcing DP on the data is desirable in these scenarios for two reasons: 1) DP enjoys
the post-processing immunity (Dwork & Roth, 2014), allowing further access to data without risking
privacy leakage; 2) DP offers a natural trade-off between privacy protection and data quality: Data
contributors can determine at their discretion the level of information protection at the expense of
degraded data quality. While some previous works considered DP in data valuation (Sim et al., 2023;
Wang et al., 2023; Watson et al., 2022), they either focused on a limited class of ML models or
required a trusted central server, both of which are difficult to satisfy in real-world scenarios (Sim
et al., 2022). A natural question arises: Can we circumvent these two challenges in data valuation
while enforcing DP?

One might think of perturbing gradients on user data before using them for updating a gradient-
trained parametric model to overcome the challenges. Unfortunately, we demonstrate that the naive
approach of adding i.i.d. Gaussian noise (Dwork & Roth, 2014) to user gradients leads to practically
useless data value estimates: The perturbation on the gradients erodes the information they carry,
leading to a lowered data value and increased data value estimation uncertainty because the noise
introduced by such perturbation accumulates with repeated evaluations (i.e., sampling methods
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methods (Castro et al., 2009; Maleki et al., 2014)). While a lowered (mean of) data value estimate
is intuitive and expected as a result of information loss (Dwork et al., 2015; Kairouz et al., 2015),
increased estimation uncertainty can render existing data valuation methods useless because the
magnitude of the noise scales with the evaluation budget for a fixed DP guarantee. As an illustration,
the 3rd figure of Fig. 2 shows that as the number of evaluations k increases, removing data with
high data value estimates produces a curve closer to that with random removal, implying that more
evaluation samples, paradoxically, have worsened the quality of data value estimates. We theoretically
account for this counter-intuitive phenomenon by showing that perturbation introduced by DP can
cause the estimation uncertainty of data value estimates, measured in terms of the variance brought
by the perturbation, to scale linearly in the number of evaluations.

Fortunately, through our developed theoretical analysis, we derive an insight that leads to a method
for controlling the estimation uncertainty. We focus the analysis on the family of semivalues widely
adopted as data valuation metrics such as data Shapley (Ghorbani & Zou, 2019), Beta Shapley (Kwon
& Zou, 2022), and data Banzhaf (Wang & Jia, 2023). We revisit the paradigm of data valuation in
the context of gradient-based DP ML and thus design a technique that perturbs the gradients with
correlated noise in repeated evaluations to mitigate the above issue. Contrary to the linear scaling of
estimation uncertainty of the data value estimates with the evaluation budget in the naive approach,
our proposed method is shown to control the estimation uncertainty to a constant. Additionally, we
empirically demonstrate that, on various ML tasks, our proposed method produces (i) greater model
degradation from removing high-value data; and (ii) higher AUC scores in identifying label-corrupted
data. In comparison, the naive approach performs similarly to random selection. We also apply our
approach to other scenarios including dataset valuation (Wu et al., 2022) and FL (McMahan et al.,
2017). Our specific contributions are summarized as follows:

• We formalize a notion of estimation uncertainty (Eq. (3)) to specifically target the uncertainty due
to DP. We then theoretically identify that under the naive approach of injecting i.i.d. noise for DP,
the estimation uncertainty grows in Ω(k) with the evaluation budget k (Prop. 5.1), resulting in
low-quality data value estimates.

• As mitigation, we propose a simple yet effective approach (in Algorithm 1) via injecting correlated
noise to control the estimation uncertainty to O(1) (Prop. 5.4) as opposed to Ω(k).

• We empirically demonstrate the implications of the escalating estimation uncertainty shown by
the near-random performance on the data removal task (Sec. 6.1) and noisy label detection task
(Sec. 6.2). Our approach outperforms the baseline approach on these tasks (Sec. 6.2) and on noisy
label detection task in dataset valuation and FL (Sec. 6.3).

2 RELATED WORK

Prior works (Sim et al., 2023; Wang et al., 2023; Watson et al., 2022; Usynin et al., 2024) that consider
privacy-aware data valuation have limited applicability due to limited settings. (Sim et al., 2023)
considered perturbing user statistics to ensure DP but is restricted on the class of Bayesian models
whereas we consider a wider family of models trained with gradient-based methods including neural
networks. (Wang et al., 2023) proposed a private variant of KNN-Shapley but did not generalize
to other semivalues, whereas our method applies to all semivalues. Watson et al. (2022) directly
perturbed the semivalue estimates. However, both (Wang et al., 2023; Watson et al., 2022) require a
trusted server to centralize the original gradients which may not reflect real-world scenarios where
untrusted central servers pose added privacy risks, whereas our approach does not require a trusted
central server. (Usynin et al., 2024) assessed using variance of gradients and privacy loss-input
susceptibility score to select useful data points for DP training. The authors further propose methods
to compute the DP version of these scores. (Bani-Harouni et al., 2023) considered improving the
performance of DP-SGD by utilizing cosine similarity between privatized per-sample gradient and
original gradient to decide whether to include the gradient in averaged gradient.

Li & Yu (2023); Wang & Jia (2023) identified that stochastic utility functions can lead to noisy data
values which deteriorated the rank preservation and proposed to use (weighted) Banzhaf values as the
semivalue metric. Although the noise introduced by DP also renders the utility functions stochastic,
their methods do not consider the DP setting where noise scales with the number of evaluation
budgets. We specifically consider mitigating the issue of the scaling noise.
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Dwork et al. (2010); Li et al. (2015); Nasr et al. (2020) introduced correlated noise to mitigate the
effect of noise brought by DP, which has since been widely adopted in online learning with DP
requirement to improve learning performance (Choquette-Choo et al., 2023a;b; Denisov et al., 2023;
Kairouz et al., 2021). In contrast, we apply correlated noise to the setting of data valuation with
privacy needs, to improve the quality of data value estimates. (Koloskova et al., 2024) analyzed the
use of correlated noise under a DP follow-the-regularized-leader setting.

3 PRELIMINARIES

We recall the definition of semivalue for data valuation (Ghorbani & Zou, 2019) and the necessary
preliminaries on DP.

3.1 DATA VALUATION

Semivalues. Denote [n] := {1, 2, . . . , n}. The semivalue of i in a set [n] of parties w.r.t. a utility
function V : 2[n] → R and a weight function w : [n] → R s.t.

∑n
r=1

(
n−1
r−1

)
w(r) = n is (Dubey

et al., 1981)
ϕi :=

∑n
r=1 n

−1w(r)
∑

S⊆N\{i},|S|=r−1[V (S ∪ {i})− V (S)] . (1)

Leave-one-out (Cook, 1977), Shapley value (Shapley, 1953), and Banzhaf value (Wang & Jia, 2023)
are examples of semivalues. In data valuation, a party can be represented by a data point, a dataset,
or (the data of) an agent in FL setting. In ML, semivalues are often treated as a random variable
and estimated using Monte Carlo methods (Castro et al., 2009; Maleki et al., 2014) since [n] is
usually large and V is stochastic (more details in App. B.1). Denote Pπ

j as the set of predecessors
of party j in a permutation π uniformly randomly drawn from the set of all permutations Π, and let
pj(π) := 2n−1n−1w(|Pπ

j ∪ {j}|), then ϕj = E[ψj ] with ψj an average over k random draws:

ψj = (1/k)
∑k

t=1 pj(π
t)[V (Pπt

j ∪ {j})− V (Pπt

j )] . (2)

3.2 DIFFERENTIALLY PRIVATE MACHINE LEARNING (DP ML)

Definition 3.1 ((ϵ, δ)-Differential Privacy (Dwork & Roth, 2014, Def. 2.4)). A randomized algorithm
M with domain D and rangeR is said to be (ϵ, δ)-differentially private if for any two neighboring1

datasets d, d′ ∈ D , and for all event S ⊆ R , Pr(M(d) ∈ S) ≤ exp(ϵ)Pr(M(d′) ∈ S) + δ.

Importantly, the DP guarantee of M is immune against post-processing (Dwork & Roth, 2014,
Proposition 2.1): The composition f ◦M with an arbitrary randomized mapping f have the same DP
guarantee asM. We adopt this definition of DP to show the linearly scaling effect of perturbation
(Sec. 5.1). We elaborate in App. B.2 that our analysis can be extended to other DP frameworks.

4 SETTINGS AND PROBLEM STATEMENT

Settings. Our analysis is based on the G-Shapley framework (Ghorbani & Zou, 2019) for gradient-
based ML methods where a parametric ML model learns from the data of each party via the perturbed
gradients of the data against a deterministic loss function L : [n]× Rd → R which maps the (data
of a) party and model parameters (∈ Rd) to a score (∈ R). The utility improvement reflects the
data value after the model updates its parameters with the gradient. For an evaluation budget k, k
uniformly random permutations π1, . . . , πk ∈ Π are sampled, and for each sampled permutation
π (superscript omitted), a model is randomly initialized with θπ and updated by the parties in
sequence according to π. Then, denote θp

π,j the model parameters immediately before party j
updates the model in permutation π. For each subsequent party j in π, the Gaussian mechanism
is adopted to obtain a perturbed gradient g̃π,j to update the model θπ,j := θp

π,j − αg̃π,j where
g̃π,j := ĝπ,j + z from a Gaussian noise z ∼ N (0, (Cσ)2I) (with C, σ > 0) and the norm clipped
gradient ĝπ,j := gπ,j/max(1, ∥gπ,j∥2/C) based on the gradient gπ,j := ∇θL(j,θp

π,j) derived from
j’s data. For a fixed test dataset, a utility V (Pπ

j ∪ {j}) representing the test performance depends on

1Two inputs x,x′ are neighboring if they differ by one training example (Abadi et al., 2016).
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the model parameter θπ,j (e.g. V is the negated test loss), so we replace V (Pπ
j ∪ {j}) with V (θπ,j)

hereafter to highlight the interaction between model parameters and utility. While it is possible
Pπ
j ∪{j} results in different θπ,j due to the random model initialization and varying orders of parties

in π, our subsequent definition of estimation uncertainty (Eq. (3)) carefully excludes their effects and
focuses on the uncertainty due to DP if V is deterministic w.r.t. model parameters θ as we fix θp

π,j .
Algorithm 1 outlines this i.i.d. noise approach , our method and a variant , explained in Sec. 5.

Algorithm 1 i.i.d. Corr. Noise (X) Corr. Noise (Y )

1: Input: number of parties n, utility function V , clipping normC, loss functionL, noise multiplier
σ, number of evaluations k, weight coefficient pj , burn-in ratio q .

2: for t← 1 to k do
3: Draw πt unif.∼ Π and initialize the model with θπt ;
4: i← πt[0] ; θπt,i ← θπt

5: for j ∈ {πt[1], πt[2], . . . , πt[n]} do
6: gπt,j ← ∇θL(j,θp

πt,j)

7: g̃πt,j ← gπt,j/max(1.0, ∥gπt,j∥2/C) +N (0, k(Cσ)2I)
8: if Correlated Noise (X) or Correlated Noise (Y ) then
9: g̃πt,j ← (1−Xt,t)× g̃roll

j +Xt,t × g̃πt,j

10: g̃roll
j ← (t− 1)/t× g̃roll

j + 1/t× g̃πt,j

11: end if
12: θπt,j ← θp

πt,j − αg̃πt,j

13: if Correlated Noise (Y ) then
14: if t > kq then

15: ψj ← t−kq−1
t−kq ψj +

pj(π
t)

t−kq (V (θπt,j)− V (θπt,i))

16: end if
17: i← j and Continue
18: end if
19: ψj ← t−1

t ψj + pj(π
t)(V (θπt,j)− V (θπt,i))/t ; i← j

20: end for
21: end for
22: Return ψ

Problem Statement. We study how noise introduced by DP impacts the estimation uncertainty of
semivalue estimates. Formally, the estimation uncertainty for each party j is defined as

Var[ψj |θp
π1,j ,θ

p
π2,j , . . . ,θ

p
πk,j

] , (3)

and we aim to precisely understand its (asymptotic) relationship with k under i.i.d. noise and using our
proposed method (in Sec. 5) respectively. While Eq. (3) may seem more complicated than Var[ψj ],
the conditioning effectively removes the stochasticity in permutation sampling, gradient descent, and
model initialization, thus focusing on the impact of noise introduced by DP. Indeed, when there is no
perturbation due to DP and V is deterministic (w.r.t. θ), Var[ψj |θp

π1,j ,θ
p
π2,j , . . . ,θ

p
πk,j

] = 0, meaning
Eq. (3) solely depends on the randomness from the perturbations of DP. Importantly, the definition of
estimation uncertainty in Eq. (3) admits precise and intuitive results about the randomness due to DP,
enabling us to pinpoint an issue with the i.i.d. noise approach; then, we propose the correlated noise
approach to asymptotically reduce this uncertainty and mitigate the issue.

Remark. We note that minimizing the estimation uncertainty does not necessarily recover the
original (i.e., without DP) data value estimate since DP exerts an upper bound on the marginal
contribution (more discussed in App. B.4). Nevertheless, we highlight that this limitation does not
diminish the merit of our analysis as reducing estimation uncertainty helps improve the preservation
of the ranking of data value estimates of different parties compared to the naive approach of injecting
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i.i.d. noise, which is an important axiomatic characterization and a common application of such data
value metrics (Ghorbani & Zou, 2019; Zhou et al., 2023).

Our subsequent analysis is w.r.t. a particular party j and for notational brevity, omits the subscript j
(e.g., θπ,j = θπ, g̃π,j = g̃π) where the context is clear. Table 4 in App. A consolidates the important
notations used throughout this work.

5 APPROACH AND THEORETICAL RESULTS

We summarize the results on estimation uncertainty for the naive approach (i.i.d. noise), our method,
and a variant in Table 1. All proofs and derivations are deferred to App. C.

Table 1: Summary of theoretical results. σ2
g

refers to the average variance of unperturbed
gradients. q ∈ (0, 1) is a hyperparameter.

Result Asymptotic Estimation Uncertainty Approach

Prop. 5.1 Ω(k) i.i.d. noise
Prop. 5.3 O(log2 k + σ4

g) Our method
Prop. 5.4 O

(
log2 (1/q)/(1− q)2 + σ4

g

)
Our method (variant)

Budget 𝑘

Δ !
"# Δ !
"

Budget 𝑘

Figure 1: Left: Box plots of ∆cos vs. budget k, where
higher is better. Right: Box plots of ∆ℓ2 vs. budget k,
where lower is better. ϵ = 1 for both plots.

Choice of V . For the purpose of mathematical analysis, we consider, in our theoretical analysis,
the case where V is deterministic, non-positive, and Lipschitz smooth. An example of such V is
the (average) negated loss on a fixed test dataset (Ghorbani & Zou, 2019), elaborated in Sec. 5.1.
Nevertheless, Sec. 6.1 additionally empirically investigates test accuracy as V , which is discrete, to
show our method works even if these properties are relaxed.

5.1 I.I.D. NOISE CAUSES SCALING ESTIMATION UNCERTAINTY

We first reveal that the propagation of noise from each zt to V can be catastrophic to the estimator ψ:
a higher evaluation budget k, surprisingly, leads to a higher estimation uncertainty.

The estimator ψ in Eq. (2) aggregates various marginal contributions m(π) = V (θπ)− V (θp
π) over

different π ∈ Π. Thus, if ψ requires k evaluations of m, party j needs to reveal its gradients k times.
The repeated release of gradients increases the privacy risk, requiring greater perturbation to maintain
the same DP guarantee. In the Gaussian mechanism, the best known variance of the Gaussian noise
grows in Θ(k) (Abadi et al., 2016, Theorem 1) (more discussed in App. B.3), so each Gaussian noise
is expressed as zt ∼ N (0, k(Cσ)2I) where both C and σ2 are constants satisfying a fixed (ϵ, δ)-DP
guarantee hereafter.

The linear scaling of Var[zt] creates a vicious cycle: More marginal contributions are needed to obtain
a more certain semivalue estimation, incurring a larger k, which in turn necessitates greater perturba-
tions for DP and increasing the estimation uncertainty. Formally, we show that the perturbations used
to guarantee DP are amplified by a strongly concave utility function V (achievable with a strongly
convex loss w.r.t. model parameters, such as K-Means, Lasso, and logistic regression with weight
decay), and causes the estimation uncertainty of semivalues to grow in the order of Ω(k), via two
specific globally strongly convex loss functions:
Proposition 5.1. (I.I.D. Noise) ∀t ∈ [k], denote θπt := θp

πt − αg̃πt = θp
πt − α(ĝπt + zt) where

∀t ∈ [k], zt
i.i.d.∼ N (0, k(Cσ)2I) under the Gaussian mechanism. Denote a test dataset Dtest =

{(x1, y1), . . . , (xl, yl)} of l data points. If V is the negated mean-squared error loss on a linear
regression model

V (θ) := −l−1
∑l

i=1(θ
⊤xi − yi)2 ,

or the negated ℓ2-regularized cross-entropy loss on a logistic regression model

V (θ) := l−1∑l
i=1(1− yi) log(1− Sig(θ,xi)) + l−1

∑l
i=1 yi log(Sig(θ,xi))− λ∥θ∥22

5
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where Sig(θ,xi) = (1 + e−θ⊤xi)−1 is the sigmoid function and λ > 0 is the regularization
hyperparameter. Denote m(πt) := V (θπt)− V (θp

πt). Further denote a regular semivalue estimator
ψ := k−1

∑k
t=1 p(π

t)m(πt).2 Then, Var[ψ|θp
π1 ,θ

p
π2 , . . . ,θ

p
πk ] = Ω(k).

