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Abstract
In decentralized optimization, m agents form
a network and only communicate with their
neighbors, which gives advantages in data own-
ership, privacy, and scalability. At the same
time, decentralized stochastic gradient descent
(SGD) methods, as popular decentralized algo-
rithms for training large-scale machine learn-
ing models, have shown their superiority over
centralized counterparts. Distributed stochastic
gradient tracking (DSGT) (Pu & Nedić, 2021)
has been recognized as the popular and state-
of-the-art decentralized SGD method due to its
proper theoretical guarantees. However, the
theoretical analysis of DSGT (Koloskova et al.,
2021) shows that its iteration complexity is
Õ
(

σ̄2

mµε +
√
Lσ̄

µ(1−λ2(W ))1/2CW
√
ε

)
, where the dou-

bly stochastic matrix W represents the network
topology and CW is a parameter that depends
on W . Thus, it indicates that the convergence
property of DSGT is heavily affected by the topol-
ogy of the communication network. To overcome
the weakness of DSGT, we resort to the snap-
shot gradient tracking skill and propose two novel
algorithms, snap-shot DSGT (SS DSGT) and ac-
celerated snap-shot DSGT (ASS DSGT). We fur-
ther justify that SS DSGT exhibits a lower itera-
tion complexity compared to DSGT in the general
communication network topology. Additionally,
ASS DSGT matches DSGT’s iteration complex-
ity O

(
σ̄2

mµε +
√
Lσ̄

µ(1−λ2(W ))1/2
√
ε

)
under the same

conditions as DSGT. Numerical experiments vali-

1Center for Intelligent Decision-Making and Machine Learning,
School of Management, Xi’an Jiaotong University, China. 2This
work was completed during the internship at SGIT AI Lab, State
Grid Corporation of China. 3SGIT AI Lab, State Grid Corporation
of China. 4College of Computing and Data Science, NTU, Sin-
gapore. 5CFAR and IHPC, Agency for Science, Technology and
Research (A*STAR), Singapore. Correspondence to: Haishan Ye
<yehaishan@xjtu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

date SS DSGT’s superior performance in the gen-
eral communication network topology and exhibit
better practical performance of ASS DSGT on the
specified W compared to DSGT.

1. Introduction
In this paper, we consider the decentralized optimization
problem, where there are m agents to cooperatively mini-
mize a common objective function f(x) with the following
formulation:

f(x) :=
1

m

m∑
i=1

fi(x)

with fi(x) := Eξ(i)∼D(i)fi(x, ξ
(i)).

(1)

The formulation assumes that the objective function f(x)
is composed of m-local functions fi(x), i ∈ [m] =
{1, . . . ,m}. The i-th agent maintains the private data set
D(i) and its objective function fi(x). The m agents form
a connected network and can only communicate with their
neighbors. Shi et al. (2015); Scaman et al. (2019); Ye et al.
(2020) indicate that the decentralized optimization has ad-
vantages over traditional centralized optimization in data
ownership, privacy, and scalability (Nedic, 2020; Kairouz
et al., 2021; Even et al., 2021; Shi et al., 2015; Qu & Li,
2017; Alghunaim et al., 2020; Zeng & Yin, 2018).

Due to the imminent need to train large-scale machine
models, decentralized SGD methods are attracting signif-
icant attention recently because they are easy to implement,
and the computation cost of each iteration is cheap (Xin
et al., 2021b; Lu & De Sa, 2021; Alghunaim & Yuan, 2022;
Xin et al., 2021a). Especially, Lian et al. (2017) provides
the first theoretical analysis that indicates decentralized al-
gorithms might outperform centralized algorithms of dis-
tributed stochastic gradient descent (SGD). However, the
performance of decentralized SGD suffers from the data het-
erogeneity (Lian et al., 2017; Koloskova et al., 2020), that is,
training data is in a non-IID fashion distributed over agents.

Recently, the gradient tracking method developed by
Di Lorenzo & Scutari (2016) and Nedic et al. (2017) has
been widely used to overcome the data heterogeneity chal-
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lenge. Many decentralized algorithms based on the gradi-
ent tracking method have been proposed (Qu & Li, 2017;
Ye et al., 2020; Song et al., 2023). For instance, Pu &
Nedić (2021) applied the gradient tracking to the decentral-
ized SGD and proposed the distributed stochastic gradient
tracking method (DSGT). DSGT effectively conquers the
dilemma of data heterogeneity, and its dominant computa-
tion complexity is the same as its centralized counterpart.
Furthermore, DSGT also has an advantage over centralized
SGD in communication complexity.

However, the performance of DSGT is heavily affected by
the topology of the communication network through which
the agents exchange information. For the L-smooth and µ-
strongly convex functions, DSGT has the following iteration
complexity (Pu & Nedić, 2021) to achieve ε-suboptimality

Õ

(
σ̄2

mµε
+

√
Lσ̄

µ(1− λ2(W ))3/2
√
ε

)
, (2)

where σ̄2 is the upper bound on the variance of the stochas-
tic noise (see Assumption 2.1) and λ2(W ) is the second
largest eigenvalue of the doubly stochastic mixing matrix
W . The above equation shows that when λ2(W ) is close to
one, DSGT still suffers from poor performance. Recently,
Koloskova et al. (2021) improved the convergence analysis
of DSGT, and obtain the following complexity

Õ

(
σ̄2

mµε
+

√
Lσ̄

µ(1− λ2(W ))1/2CW
√
ε

)
, (3)

where CW is a parameter no smaller than 1 − λ2(W ).
Koloskova et al. (2021) showed that for a large number
of communication networks, CW is a constant independent
of λ2(W ). In these cases, Eq. (3) provides a better com-
plexity than Eq. (2). Unfortunately, in the general case, CW

is no longer a constant. Eq. (3) may even reduce to Eq. (2)
in the worst case. Thus, the result in Eq. (2) is the best
iteration complexity of DSGT for general cases. It is still
an open question: can DSGT achieve lower communication
and computation complexities than Eq. (2) for all commu-
nication networks? Koloskova et al. (2021) also proposed
an open problem: is the parameter CW in Eq. (3) tight in
general for DSGT?