As an intuition, consider that in each iteration, a Gaussian noise of variance k(Cσ)2 is injected to each
gradient and amplified when propagated to the loss (i.e., −V by definition) due to strong convexity
to become Ω(k2), and the averaging over multiple evaluations shaves off a factor of k, yielding the
final Ω(k) estimation uncertainty. Worse, the estimation uncertainty grows asymptotically with k:
increasing the evaluation budget increases the estimation uncertainty due to the noise of DP.

One might ask whether this issue persists for deep neural networks that generally have a non-
convex loss. As the loss surface of neural networks can exhibit strong convexity around local
minima (Kleinberg et al., 2018; Milne, 2019), we derive, with a few additional assumptions including
a notion of local strong convexity, a counter-part result to Prop. 5.1 w.r.t. deep neural networks where
the estimation uncertainty is also Ω(k) via Prop. C.4 in App. C. In short, using i.i.d. noise can lead to
scaling estimation uncertainty in many cases, raising a significant issue for data valuation, which we
mitigate next.

5.2 CORRELATED NOISE TO REDUCE ESTIMATION UNCERTAINTY

The key to mitigating this “linearly scaling” estimation uncertainty lies in reducing the variance of
the noise zt in each iteration to render it less significant after amplification when propagated to the
loss (equivalently V ). Taking advantage of the way data values are estimated where private gradients
are continuously released in each iteration, we can add a carefully correlated noise z∗t to the gradients
ĝπt instead of independent noise zt ∼ N (0, k(Cσ)2I) while achieving the same DP guarantee.

Constructing z∗t exploits the post-processing property of DP: reusing previously released private
statistics does not affect the DP guarantee level. At each iteration t, instead of directly injecting
i.i.d. noise to ĝπt to become g̃πt := ĝπt + zt, estimation uncertainty can be reduced by reusing
the i.i.d.-perturbed gradients g̃π1 , . . . , g̃πt . To ease the understanding of the core idea, we begin by
assuming that the original gradients at each iteration are identical, i.e. ĝπ1 = ĝπ2 = . . . = ĝπk ,
and relax it later. Instead of g̃πt , a weighted sum (e.g., g̃∗πt := t−1

∑t
l=1 g̃πl) of previously released

private gradients can be utilized. This implicitly constructs the correlated noise z∗t := t−1
∑t

l=1 zl ∼
N (0, (k/t)(Cσ)2I), resulting a reduction in variance by a factor of t. To see how this variance
reduction is propagated to V , compare the variance on the following strongly convex function (to
mimic V ): Var[∥g̃∗πt∥22] → t−2Var[∥g̃πt∥22] as k → ∞ (see Obs. C.1). Notice that the variance
reduction is amplified from t−1 to t−2. Indeed, such variance reduction can lead to an O(log2 k)
bound for the estimation uncertainty (see Prop. C.9). However, two questions remain: (i) Is the
“identical gradient” assumption satisfied for semivalue estimation, and what if it is not? (ii) How to
cleverly reuse previously privatized gradients to obtain a lower estimation uncertainty?

For question (i), unfortunately, the assumption is not satisfied: The gradients at each permutation ĝπt ,
though obtained from the same underlying data, are not identical in general since θp

πt are different
for different πt. Specifically, consider a party j whose unperturbed gradients in k evaluations are
ĝπ1 , ĝπ2 , . . . , ĝπk . The unperturbed gradients are first injected with a Gaussian noise to produce the
perturbed gradients g̃πt = ĝπt + zt for t ∈ [k]. Then, party j will release the gradient

g̃∗πt := t−1
∑t

l=1 g̃πl = t−1
∑t

l=1 ĝπl + t−1
∑t

l=1 zl

which, however, is not an unbiased estimator for ĝπt since E[g̃∗πt ] = t−1
∑t

l=1 ĝπl ̸= ĝπt unless
ĝπ1 = ĝπ2 = . . . = ĝπt (i.e., identical gradients). Nevertheless, empirical observations suggest that
as compared to g̃πt , ĝπt is much “closer” to g̃∗πt in terms of the mean difference in cosine similarity

∆cos := n−1
∑

j∈[n] k
−1
∑k

t=1[cos(ĝπt,j , g̃
∗
πt,j)− cos(ĝπt,j , g̃πt,j)]

where cos(a, b) := |a · b|/(∥a∥2∥b∥2), and the difference in ℓ2 distance

∆ℓ2 := n−1
∑

j∈[n] k
−1
∑k

t=1 ∥ĝπt,j − g̃∗πt,j∥2 − ∥ĝπt,j − g̃πt,j∥2 ,

2A regular semivalue has p(π) > 0 for all π ∈ Π (Carreras & Freixas, 2002). Examples include Shapley
value and Banzhaf value.
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as shown in Fig. 1 where we empirically investigate the similarity with 400 randomly selected data
points from the diabetes dataset (Efron et al., 2004) trained with logistic regression. The difference is
even more pronounced with a higher budget k, suggesting that g̃∗πt is better than g̃πt in approximating
ĝπt . Therefore, relaxing the assumption of identical gradients, we assume that they are i.i.d. samples
of a distribution (also assumed in (Faghri et al., 2020; Zhang et al., 2013)). Additionally, we further
assume an diagonal sub-Gaussian distribution, defined as follows.
Definition 5.2 (Diagonal Multivariate Sub-Gaussian Distribution). Let X ∈ Rn be a random
vector with E[X] = 0. X is said to follow a diagonal multivariate sub-Gaussian distribution if
∀i ∈ [n], Xi follows a sub-Gaussian distribution and ∀i, j ∈ [n] s.t. i ̸= j,Cov[Xi, Xj ] = 0.

For question (ii), we specifically consider linear combinations of the private gradients to use linearity
of expectation to ensure unbiasedness (see P2). Formally, we express the finally released gradients
in all iterations as a matrix product W = XA, where A = (g̃π1 , . . . , g̃πk)⊤ and X is a square
matrix (which will be relaxed in Sec. 5.3) mapping A to the matrix of released gradients W =
(g̃∗π1 , . . . , g̃∗πk)

⊤. Since there are many possible matrices W , we describe two key principles (specific
to data valuation) in selecting W , for a square matrix X .

P1. Lower traingularity: X should be lower triangular.
P2. Unbiasedness: the combined gradient g̃∗πt should be a weighted sum of the previous gradients,

i.e., g̃∗πt :=
∑t

l=1 Xt,lg̃πl where
∑t

l=1 Xt,l = 1.

P1 ensures that each revealed gradient is calculated as a weighted prefix sum of the preceding
perturbed gradients as future gradients are unknown. P2 ensures unbiased gradient estimate E[g̃∗πt ] =
E[ĝπt ] (note that we treat ĝπt as a random variable here), and thus an unbiased estimate for the utility.
The following square matrix X∗ satisfies P1 and P2:

X∗
i,j := i−1 · 1j≤i . (4)

Despite its simplicity, X∗ is surprisingly a “one-size-fits-all” matrix as it delivers a lower asymptotic
bound than Ω(k) (with i.i.d. noise) when k is large, even if the unperturbed gradients are not identical:
Proposition 5.3 (Correlated Noise with X , informal). Let g̃πl , l ∈ [t] be perturbed gradients using
the Gaussian mechanism that satisfies (ϵ, δ)-DP. ∀t ∈ [k], denote θ∗

πt := θp
πt − α

∑t
l=1 Xt,lg̃πl ,

m∗(πt) := V (θ∗
πt)−V (θp

πt) and ψ∗ := k−1
∑k

t=1 p(π
t)m∗(πt). Assume that ∀t ∈ [k], ĝπt−E[ĝπt ]

i.i.d. follow an diagonal multivariate sub-Gaussian distribution with covariance Σ ∈ R(d×d) and let
σ2
g := d−1

∑d
r=1 Σr,r. Then, using a suitable matrix X can produce Var[ψ∗|θp

π1 ,θ
p
π2 , . . . ,θ

p
πk ] =

O(log2 k + σ4
g) and E[ψ∗ − ψ] = O(log k + σ2

g) while satisfying (ϵ, δ)-DP. Moreover, as k →∞,
X →X∗.

A formal statement of Prop. 5.3 and its proof is found in Appendix (Prop. C.10). Prop. 5.3 offers
a better bound than Ω(k) in Prop. 5.1 as σ2

g is a constant. Notice that as k → ∞, X → X∗. An
exciting implication of Prop. 5.3 is that one can use X∗ to approximate X by setting a large k
regardless of σ2

g and achieve the given asymptotic bound. Another implication is that implementation
of Prop. 5.3 is simple since all Xt,l are identical except for Xt,t. Thus X is fully specified by just
k parameters: Xt,t for t ∈ [k]. As shown in Algorithm 1 in red , on top of i.i.d. , the model is
updated using a weighted sum between g̃∗πt−1 and g̃πt at each iteration t.

5.3 MORE VARIANCE REDUCTION WITH NON-SQUARE MATRIX

The bound in Prop. 5.3, though asymptotically better than Ω(k), still grows in terms of k: estimates
still become worse even with more samples. Inspired by the “burn-in” technique (Neiswanger et al.,
2014) widely employed in MCMC, we show that it is possible to achieve a constant bound via a
non-square matrix (i.e., relaxing P1). For an arbitrary square matrix X , consider its counterpart Y
defined with a hyperparameter q ∈ (0, 1), Y (k−kq)×k := X(kq + 1 : k; 1 : k) where the bracket
means taking a sub-matrix with the selected rows and columns. In other words, given a X , Y is a
sub-matrix of X with the (kq + 1)th row to the last row, and thus a counterpart to X and relaxes
P1. The intuition is that in the first few iterations, t is small, causing g̃∗πt to still incur relatively
large variances even with correlated noise via X . As a remedy, Y effectively discards these highly
fluctuating marginal contributions to yield an asymptotically even lower total variance than X .
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Proposition 5.4 (Correlated Noise with Y , informal). Let g̃πl , l ∈ [t] be perturbed gradients
using the Gaussian mechanism that satisfies (ϵ, δ)-DP. ∀t ∈ {kq + 1, . . . , k}, denote θ∗

πt := θp
πt −

α
∑t

l=1 Y t−kq,lg̃πl ,m∗(πt) := V (θ∗
πt)−V (θp

πt), and ψ∗ := (k−kq)−1
∑k

t=kq+1 p(π
t)m∗(πt) for

q ∈ (0, 1). With the same assumption and the suitable matrix X discussed in Prop. 5.3, setting ∀t ∈
[k],∀l ∈ [t],Y t,l = Xt,l produces Var[ψ∗|θp

π1 ,θ
p
π2 , . . . ,θ

p
πk ] = O

(
(1− q)−2 log2 (1/q) + σ4

g

)
and E[ψ∗ − ψ] = O((1− q) log 1/q + σ2

g) while satisfying (ϵ, δ)-DP.

A formal statement of Prop. 5.4 is in Appendix (Prop. C.11). Prop. 5.4 shows that we can control
the estimation uncertainty by a constant (i.e., entirely removing the effect of k) with a combination
of correlated noise and burn-in. Intuitively, the first term represents the injected noise controlled
by q. In particular, since kq ∈ N+, we have q ≥ 1/k which implies log2 (1/q) ≤ log2 k. As
such, when k → ∞ and q → 1/k, the bound is reduced to that in Prop. 5.3. As q → 1, too many
evaluation samples are “burnt”, leaving insufficient samples to average out the noise as reflected
by the exploding first term where (1− q)−2 log2 (1/q)→∞. We show in detail how q affects the
estimation uncertainty in Sec. 6.2. Pseudo-code is in Algorithm 1 (in green ). On top of red and

blue , green lines exclude the first kq marginal contributions from being included in ψ.

6 EXPERIMENTS

We fix C = 1.0 and (ϵ = 1, δ = 5×10−5)-DP guarantee unless otherwise specified. All experiments
are repeated over 5 independent trials. We focus on classification tasks as they are more susceptible
to noise and defer regression task to App. D.3. We consider data selection and noisy label detection
tasks as standard evaluations of the effectiveness of a data value estimate (Ghorbani & Zou, 2019;
Kwon & Zou, 2022; Wang & Jia, 2023; Zhou et al., 2023). Exploiting Prop. 5.3, we set a large
k ≥ 200 (except FL) and use X∗ and Y ∗ for adding correlated noise. Additional experimental
settings and results are in App. D.

While our theoretical results have provided a (ϵ, δ)-DP guarantee level, in App. D.1, we verify the
privacy protection of our method by constructing a membership inference attack (MIA) following the
setting in (Wang et al., 2023), and demonstrate that our method can successfully defend against the
constructed MIA. For experiments in the main text, we focus on how our method improves the data
value estimation with privacy protection.

6.1 INCREASING k UNDER I.I.D. NOISE Does Not REDUCE THE ESTIMATION UNCERTAINTY

We empirically show the scaling estimation uncertainty as the evaluation budget k increases and its
implication. As a setup, we randomly choose 400 training examples from the diabetes dataset (Efron
et al., 2004) with the remaining data points as the test dataset. We train a logistic regression
using the negated cross-entropy loss on the test dataset as the utility function V . To evaluate
the estimation uncertainty, we first examine the quality of data value estimates through mean-
adjusted variance of ψj (Zhou et al., 2023), which is the ratio between the empirical variance
s2j := k−1(k − 1)−1

∑k
t=1[mj(π

t) − µj ]
2 and the empirical mean µj := k−1

∑k
t=1mj(π

t). We
also examine how test accuracy changes when removing training examples with the highest ψ’s. The
leftmost figure of Fig. 2 shows that the mean-adjusted variance s2i.i.d./|µi.i.d.| with i.i.d. noise increases
with k, indicating greater estimation uncertainty, whereas using correlated noise, s2corr./|µcorr.| not
only decreases but is also smaller by several magnitudes (in 105). Moreover, µi.i.d.’s computed with
i.i.d. noise are increasingly negative as k increases, whereas µcorr.’s computed with correlated noise
stay positive, suggesting that the estimated ψ’s are less affected by noise. The 3rd figure of Fig. 2
shows that ψ’s computed with greater k produces higher test accuracy during removal (i.e., closer to
random removal), verifying our identified paradox that ψ’s computed with more budget are poorer
estimates of data values.

6.2 CORRELATED NOISE IMPROVES THE QUALITY OF THE ESTIMATES

Following the same setup as Sec. 6.1, we compute the ψ’s using correlated noise (with q = 0.8) and
no injected noise due to DP respectively. The results are shown in the rightmost figure of Fig. 2.
Removing data points with high ψ’s computed with no injected noise produces low test accuracy

8
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Figure 2: (a) n−1
∑

j∈[n] s
2
j/|µj | and (b) µj vs. k using i.i.d. noise and correlated noise. (c) error

bars of test accuracy vs. ratio of data removed with the highest ψ’s using different k with i.i.d. noise
and (d) also with correlated noise and no DP. “Random” means random removal.

close to that with correlated noise. In contrast, the curve of ψ’s computed with i.i.d. noise lies far
above (i.e., close to random removal), suggesting that ψ’s computed with correlated noise are much
more reflective of the true worth of data as compared to ψ’s computed with i.i.d. noise.

Ablation study on the influence of q. We study how much q affects the data value estimation in a
noisy label detection setting on two datasets. We randomly perturb 30% of labels on a selection of
800 training examples from Covertype dataset (Blackard, 1998) (and MNIST dataset (LeCun et al.,
1990) in App. D.4) respectively. The datasets are trained with logistic regression (LR) and a more
complex convolutional network (CNN). Ideally, a good data value estimate should assign the lowest
ψ’s to the perturbed training examples. To measure this, we plot the AUC-ROC curve (AUC) in
Fig. 3 with q = 0 equivalent to X∗. With increased k, the AUC with our method increases especially
in the large-q region while the AUC with i.i.d. noise decreases. We also observe that AUC generally
increases with q when q ⪅ 0.9.

Adopting other utility functions. While our theoretical analysis is w.r.t. negated loss as the utility
function V , we demonstrate similar results with test accuracy as V , shown in the right column of
Fig. 3. Our method still outperforms i.i.d. noise, although the AUC is lower than when V is negated
loss. We think this is because accuracy is a less fine-grained metric. Hence subtle changes in the
model performance (often due to perturbation) in this task cannot be well reflected. Moreover, we
observe that as q → 1, AUC degrades, consistent with the result in Prop. 5.4.
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Figure 3: Plots of AUC v.s. burn-in ratio q ∈ [0, 1) (with q = 0 equivalent to X∗). V is (left and
middle) negated test loss and (right) test accuracy. Lines represent mean and shades represent 1
standard deviation. Higher is better.