Instead of answering the above open questions, we design
two novel decentralized stochastic gradient descent track-
ing algorithms in this paper. We will justify that the pro-
posed algorithm without extra inner communication loops
can achieve lower complexities than Eq. (2), which take
the same communication strategy as DSGT. We first extend
the “snap-shot” gradient tracking method proposed by Song
et al. (2023) to the SGD. Then we propose a snap-shot decen-
tralized stochastic gradient tracking (SS DSGT) algorithm
accordingly. SS DSGT is shown that has the following iter-

ation complexity

O

(
σ̄2

mµε
+

√
Lσ̄

µ(1− λ2(W ))
√
ε

)
,

which is better than the one shown in Eq. (2). In addition,
we leverage the loopless Chebyshev acceleration technique
(Arioli & Scott, 2014; Scaman et al., 2019; Song et al., 2023)
to improve the performance of SS DSGT on the specified
W ( doubly stochastic, positive semi-definite) and further
propose ASS DSGT with the iteration complexity

O

(
σ̄2

mµε
+

√
Lσ̄

µ(1− λ2(W ))1/2
√
ε

)
, (4)

which aligns with the result in Alghunaim & Yuan (2024).
In contrast to the method in Alghunaim & Yuan (2024),
ASS DSGT employs a decaying learning rate, which allows
a larger initial value of the learning rate and potentially
reduces the number of communication rounds required for
convergence in practical.

To the best of our knowledge, SS DSGT achieves the best it-
eration complexity for the decentralized SGD without inner
communication loops in the general communication net-
work, whose iteration complexity is independent of the pa-
rameter CW . Additionally, under the same typology of com-
munication network (i.e., the matrix W is doubly stochastic
and positive semi-definite), ASS DSGT demonstrates an it-
eration complexity consistent with prior research.

2. Notation and Assumptions
Let x and s be two m×d matrices whose i-th rows x(i) and
s(i) are the local copy of the decision and gradient-tracking
variables for the i-th agent, respectively. Accordingly, we
define the averaging variables

x :=
1

m

m∑
i=1

x(i) =
1

m
1⊤x ∈ R1×d, s :=

1

m
1⊤s ∈ R1×d,

(5)
where 1 denotes the vector with all entries equal to 1. Now
we introduce the projection matrix

Π = Im − 11⊤

m
. (6)

Using the projection matrix Π, we can represent that

∥x− 1x∥ =

∥∥∥∥x− 11⊤

m
x

∥∥∥∥ = ∥Πx∥ ,

∥s− 1s∥ = ∥Πs∥ .

We denote an aggregate objective function:

F (x) :=

m∑
i=1

fi(x
(i)) (7)
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and its aggregate gradient

∇F (x) := [∇f1(x
(1)), . . . ,∇fm(x(m))]⊤ ∈ Rm×d.

In addition, let ξ := [ξ(1), . . . , ξ(m)] ∈ Rm and

∇F (x, ξ) :=
[
∇f1(x

(1), ξ(1)), . . . ,∇fm(x(m), ξ(m))
]
.

Throughout this paper, we use ∥·∥ to denote the “Frobenius”
norm. That is, for a matrix x ∈ Rm×d, it holds that

∥x∥2 =

m,d∑
i=1,j=1

(
x(i,j)

)2
.

Furthermore, we use ∥x∥2 to denote the spectral norm which
is the largest singular value of x. For vectors x, y ∈ Rd, we
use ⟨x, y⟩ to denote the standard inner product of x and y.

Now we introduce several assumptions that will be used
throughout this paper. First, we state an assumption that the
stochastic gradients have bounded noise.
Assumption 2.1 (Bounded Noise). We assume that there
exists constant σ̄ s.t. for any x(i) ∈ Rd with i ∈ [m],

1

m

m∑
i=1

Eξ(i)

[∥∥∥∇fi(x
(i), ξ(i))−∇fi(x

(i))
∥∥∥2] ≤ σ̄2. (8)

In this paper, we focus on the smooth and strongly-convex
functions. That is, the function fi(x) satisfies the following
assumption.
Assumption 2.2. Each fi : Rd → R is µ-strongly convex
and L-smooth, i.e., for any x, y ∈ Rd,

fi(y) ≥fi(x) + ⟨∇fi(x), y − x⟩+ µ

2
∥x− y∥2 ,

fi(y) ≤fi(x) + ⟨∇fi(x), y − x⟩+ L

2
∥x− y∥2 .

The agents are connected through a graph G = {V,E} with
V and E being the sets of nodes and edges. We assume
that the graph is undirected and connected. W is an m×m
mixing matrix with Wi,j being positive if and only if there
is an edge between i-th and j-th agents. We also assume
that W satisfies the following properties.
Definition 2.3 (Mixing matrix). Matrix W ∈ [0, 1]m×m is
doubly stochastic, that is W1 = 1, and 1⊤W = 1⊤.