Experiments on other semivalues. We compare the effect of utilizing correlated noise with
data Banzhaf (Wang & Jia, 2023) and Beta Shapley (Kwon & Zou, 2022) in Table 2. We consider
the same setup as Sec. 6.2 with k = 1000. We compare the performance using X∗ and Y ∗ with
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Table 2: Mean (std. errors) of AUC on Cover-
type trained with LR (top) and MNIST trained
with CNN (bottom). The best score is highlighted.
Higher is better.

semivalues no DP i.i.d. noise X∗ Y ∗ (q = 0.5) Y ∗ (q = 0.9)

Shapley 0.905 (1.00e-03) 0.675 (6.00e-03) 0.735 (2.00e-02) 0.774 (8.00e-03) 0.788 (4.00e-03)
Banzhaf 0.896 (2.00e-03) 0.533 (1.70e-02) 0.725 (2.00e-02) 0.770 (8.00e-03) 0.777 (4.00e-03)

Beta(4, 1) 0.882 (1.00e-03) 0.612 (1.40e-02) 0.721 (2.10e-02) 0.766 (8.00e-03) 0.777 (4.00e-03)
Beta(16, 1) 0.875 (0.00e+00) 0.557 (2.40e-02) 0.707 (2.00e-02) 0.757 (8.00e-03) 0.767 (5.00e-03)

Shapley 0.988 (0.00) 0.600 (1.50e-02) 0.627 (2.30e-02) 0.803 (4.00e-03) 0.828 (6.00e-03)
Banzhaf 0.985 (1.00e-03) 0.532 (2.00e-02) 0.616 (2.30e-02) 0.808 (4.00e-03) 0.827 (7.00e-03)

Beta(4, 1) 0.991 (0.00) 0.569 (1.50e-02) 0.618 (2.10e-02) 0.789 (4.00e-03) 0.810 (7.00e-03)
Beta(16, 1) 0.992 (0.00) 0.539 (1.00e-02) 0.615 (1.10e-02) 0.773 (5.00e-03) 0.793 (9.00e-03)

Table 3: Mean (std. errors) of ∆i.i.d. and ∆corr.
for dataset valuation (top) and FL (bottom).
Best scores are highlighted (lower is better).
B is the dataset size.

ML Task {k, n,B} ∆i.i.d. ∆corr. (Ours)

MNIST + CNN {200, 800, 8} 0.290 (1.63e-02) 0.170 (3.73e-02)
CIFAR10 + CNN {1000, 100, 32} 0.178 (5.85e-02) 0.0303 (1.53e-02)

CIFAR10 + ResNet18 {1000, 100, 32} 0.204 (5.33e-02) 0.119 (1.73e-02)
CIFAR10 + ResNet34 {1000, 100, 32} 0.141 (8.51e-03) 0.0433 (7.10e-03)

MNIST + CNN {50, 50, 32} 0.195 (9.40e-03) 0.0810 (8.06e-03)
CIFAR10 + CNN {50, 50, 32} 0.167 (3.96e-02) 0.0415 (9.63e-03)

q ∈ {0.5, 0.9}. For all variants, the AUC is higher than that with i.i.d. noise. Particularly, q = 0.9
works the best for all 4 semivalues tested. In contrast, the AUCs with i.i.d. noise using data Banzhaf
are ≈ 0.53 on both datasets, close to randomness (0.5). The results show that our method generalizes
to various data valuation metrics. We also note a similar improvement for LOO (Cook, 1977) in
App. D.4 despite it not being a regular semivalue.

6.3 APPLICATION TO OTHER USE CASES

We verify the effectiveness of using correlated noise for dataset valuation (Wu et al., 2022) and
collaborator attribution in federated learning (Wang et al., 2020) (refer to App. D.2 for setup). We
consider MNIST dataset and CIFAR10 (Krizhevsky et al., 2012) dataset, trained on CNN and fine-
tuned on pretrained ResNet18/34 (He et al., 2015). We tabulate the difference in AUC between
using correlated noise with q = 0.9, denoted as ∆corr. := AUCno DP − AUCcorr., and using i.i.d. noise,
denoted as ∆i.i.d. := AUCno DP − AUCi.i.d.. For ResNet34, we use ϵ = 10 as the model is more
complex, causing both i.i.d. and our method to have degraded performance with strict privacy. Our
methods outperform i.i.d. noise as shown in Table 3 top. For FL, we notice that the continually
updating characteristic of the global model poses two challenges: (i) the overall scale of the loss
values decreases in each round as the model gradually converges such that marginal contributions
computed in later rounds are less significant, and (ii) the variance of gradients σ2

g is larger than in
common data valuation scenarios. To tackle these challenges, we adopt test accuracy as V so that V
are in the same scale in each round, use a matrix with Xt,t > 1/t to control σ2

g , and choose a small
burn-in ratio q = 0.2 to keep more evaluations in the first few rounds (detailed in App. D.2). The
results with these modifications are shown in Table 3 bottom. Our method outperforms i.i.d. noise by
a large margin, showing the applicability of our approach beyond the default data valuation setting
under which our theoretical results are developed.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

In this work, we identify a problem in data valuation where DP is enforced via perturbing gradients
with i.i.d. noise: The estimation uncertainty scales linearly (i.e., Ω(k)) with more budget k and
renders the data value estimates almost useless (i.e., close to random guesses in some investigated
cases). As a solution, we propose to use correlated noise and theoretically show that using a weighted
sum via matrix form using X provably reduces the estimation uncertainty of semivalues from Ω(k)
to O(1) and empirically demonstrate the implications of our method on various ML tasks and data
valuation metrics. One limitation is the need to store the gradients. However, this limitation is
alleviated when the number of parties is small (e.g. dataset valuation) or when the memory load
can be distributed across parties (e.g. FL). Another limitation is that our theoretical result assumes
an diagonal multivariate sub-Gaussian distribution of the gradients. Nevertheless, we empirically
demonstrate that our method works for neural networks where the assumption is not explicitly
satisfied. A future direction is to explore other possible X to reduce estimation uncertainty further.
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APPENDIX

A TABLE OF NOTATIONS

Table 4: Notations. The subscript j is omitted where the context is clear.

Notations Definitions Interpretation

[n] [n] := {1, 2, . . . , n} the set of numbers indexed from 1 to n
Π Π := Perm([n]) the set of all permutations of [n] parties
πt πt ∼ Unif(Π) a sample of permutation drawn uniformly from Π at the tth iteration

ĝπt,j , ĝπt ĝπt,j ≈ gπt,j the (clipped) gradient (of party j) computed at the tth permutation (πt ∈ Π)
g̃πt,j , g̃πt g̃πt,j := ĝπt,j + zt the perturbed gradient with Gaussian mechanism zt at the tth iteration
g̃∗πt,j , g̃

∗
πt g̃∗πt,j := ĝπt,j + z∗ the perturbed gradient computed with correlated noise z∗ (realized via X or Y )

Pπ
j N.A. the set of all precedents of party j in permutation π

π[|Pπ
j |] N.A. the index of the party immediately before j in permutation π

w(s) N.A. weight coefficient of marginal contribution with cardinality s
pj(π), p(π) pj(π) := nw(|Pπ

j |+ 1) the weight coefficient of the marginal contribution made by party j at permutation π
θp
πt,j ,θ

p
πt θp

πt,j
:= θ

πt,πt[|Pπt
j |] the model parameters immediately before updated with party j’s gradients at permutation πt

θπt,j ,θπt θπt,j := θp
πt,j − αg̃πt,j model parameters computed after updated with party j’s gradients at iteration t

V (θπt,j) V (θπt,j) := V (Pπt

j ∪ {j}) the utility of the model updated with gradients of party j’s gradients at permutation πt

mj(π
t),m(πt) mj(π

t) := V (θπt,j)− V (θp
πt,j) marginal contribution (of party j) with i.i.d. noise at permutation πt

m∗
j (π

t),m∗(πt) depends on implementation marginal contribution (of party j) with correlated noise at permutation πt

ϕj , ϕ ϕj := Eπ∈Π[pj(π)mj(π)] the exact semivalue
ψj , ψ ψj := t−1

∑k
t=1mj(π

t) a semivalue estimate (of party j) with i.i.d. noise in k iterations
ψ∗
j , ψ

∗ depends on implementation a semivalue estimate (of party j) with correlated noise in k iterations

B ADDITIONAL DISCUSSIONS

B.1 SEMIVALUE AS A RANDOM VARIABLE.

The exact computation of semivalues is often intractable in practice due to the need to compute an
exponential number of marginal contributions V (S ∪ {i})− V (S). Moreover, in data valuation, the
utility function V is not deterministic w.r.t. S: V is commonly defined as the test accuracy or test
loss (Ghorbani & Zou, 2019), which is stochastic due to (stochastic) gradient descent and random
model initialization. Such stochasticity becomes more pronounced when gradients are injected with
artificial noise to ensure privacy such as in DP-SGD (Abadi et al., 2016) (recalled later). Hence, the
semivalue estimator ψi is treated as a random variable whose randomness comes from the marginal
contributions.

B.2 DIFFERENTIAL PRIVACY FRAMEWORK.

We emphasize that our analysis adopts this definition as we rely on the Gaussian mechanism and
leverage its composition property (Dwork & Roth, 2014). Our analysis holds for other DP frame-
works capturing privacy guarantee with Gaussian mechanism and possessing composition and
post-processing properties, such as Rényi DP (Mironov, 2017) and z-CDP (Bun & Steinke, 2016).
Typically, both Rényi DP and z-CDP satisfy post-processing immunity and have composition proper-
ties. Moreover, both provide a DP guarantee for the Gaussian mechanism. Notably, while both DP
frameworks provide a modestly tighter privacy analysis than compared to (Dwork & Roth, 2014),
to the best of our knowledge, they still require the variance of the Gaussian noise to linearly scale
with k to satisfy a given level of DP guarantee. In fact, some existing works have identified that
the moment accountant method (Abadi et al., 2016) which we adopt is an instantiation of Rényi
DP (Ouadrhiri & Abdelhadi, 2022) translated back to (ϵ, δ)-DP. Lastly, we note that our theoretical
analysis is independent of the choice of DP framework except for requiring zt ∼ N (0, kσ2I).

Gaussian mechanism. We note that other mechanisms exist for achieving privacy with DP guaran-
tees. We choose the Gaussian mechanism for the convenience of mathematical analysis compared to
other mechanisms such as the Laplace mechanism as well as a manifold of existing works discussing
the theoretical properties of the Gaussian mechanism.
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B.3 COMPOSITION OF DP MECHANISMS.

While it is possible to find a theoretical privacy budget lower than the result in (Abadi et al., 2016,
Theorem 1), the current asymptotic bound σ2 = Ω(k) is the best we know. We also note that
there have been efforts at improving the bound (Asoodeh et al., 2021). However, the results are
not asymptotically better in terms of k, hence do not affect our theoretical results. Moreover, we
emphasize that our theoretical analysis and proof strategy do not depend on the exact form of σ2

other than assuming it depends on k. If a lower bound is found in the future, our analysis can be
readily adapted.

Note on per evaluation DP guarantee and final DP guarantee. We are concerned about the final
DP guarantee (i.e., (ϵ, δ)-DP guarantee after k compositions) unless otherwise stated. Notably, by
setting zt ∼ N (kσ2I), each per-evaluation DP-guarantee is stronger, or put differently, the privacy
budget required at each evaluation to satisfy a given (ϵ, δ)-DP guarantee is lowered such that, after k
compositions, the desired final DP-guarantee can be achieved.

B.4 DP GUARANTEE LEVEL AND DATA VALUE ESTIMATES

Noise introduced by DP causes a lower mean of data value estimates. Mathematically, DP
imposes a limit on the leave-one-out property of the privatized mechanism M. In particular, if
V (·) ∈ [0, 1] (e.g., when test accuracy is used as V ), then we have, for any party i and subsets
S ⊆ [n] \ {i}, the following (Dwork et al., 2015, Lemma 6):

|ψi| := |ES [V (S ∪ {i})− V (S)]| ≤ eϵ − 1 + δ

where (ϵ, δ) are the parameters satisfying (ϵ, δ)-DP. Assuming a fixed δ, stronger DP implies a lower
ϵ, hence decreased right-hand side value, i.e., the upper bound for the marginal contribution. This
inequality suggests that stronger DP results in lower absolute value of the data value estimates. We
find this a reasonable behavior as the decreased value reflects the erosion of information carried by
the data. Instead, having a lower absolute data value does not forbid us to still preserve the relative
order of the estimates by minimizing the estimation uncertainty.

Impact of different (ϵ, δ)-DP guarantee levels on our method. Through our theoretical devel-
opment, we have established that the estimation uncertainty can be controlled to be independent of
the evaluation budget k, i.e., the noise due to DP is only affected by the final DP guarantee level.
That said, an overly large final DP guarantee level shrinks the gap between the performance of
i.i.d. noise and without DP noise since perturbation is small, and vice versa. Therefore, to highlight
the effectiveness of our method in controlling the estimation uncertainty, we fix a moderate final DP
guarantee level (ϵ, δ) = (1.0, 5× 10−5) throughout the main text s.t. a clear contrast in performance
on various ML tasks can be observed. We also provide additional experiments on different ϵ values in
App. D.5.

Computing Var[ψj ]. One can derive Var[ψj ] given Var[ψj |θp
π1,j , . . . ,θ

p
πk,j

] via the law of total
variance and assumptions on the inter-dependence between θp

πt,j’s and k, which is not the focus of
this work – how DP impacts data valuation, particularly semivalue estimation – and thus left for
future work.

B.5 SOCIETAL IMPACT

As discussed in the introduction in the main text, we believe our contribution has a huge potential
societal impact in improving privacy, especially with the rising awareness of protecting personal
data (Bukaty, 2019; Council of European Union, 2014). We do not find a direct path to any negative
societal impact with our contribution.
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C PROOFS AND ADDITIONAL RESULTS

C.1 PROOF OF THE EXAMPLE IN SEC. 5.2.

Observation C.1. For a particular party j, assume, for t ∈ [k], the norm-clipped gradients ĝπ1,j =

ĝπ2,j = . . . = ĝπk,j . Denote ∀t ∈ [k], g̃πt,j := ĝπt,j + zt where zt
i.i.d.∼ N (0, k(Cσ)2I) are

i.i.d. drawn. Let g̃∗πt,j := t−1
∑t

l=1 g̃πl,j . Then, Var[∥g̃∗πt,j∥22]→ t−2Var[∥g̃πt,j∥22] as k →∞.

Proof. We make the following notations to help ease understanding. Denote z∗t := t−1
∑t

l=1 zl ∼
N (0, ((Cσ)2/t)I). Denote ĝ := ĝπ1,j = ĝπ2,j = . . . = ĝπk,j . Further denote (·)r the rth element
of a vector. Then, we have

Var[∥g̃∗πt,j∥22] = Var[∥ĝ + z∗t ∥22]

= Var[
d∑

r=1

(ĝ + z∗t )
2
r]

=

d∑
r=1

Var[(ĝ + z∗t )
2
r]

=

d∑
r=1

(2ĝ)2rVar[(z∗t )r] +
d∑

r=1

Var[(z∗t )
2
r] + 2

d∑
r=1

Cov[2(ĝ)r(z∗t )r, (z
∗
t )

2
r]

= 4∥ĝ∥22Var[(z∗t )1] + dVar[(z∗t )
2
1] + 2

d∑
r=1

(
E[2(ĝ)r(z∗t )3r]− E[2(ĝ)r(z∗t )r]E[(z∗t )2r]

)
= 4∥ĝ∥22k(Cσ)2/t+ 2dk2(Cσ)4/t2

where in the last step we use the fact E[z] = E[z3] = 0 if z follows a Normal distribution with mean
0 as well as the fact that (t/σ2)(z∗t )

2
1 ∼ χ2

1 where χ2
1 is a chi-squared distribution with degree of

freedom 1. On the other hand,

Var[∥g̃πt,j∥22] = Var[∥ĝ + zt∥22]

=

d∑
r=1

Var[(ĝ + zt)
2
r]

= 2

d∑
r=1

(2ĝ)rVar[(zt)r] +
d∑

r=1

Var[(zt)2r] + 2

d∑
r=1

Cov[2(ĝ)r(zt)r, (zt)2r]

= 4∥ĝ∥22Var[(zt)1] + dVar[(zt)21] + 2

d∑
r=1

(
E[2(ĝ)r(zt)3r]− E[2(ĝ)r(zt)r]E[(zt)2r]

)
= 4∥ĝ∥22k(Cσ)2 + 2dk2(Cσ)4

where the last step follows the same logic as the last equation. We can easily verify that

lim
k→∞

Var[∥g̃πt,j∥22]
Var[∥g̃πt,j∥22]

=
2d(Cσ)4

2d(Cσ)4/t2
= t2 .

C.2 PROOF OF PROP. 5.1.

We first establish the following lemma to facilitate the proof.

Lemma C.2. If random variables X and Y are independent, then

Var[XY ] ≥ E[Y ]2Var[X] .
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Proof. SinceX and Y are independent, X|Y = X and Y |X = Y . Then, by the law of total variance,
we have

Var[XY ] = E[Var[XY |X]] + Var[E[XY |X]]

= E[X2Var[Y |X]] + Var[XE[Y |X]]

= E[X2Var[Y ]] + Var[XE[Y ]]

= E[Y ]2Var[X] + Var[Y ]E[X2]

≥ E[Y ]2Var[X] .