We further suppose that the mixing matrix has the following
property to achieve the information average. Specifically,
we can represent the information exchange through matrix
multiplication.
Assumption 2.4. Letting W ∈ Rm×m be a (random) mix-
ing matrix and parameter θ ∈ (0, 1], it satisfies that

EW

[
∥Wx− 1x∥2

]
≤ (1− θ)

2 ∥x− 1x∥2 ,

with θ = 1−
√

λ2 (E [W⊤W ]).

(9)

Algorithm 1 Snap-Shot Decentralized Stochastic Gradient
Tracking

Input: x0, mixing matrix W , initial step size η.
Initialization: Set x0 = 1x0, q0 = 1x0, s(i)0 = ∇fi(x

(i)
0 , ξ0),

in parallel for i ∈ [m], τ = 0.
for t = 1, . . . , T do

Generate ζt with probability p.
Sample ξ

(i)
t in parallel for all m agents and update

xt+1 = W (xt − ηt (st +∇F (xt, ξt)−∇F (qt, ξτ ))) .
(10)

Update
qt+1 = ζtxt + (1− ζt)qt. (11)

Update

st+1 = W st + ζt (∇F (xt, ξt)−∇F (qt, ξτ )) . (12)

Set

τ =

{
t, if ζt = 1,

τ, otherwise.

end for

Assumption 2.4 says that the mixing matrix W can achieve
averaging in expectation but without any other constraint.
As a concrete example, Boyd et al. (2006) showed that
randomized gossip matrices with time-varying topologies
satisfy Assumption 2.4.

3. Snap-Shot Decentralized Stochastic
Gradient Tracking

In this section, we propose the SS DSGT algorithm. We
first give the algorithm description and the intuition behind
our algorithm. Then, we provide a detailed convergence
analysis of SS DSGT.

3.1. Algorithm Description

Our work extends the idea of snap-shot gradient tracking
(SS GT) proposed by Song et al. (2023) to the decentralized
SGD. The detailed algorithm description is in Algorithm 1.

Following the idea of SS GT, our algorithm introduces a
variable qt to record some history position of xt and updates
it with probability p. Furthermore, instead of updating the
gradient tracking variable st with the aggregated stochastic
gradient ∇F (xt+1, ξt+1) for each iteration in DSGT (refer
to Eq. (67)), SS DSGT updates st with gradient information
also with probability p. The value of st is updated only
when ζt = 1. If ζt = 1, we need to update the τ which
records the time update qt.

Unlike DSGT whose st tracks the average of ∇F (xt, ξt)
(Pu & Nedić, 2021), st of our algorithm tracks the average
of ∇F (qt, ξτ ) which is shown by the following lemma.
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Lemma 3.1. Let sequence {st} be updated as Eq. (12).
Then, for any 0 ≤ t ≤ T , it holds that

st =
1

m

m∑
i=1

∇fi(q
(i)
t , ξ(i)τ ). (13)

Since st tracks the value of ∇F (qt, ξτ ) instead of
∇F (xt, ξt), our algorithm proposes the update rule (10)
in contrast to using st to update xt directly which is used in
DSGT (See Algorithm 3). Such modification follows from
the fact

1⊤
(
st +∇F (xt, ξt)−∇F (qt, ξτ )

)
(13)
= 1⊤∇F (xt, ξt).

Note that, our algorithm is inspired by the SS GT proposed
by Song et al. (2023), and its idea originates from SVRG
(Johnson & Zhang, 2013), L-SVRG (Kovalev et al., 2020)
and ANITA (Anita, 2021). However, SS DSGT is not an
easy extension of SS GT. The original SS GT strongly cor-
relates to the loopless Katyusha (Kovalev et al., 2020). Extra
variables such as Ut compared to our algorithm and “nega-
tive momentum” are important in the building of SS GT in
(Song et al., 2023). Moreover, a large part of the proof of
SS GT follows the framework of loopless Katyusha. Thus,
it is unknown whether the idea of SS GT has a broader appli-
cation. Our work tries to explore the application range of the
idea SS GT and try to extend it to decentralized stochastic
gradient descent.

3.2. Convergence Analysis

We will first study the evolution of E
[
∥Πxt∥2

]
,

E
[
∥Πst∥2

]
and E

[
∥∇F (qt)−∇F (1x∗)∥2

]
. We in-

troduce a Lyapunov function to describe the dynam-
ics of consensus errors and ∥∇F (qt)−∇F (1x∗)∥.
Let us denote by Ft the σ-algebra generated by
{(ξ0, ζ0), (ξ1, ζ1), . . . , (ξt−1, ζt−1)} and define E [· | Ft] as
the conditional expectation given Ft.
Lemma 3.2. Suppose Assumptions 2.1-2.4 hold. Let {ηt}
be a non-increasing sequence and satisfy ηt ≤ θ

16L . Setting
C1,t = 4η2t /θ

2, C2,t = 2ηt/(Lθ), and p = θ, it holds that

E [Ψt+1 | Ft] ≤
(
88mLη2t

θ
+ 8mηt

)(
f(xt)− f(x∗)

)
+(

1− θ

4

)
·Ψt +

18mη2t
θ

σ̄2,

(14)
where we denote

Ψt ≜ ∥Πxt∥2 + C1,t ∥Πst∥2 +

C2,t ∥∇F (qt)−∇F (1x∗)∥2 .