Proposition C.3 (Reproduced from Prop. 5.1.). ∀t ∈ [k], denote θπt := θp
πt − αg̃πt = θp

πt −
α(ĝπt + zt) where ∀t ∈ [k], zt

i.i.d.∼ N (0, k(Cσ)2I) with σ,C > 0. Given a test dataset consisting of
l data points Dtest = {(x1, y1), . . . , (xl, yl)}. If V is the negated mean-squared error loss on a linear
regression model

V (θ) := −l−1∑l
i=1(θ

⊤xi − yi)2
or the negated ℓ2-regularized cross-entropy loss on a logistic regression model

V (θ) := l−1∑l
i=1(1− yi) log(1− Sig(θ,xi))

+ l−1∑l
i=1 yi log(Sig(θ,xi))− λ∥θ∥22

where Sig(θ,xi) = (1 + e−θ⊤xi)−1 is the sigmoid function and λ > 0 is the regularization
hyperparameter. Denote m(πt) := V (θπt)− V (θp

πt). Further denote a regular semivalue estimator
ψ := k−1

∑k
t=1 p(π

t)m(πt). 3 The estimation uncertainty satisfies Var[ψ|θp
π1 ,θ

p
π2 , . . . ,θ

p
πk ] =

Ω(k).

Proof of Prop. 5.1. We first analyze the variance of zt on each data point in Dtest. Note that θπt,j =
θp
πt,j − α(ĝπt,j + zt) = (θp

πt,j − αĝπt,j) − αzt. Denote θ̄πt,j := θp
πt,j − αĝπt,j . Notice that,

conditional on θp
πt,j , θ̄πt,j can be deterministically calculated via gradient computation since the

underlying data is fixed. Then we have θπt,j = θ̄πt,j − αzt where the randomness of θπt,j arises
from the randomness of zt. Denote Denote p := minπ∈Π pj(π) > 0 the minimal weight, which is
positive since ψj is a regular semivalue. Due to the independence of all zt’s, we first consider the
variance of utility

Var

[∑k
t=1 pj(π

t)V (θπt,j)

k

∣∣∣∣∣θp
π1,j , . . . ,θ

p
πk,j

]
=

∑k
t=1 Var[pj(πt)V (θπt,j)|θp

πt,j ]

k2

≥
∑k

t=1 E[pj(πt)|θp
πt,j ]

2Var[V (θπt,j)|θp
πt,j ]

k2

≥
∑k

t=1 p
2Var[V (θ̄πt,j − αzt)|θp

πt,j ]

k2

=

∑k
t=1 p

2Var[V (θ̄πt,j − αzt)|θ̄πt,j ]

k2

where the 2nd step is derived from Lemma C.2 since pj and V are independent. We analyze the
conditional variance w.r.t. the two loss functions respectively in the following.

Linear regression. V here is the negated MSE on Dtest. The above variance is further analyzed
w.r.t. each single test data point (xi, yi) ∈ Dtest as

Var[V (θ̄πt,j − αzt)|θ̄πt,j ] = Var[−1

l

l∑
i=1

((θ̄πt,j − αzt)⊤xi − yi)2|θ̄πt,j ]

=
1

l2

l∑
i=1

Var[(θ̄πt,j − αzt)⊤xi − yi)2|θ̄πt,j ] .

3A regular semivalue has w(s) > 0 for all s ∈ [n] (i.e., p(π) > 0 for all π ∈ Π) (Carreras & Freixas, 2002).
Examples of regular semivalues include Shapley value, Banzhaf value, and Beta Shapley.
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Note that ∀t ∈ [k] and ∀i ∈ [l], the parameters θ̄πt,j , test data point feature xi, and test data point
label yi are fixed conditional on θ̄πt,j . Hence, (θ̄πt,j − αzt)⊤xi − yi is an affine transformation of a
normally distributed random variable zt:

(θ̄πt,j − αzt)⊤xi − yi|θ̄πt,j ∼ N (θ̄
⊤
πt,jxi − yi, α2kσ2x⊤

i xi) ,

the square of which produces a noncentral chi-squared random variable with 1 degree of freedom

((θ̄πt,j − αzt)⊤xi − yi)2|θ̄πt,j = λiχ
2
1(µ

2
i,t/λi)

where λi = α2kσ2x⊤
i xi and µi,t = θ̄

⊤
πt,jxi − yi.

Then, use the closed-form expression for the variance of a noncentral chi-squared random variable,

Var[(θ̄πt,j−αzt)⊤xi−yi)2|θ̄πt,j ] = Var[λiχ2
1(µ

2
i,t)|θ̄πt,j ] = 2λ2i (1+2µ2

i,t/λi) = 2λ2i +4µ2
i,tλi .

Denote β := 2
∑l

i=1 α
4σ4(x⊤

i xi)
2 and γt := 4α2σ2

∑l
i=1(x

⊤
i xi)(θ̄

⊤
πt,jxi − yi)

2. Note that
β and γt are constants conditional on θ̄πt,j . We may rewrite them as β = 1

k2

∑l
i=1 2λ

2
i and

γt =
1
k

∑l
i=1 4µ

2
i,tλi. With these, the variance of V is

Var[V (θ̄πt,j − αzt)|θ̄πt,j ] = Var[−1

l

l∑
i=1

((θ̄πt,j − αzt)⊤xi − yi)2|θ̄πt,j ]

=
1

l2

l∑
i=1

Var[(θ̄πt,j − αzt)⊤xi − yi)2|θ̄πt,j ]

=
β

l2
k2 +

γt
l2
k .

With this, we have the lower bound of the total variance of V as

Var

[∑k
t=1 pj(π

t)V (θπt,j)

k

∣∣∣∣∣θp
π1,j , . . . ,θ

p
πk,j

]
≥
∑k

t=1 p
2Var[V (θπt,j)|θp

πt,j ]

k2

=

∑k
t=1 p

2Var[V (θ̄πt,j − αzt)|θ̄πt,j ]

k2

≥
p2
∑k

t=1
β
l2 k

2

k2

=
p2kβ

l2

= Ω(k) .

Logistic regression. V here is the negated ℓ2-regularized logistic loss. Similarly, we can break the
variance of the utility into the variance of the loss on each test data point

Var[V (θ̄πt,j − αzt)|θ̄πt,j ] = Var[
1

l

l∑
i=1

yi log(1/(1 + e−(θ̄πt,j−αzt)
⊤xi)) + (1− y) log(1− 1/(1 + e−(θ̄πt,j−αzt)

⊤xi))

− ∥θ̄πt,j − αzt∥22|θ̄πt,j ]

=
1

l2

l∑
i=1

Var[yi log(1/(1 + e−(θ̄πt,j−αzt)
⊤xi)) + (1− yi) log(1− 1/(1 + e−(θ̄πt,j−αzt)

⊤xi))

− ∥θ̄πt,j − αzt∥22|θ̄πt,j ] .

Denote the logistic loss pi(θ) := yi log(1/(1 + e−θ⊤xi)) + (1− yi) log(1− 1/(1 + e−θ⊤xi)) ≥ 0.
Further denote the ℓ2 regularizer g(θ) = λ∥θ∥22 ≥ 0. To ease notation, we let

ξt := (θ̄πt,j − αzt)⊤xi|θ̄πt,j ∼ N (θ̄
⊤
πt,jxi, α

2kσ2x⊤
i xi) .
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Let u := θ̄
⊤
πt,jxi and s2 := α2kσ2x⊤

i xi. Now we show that E[−pi(θ̄πt,j − αzt)|θ̄πt,j ] = O(
√
k).

First, consider when the label yi = 1,

0 ≤ E[−pi(θ̄πt,j − αzt)|θ̄πt,j ] = −E[log(1/(1 + e−ξt)]

= E[log(1 + e−ξt)]

=

∫ ∞

−∞
p(ξt) log(1 + e−ξt)dξt

=

∫ 0

−∞
p(ξt) log(1 + e−ξt)dξt +

∫ ∞

0

p(ξt) log(1 + e−ξt)dξt

≤
∫ 0

−∞
p(ξt)(1 + log(e−ξt))dξt +

∫ ∞

0

p(ξt) log 2dξt

≤
∫ 0

−∞
p(ξt)(1− ξt)dξt +

∫ ∞

−∞
p(ξt) log 2dξt

=

∫ 0

−∞
p(ξt)(1− ξt)dξt + log 2

≤ log 2 + 1 +

∫ 0

−∞
p(ξt)(−ξt)dξt

= log 2 + 1 +
1

s
√
2π

∫ 0

−∞
(−ξt)exp

(
− (ξt − u)2

2s2

)
dξt

= log 2 + 1 +

(
−1

2
µ erfc

(√
2µ

2s

)
+

√
1

2π
sexp

(
− u2

2s2

))

≤ log 2 + 1 + |u|+ s

√
1

2π
exp

(
− u2

2s2

)
≤ log 2 + 1 + |u|+ s

= O(s)

= O(
√
k)

where erfc represents the complementary error function and the integral
1

s
√
2π

∫ 0

−∞(−ξt)exp
(
− (ξt−u)2

2s2

)
dξt =

(
− 1

2µ erfc
(√

2µ
2s

)
+
√

1
2π sexp

(
− u2

2s2

))
can be de-

rived with a math solver (in our case, the “sympy” package of Python, and a notebook involving the
code snippet for reproducing the result is included in the supplementary materials). Similarly, when
the label yi = 0,

E[−pi(θ̄πt,j − αzt)|θ̄πt,j ] = E[− log(e−ξt/(1 + e−ξt))]

= −E[−ξt − log(1 + e−ξt)]

= E[ξt] + E[log(1 + e−ξt ]

≤ E[ξt] + log 2 + 1 +

∫ 0

−∞
p(ξt)(−ξt)dξt

= log 2 + 1 +

∫ ∞

0

p(ξt)ξtdξt

= log 2 + 1 +
1

s
√
2π

∫ ∞

0

ξtexp
(
− (ξt − u)2

2s2

)
dξt

≤ log 2 + 1 +
1

2s

(
2|us|+

√
2

π
s2exp

(
− u2

2s2

))
= O(

√
k) .

In conclusion, E[−p(θ̄πt,j − αzt)|θ̄πt,j ] = O(
√
k). Next, we work out the expectation of ∥θ̄πt,j −

αzt∥22|θ̄πt,j . Note that θ̄πt,j − αzt ∈ Rd where d is the dimension of the model parameters. By
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linearity of expectation, we have

E[∥θ̄πt,j − αzt∥22|θ̄πt,j ] =

d∑
r=1

E[(θ̄πt,j − αzt)2r|θ̄πt,j ]

=

d∑
r=1

(
E[θ̄2

πt,j |θ̄πt,j ]− 2αθ̄πt,jE[zt] + α2E[z2t ]
)

= θ̄
2
πt,j + α2dkσ2

= O(k) .

With this, we can expand the following square of expectation as

E[−p(θ̄πt,j − αzt) + ∥θ̄πt,j − αzt∥22|θ̄πt,j ]
2

= E[−p(θ̄πt,j − αzt)|θ̄πt,j ]
2 − 2E[−p(θ̄πt,j − αzt)|θ̄πt,j ]E[∥θ̄πt,j − αzt∥22|θ̄πt,j ] + E[∥θ̄πt,j − αzt∥22|θ̄πt,j ]

2

= O(k) +O(k
√
k) + E[∥θ̄πt,j − αzt∥22|θ̄πt,j ]

2

= O(k
√
k) + E[∥θ̄πt,j − αzt∥22|θ̄πt,j ]

2 .

Next, consider that

E[(−p(θ̄πt,j − αzt) + ∥θ̄πt,j − αzt∥22)2|θ̄πt,j ] ≥ E[∥θ̄πt,j − αzt∥42|θ̄πt,j ] .

So, we can derive a bound of the variance from below by

Var[−p(θ̄πt,j − αzt) + ∥θ̄πt,j − αzt∥22|θ̄πt,j ] ≥ E[∥θ̄πt,j − αzt∥42|θ̄πt,j ]− (O(k
√
k) + E[∥θ̄πt,j − αzt∥22|θ̄πt,j ]

2)

= Var[∥θ̄πt,j − αzt∥22|θ̄πt,j ]−O(k
√
k)

=

d∑
r=1

Var[(θ̄πt,j − αzt)2r|θ̄πt,j ]−O(k
√
k) .

Consider that for each r ∈ [d] where d is the dimension of the model parameters,

(θ̄πt,j − αzt)r|θ̄πt,j ∼ N ((θ̄πt,j)r, α
2kσ2)

and squaring it produces a noncentral chi-squared random variable with 1 degree of freedom

(θ̄πt,j − αzt)2r|θ̄πt,j ∼ λχ2
1(µ

2/λ)

where λ = α2kσ2 and µ = (θπt,j)r. By the closed-form expression for the variance of a noncentral
chi-squared random variable,

Var[(θ̄πt,j − αzt)2r|θ̄πt,j ] = Var[λχ2
1(µ

2/λ)]

= 2λ2(1 + 2µ2/λ)

= 2α4k2σ2 + 4(θ̄πt,j)
2
rα

2kσ2 .

Plug this result back into the previous inequality,

Var[−p(θ̄πt,j − αzt) + ∥θ̄πt,j − αzt∥22|θ̄πt,j ] ≥ 2dα4k2σ2 + 4d(θ̄πt,j)
2
rα

2kσ2 −O(k
√
k) .

Hence,

Var

[∑k
t=1 pj(π

t)V (θπt,j)

k

∣∣∣∣∣θp
π1,j , . . . ,θ

p
πk,j

]
≥
∑k

t=1 p
2Var[V (θπt,j)|θp

πt,j ]

k2

=
p2
∑k

t=1 Var[V (θ̄πt,j − αzt)|θ̄πt,j ]

k2

≥
p2
∑k

t=1 2dα
4k2σ2 −O(k

√
k)

k2

= 2p2dα4σ2k −O(
√
k)

= Ω(k) .
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Lastly, we derive the conditional variance of a semivalue estimator with independent noise as

Var[ψj |θp
π1,j ,θ

p
π2,j , . . . ,θ

p
πk,j

] = Var

[∑k
t=1 pj(π

t)[V (θπt,j)− V (θp
πt,j)]

k

∣∣∣∣θp
π1,j ,θ

p
π2,j , . . . ,θ

p
πk,j

]

≥ Var

[∑k
t=1 pj(π

t)V (θπt,j)

k

∣∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]

≥
∑k

t=1 p
2Var[V (θπt,j)|θ̄πt,j ]

k2

= Ω(k) .

C.3 MORE GENERAL PROPOSITION FOR ESTIMATION UNCERTAINTY WITH I.I.D. NOISE

Proposition C.4. (I.I.D. Noise More General) Denote θ̄πt,j := θp
πt,j − αĝπt,j and θπt,j :=

θp
πt,j − αg̃πt,j . Suppose V is “locally” m-strongly concave in a domain D which contains the model

parameters in all k evaluations up to a margin αK, i.e. the union of ℓ∞(αK) balls ∪t∈[k]{θ ∈
Rd : ∥θ − θ̄πt,j∥∞ ≤ αK} ⊆ D. Let g̃πt,j := ĝπt,j + zt where each zt follows a truncated

Gaussian distribution bounded in the range [−K1,K1], i.e., zt
i.i.d.∼ Ntrunc(0, k(Cσ)

2I,−K1,K1).4
Assume that ∀t ∈ [k], θ̄πt,j is close to a local optimum in the sense that ∥∇θV (θ̄πt,j)∥2 <

min(m2 ,−V (θ̄πt,j)). Let ψj := k−1
∑k

t=1 pj(π
t)[V (θπt,j)−V (θp

πt,j)]. Then, for k ≤ K2/(Cσ)2,
Var[ψj |θp

π1,j , . . . ,θ
p
πk,j

] = Ω(k).

Proof. First, denote φ and Φ the pdf and cdf of a standard normal distribution. Let a truncated normal
distribution X ∼ Ntrunc(µ, σ

2, a, b). Further denote α := a−µ
σ , β := b−µ

σ . Then, the probability
density function (pdf) of X is

f(x;µ, σ, a, b) :=
1

σ

φ(ξ)

Φ(β)− Φ(α)
.

X admits a closed-form formula for the variance as

Var[X] = σ2

[
1− βφ(β)− αφ(α)

Z
−
(
φ(α)− φ(β)

Z

)2
]
≤ E[X2]

where Z := Φ(β) − Φ(α). Let zt := (ξ1, ξ2, . . . , ξd). Note that element ξr follows ξr ∼
Ntrunc(0, k(Cσ)

2,−K,K). Since K ≥
√
kσ, each element of zt is truncated at least 1 standard

deviation away from the mean. This suggests that β ≥ 1, α ≤ −1. Hence, |φ(α) − φ(β)| ≤
max(φ(α), φ(β)) ≤ φ(1) = 1√

2π
e−1/2 and Z ≥ Φ(1) − Φ(−1) > 0.6. Moreover, note that, for

|x| ≥ 1,

(xφ(x))′ =
1√
2π

(xe−x2/2)′ =
1√
2π

(1− 2x2)e−x2/2 < 0 .