Lemma 3.2 shows that Ψt will converge to zero under the
condition that the step size ηt will decrease to zero and

f(xt)− f(x∗) is non-increasing. This implies that ∥Πxt∥
will converge to zero, that is, the distance

∥∥∥x(i)
t − xt

∥∥∥2 will
vanish as t goes. Next, we are going to upper bound the
distance ∥xt − x∗∥.

Lemma 3.3. Suppose Assumptions 2.1-2.4 hold. Then we
have the following inequality:

E
[
∥xt+1 − x∗∥2 | Ft

]
≤
(
1− µηt

2

)
∥xt − x∗∥2 + 2Lηt (1 + 2ηtL)

m
∥Πxt∥2 +

η2t ·
σ̄2

m
− 2ηt (1− 2ηtL)

(
f(xt)− f(x∗)

)
.

(15)

Lemma 3.2 and 3.3 show that the dynamics of Ψt and
∥xt − x∗∥2 correlate to each other. Based on above two
lemmas, we obtain the following convergence properties.

Lemma 3.4. Suppose Assumptions 2.1-2.4 hold. Let {ηt}
be a non-increasing sequence and satisfy ηt ≤ θ

26·3·L . It
holds that

E
[
∥xt+1 − x∗∥2 + 24Lηt+1

mθ
Ψt+1 | Ft

]
≤ exp

(
−µηt

2

)(
∥xt − x∗∥2 + 24Lηt

mθ
Ψt

)
−

7ηt
8

(
f(xt)− f(x∗)

)
+

24 · 33 · Lη3t
θ2

σ̄2 + η2t ·
σ̄2

m
.

(16)

Based on Lemma 3.4, we can derive the desired convergence
properties shown in the following theorem. The proof is
deferred in Appendix C.

Theorem 3.5. Suppose Assumptions 2.1-2.4 hold. Se-
quences {xt}, {qt}, and {st} are generated by Algorithm 1.
Then Algorithm 1 has the following convergence properties:

• If σ̄2 = 0 and step size ηt =
θ

26·3·L , it holds that

E
[
∥xT − x∗∥2 + 1

8m
ΨT

]
≤ exp

(
− θµ

27 · 3L
· T
)
·
(
∥x0 − x∗∥2 + 1

8m
Ψ0

)
.

(17)

• If σ̄2 > 0, the set the step size sequence {ηt} and
weight sequence {ωt} as follows:

ηt =
6β

L+ βµt
, and ωt =

ηt
η0

exp

(
µ

2

t∑
i=0

ηi

)
,

where β = θ
27·32 . Letting ST =

∑T
t=0 ωt, then it holds
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that

1

ST

T∑
t=0

ωt

(
E[f(xt)]− f(x∗)

)
≤ 24 · (L+ βµ(T + 1))2

β2µ3T 3
· σ̄

2

m
+

28 · 35 · L
µ2θ2

· σ̄
2

T 2
+

224 · 36 · L3

θ3µ2
· 1

T 3
·
(
∥x0 − x∗∥2 + Ψ0

8m

)
.

(18)

Based on Theorem 3.5, we can directly obtain the itera-
tion complexities for both σ̄ = 0 and ¯σ > 0. The proof is
deferred to Appendix C.6.
Corollary 3.6. Suppose Assumptions 2.1-2.4 hold and the
mixing matrix W is fixed. Parameters of Algorithm 1 are set
as Theorem 3.5, then Algorithm 1 has the following iteration
complexity:

• If σ̄2 = 0, to achieve ε-suboptimality, the iteration
complexity of Algorithm 1 is

T = O
(

L

µ(1− λ2(W ))
log

1

ε

)
. (19)

• If σ̄2 > 0, to achieve ε-suboptimality, the iteration
complexity of Algorithm 1 is

T = O
( σ̄2

µmε
+

√
Lσ̄

(1− λ2(W ))µ
√
ε
+

L

(1− λ2(W ))µε1/3

)
.

(20)

Remark 3.7. According to Corollary 3.6, when either σ̄2 =
0 or σ̄2 > 0, SS DSGT achieves lower complexity than
DSGT. Specifically,

• When σ̄2 = 0, our algorithm achieves a linear
convergence rate and its iteration complexity is
O
(

L
µ(1−λ2(W )) log

1
ε

)
. In contrast, the iteration com-

plexity of DSGT is O
(

L
µ(1−λ2(W ))2 log

1
ε

)
(Pu &

Nedić, 2021; Qu & Li, 2017). Thus, our SS DSGT has
better performance than DSGT theoretically.

• When σ̄2 > 0, we can observe that the iteration com-
plexity of SS DSGT depends on (1−λ2(W ))−1 while
DSGT depends on (1 − λ2(W ))−3/2 (see Eq. (2)).
Thus, SS DSGT also outperforms DSGT when σ̄2 > 0.

4. Acceleration with Loopless Chebyshev
Acceleration

In this section, we try to further improve SS DSGT and
combine it with the loopless Chebyshev acceleration pro-
posed by Song et al. (2023). Because the loopless Cheby-
shev acceleration only works for the static networks, we

assume that for all iterations, it shares the same mixing ma-
trix W in this section. For the static networks, Corollary 3.6
shows that the iteration complexity of SS DSGT depends
on θ−1 = (1 − λ2(W ))−1. In this section, we propose
ASS DSGT which achieves an iteration complexity depend-

ing on
(
1− λ2(W )

)−1/2

instead of
(
1− λ2(W )

)−1

.

4.1. Algorithm Description

Before introducing ASS DSGT, we make an additional as-
sumption on the mixing matrix and define some new neces-
sary notations.

Assumption 4.1. The mixing matrix W ∈ Rm×m is sym-
metric positive semi-definite.