Therefore, βφ(β)− αφ(α) ≤ 2φ(1) = 2√
2π
e−1/2. With these, we have that

1− βφ(β)− αφ(α)
Z

−
(
φ(α)− φ(β)

Z

)2

≥ 1− 2

0.6×
√
2π
−
(

e−1/2

0.6×
√
2π

)2

≥ 1− 0.81− 0.17

≥ 0.02 .

Consider that

E[∥αzt∥22] = α2
d∑

r=1

E[ξ2r ] ≥ α2
d∑

r=1

Var[ξ] ≥ 0.02α2dk(Cσ)2 .

4Let X ∼ N (µ, σ2). Then, conditional on a < X < b, X follows a truncated normal distribution
Ntrunc(µ, σ

2, a, b).
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Next, notice that θπt,j − θ̄πt,j = α(ĝπt,j − g̃πt,j) = −αzt, i.e., θπt,j = θ̄πt,j − αzt. Since
zt is clipped by K1, we have that ∀t ∈ k, |θπt,j − θ̄πt,j | = α|zt| ≤ αK1. This suggests that,
∀t ∈ [k], θπt,j lies in the union of ℓ∞(αK) balls, and therefore, ∀t ∈ [k], θπt,j ∈ D. Let
M := maxt∈[k] ∥∇θV (θ̄πt,j)∥2 < m

2 . Recall that if a function f is m-strongly convex, there is

f(y) ≥ f(x) +∇f(x)⊤(y − x) + m

2
∥y − x∥2 .

Since V is m-strongly concave, −V is m-strongly convex. Therefore, we have for −V

−V (θπt,j) = −V (θ̄πt,j − αzt) ≥ −V (θ̄πt,j) +∇θV (θ̄πt,j)
⊤αzt +

m

2
∥αzt∥22 ≥ 0 .

By strong convexity, we also have

−V (θ̄πt,j) ≥ −V (θ̄πt,j − αzt)−∇θV (θ̄πt,j − αzt)⊤αzt +
m

2
∥αzt∥22

−V (θ̄πt,j − αzt) ≤ −V (θ̄πt,j) +∇θV (θ̄πt,j − αzt)⊤αzt −
m

2
∥αzt∥22 .

Consider that

E[(−V (θπt,j))
2|θ̄πt,j ]

= E[(−V (θ̄πt,j − αzt))2|θ̄πt,j ]

≥ E[(−V (θ̄πt,j) +∇θV (θ̄πt,j)
⊤αzt +

m

2
∥αzt∥22)2|θ̄πt,j ]

≥ V (θ̄πt,j)
2 +

m2

4
E[∥αzt∥42]−mV (θ̄πt,j)E[∥αzt∥22]

− 2αV (θ̄πt,j)E[∇θV (θ̄πt,j)
⊤zt|θ̄πt,j ] +mαE[(∇θV (θ̄πt,j)

⊤zt)∥zt∥22|θ̄πt,j ]

≥ V (θ̄πt,j)
2 +

m2

4
E[∥αzt∥42]− 2αV (θ̄πt,j)E[∇θV (θ̄πt,j)

⊤zt|θ̄πt,j ] +mαE[(∇θV (θ̄πt,j)
⊤zt)∥zt∥22|θ̄πt,j ] .

Consider that, similar to a (non-truncated) normal distribution, E[ξr] = E[ξ3r ] = 0 due to symmetry
of ξr, we have

E[∇θV (θ̄πt,j)
⊤zt|θ̄πt,j ] =

d∑
r=1

E[(∇θV (θ̄πt,j))rξr|θ̄πt,j ] =

d∑
r=1

(∇θV (θ̄πt,j))rE[ξr] = 0

and

E[(∇θV (θ̄πt,j)
⊤zt)∥zt∥22|θ̄πt,j ] =

d∑
r=1

E[(∇θV (θ̄πt,j))rξ
3
r |θ̄πt,j ] +

∑
r ̸=r′

E[(∇θV (θ̄πt,j))rξrξ
2
r′ |θ̄πt,j ]

=

d∑
r=1

(∇θV (θ̄πt,j))rE[ξ3r ] +
∑
r ̸=r′

E[(∇θV (θ̄πt,j))rξr|θ̄πt,j ]E[ξ2r′ ]

= 0 + 0

= 0 .

Therefore,

E[(−V (θπt,j))
2|θ̄πt,j ] ≥ V (θ̄πt,j)

2 +
m2

4
E[∥αzt∥42] .

Since |zt| ≤ K1, (θ̄πt,j − αzt) is closed and bounded. By the extreme value theorem, there exists a
maximum of ∥∇θV (θ̄πt,j −αzt)∥22. We may let ∥∇θV (θ̄πt,j −αzt)∥22 ≤ D. Then,∥∇θV (θ̄πt,j −
αzt)∥2 ≤

√
D. With this, we have

E[∇θV (θ̄πt,j − αzt)⊤αzt|θ̄πt,j ] ≤ E[∥∇θV (θ̄πt,j − αzt)∥2∥αzt∥2|θ̄πt,j ]

= ∥∇θV (θ̄πt,j − αzt)∥2E[∥αzt∥2]
≤
√
DE[∥αzt∥2]
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and
E[∇θV (θ̄πt,j − αzt)⊤αzt|θ̄πt,j ] ≥ E[−∥∇θV (θ̄πt,j − αzt)∥2∥αzt∥2|θ̄πt,j ]

= −∥∇θV (θ̄πt,j − αzt)∥2E[∥αzt∥2]
≥ −
√
DE[∥αzt∥2] ,

where the 1st step in both inequalities above is by Cauchy-Scharwz inequality. We can further bound
E[∥αzt∥2] by

E[∥αzt∥2] =
√

E[∥αzt∥2]2

≤
√

E[∥αzt∥22]

=

√√√√α2

d∑
r=1

E[ξ2r ]

= α

√√√√ d∑
r=1

Var[ξ]

= α

√√√√ d∑
r=1

k(Cσ)2

= αCσ
√
dk

where in the 2nd and 4th steps we use the formula Var[X] = E[X2]− E[X]2. With this, we have

E[−V (θ̄πt,j − αzt)|θ̄πt,j ]
2 ≤ E[−V (θ̄πt,j) +∇θV (θ̄πt,j − αzt)⊤αzt −

m

2
∥αzt∥22|θ̄πt,j ]

2

≤ V (θ̄πt,j)
2 +DE[∥αzt∥2]2 +

m2

4
E[∥αzt∥22]2

− 2αV (θ̄πt,j)E[∇θV (θ̄πt,j − αzt)⊤αzt|θ̄πt,j ] +mV (θ̄πt,j)E[∥αzt∥22]
−mE[∇θV (θ̄πt,j − αzt)⊤αzt|θ̄πt,j ]E[∥αzt∥22]

≤ V (θ̄πt,j)
2 +DE[∥αzt∥22] +

m2

4
E[∥αzt∥22]2 − 2αV (θ̄πt,j)

√
DE[∥αzt∥2]

+m
√
DE[∥αzt∥2]E[∥αzt∥22]

≤ V (θ̄πt,j)
2 +

m2

4
E[∥αzt∥22]2 + (D +m

√
Dασ

√
dk)E[∥αzt∥22]− 2α2V (θ̄πt,j)

√
Dσ
√
dk

= V (θ̄πt,j)
2 +

m2

4
E[∥αzt∥22]2 + (D +m

√
Dασ

√
dk)α2dkσ2 − 2α2V (θ̄πt,j)

√
Dσ
√
dk

=
m2

4
E[∥αzt∥22]2 +O(k

√
k)

where in the last step we make use of the fact E[∥αzt∥22] = α2
∑d

r=1 E[ξ2r ] = α2dk(Cσ)2. Therefore,

Var[V (θπt,j)|θ̄πt,j ] = E[V (θπt,j)
2|θ̄πt,j ]− E[V (θπt,j)|θ̄πt,j ]

2

≥ m2

4
E[∥αzt∥42]−

m2

4
E[∥αzt∥22]2 +Ω(k

√
k)

= Var[∥αzt∥22] + Ω(k
√
k) .

Note that

Var[∥αzt∥22] = Var[
d∑

r=1

ξ2r ]

=

d∑
r=1

Var[ξ2r ] .

Intuitively, Var[ξ2r ] should be asymptotically the same as the variance of a chi-squared random variable,
i.e., Ω(k2). However, because of truncation, the expression of Var[ξ2r ] is much more complicated
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than that of a chi-squared random variable. We use a program built with Python Sympy to analyze
the exact form of Var[ξ2r ]. The relevant code (written in jupyter notebook) has been included in the
supplementary materials. Particularly, its variance has the following expression:

−
k2σ4

(
−

√
2Ke

− K2

2kσ2
√
π
√
kσ

+ erf
( √

2K
2
√
kσ

))2

erf2
( √

2K
2
√
kσ

) +

k2σ4

− 6
√
2Ke

− K2

2kσ2
√
π
√
kσ

−

√
2

K3e
− K2

2kσ2

k3/2σ3
− 3Ke

− K2

2kσ2
√

kσ


√
π

+ 3 erf
( √

2K
2
√
kσ

)
erf
( √

2K
2
√
kσ

) .

Note that we have K2 ≥ kσ2. As such, we may denote v := K2/(kσ2) ≥ 1. Then, the above
expression can be reduced to

k2σ4

−
(
−

√
2v0.5e−

v
2√

π
+ erf

(√
2v0.5

2

))2
erf2

(√
2v0.5

2

) +
− 6

√
2v0.5e−

v
2√

π
−

√
2
(
−3v0.5e−

v
2 +v1.5e−

v
2

)
√
π

+ 3 erf
(√

2v0.5

2

)
erf
(√

2v0.5

2

)
 .

Let the part in the large bracket be f(v). A plot of f is in Fig. 4. Note that as v →∞, erf
(√

2v0.5

2

)
becomes the dominant term, thus f → 2 as v → 1, f decreases, but stays positive. With these, we
conclude that Var[ξ2r ] ∝ k2. As such, Var[V (θπt,j)] = Ω(k2).

0 10 20 30 40 50
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f(v
)

Figure 4: Plot of f vs. v ∈ [1, 50].

Note that, when θp
πt,j is determined, so is θ̄πt,j . Denote p := minπ∈Π pj(π) and apply Lemma C.2.

Since each zt is i.i.d., we have

Var[ψj |θp
π1,j , . . . ,θ

p
πk,j

] = Var

[∑k
t=1 pj(π

t)[V (θπt,j)− V (θp
πt,j)]

k

∣∣∣∣∣θp
π1,j , . . . ,θ

p
πk,j

]

= Var

[∑k
t=1 pj(π

t)V (θπt,j)

k

∣∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]

≥
p2

k2

k∑
t=1

Var[V (θπt,j)|θ̄πt,j ]

=

∑k
t=1 Ω(k

2)

k2

= Ω(k) .
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C.4 USEFUL LEMMAS AND COROLLARIES

Lemma C.5. Let z∗t :=
∑t

l=1 Xt,lzl where zl
i.i.d.∼ N (0, k(Cσ)2I) ∈ Rd are i.i.d. drawn. Among

all matrices satisfying P1 and P2, X∗ as defined in Eq. (4) produces the lowest values of N :=∑k
t=1 E[∥z∗t ∥22], P :=

∑k
t=1 E[∥z∗t ∥42], and Q :=

∑k
t=1

√
E[∥z∗t ∥42]. In particular, we have

N = O(k log k) ,
P = O(k2) ,
Q = O(k log k) .

Proof. Since z∗t ∈ Rd and is diagonal, we may write z∗t = (ξt,1, ξt,2, . . . , ξt,d), where ∀t ∈ [k], r ∈
[d], ξt,r ∼ N (0, k(Cσ)2

∑t
l=1 X

2
t,l) since all zl’s are independent. Then, for each z∗t , there is

E[∥z∗t ∥22] = E[
d∑

r=1

ξ2t,r]

= E[
d∑

r=1

(k(Cσ)2
t∑

l=1

X2
t,l)χ

2
1]

= E[(k(Cσ)2
t∑

l=1

X2
t,l)χ

2
d]

= dk(Cσ)2
t∑

l=1

X2
t,l

where χ2
d refers to a chi-squared random variable with a degree of freedom d which satis-

fies E[χ2
d] = d. Since N is the sum of E[∥z∗t ∥22] over all t ∈ [k], we can minimize N if

∃X∗, s.t. ∀t ∈ [k],X∗ = argminX E[∥z∗t ∥22]. Fortunately, the optimization problem is a con-
vex quadratic program. Specifically, let wt = (Xt,1,Xt,2, ...,Xt,t)

⊤, we have the following
optimisation problem for each t ∈ [k]:

min
wt

w⊤
t wt

s.t. 1⊤wt = 1
wt ≥ 0 .

(5)

To solve this optimization problem, we adopt the standard Lagrange multiplier approach. The
Lagrangian is

L(wt, λ) = w⊤
t wt − λ(1− 1⊤wt) .

Then, we wish to have

∇wi
L(wt, λ) = 0

∀l ∈ [t], 2Xt,l + λ = 0 .

This suggests that the optimal is obtained when Xt,1 = Xt,2 = ... = Xt,t = −λ/2 = 1/t for each
t ∈ [k], which matches the form of X∗ in Eq. 4. With X∗, ξt,r ∼ N (0, k(Cσ)2/t), thus we can
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derive the lowest value of N as

minN =

k∑
t=1

E[∥z∗t ∥22]

=

k∑
t=1

E[
d∑

r=1

ξ2t,r]

=

k∑
t=1

k(Cσ)2

t
E[χ2

d]

=

k∑
t=1

dk(Cσ)2

t

≤ dk(Cσ)2(1 + log k)

= O(k log k)

where the second last step is by the inequality
∑k

t=1 1/t < 1 + log k. Next, we show that X∗ is also
a minimizer of P . Consider each summand of P can be expressed as

E[∥z∗t ∥42] = E[(
d∑

r=1

ξ2t,r)
2]

= E[
d∑

r=1

(ξ2t,r)
2] + E[

∑
r ̸=r′

ξ2t,rξ
2
t,r′ ]

=

d∑
r=1

k2(Cσ)4(

t∑
l=1

X2
t,l)

2E[(χ2
1)

2] + d(d− 1)E[ξ2t,1]2

=

d∑
r=1

k2(Cσ)4(

t∑
l=1

X2
t,l)

2E[(χ2
1)

2] + d(d− 1)(k(Cσ)2(

t∑
l=1

X2
t,l))

2E[χ2
1]

2

= (3d+ d(d− 1))k2(Cσ)4(

t∑
l=1

X2
t,l)

2

= d(d+ 2)k2(Cσ)4(

t∑
l=1

X2
t,l)

2 .

where in the 3rd step we use the fact E[ξ2t,rξ2t,r′ ] = E[ξ2t,r]E[ξ2t,r′ ] = E[ξ2t,1]2 since ξt,r’s are i.i.d.
for all r ∈ [d]. In the 4th step we use the fact that E[(ξ21)2] = 3. Notice that since

∑t
l=1 X

2
t,l ≥ 0,

minimizing E[∥z∗t ∥42] is equivalent to minimizing
∑t

l=1 X
2
t,l. The minimizer is discussed in the

above convex quadratic program where the optimal solution is X∗. As such, we can derive the
minimum of P as

minP =

k∑
t=1

E[∥z∗t ∥42]

=

k∑
t=1

d(d+ 2)k2(Cσ)4/t2

≤
∞∑
t=1

d(d+ 2)k2(Cσ)4/t2

= d(d+ 2)k2(Cσ)4π2/6

= O(k2)
where the second last step is by the fact

∑∞
t=1 1/t

2 = π2/6. Lastly, we show, in the same vein, that
the minimizer of Q is also X∗. This is obvious since the minimizer of E[∥z∗t ∥42] is obviously the
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minimizer of
√

E[∥z∗t ∥42]. The minimum of Q can hence be derived as

minQ =

k∑
t=1

√
E[∥z∗t ∥42]

=

k∑
t=1

√
d(d+ 2)k(Cσ)2/t

≤
√
d(d+ 2)k(Cσ)2(1 + log k)

= O(k log k) .

Lemma C.6. Let z∗t := −ζt +
∑t

l=1 Xt,l(zl + ζl) where zl
i.i.d.∼ N (0, k(Cσ)2I) ∈ Rd and ζl

i.i.d.∼
N (0,Σ) ∈ Rd are i.i.d. drawn and Σ ∈ R(d×d) is a diagonal matrix. Denote σ2

g := 1/d
∑d

r=1 Σr,r.
The matrix defined as ∀t ∈ [k],∀l ∈ [t − 1],Xt,l = t−1(k(Cσ)2 + σ2

g)
−1k(Cσ)2 and ∀t ∈

[k],Xt,t = t−1(k(Cσ)2+σ2
g)

−1(k(Cσ)2+ tσ2
g) satisfies P1 and P2. Denote N :=

∑k
t=1 E[∥z∗t ∥22],

P :=
∑k

t=1 E[∥z∗t ∥42], and Q :=
∑k

t=1

√
E[∥z∗t ∥42]. With this defined X , we have

N = O(k log k + kσ2
g) ,

P = O(k2 + kσ4
g + σ2

gk log k) ,

Q = O(k log k + kσ2
g) .

Proof. We may write z∗t = (ξt,1, ξt,2, . . . , ξt,d), where ∀t ∈ [k], r ∈ [d], ξt,r ∼
N (0, k(Cσ)2

∑t
l=1 X

2
t,l +Σr,r

∑t−1
l=1 X

2
t,l + (1−Xt,t)

2Σr,r) since all the zl’s and ζl’s are inde-
pendent. We may denote σ2

t,r := k(Cσ)2
∑t

l=1 X
2
t,l + Σr,r

∑t−1
l=1 X

2
t,l + (1 −Xt,t)

2Σr,r. Then,
for each z∗t , there is

E[∥z∗t ∥22] = E[
d∑

r=1

ξ2t,r]

=

d∑
r=1

E[σ2
t,rχ

2
1]

=

d∑
r=1

σ2
t,r

where in the second step, we use the property that if ξ ∼ N (0, (Cσ)2), then ξ2/(Cσ)2 = χ2
1 where

χ2
1 refers to a chi-squared random variable with degree of freedom 1. Similar to Lemma C.5, let

wt = (Xt,1,Xt,2, ...,Xt,t)
⊤, we have the following optimization problem for each t ∈ [k]:

min
∑d

r=1 σ
2
t,r

s.t. 1⊤wt = 1
wt ≥ 0 .

(6)

To solve this optimization problem, we adopt the standard Lagrange multiplier approach. The
Lagrangian is

L(wt, λ) =

d∑
r=1

σ2
t,r − λ(1− 1⊤wt) .

Then, we wish to have
∀l ∈ [t],∇Xt,l

L(wt, λ) = 0 ,

which leads to

∀l ∈ [t− 1], 2(dk(Cσ)2 +

d∑
r=1

Σr,r)Xt,l + λ = 0

2(dk(Cσ)2 +

d∑
r=1

Σr,r)Xt,t − 2

d∑
r=1

Σr,r + λ = 0 .
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Solving this, we get the optimal solution as

∀l ∈ [t− 1],Xt,l =
dk(Cσ)2

t(dk(Cσ)2 +
∑d

r=1 Σr,r)
=

k(Cσ)2

t(k(Cσ)2 + σ2
g)

and Xt,t = 1−
∑t−1

l=1 Xt,l =
dk(Cσ)2+t

∑d
r=1 Σr,r

t(dk(Cσ)2+
∑d

r=1 Σr,r)
=

k(Cσ)2+tσ2
g

t(k(Cσ)2+σ2
g)

.

As compared to Lemma C.5, it is difficult to find a minimizer for P and Q with the Lagrange
Multiplier approach as it involves a complicated quadratic equation about each Xt,l. Nevertheless,
we show that with the current minimizer we have, we can derive a good enough upper bound for
N,P,Q. First substitute the values of Xt,l and we can express σ2

t,r in terms of (Cσ)2 and σ2
g as

σ2
t,r =

k(Cσ)2

t

(
k2(Cσ)4

(k(Cσ)2 + σ2
g)

2
+

tσ4
g

(k(Cσ)2 + σ2
g)

2
+

2(Cσ)2σ2
g

(k(Cσ)2 + σ2
g)

2

)
+

(t− 1)dσ2
g

t
· k2(Cσ)4

(k(Cσ)2 + σ2
g)

2

≤ 3k(Cσ)2

t
+

k(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2
+ dσ2

g .

Now consider the values of N,P,Q with X:

N =

k∑
t=1

E[∥z∗t ∥22]

=

k∑
t=1

E[
d∑

r=1

ξ2t,r]

=

k∑
t=1

d∑
r=1

σ2
t,rE[χ2

1]

≤
k∑

t=1

(
3dk(Cσ)2

t
+

kd(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2
+ d2σ2

g

)

≤ 3dk(Cσ)2(1 + log k) +
k2d(Cσ)2σ4

g

(k(Cσ)2 + σ2
g)

2
+ kd2σ2

g

= O(k log k + kσ2
g)

where in the second last step we use the fact
∑k

t=1 1/t ≤ 1 + log k.

P =

k∑
t=1

E[∥z∗t ∥42]

=

k∑
t=1

d(d+ 2)σ4
t,r

≤ d(d+ 2)

k∑
t=1

(
3dk(Cσ)2

t
+

kd(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2
+ d2σ2

g

)2

= d(d+ 2)

k∑
t=1

(
9d2k2(Cσ)4

t2
+

(
kd(Cσ)2σ4

g

(k(Cσ)2 + σ2
g)

2

)2

+ d4σ4
g +

6dk(Cσ)2

t

kd(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2

+
6d3k(Cσ)2σ2

g

t
+

2kd(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2
d2σ2

g

)

≤ d(d+ 2)

(
3d2k2(Cσ)4π2

2 +
k3d2(Cσ)4σ8

g

(k(Cσ)2+σ2
g)

4 + kd4σ4
g + 6d2(Cσ)2(1 + log k)

k2d(Cσ)2σ4
g

(k(Cσ)2+σ2
g)

2

+ 6d3k(Cσ)2σ2
g(1 + log k) +

2k2d3(Cσ)2σ6
g

(k(Cσ)2 + σ2
g)

2

)
= O(k2 + kσ4

g + σ2
gk log k)
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where in the second last step we use the fact
∑k

t=1 1/t
2 ≤

∑∞
t=1 1/t

2 = π2/6.

Q =

k∑
t=1

√
E[∥z∗t ∥42]

=
√
d(d+ 2)

k∑
t=1

σ2
t,r

= O(N)

= O(k log k + kσ2
g) .

Corollary C.7. Let z∗t := −ζt +
∑t

l=1 Xt,l(zl + ζl) where zl
i.i.d.∼ N (0, k(Cσ)2I) ∈ Rd and

ζl
i.i.d.∼ N (0,Σ) ∈ Rd are i.i.d. drawn and Σ ∈ R(d×d) is a diagonal matrix. Denote σ2

g :=

1/d
∑d

r=1 Σr,r. The matrix defined as ∀t ∈ [k],∀l ∈ [t− 1],Xt,l = t−1(k(Cσ)2 + σ2
g)

−1k(Cσ)2

and ∀t ∈ [k],Xt,t = t−1(k(Cσ)2 + σ2
g)

−1(k(Cσ)2 + tσ2
g) satisfies P1 and P2. Denote N :=∑k

t=kq+1 E[∥z∗t ∥22], P :=
∑k

t=kq+1 E[∥z∗t ∥42], and Q :=
∑k

t=kq+1

√
E[∥z∗t ∥42]. With X , we have

N,P,Q are upper bounded by

N = O(k log 1

q
+ k(1− q)σ2

g) ,

P = O(k2 + (1− q)kσ4
g + σ2

gk log
1

q
) ,

Q = O(k log 1

q
+ k(1− q)σ2

g) .

Proof. First, note that the optimal matrix X is not related to where the summation starts. Therefore,
the minimizer for N found in Lemma C.6 is also a minimizer for N in this lemma. Next, we find the
upper bounds for N,P,Q using X:

N =

k∑
t=kq+1

E[∥z∗t ∥22]

=

k∑
t=kq+1

E[
d∑

r=1

ξ2t,r]

=

k∑
t=kq+1

d∑
r=1

σ2
t,rE[χ2

1]

≤
k∑

t=kq+1

3dk(Cσ)2

t
+

kd(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2
+ d2σ2

g

≤ 3dk(Cσ)2(1 + log k − log kq) + k(1− q)
kd(Cσ)2σ4

g

(k(Cσ)2 + σ2
g)

2
+ k(1− q)d2σ2

g

= O(k log k

kq
+ k(1− q)σ2

g)

= O(k log 1

q
+ k(1− q)σ2

g) ,
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where in the 3rd last step we make use of the fact
∑k

t=kq+1 1/t =
∑k

t=1 1/t−
∑kq

t=1 ≤ 1+ logK−
log kq.

P =

k∑
t=kq+1

E[∥z∗t ∥42]

=

k∑
t=kq+1

d(d+ 2)σ4
t,r

≤ d(d+ 2)

k∑
t=kq+1

(
3dk(Cσ)2

t
+

kd(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2
+ d2σ2

g

)2

= d(d+ 2)

k∑
t=kq+1

(
9d2k2(Cσ)4

t2
+

(
kd(Cσ)2σ4

g

(k(Cσ)2 + σ2
g)

2

)2

+ d4σ4
g

+
6dk(Cσ)2

t

kd(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2
+

6d3k(Cσ)2σ2
g

t
+

2kd(Cσ)2σ4
g

(k(Cσ)2 + σ2
g)

2
d2σ2

g

)

≤ d(d+ 2)

(
3d2k2(Cσ)4π2

2
+

k3d2(Cσ)4σ8
g

(k(Cσ)2 + σ2
g)

4
+ (1− q)kd4σ4

g

+ 6d2(Cσ)2(1 + log k − log kq)
k2d(Cσ)2σ4

g

(k(Cσ)2 + σ2
g)

2
+ 6d3k(Cσ)2σ2

g(1 + log k − log kq) +
2k2d3(Cσ)2σ6

g

(k(Cσ)2 + σ2
g)

2

)

= O(k2 + (1− q)kσ4
g + σ2

gk log
1

q
)

where in the second last step we use the fact
∑k

t=kq+1 1/t
2 ≤

∑∞
t=1 1/t

2 = π2/6.

Q =

k∑
t=tq+1

√
E[∥z∗t ∥42]

=
√
d(d+ 2)

k∑
t=tq+1

σ2
t,r

= O(N)

= O(k log 1

q
+ k(1− q)σ2

g) .

Lemma C.8. Let z∗t :=
∑t

l=1 Xt,lzl where zl
i.i.d.∼ N (0, k(Cσ)2I) ∈ Rd are i.i.d. drawn. Further let

N,P,Q be defined equivalently as Lemma C.5. Then, we have E[(
∑k

t=1 ∥z∗t ∥22)2] ≤ P +N2 +Q2.

Proof. For this proof we make use of two facts, namely, for two random variables X,Y , there is
E[XY ] = E[X]E[Y ] − Cov[X,Y ] and Cov[X,Y ] ≤

√
Var[X]Var[Y ]. Also notice that for any
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random variable X , Var[X] ≤ E[X2]. With these, we have

E[(
k∑

t=1

∥z∗t ∥22)2] =
k∑

t=1

E[∥z∗t ∥42] +
k∑

t=1

k∑
t′=1

E[∥z∗t ∥22∥z∗t′∥22]

=

k∑
t=1

E[∥z∗t ∥42] +
k∑

t=1

k∑
t′=1

(
E[∥z∗t ∥22]E[∥z∗t′∥22] + Cov[∥z∗t ∥22, ∥z∗t′∥22]

)
=

k∑
t=1

E[∥z∗t ∥42] +
k∑

t=1

k∑
t′=1

E[∥z∗t ∥22]E[∥z∗t′∥22] +
k∑

t=1

k∑
t′=1

Cov[∥z∗t ∥22, ∥z∗t′∥22]

≤
k∑

t=1

E[∥z∗t ∥42] +
k∑

t=1

k∑
t′=1

E[∥z∗t ∥22]E[∥z∗t′∥22] +
k∑

t=1

√
Var[∥z∗t ∥22]

k∑
t′=1

√
Var[∥z∗t′∥22]

≤
k∑

t=1

E[∥z∗t ∥42] +
k∑

t=1

E[∥z∗t ∥22]
k∑

t′=1

E[∥z∗t′∥22] +
k∑

t=1

√
E[∥z∗t ∥42]

k∑
t′=1

√
E[∥z∗t′∥42]

= P +N2 +Q2 .

C.5 A HYPOTHETICAL CASE

Proposition C.9. ∀t ∈ [k] and, denote θ∗
πt := θp

πt − α
∑t

l=1 Xt,lg̃πl . Assume that ĝπ1 = ĝπ2 =

. . . = ĝπk . Denote m∗(πt) := V (θ∗
πt) − V (θp

πt) and ψ∗ := k−1
∑k

t=1 p(π
t)m∗(πt). Then X∗

defined in Eq. (4) achieves an estimation uncertainty Var[ψ∗|θp
π1 ,θ

p
π2 , . . . ,θ

p
πk ] = (log2 k).

Proof. Denote θ̄πt,j := θp
πt,j − αĝπt,j . As explained in the proof for Prop. 5.1, notice that θ̄πt,j is

deterministic conditional on θp
πt,j . Then, with X∗,

θ∗
πt,j = θp

πt,j − α
t∑

l=1

X∗
t,lg̃πl,j

= (θp
πt,j − α

t∑
l=1

X∗
t,lĝπl,j)− α

t∑
l=1

X∗
t,lαzl

= (θp
πt,j − αĝπt,j)− α

t∑
l=1

X∗
t,lαzl

= θ̄πt,j − α
t∑

l=1

X∗
t,lαzl

= θ̄πt,j − α
∑t

l=1 αzl
t

.

Since ∀t ∈ [k], zt
i.i.d.∼ N (0, k(Cσ)2I), we can denote z∗t :=

∑t
l=1 zl
t ∼ N (0, kt (Cσ)

2I). Then,
θ∗
πt,j = θπt,j − αz∗t .

Denote p̄ := maxπ∈Π p(π). Consider that

Var

[∑k
t=1 p(π

t)V (θ∗
πt,j)

k

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]
=

1

k2
Var

[
k∑

t=1

p(πt)V (θ∗
πt,j)

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]
.

By definition of smoothness, if f is L-smooth, then ∀x, y,

f(y) ≤ f(x) +∇f(x)⊤(y − x) + L

2
∥y − x∥22 .
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Since V is smooth, −V is (L-)smooth as well, which gives

−V (θ̄πt,j − αz∗t ) ≤ −V (θ̄πt,j) +∇θV (θ̄πt,j)
⊤αz∗t +

L

2
∥αz∗t ∥22 .

Thus, we can bound the variance as

Var

[
k∑

t=1

p(πt)V (θ∗
πt,j)

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]

= Var

[
k∑

t=1

p(πt)V (θ̄πt,j − αz∗t )
∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]

= E

( k∑
t=1

p(πt)V (θ̄πt,j − αz∗t )

)2 ∣∣∣∣θ̄π1,j , . . . , θ̄πk,j


− E

[
k∑

t=1

p(πt)V (θ̄πt,j − αz∗t )
∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]2

≤ E

( k∑
t=1

p(πt)V (θ̄πt,j − αz∗t )

)2 ∣∣∣∣θ̄π1,j , . . . , θ̄πk,j


≤ E

(p(πt)

k∑
t=1

−V (θ̄πt,j) +∇θV (θ̄πt,j)
⊤αz∗t +

L

2
∥αz∗t ∥22

)2 ∣∣∣∣θ̄π1,j , . . . , θ̄πk,j


︸ ︷︷ ︸

E1

.

Denote M := maxπ∈Π−V (θπ,j) and D := maxπ∈Π ∥∇θV (θπ,j)∥22. With these results, the first
part can be expanded as

E1 ≤ p̄2(
k∑

t=1

V (θ̄πt,j))
2 + E

( k∑
t=1

p(πt)∇θV (θ̄πt,j)
⊤αz∗t

)2 ∣∣∣∣θ̄π1,j , . . . , θ̄πk,j


+
p̄2L2

4
E[(

k∑
t=1

∥αz∗t ∥22)2]− p̄2kL
k∑

t=1

V (θ̄πt,j)E[∥αz∗t ∥22]

≤ p̄2(
k∑

t=1

V (θ̄πt,j))
2 + p̄2

k∑
t=1

E[∥∇θV (θ̄πt,j)∥22∥αz∗t ∥22|θ̄π1,j , . . . , θ̄πk,j ]

+
p̄2L2

4
E[(

k∑
t=1

∥αz∗t ∥22)2]− p̄2kL
k∑

t=1

V (θ̄πt,j)E[∥αz∗t ∥22]

= p̄2(

k∑
t=1

V (θ̄πt,j))
2 + p̄2

k∑
t=1

E[∥∇θV (θ̄πt,j)∥22∥αz∗t ∥22] +
p̄2L2

4
E[(

k∑
t=1

∥αz∗t ∥22)2]− p̄2kL
k∑

t=1

V (θ̄πt,j)E[∥αz∗t ∥22] .

Here, applying Lemma C.5 and let N =
∑k

t=1 E[∥z∗t ∥22], P =
∑k

t=1 E[∥z∗t ∥42], Q =∑k
t=1

√
E[∥z∗t ∥42]. Additionally, by Lemma C.8, we have E[(

∑k
t=1 ∥αz∗t ∥22)2] ≤ P + N2 + Q2.