The above assumption can be easily satisfied since we can
choose I+W

2 as the mixing matrix that is positive semi-
definite for any mixing matrix W .

Now, we introduce 2m×2m augmented matrices W̃ and Π̃
for the mixing matrix W and projection matrix Π defined
as follows:

W̃ =

[
(1 + γ)W −γW

Im 0

]
, and Π̃ =

[
Π 0
0 Π

]
.

(21)
Accordingly, we define the augmented decision variable
x̃ ∈ R2m×d and gradient-tracking variable s̃ ∈ R2m×d.
Furthermore, we denote that xt := x̃

(1:m)
t , that is, xt takes

the value of the first m rows of x̃t. Given these notations,
we describe ASS DSGT in Algorithm 2.

We can observe that Algorithm 2 shares almost the same
algorithmic structure to the one of Algorithm 1. The ad-
vantage of ASS DSGT mainly depends on the following
property.

Lemma 4.2 (Lemma 11 of Song et al. (2023)). Under
Assumption 4.1, for any x ∈ Rm×d and t > 0, it holds that∥∥∥Π̃W̃ tΠ̃[x; x]

∥∥∥2 ≤ α
(
1− θ̃

)2t
∥Πx∥2 , (25)

where α ≤ 14 and θ̃ = O
(√

1− λ2(W )
)

.

The above property is also used in the analysis of the heavy
ball method and shows that the heavy ball method can
achieve a faster convergence rate than the gradient descent
(Recht, 2010).

4.2. Convergence Analysis

First, we will show that the first and last m rows of x̃t share
the same mean. This property also holds for s̃t.

Lemma 4.3. Letting sequences {x̃t} and {s̃t} are gener-
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Algorithm 2 Snap-Shot Decentralized Stochastic Gra-
dient Tracking with Loopless Chebyshev Acceleration
(ASS DSGT)

Input: x0, mixing matrix W , initial step size η.
Initialization: Set x̃0 = [1x0;1x0], q0 = 1x0, s

(i)
0 =

∇fi(x
(i)
0 , ξ0), in parallel for i ∈ [m], s̃0 = [s0; s0], and τ = 0.

for t = 1, . . . , T do
Generate ζt with probability p.
Sample ξ

(i)
t in parallel for all m agents and update

x̃t+1 = W̃
(
x̃t − ηt

(
s̃t + [∇F (xt, ξt); ∇F (xt, ξt)]−

[∇F (qt, ξτ ); ∇F (qt, ξτ )]
))

.

(22)
Update

qt+1 = ζtxt + (1− ζt)qt. (23)

Update

s̃t+1 = W̃ s̃t + ζt
(
[∇F (xt, ξt); ∇F (xt, ξt)]−

[∇F (qt, ξτ ); ∇F (qt, ξτ )]
)
.

(24)

Set

τ =

{
t, if ζt = 1,

τ, otherwise.

end for

ated by Algorithm 2, then it holds that

m∑
i=1

x̃
(i)
t =

2m∑
i=m+1

x̃
(i)
t ,

m∑
i=1

s̃
(i)
t =

2m∑
i=m+1

s̃
(i)
t , (26)

and

1

2m

2m∑
i=1

s̃it =
1

m

m∑
i=1

∇fi(q
(i)
t , ξ(i)τ ). (27)

Above lemma shows that the means of x̃t and s̃t equal to
xt and st, respectively. Thus, Lemma 3.3 still holds for
ASS DSGT. Next, we will focus on analyzing the conver-
gence properties of consensus errors which are different
from the ones of SS DSGT.

Lemma 4.4. Letting sequences {x̃t} and {s̃t} are gener-
ated by Algorithm 2, it holds that

E
[∥∥∥Π̃x̃t

∥∥∥2] ≤ Ex,t and E
[∥∥∥Π̃s̃t

∥∥∥2] ≤ Es,t (28)

with

Es,t+1

≤ (1− θ̃

2
)Es,t + 2mσ̄2 + 4αp(∥∇F (xt)−∇F (qt)∥2)

(29)

Ex,t+1

≤ (1− θ̃

2
)Ex,t +

3α

θ̃
η2t (Es,t + 2 ∥∇F (xt)−∇F (qt)∥2)

+ 2αmσ̄2η2t
(30)

and

Es,0 = 2α ∥Πs0∥2 , Ex,0 = α
∥∥∥Π̃x0

∥∥∥2 . (31)

Based on the above lemma about the consensus error terms,
we can obtain the following lemma similar to Lemma 3.2.
Lemma 4.5. Suppose Assumptions 2.1-2.2 and Assump-
tion 4.1 hold. Let {ηt} be a non-increasing sequence
and satisfy ηt ≤ θ̃

24·33·L . Setting C1,t =
12αη2

t

θ̃2
, C2,t =

16(1+8α)η2
t

θ̃2
, p = θ̃, then we can obtain that

Ψ̃t+1 ≤
(
1− θ̃

)
Ψ̃t +

212 · 32 ·mη2t

θ̃
· σ̄2+

212 · 32 ·mLη2t

θ̃
·
(
f(xt)− f(x∗)

)
,

(32)

where we define

Ψ̃t := Ex,t + C1,t · Es,t + C2,t ∥∇F (qt)−∇F (1x∗)∥2 .
(33)

Combining Lemma 4.5 and Lemma 3.3, we can obtain a
lemma similar to Lemma 3.4.
Lemma 4.6. Suppose Assumptions 2.1-2.2 and Assump-
tion 4.1 hold. Let {ηt} be a non-increasing sequence and
satisfy ηt ≤ θ̃