Therefore, the above inequality can be bounded by

E1 ≤ p̄2k2M2 + p̄2DN +
p̄2L2

4
(P +N2 +Q2) + p̄2kLMN

= O(k2 +N + P +N2 +Q2 + kN)

where the minimum is attained at X∗, with N = O(k log k), P = O(k2), Q = O(k log k) and thus
O(k2 +N + P +N2 +Q2 + kN) = O(k2 log2 k). So, the variance of the average utility is

Var

[∑k
t=1 p(π

t)V (θ∗
πt,j)

k

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]
=
E1

k2
=

1

k2
O(k2 log2 k) = O(log2 k)
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by the multiplicative property of big-O notations. As such, for the semivalue estimator, we have

Var[ψ∗
j |θ

p
π1,j ,θ

p
π2,j , . . . ,θ

p
πk,j

] = Var

[∑k
t=1 p(π

t)[V (θ∗
πt,j)− V (θp

πt,j)]

k

∣∣∣∣θp
π1,j ,θ

p
π2,j , . . . ,θ

p
πk,j

]

= Var

[∑k
t=1 p(π

t)V (θ∗
πt,j)

k

∣∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]
= O(log2 k) .

C.6 PROOF OF PROP. 5.3.

Proposition C.10. (Reproduced from Prop. 5.3, formal) Let g̃πl , l ∈ [t] be perturbed gradients using
the Gaussian mechanism that satisfies (ϵ, δ)-DP. ∀t ∈ [k], denote θ∗

πt := θp
πt − α

∑t
l=1 Xt,lg̃πl ,

m∗(πt) := V (θ∗
πt)−V (θp

πt) and ψ∗ := k−1
∑k

t=1 p(π
t)m∗(πt). Assume that ∀t ∈ [k], ĝπt−E[ĝπt ]

i.i.d. follow an diagonal multivariate sub-Gaussian distribution with covariance Σ ∈ R(d×d) and
let σ2

g := 1/d
∑d

r=1 Σr,r. Then the matrix satisfying ∀t ∈ [k],∀l ∈ [t− 1],Xt,l = t−1(k(Cσ)2 +

σ2
g)

−1k(Cσ)2 and ∀t ∈ [k],Xt,t = t−1(k(Cσ)2 + σ2
g)

−1(k(Cσ)2 + tσ2
g) produces an estimation

uncertainty Var[ψ∗|θp
π1 ,θ

p
π2 , . . . ,θ

p
πk ] = O(log2 k + σ4

g) and E[ψ∗ − ψ] = O(log k + σ2
g) while

satisfying (ϵ, δ)-DP. Moreover, as k →∞, X →X∗.

Proof. Denote θ̄πt,j := θp
πt,j − αĝπt,j . Note that as compared to the case of Prop. C.9, ĝπt,j is now

a random variable (coming from an diagonal sub-Gaussian distribution). We may denote the mean
of the distribution as µg. Then ĝπt,j = µg + ζ ′t where ζ ′t

i.i.d.∼ sub-Gaussian(0,Σ) with Σ a diagonal
covariance matrix with σ2

g = maxr∈[d](Σ)r,r. As such, ∀t ∈ [k], denote

z′∗t := (θ̄πt,j − θ∗
πt,j)/α = −ĝπt,j +

t∑
l=1

Xt,lg̃t,l = −ζ ′t +
t∑

l=1

Xt,l(zl + ζ ′l) .

We use the Gaussian distribution to bound the moments of z′∗t . To do this, first define a Gaussian
counterpart of ζ ′t, ζt ∼ N (0,Σ). Then denote

z∗t := −ζt +
t∑

l=1

Xt,l(zl + ζl) .

By properties of sub-Gaussian distribution, we have that z′∗t follows a sub-Gaussian with the same
mean and variance as z∗t . Hence, E[∥z′∗t ∥22] = E[∥z∗t ∥22] and E[∥z′∗t ∥42] ≤ 16

3 E[∥z∗t ∥42]. The second
result is a direct consequence of (Rigollet, 2015, Lemma 1.4) and (Balakrishnan, 2016, Section
7.2). Specifically, let the variance of z′∗t and z∗t be σ2

z . (Rigollet, 2015, Lemma 1.4) states that
E[∥z′∗t ∥42] ≤ 16σ4

z and (Balakrishnan, 2016, Section 7.2) states that E[∥z∗t ∥42] = 3σ4
z .

Further denote p̄ := maxπ∈Π p(π). Consider that

Var

[∑k
t=1 p(π

t)V (θ∗
πt,j)

k

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]
=

1

k2
Var

[
k∑

t=1

p(πt)V (θ∗
πt,j)

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]

=
1

k2
Var

[
k∑

t=1

p(πt)V (θ∗
πt,j)

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]

=
1

k2
Var

[
k∑

t=1

p(πt)V (θ̄πt,j − αz∗t )
∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]
.

By definition of smoothness, if f is L-smooth, then ∀x, y,

f(y) ≤ f(x) +∇f(x)⊤(y − x) + L

2
∥y − x∥22 .
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Since V is smooth, −V is (L-)smooth as well, which gives

0 ≤ −V (θ̄πt,j − αz′∗t ) ≤ −V (θ̄πt,j) +∇θV (θ̄πt,j)
⊤αz′∗t +

L

2
∥αz′∗t ∥22 .

As such, we have, for the bias, we have

E[ψ∗ − ψ] = E

[
E

[∑k
t=1 p(π

t)[V (θ∗
πt,j) − V (θ̄πt,j)]

k

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]]

≤ E

[
E

[∑k
t=1∇θV (θ̄πt,j)

⊤αz′∗t + L
2 ∥αz

′∗
t ∥22

k

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]]

= E

[
k∑

t=1

L
2 ∥αz

′∗
t ∥22
k

]
.

By Lemma C.6, we have

E[
k∑

t=1

∥αz′∗t ∥22] = N = O(k log k + kσ2
g) .

Therefore, we have the bound on the bias as E[ψ∗ − ψ] = E[
∑k

t=1 ∥αz′∗t ∥22]/k = O(log k + σ2
g).

Consider that the variance is upper-bounded as

Var

[
k∑

t=1

p(πt)V (θ̄πt,j − αz′∗t )

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]

= E

( k∑
t=1

p(πt)V (θ̄πt,j − αz′∗t )

)2 ∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

− E

[
k∑

t=1

p(πt)V (θ̄πt,j − αz′∗t )

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]2

≤ E

( k∑
t=1

p(πt)V (θ̄πt,j − αz′∗t )

)2 ∣∣∣∣θ̄π1,j , . . . , θ̄πk,j


︸ ︷︷ ︸

E1

.
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Since V is strictly non-positive, −V (θ̄πt,j − αz′∗t ) ≥ 0. Denote M := maxπ∈Π−V (θπ,j) and
D := maxπ∈Π ∥∇θV (θπ,j)∥22. We have

E1 ≤ E

( k∑
t=1

−p(πt)V (θ̄πt,j) + p(πt)∇θV (θ̄πt,j)
⊤αz′∗t +

p(πt)L

2
∥αz′∗t ∥22

)2 ∣∣∣∣θ̄π1,j , . . . , θ̄πk,j


= (

k∑
t=1

−p(πt)V (θ̄πt,j))
2 + E

( k∑
t=1

p(πt)∇θV (θ̄πt,j)
⊤αz′∗t

)2 ∣∣∣∣θ̄π1,j , . . . , θ̄πk,j


+ E

(p(πt)L

2

k∑
t=1

∥αz′∗t ∥22

)2
− kL k∑

t=1

p(πt)2V (θ̄πt,j)E[∥αz′∗t ∥22]

≤ p̄2(
k∑

t=1

−V (θ̄πt,j))
2 + p̄2

k∑
t=1

E[∥∇θV (θ̄πt,j)∥22∥αz′∗t ∥22|θ̄π1,j , . . . , θ̄πk,j ]

+
p̄2L2

4
E

( k∑
t=1

∥αz′∗t ∥22

)2
− p̄2kL k∑

t=1

V (θ̄πt,j)E[∥αz′∗t ∥22]

≤ p̄2(
k∑

t=1

−V (θ̄πt,j))
2 + p̄2D

k∑
t=1

E[∥αz′∗t ∥22] +
p̄2L2

4
E

( k∑
t=1

∥αz′∗t ∥22

)2
− p̄2kL k∑

t=1

V (θ̄πt,j)E[∥αz′∗t ∥22]

≤ p̄2k2M2 + p̄2(D + kLM)

k∑
t=1

E[∥αz′∗t ∥22] +
p̄2L2

4
E[(

k∑
t=1

∥αz′∗t ∥22)2] .

Let N =
∑k

t=1 E[∥z∗t ∥22] ≥
∑k

t=1 E[∥z′∗t ∥22], P =
∑k

t=1 E[∥z∗t ∥42] ≥
∑k

t=1 E[∥z′∗t ∥42], Q =∑k
t=1

√
E[∥z∗t ∥42] ≥

√
3/16

∑k
t=1

√
E[∥z′∗t ∥42]. Additionally, by Lemma C.8, we have

E[(
∑k

t=1 ∥αz′∗t ∥22)2] ≤
16
3 E[(

∑k
t=1 ∥αz∗t ∥22)2] ≤

16
3 (P + N2 + Q2). By Lemma C.6, we

have the matrix satisfying ∀t ∈ [k],∀l ∈ [t − 1],Xt,l = t−1(k(Cσ)2 + σ2
g)

−1k(Cσ)2 and
∀t ∈ [k],Xt,t = t−1(k(Cσ)2 + σ2

g)
−1(k(Cσ)2 + tσ2

g) produces the upper bound of N,P,Q
with

N = O(kσ2
g + k log k) ,

P = O(k2 + kσ4
g + σ2

gk log k) ,

Q = O(k log k + kσ2
g) .

As such, we can further simply E1 as

E1 = O(k2 + kN + P +N2 +Q2) = O(k2σ4
g + k2 log2 k) .

Therefore, we can bound the variance as

Var

[∑k
t=1 p(π

t)V (θ∗
πt,j)

k

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]
≤ 1

k2
E1

=
1

k2
O(k2σ4

g + k2 log2 k) = O(log2 k + σ4
g)

by the multiplicative property of big-O notation. As such, for the semivalue estimator, we have

Var[ψ∗
j |θ

p
π1,j ,θ

p
π2,j , . . . ,θ

p
πk,j

] = Var

[∑k
t=1 p(π

t)[V (θ∗
πt,j)− V (θp

πt,j)]

k

∣∣∣∣θp
π1,j ,θ

p
π2,j , . . . ,θ

p
πk,j

]

= Var

[∑k
t=1 p(π

t)V (θ∗
πt,j)

k

∣∣∣∣θ̄π1,j , θ̄π2,j , . . . , θ̄πk,j

]
= O(log2 k + σ4

g)
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where the change in conditioning in the 2nd step is because θ̄πt,j is deterministic conditional on
θp
πt,j , explained in more detail in the proof for Prop. 5.1. As the operations are all applied to g̃, by

the post-processing immunity of DP, the same (ϵ, δ)-DP guarantee holds. With the given X , it is easy
to see that as k →∞, X →X∗.

C.7 PROOF OF PROP. 5.4.

Proposition C.11. (Reproduced from Prop. 5.4, formal) Let g̃πl , l ∈ [t] be perturbed gra-
dients using the Gaussian mechanism that satisfies (ϵ, δ)-DP. ∀t ∈ {kq + 1, . . . , k}, denote
θ∗
πt := θp

πt − α
∑t

l=1 Y t−kq,lg̃πl . Denote m∗(πt) := V (θ∗
πt) − V (θp

πt) and ψ∗ := (k −
kq)−1

∑k
t=kq+1 p(π

t)m∗(πt) for q ∈ (0, 1). Assume that ∀t ∈ [k], ĝπt−E[ĝπt ] i.i.d. follow an diago-

nal multivariate sub-Gaussian distribution with covariance Σ ∈ R(d×d) and let σ2
g := 1/d

∑d
r=1 Σr,r.

Then the matrix satisfying ∀t ∈ [k],∀l ∈ [t − 1],Xt,l = t−1(k(Cσ)2 + σ2
g)

−1k(Cσ)2 and
∀t ∈ [k],Xt,t = t−1(k(Cσ)2 + σ2

g)
−1(k(Cσ)2 + tσ2

g) produces an estimation uncertainty
Var[ψ∗|θp

π1 ,θ
p
π2 , . . . ,θ

p
πk ] = O

(
(1− q)−2 log2 (1/q) + σ4

g

)
and E[ψ∗−ψ] = O((1− q) log 1/q+

σ2
g) while satisfying (ϵ, δ)-DP.

Proof. The proof largely follows the proof for Prop. 5.3. Denote θ̄πt,j := θp
πt,j − αĝπt,j . Note that

as compared to the case of Prop. C.9, ĝπt,j is now a random variable (coming from an diagonal
sub-Gaussian distribution). We may denote the mean of the distribution as µg . Then ĝπt,j = µg + ζ ′t

where ζ ′t
i.i.d.∼ sub-Gaussian(0,Σ) with Σ a diagonal covariance matrix with σ2

g = maxr∈[d](Σ)r,r.
As such, ∀t ∈ [k], denote

z′∗t := (θ̄πt,j − θ∗
πt,j)/α = −ĝπt,j +

t∑
l=1

Xt,lg̃t,l = −ζ ′t +
t∑

l=1

Xt,l(zl + ζ ′l) .

We use the Gaussian distribution to bound the moments of z′∗t . To do this, first define a Gaussian
counterpart of ζ ′t, ζt ∼ N (0,Σ). Then denote

z∗t := −ζt +
t∑

l=1

Xt,l(zl + ζl) .

By properties of sub-Gaussian distribution, we have that z′∗t follows a sub-Gaussian with the same
mean and variance as z∗t . Hence, E[∥z′∗t ∥22] = E[∥z∗t ∥22] and E[∥z′∗t ∥42] ≤ 16

3 E[∥z∗t ∥42]. The second
result is a direct consequence of (Rigollet, 2015, Lemma 1.4) and (Balakrishnan, 2016, Section
7.2). Specifically, let the variance of z′∗t and z∗t be σ2

z . (Rigollet, 2015, Lemma 1.4) states that
E[∥z′∗t ∥42] ≤ 16σ4

z and (Balakrishnan, 2016, Section 7.2) states that E[∥z∗t ∥42] = 3σ4
z .

Further denote p̄ := maxπ∈Π p(π). Consider that

Var

[∑k
t=kq+1 p(π

t)V (θ∗
πt,j)

k − kq

∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j

]
=

1

(k − kq)2
Var

 k∑
t=kq+1

p(πt)V (θ∗
πt,j)

∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j


=

1

(k − kq)2
Var

 k∑
t=kq+1

p(πt)V (θ∗
πt,j)

∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j


=

1

(k − kq)2
Var

 k∑
t=kq+1

p(πt)V (θ̄πt,j − αz′∗t )

∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j

 .

Since −V is L-smooth, following the proof for Prop. C.9, we have

0 ≤ −V (θ̄πt,j − αz′∗t ) ≤ −V (θ̄πt,j) +∇θV (θ̄πt,j)
⊤αz′∗t +

L

2
∥αz′∗t ∥22 .
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As such, we have, for the bias, we have

E[ψ∗ − ψ] = E

[
E

[∑k
t=kq+1 p(π

t)[V (θ∗
πt,j) − V (θ̄πt,j)]

k − kq

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]]

≤ E

[
E

[∑k
t=kq+1∇θV (θ̄πt,j)

⊤αz′∗t + L
2 ∥αz

′∗
t ∥22

k − kq

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]]

= E

 k∑
t=kq+1

L
2 ∥αz

′∗
t ∥22

k − kq

 .

By Corollary C.7, we have

E[
k∑

t=kq+1

∥αz′∗t ∥22] = N = O(k log 1/q + k(1− q)σ2
g) .

Therefore, we have the bound on the bias as E[ψ∗ − ψ] = E[
∑k

t=kq+1 ∥αz′∗t ∥22]/(k − kq) =

O((1− q) log 1/q + σ2
g).

Consider that the variance is upper-bounded as

Var

 k∑
t=kq+1

p(πt)V (θ̄πt,j − αz′∗t )

∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j


= E


 k∑

t=kq+1

p(πt)V (θ̄πt,j − αz′∗t )

2 ∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j

− E

 k∑
t=kq+1

p(πt)V (θ̄πt,j − αz′∗t )

∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j

2

≤ E


 k∑

t=kq+1

p(πt)V (θ̄πt,j − αz′∗t )

2 ∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j


︸ ︷︷ ︸

E1

.
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Since V is strictly non-positive, −V (θ̄πt,j − αz′∗t ) ≥ 0. Denote M := maxπ∈Π−V (θπ,j) and
D := maxπ∈Π ∥∇θV (θπ,j)∥22. We have

E1 ≤ E


 k∑

t=kq+1

−p(πt)V (θ̄πt,j) + p(πt)∇θV (θ̄πt,j)
⊤αz′∗t +

p(πt)L

2
∥αz′∗t ∥22

2 ∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j


= (

k∑
t=kq+1

−p(πt)V (θ̄πt,j))
2 + E


 k∑

t=kq+1

p(πt)∇θV (θ̄πt,j)
⊤αz′∗t

2 ∣∣∣∣θ̄πkq+1,j , . . . , θ̄πk,j


+ E


p(πt)L

2

k∑
t=kq+1

∥αz′∗t ∥22

2
− kL k∑

t=kq+1

p(πt)2V (θ̄πt,j)E[∥αz′∗t ∥22]

≤ p̄2(
k∑

t=kq+1

−V (θ̄πt,j))
2 + p̄2

k∑
t=kq+1

E[∥∇θV (θ̄πt,j)∥22∥αz′∗t ∥22|θ̄πkq+1,j , . . . , θ̄πk,j ]

+
p̄2L2

4
E


 k∑

t=kq+1

∥αz′∗t ∥22

2
− p̄2kL k∑

t=kq+1

V (θ̄πt,j)E[∥αz′∗t ∥22]

≤ p̄2(
k∑

t=kq+1

−V (θ̄πt,j))
2 + p̄2D

k∑
t=kq+1

E[∥αz′∗t ∥22] +
p̄2L2

4
E


 k∑

t=kq+1

∥αz′∗t ∥22

2


− p̄2kL
k∑

t=kq+1

V (θ̄πt,j)E[∥αz′∗t ∥22]

≤ p̄2(k − kq)2M2 + p̄2(D + (k − kq)LM)

k∑
t=kq+1

E[∥αz′∗t ∥22] +
p̄2L2

4
E[(

k∑
t=kq+1

∥αz′∗t ∥22)2] .