28·3·L . Then, it holds that

E
[
∥xt+1 − x∗∥2 + 48Lηt+1

mθ̃
Ψ̃t+1

]
≤ exp

(
−µηt

2

)(
∥xt − x∗∥2 + 48Lηt

mθ̃
· Ψ̃t

)
+

η2t σ̄
2

m
+

216 · 32 · Lη3t
θ̃2

· σ̄2 − 7ηt
8

(
f(xt)− f(x∗)

)
(34)

Based on Lemma 4.6, we can derive the desired convergence
properties shown in the following theorem. The proof is
deferred in Appendix D.
Theorem 4.7. Suppose Assumptions 2.1-2.2 and Assump-
tion 4.1 hold. Sequences {xt}, {qt}, and {s̃t} are gener-
ated by Algorithm 2. Then Algorithm 2 has the following
convergence properties:

• If σ̄2 = 0 and step size ηt =
θ

28·3·L , it holds that

E
[
∥xT − x∗∥2 + 1

8m
ΨT

]
≤ exp(− 1

27 · 3
· θµ
L

· T )
(
∥x0 − x∗∥2 + 1

8m
Ψ0

)
.

(35)
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• If σ̄2 > 0, set the step size sequence {ηt} and weight
sequence {ωt} as follows:

ηt =
6β̃

L+ β̃µt
, and ωt =

ηt
η0

exp

(
µ

2

t∑
i=0

ηi

)
,

where β̃ = θ̃
29·32 . Letting ST =

∑T
t=0 ωt, then it holds

that

1

ST

T∑
t=0

ωt

(
E[f(xt)]− f(x∗)

)
≤24 · (L+ β̃µ(T + 1))2

β̃2µ3T 3
· σ̄

2

m
+

220 · 34 · L
θ̃2µ2

· σ̄
2

T 2
+

228 · 35 · L3

θ̃3µ2
· 1

T 3
·

(
∥x0 − x∗∥2 + Ψ̃0

16m

)
.

(36)

Corollary 4.8. Suppose Assumptions 2.1-2.2 and Assump-
tion 4.1 hold. Parameters of Algorithm 2 are set as Theo-
rem 4.7, then Algorithm 2 has the following iteration com-
plexity:

• If σ̄2 = 0, to achieve ε-suboptimality, the iteration
complexity of Algorithm 1 is

T = O

(
L

µ
√
1− λ2(W )

log
1

ε

)
(37)

• If σ̄2 > 0, to achieve ε-suboptimality, the iteration
complexity of Algorithm 1 is

T = O
( σ̄2

µmε
+

√
Lσ̄

µ
√
1− λ2(W )

√
ε
+

L√
1− λ2(W )µε1/3

) (38)

Remark 4.9. Eq. (38) shows that the loopless Chebyshev
acceleration can effectively reduce the iteration complex-
ity. Comparing Eq. (38) with Eq. (3), we can conclude that
ASS DSGT can achieve good performance comparable to
DSGT for all cases (no CW ). In contrast, DSGT can only
achieve good performance on the limited kinds of commu-
nication networks.

5. Experiment
In this section, we carry out numerical experiments
to validate the convergence property of SS DSGT and
ASS DSGT compared to DSGT on the following l2-
penalized logistic regression problem:

fi(x) = Ez(i),y(i) log
(
1 + exp(−y(i)x⊤z(i))

)
+

v

2
∥x∥2 ,

Table 1. Summary of data sets, the number of agent, the regular-
ization coefficient, and the batch size used in our experiments

Data Set n d m v Batch Size

banknote 1360 4 20 10−2 30
a9a 32560 123 20 10−2 200
ijcnn1 49980 22 20 10−2 200

where z(i) ∈ Rd is the feature vector, y(i) ∈ {−1, 1} is the
label, and v is the regularization coefficient.

In Table 1, we present three datasets used in our experi-
ments along with their respective settings. The ’banknote’
dataset is sourced from the UCI Machine Learning Reposi-
tory website1, while ’a9a’ and ’ijcnn1’ are obtained from the
LIBSVM website2. We utilize m = 20 agents, distributing
the data randomly and equally among them. These meth-
ods are executed in batch mode, and hyperparameters are
fine-tuned for optimal performance.

Here, we construct an asymmetric mixing matrix W asy fol-
lowing the approach of Gharesifard & Cortés (2012). This
asymmetric topology is common in decentralized settings
(Nedić & Olshevsky, 2014; Jiang et al., 2021; Freund et al.,
2023), and the W asy is a representation of the diverse gen-
eral communication network typologies. Moreover, W asy

challenges the previous assumption about the communica-
tion network topology (Scaman et al., 2019), and the inferior
performance of DSGTis expected based on Eq. (4). To elab-
orate, we initially generate a symmetric mixing matrix W cyc

with its elements set as follows:

W cyc
(i,j) =


1
4 , (i, j) ∈ E
1
2 , i = j
0, otherwise

where the edge set is given by E = {(i, i+1) : 1 ≤ i ≤ m−
1}∪{(m, 1)}. Subsequently, the asymmetric mixing matrix
wasy is generated by randomly adding additional 20 edges
to the cycle W cyc. Simultaneously, we set the symmetric
matrix W sy to be identical to W cyc. The values of θ for
W asy and W sy are 0.0761 and 0.024, respectively. Since
ASS DSGT is not applicable in this asymmetric setting, we
compare the performance of SS DSGT and DSGT on W asy.
For all experiments, we run the centralized gradient descent
method to find the optimal point x∗ and f(x∗).