Let N =
∑k

t=kq+1 E[∥z∗t ∥22] ≥
∑k

t=kq+1 E[∥z′∗t ∥22], P =
∑k

t=kq+1 E[∥z∗t ∥42] ≥∑k
t=kq+1 E[∥z′∗t ∥42], Q =

∑k
t=kq+1

√
E[∥z∗t ∥42] ≥

√
3/16

∑k
t=kq+1

√
E[∥z′∗t ∥42]. Additionally, by

Lemma C.8, we have E[(
∑k

t=kq+1 ∥αz′∗t ∥22)2] ≤
16
3 E[(

∑k
t=kq+1 ∥αz∗t ∥22)2] ≤

16
3 (P +N2 +Q2).

By Corollary C.7, we have the matrix satisfying ∀t ∈ [k],∀l ∈ [t − 1],Xt,l = t−1(k(Cσ)2 +
σ2
g)

−1k(Cσ)2 and ∀t ∈ [k],Xt,t = t−1(k(Cσ)2 + σ2
g)

−1(k(Cσ)2 + tσ2
g) produces an upper bound

of N,P,Q with

N = O(k log 1

q
+ k(1− q)σ2

g)

P = O(k2 + (1− q)kσ4
g + σ2

gk log
1

q
)

Q = O(k log 1

q
+ k(1− q)σ2

g) .

With these, we can derive the big-O bound for E1 as

E1 = O(k2(1− q)2 + k(1− q)N + P +N2 +Q2) = O(k2 log2 1

q
+ k2(1− q)2σ4

g) .

Therefore, we can bound the variance as

Var

[∑k
t=kq+1 p(π

t)V (θ∗
πt,j)

k − kq

∣∣∣∣θ̄π1,j , . . . , θ̄πk,j

]
≤ 1

(k − kq)2
E1 = O

(
log2 1

q

(1− q)2
+ σ4

g

)
.
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As such, for the semivalue estimator, we have

Var[ψ∗
j |θ

p
πkq+1,j

,θp
π2,j , . . . ,θ

p
πk,j

] = Var

[∑k
t=kq+1 p(π

t)[V (θ∗
πt,j)− V (θp

πt,j)]

k − kq

∣∣∣∣θp
πkq+1,j

,θp
π2,j , . . . ,θ

p
πk,j

]

= Var

[∑k
t=kq+1 p(π

t)V (θ∗
πt,j)

k − kq

∣∣∣∣θ̄πkq+1,j , θ̄π2,j , . . . , θ̄πk,j

]

= O

(
log2 1

q

(1− q)2
+ σ4

g

)
where the change in conditioning random variable in the 2nd step is because θ̄πt,j is deterministic
conditional on θp

πt,j , explained in more detail in the proofs for the above propositions. As all
operations are applied to g̃, by the post-processing immunity of DP, the same (ϵ, δ)-DP guarantee
holds.

D EXPERIMENTS

Hardware and software details. We perform all our experiments on Nvidia L40 GPUs using the
PyTorch (Paszke et al., 2019) deep learning framework with the Opacus (Opacus) implementation of
private random variables (PRV) (Gopi et al., 2021) for privacy accounting. Source codes are included
in supplementary materials.

Hyperparameter settings. For experiments using Algorithm 1, we follow (Ghorbani & Zou, 2019)
and apply hyper-parameter search to find a suitable α which produces the best model performance
with one pass of training examples. For a given number of evaluations k and ϵ, Opacus automatically
adjusts the noise multiplier σ to achieve the (ϵ, 5 × 10−5)-DP guarantee. Hence, we focus on the
analysis of the interaction between DP requirements and data valuation by studying ϵ and k. In all
experiments, we choose the value of ϵ such that we can observe a degradation of the performance
of the estimate with i. i. d. noise as compared to the no-DP estimate given the limited budget. This
approach of setting ϵ allows us to highlight the advantage of using correlated noise.

Model specification. We specify the parameterization of the models used in our experiments. We
adopt the following notations: ReLU denotes a rectified linear unit activation function; Linear(x, y)
denotes a linear layer (i.e. a matrix of dimension x by y); Sigmoid denotes a Sigmoid activation
function; Softmax denotes a Softmax activate function; Conv(x, y, z) denotes a convolutional layer
with input size x, output size y, and kernel size z (with stride 1 and padding 0); Pool(z, w) denotes a
pooling layer with kernel size z and stride w (with padding 0). The neural network models used in
our experiments are parameterized as follows:

Logistic Regression(x) := Sigmoid ◦ Linear(no. features, no. classes)(x) ;

CNN(x) := Softmax ◦ Linear(·, no. classes) ◦ Pool(2, 2) ◦ ReLU ◦ Conv(1, 16, 3)(x) ;
ResNet18 and ResNet34 are standard. We follow the implementation of these two networks in
PyTorch’s torchvision library.

D.1 MIA ATTACK

We follow the MIA attack proposed in (Wang et al., 2023), which constructs a likelihood ratio test
based on the estimated data values. As a setup, we select 25 data points as the members and 25 data
points as non-members. We further select 200 data points to subsample “shadow dataset”. We choose
k = 200 for breast cancer and diabetes datasets and k = 500 for Covertype dataset. As shown in
Table 5, our method offers privacy protection against MIA by reducing the AUROC of the attack to
around 0.5 (same level as random guess).

D.2 GENERALIZING TO OTHER USE CASES

Notes on dataset valuation. For dataset valuation on ResNet18 and ResNet34, we apply some en-
gineering tricks to encourage faster convergence so that we obtain meaningful marginal contributions
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Table 5: Mean (std. errors) of AUC on Covertype, breast cancer, and diabetes datasets trained with
LR. ϵ = 1.0.

Covertype breast cancer diabetes

no DP 0.554 (1.61e-02) 0.583 (2.57e-02) 0.567 (1.59e-02)
Ours 0.490 (3.76e-02) 0.477 (2.62e-02) 0.513 (3.68e-02)

in each iteration using the G-Shapley framework. These include 1) freezing part of the network and
only fine-tuning the last residual block and the fully connected layer; 2) reinitializing the model with
the pre-trained weight after each iteration.

Federated learning setup. (Wang et al., 2020) proposed using an average of Shapley value in
multiple rounds of FL as the data value metric

ψj := k−1
k∑

t=1

νtj ,

where νtj refers to the data Shapley of party j at round t using its gradients released at round t (which
we estimate with 100 samples of permutations in each participation round). Note that this formulation
is analogous to the general semivalue definition of Eq. (1). As such, we may treat each νtj as a
marginal contribution of party j which is averaged over all participation rounds. Note that in a total
of k rounds, each party still needs to release the gradients k times, thus incurring the problem of
linearly scaling variance of the Gaussian noise which can be alleviated with our method. However,
the setting of FL is not identical to the conventional data valuation setting as the global model keeps
updating which causes the gradients to change drastically, especially in the first few rounds. To
address this challenge, we use a weighted sum that puts more emphasis on the more current gradients
in the first few rounds: Xt,t = 0.75− 0.7× t/k. Note that this choice is consistent with Prop. 5.3
which suggests setting a larger Xt,t when σ2

g is large. This can be implemented algorithmically by
updating g̃πt with g̃∗πt = (0.25 + 0.7× t/k)g̃∗πt−1 + (0.75− 0.7× t/k)g̃πt . Moreover, as the global
model converges with more collaboration rounds, more information about the data values is revealed
in the first few rounds. Therefore, setting q too large causes ψj to miss important information about
the data value, leading to inaccurate data value estimates, even though the estimation uncertainty is
lowered. As such, we set a moderately small burn-in ratio q = 0.2.

D.3 ADDITIONAL EXPERIMENTAL RESULTS FOR SEC. 6.1

Additional results for s2 and µ. We additionally plot a counterpart version of Fig. 2 with the ψ’s
evaluated with no DP added in Fig. 5. It can be observed that the variance of ψ’s computed with no
DP noise is almost the same as that computed with correlated noise. The means µ’s are also similar.

120 240 400 10001000
0.0

0.5

1.0

1.5
s2

i.i.d./| i.i.d.|
s2

no DP/| no DP|
s2

corr./| corr.|

2.5
5.0

1e 5

120 240 400 10001000

4.45

4.50

4.55

1e 4

corr.

no DP

Figure 5: (Left) n−1
∑

j∈[n] s
2
j/|µj | and (right) µj vs. k using i.i.d. noise, correlated noise, and no

DP noise.
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Additional results for data selections. We supplement the data selection experiment with results
for adding/removing data with high/low ψ’s shown in Fig. 6. For i.i.d. noise, as k increases, the
test accuracy approaches that of random selection, suggesting that the data value estimates are less
reflective of the true worth of data. On the other hand, ψ’s computed with correlated noise exhibit
a test accuracy curve close to ψ’s computed without DP, implying that the data value estimates
computed with correlated noise are reflective of the true worth of data.
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Figure 6: Data selection task where data with high/low ψ’s are added/removed from the training
dataset with ψ’s computed using (top) i.i.d. noise with different k and using (bottom) i.i.d. noise,
correlated noise, and no DP noise with k = 1000. y-axis represents test accuracy and x-axis
represents percentage of data added/removed.

Results with regression tasks. We notice that the noise due to DP has a much less significant
impact on the data selection task performance for regression models. This may be attributable to
the lack of a critical decision boundary which reduces the importance of individual data points. We
conduct an experiment with the wine quality dataset (Cortez et al., 2009) where we randomly select
400 training examples and 1000 test examples trained with a linear regression using the average
negated mean squared error as V . The results are shown in Fig. 7. It can be seen that the mean
absolute errors are almost the same for different k and with different methods.
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0.0 0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.003

0.004

0.005

0.006
k=120
k=240
k=400
k=1000
Random

(b) Add data with high
values ϵ = 10

0.0 0.5 1.0

0.002

0.004

0.006
k = 240, q = 0.8

i.i.d.
corr.
no DP
Random

(c) Add data with high val-
ues ϵ = 1

0.0 0.5 1.0

0.002

0.004

0.006
k = 240, q = 0.8

i.i.d.
corr.
no DP
Random

(d) Add data with high
values ϵ = 10

Figure 7: Data selection task where data with high/low ψ’s are added/removed from the training
dataset with ψ’s computed using (a)(b) i.i.d. noise with different k and (c)(d) i.i.d. noise, correlated
noise, and no DP noise with k = 240. y-axis represents mean absolute error and x-axis represents
percentage of data added/removed.
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Figure 8: AUC v.s. q ∈ [0, 1) using negated loss as V . Lines (shades) represent mean (std).

D.4 ADDITIONAL EXPERIMENTAL RESULTS FOR SEC. 6.2

We include in Fig. 8 a counterpart of AUC plots for the noisy label detection task to that shown in
Fig. 3. A similar trend can be observed as in the main text.

We also include the AUC plots for the noisy label detection task with other semivalues in Fig. 9.
Similar trends as discussed in the main text can be observed in the figures. Moreover, we provide a
result for Leave-one-out (LOO) (Cook, 1977) which is not a regular semivalue but also enjoys the
improvement offered by our approach, as demonstrated in Table 6. However, the performance is
worse than regular semivalues demonstrated in the main content in Table 2, which is expected since
LOO does not take into account the marginal contribution over different subsets, as explained in
(Ghorbani & Zou, 2019).

Table 6: Average (standard errors) of AUC on Covertype trained with logistic regression (top) and
MNIST trained with CNN (bottom). The best score (except for “no DP” which is the baseline to be
approximated) is highlighted. Higher is better.

no DP i.i.d. noise X∗ Y ∗ (q = 0.3) Y ∗ (q = 0.5) Y ∗ (q = 0.9)

0.832 (6.00-e03) 0.511 (0.00e+00) 0.659 (2.10e-02) 0.720 (8.00e-03) 0.561 (8.00e-03) 0.311 (3.00e-03)

0.945 (3.00e-03) 0.487 (2.00e-03) 0.552 (2.00e-02) 0.653 (1.50e-02) 0.528 (8.00e-03) 0.305 (5.00e-03)
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Figure 9: AUC plots for data Banzhaf, Beta(4, 1) and Beta(16, 1) with k = 200 and k = 1000/4000.

D.5 ADDITIONAL EXPERIMENTAL RESULTS FOR DIFFERENT VALUES OF ϵ.

We follow the discussion in App. B and show experimental results for the noisy label detection task
with different ϵ values: 0.1 and 10 (ϵ = 1 is provided in the main text). The results are shown in
App. D.5. It can be observed that for ϵ = 10, using i.i.d. noise can perform on par with using no
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DP, e.g., on Covertype dataset with logistic regression using data Shapley and Beta(4, 1). On the
other hand, when ϵ = 0.1, both i.i.d. noise and correlated noise have performance close to random
selection on all ML tasks and semivalues.
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Figure 10: Noisy label detection task with ϵ = 10 and ϵ = 0.1.

D.6 ADDITIONAL EXPERIMENTAL RESULTS ON RUNTIME AND MEMORY

We assess with experimental results the memory overhead of saving and computing correlated
gradients g̃∗π,i for party i. Theoretically, the memory overhead is O(n) for a valuation with n parties
as each party needs to store its rolling gradient. The runtime overhead is O(1) as each party only
needs to update the rolling gradient each time. The memory overhead results tabulated in Table 7
show a minor (GPU) memory overhead w.r.t. the overall memory usage and that the overhead is
linear in n. The runtime overhead results tabulated in Table 8 demonstrate no obvious difference in
the computational time with or without correlated noise.
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Table 7: GPU peak memory usage with and without (shown in bracket) correlated noise in megabytes.
Results are obtained on the diabetes and MNIST datasets with logistic regression (LR) and CNN
w.r.t. various number of parties n.

n diabetes+LR MNIST+CNN

100 18.231 (18.129) 120.788 (109.729)

200 18.329 (18.124) 131.847 (109.729)

300 18.427 (18.120) 142.906 (109.729)

Table 8: Program runtime with and without (shown in bracket) correlated noise in seconds. Results
are obtained on the diabetes (top) and MNIST (bottom) datasets with logistic regression (top) and
CNN (bottom) w.r.t. various number of parties n and evaluation budget k.

H
HHHHn

k 120 240 360

100 78.466 (78.896) 154.954 (159.989) 262.166 (257.588)

200 113.612 (125.255) 256.431 (252.465) 407.126 (408.107)

300 158.565 (154.425) 344.286 (365.348) 530.579 (519.320)

HH
HHHn
k 120 240 360

100 99.992 (100.140) 199.471 (195.137) 328.204 (323.646)

200 158.511 (151.589) 347.525 (329.267) 527.296 (531.594)

300 223.393 (213.637) 456.763 (467.780) 703.843 (709.514)

45


	Introduction
	Related Work
	Preliminaries
	Data Valuation
	Differentially Private Machine Learning (DP ML)

	Settings and Problem Statement
	Approach and Theoretical Results
	I.I.D. Noise Causes Scaling Estimation Uncertainty
	Correlated Noise to Reduce Estimation Uncertainty
	More Variance Reduction with Non-square Matrix

	Experiments
	Increasing k under I.I.D. Noise Does Not Reduce the Estimation Uncertainty
	Correlated Noise Improves the Quality of the Estimates
	Application to Other Use Cases

	Conclusion, Limitations, and Future Works
	Table of Notations
	Additional Discussions
	Semivalue as a Random Variable.
	Differential Privacy Framework.
	Composition of DP Mechanisms.
	DP Guarantee Level and Data Value Estimates
	Societal Impact

	Proofs and Additional Results
	Proof of the Example in sec:norrnoisereduceeu. 
	Proof of prop:concentrationiid.
	More General Proposition for Estimation Uncertainty with I.I.D. Noise
	Useful Lemmas and Corollaries
	 A Hypothetical Case
	Proof of prop:concentrationcorrgrad.
	Proof of prop:warmupcorr. 

	Experiments
	MIA Attack
	Generalizing to Other Use Cases
	Additional Experimental Results for sec:expincreasedk
	Additional Experimental Results for exp:othersemivalue
	Additional Experimental Results for Different Values of .
	Additional Experimental Results on Runtime and Memory