In Figure 1, we compare the distance ∥x̄t − x∗∥ between
SS DSGT and DSGT on the asymmetric mixing matrix
W asy. SS DSGT demonstrates superior performance across
the three datasets, particularly depicted in Figure 1(b). This

1https://archive.ics.uci.edu/dataset/267/
banknote+authentication

2https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/binary.html
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Figure 1. Comparison of SS DSGT and DSGT for the term ∥x̄t − x∗∥2 versus the communication round on the asymmetric mixing matrix
W asy.
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Figure 2. Comparison of different methods for the term ∥x̄t − x∗∥2 versus the communication round on the symmetric mixing matrix
W sy.

performance superiority validates the lower iteration com-
plexity of SS DSGT compared to DSGT for the general
topology of communication network, as indicated in Eq. (3).
Besides, we also conduct a comparison of the training loss
for the proposed methods against DSGT, with additional
figures presented in Appendix F.

As shown in Figure 2, we compare the distance ∥x̄t − x∗∥2
among the three methods on the symmetric matrix W sy.
Notably, although ASS DSGT and DSGT have the same
iteration complexity as DSGT, ASS DSGT exhibits better
practical performance across these three datasets, likely
attributed to the incorporation of the acceleration technique.
Besides, ASS DSGT obtains better performance than DSGT,
indicating potential improvements in iteration complexity
in this symmetric setting.

6. Conclusion
In this paper, we explore the application range of the
idea of SS GT and extend it to design novel decentralized

SGD methods. We propose two novel algorithms named
SS DSGT and ASS DSGT based on the idea of SS GT.
These two algorithms have similar algorithmic structure
to DSGT and they both take single loop communication
strategy, which is the same as DSGT. SS DSGT can achieve
better convergence rate than DSGT for the general topology
of communication network, and the iterative complexity of
ASS DSGT aligns with the result of DSGT (Kairouz et al.,
2021) on the mixing matrix W . The numerical experiment
validates the lower iteration complexity of SS DSGT in the
general cases compared to DSGT and demonstrates better
practical performance of ASS DSGT.
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through hoops and remove those loops: Svrg and
katyusha are better without the outer loop. In Algorithmic
Learning Theory, pp. 451–467. PMLR, 2020.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W.,
and Liu, J. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. Advances in Neural
Information Processing Systems, 30, 2017.

Lu, Y. and De Sa, C. Optimal complexity in decentral-
ized training. In International Conference on Machine
Learning, pp. 7111–7123. PMLR, 2021.

Nedic, A. Distributed gradient methods for convex machine
learning problems in networks: Distributed optimization.
IEEE Signal Processing Magazine, 37(3):92–101, 2020.
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A. Useful Lemmas
In this section, we will introduce several useful lemmas that will be used in our proofs. These lemmas are easy to check or
prove. Thus, we omit the detailed proofs of these lemmas.

Lemma A.1. Let g(x) be a monotonically increasing function in the range [t0, T ], then it holds that∫ T

t0

g(x) dx ≤
T∑

k=t0

g(k) ≤
∫ T+1

t0

g(x) dx. (39)

If f(x) is monotonically decreasing in the range [t0, T ], then it holds that∫ T+1

t0

g(x) dx ≤
T∑

k=t0

g(k) ≤
∫ T

t0−1

g(x) dx. (40)

Lemma A.2. If ai’s are independent random variables with expectation E[ai] = 0, then it holds that

E

∥∥∥∥∥ 1

m

m∑
i=1

ai

∥∥∥∥∥
2
 =

1

m2

m∑
i=1

E
[
∥ai∥2

]
, (41)

and for any consistent random variable b being independent of ai, it holds

E
[
∥ai + b∥2

]
= E

[
∥ai∥2 + ∥b∥2

]
. (42)

Lemma A.3. For any matrix X ∈ Rm×d, it holds that for the projection matrix Π defined in Eq. (6),

∥ΠX∥ ≤ ∥X∥ . (43)

Lemma A.4 (Lemma 6 of (Qu & Li, 2017)). Let Assumption 2.2 hold, then∥∥∥∥∇f(xt)−
1

m
1⊤∇F (xt)

∥∥∥∥ ≤ L√
m

∥Πxt∥ . (44)

Lemma A.5 (Lemma 3 of (Song et al., 2023)). Let fi : Rd → R satisfy Assumption 2.2. Denoting that gt =
1
m

∑m
i=1 ∇fi(x

(i)
t ), it holds that

f(xt) ≤ f(x∗) + ⟨gt, xt − x∗⟩ − µ

4
∥xt − x∗∥2 + L

m
∥Πxt∥2 . (45)

B. Important Lemmas Related to Our Algorithms
Lemma B.1. Letting Assumption 2.2 hold, then we have the following inequalities:∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t )− 1

m

m∑
i=1

∇fi(q
(i)
t )

∥∥∥∥∥
2

≤ 1

m
∥∇F (xt)−∇F (qt)∥2 , (46)

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t )

∥∥∥∥∥
2

≤ 2L2

m
∥Πxt∥2 + 4L

(
f(xt)− f(x∗)

)
. (47)

Proof. For the first inequality, we have∥∥∥∥∥ 1

m

m∑
i=1

(
∇fi(x

(i)
t )−∇fi(q

(i)
t )
)∥∥∥∥∥

2

≤ 1

m

m∑
i=1

∥∥∥∇fi(x
(i)
t )−∇fi(q

(i)
t )
∥∥∥2 =

1

m
∥∇F (xt)−∇F (qt)∥2 .
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For the second inequality, we have∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t )

∥∥∥∥∥
2

=2

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t )−∇f(xt)

∥∥∥∥∥
2

+ 2 ∥∇f(xt)∥2
(44)
≤ 2L2

m
∥Πxt∥2 + 2 ∥∇f(xt)∥2

≤2L2

m
∥Πxt∥2 + 4L

(
f(xt)− f(x∗)

)
,

where the last inequality is because f(·) is L-smooth implied by Assumption 2.2.

Lemma B.2. Letting Assumption 2.2 hold, then we have the following inequalities:

∥∇F (xt)−∇F (1x∗)∥2 ≤2L2 ∥Πxt∥2 + 4mL
(
f(xt)− f(x∗)

)
, (48)

∥∇F (xt)−∇F (qt)∥2 ≤4L2 ∥Πxt∥2 + 2 ∥∇F (qt)−∇F (1x∗)∥2 + 8mL
(
f(xt)− f(x∗)

)
. (49)

Proof. First, we have

∥∇F (xt)−∇F (1x∗)∥2 ≤2 ∥∇F (xt)−∇F (1xt)∥2 + 2 ∥∇F (1xt)−∇F (1x∗)∥2

≤2L2 ∥Πxt∥2 + 2 ∥∇F (1xt)−∇F (1x∗)∥2 ,

where the last inequality is because of ∇F (x) is L-smooth implied by Assumption 2.2. In addition, applying the L-
smoothness of fi again, we can obtain that

∥∇F (1xt)−∇F (1x∗)∥2 =

m∑
i=1

∥∇fi(xt)−∇fi(x
∗)∥2

≤
m∑
i=1

2L (fi(xt)− fi(x
∗)− ⟨∇fi(x

∗), xt − x∗⟩)

=2mL

(
f(xt)− f(x∗)−

〈
1

m

m∑
i=1

∇fi(x
∗), xt − x∗

〉)
=2mL

(
f(xt)− f(x∗)

)
,

where the last equality is because of 1
m

∑m
i=1 ∇fi(x

∗) = ∇f(x∗) = 0. Combining above two inequality, we can obtain
Eq. (48).

Furthermore,

∥∇F (xt)−∇F (qt)∥2 ≤2 ∥∇F (xt)−∇F (1x∗)∥2 + 2 ∥∇F (qt)−∇F (1x∗)∥2

(48)
≤ 4L2 ∥Πxt∥2 + 2 ∥∇F (qt)−∇F (1x∗)∥2 + 8mL

(
f(xt)− f(x∗)

)
,

which concludes the proof.

Lemma B.3. Letting Assumption 2.1 hold, then it holds that

E
[
∥∇F (xt, ξt)−∇F (qt, ξτ )∥2

]
≤ 2mσ̄2 + ∥∇F (xt)−∇F (qt)∥2 . (50)

Proof. First, using the fact that E [∇F (xt, ξt)−∇F (qt, ξτ )− (∇F (xt)−∇F (qt))] = 0, we can obtain that

E
[
∥∇F (xt, ξt)−∇F (qt, ξτ )∥2

]
(42)
=E

[
∥∇F (xt, ξt)−∇F (qt, ξτ )− (∇F (xt)−∇F (qt))∥2

]
+ ∥∇F (xt)−∇F (qt)∥2 .
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Similarly, it holds that E [∇F (xt, ξt)−∇F (xt)] = 0 and E [∇F (qt, ξτ )−∇F (qt)] = 0. Consequently,

E
[
∥∇F (xt, ξt)−∇F (qt, ξτ )− (∇F (xt)−∇F (qt))∥2

]
=E

[
∥∇F (xt, ξt)−∇F (xt)∥2 + ∥∇F (qt, ξτ )−∇F (qt)∥2

]
=E

[
m∑
i=1

(∥∥∥∇fi(x
(i)
t , ξ

(i)
t )−∇fi(x

(i)
t )
∥∥∥2 + ∥∥∥∇fi(q

(i)
t , ξ(i)τ )−∇fi(q

(i)
t )
∥∥∥2)]

≤2mσ̄2.

Combining above two equations, we can obtain that

E
[
∥∇F (xt, ξt)−∇F (qt, ξτ )∥2

]
≤ 2mσ̄2 + ∥∇F (xt)−∇F (qt)∥2 .

Lemma B.4. Let A, B, and C be three positive constants. Non-negative sequences {rt}, {et}, and {ηt} satisfies the follow
property

rt+1 ≤ exp
(
−µηt

2

)
rt − ηtetA+ η2tB + η3tC. (51)

Set step size sequence and weight sequence as follows

ηt = 6β (L+ βµt)
−1

, and ωt =
ηt
η0

exp

(
µ

2

t∑
i=0

ηi

)
.

Letting ST =
∑T

t=0 ωt, then it holds that

A

ST

T∑
t=0

etωt ≤
L3

2β3µ2
· 1

T 3
· r0 +

18BL3(L+ βµ(T + 1))2

β2(L− βµ)3µ3T 3
+

108L3

µ2(L− βµ)3
· C

T 2
(52)

Proof. Diving ηt both sides of Eq. (51) and rearranging it, we can obtain that

A

T∑
t=0

ωtet ≤
T∑

t=0

(
exp

(
−µηt

2

)
ωt

ηt
· rt −

ωt

ηt
rt+1 +Bωtηt + Cωtη

2
t

)

=
exp

(
−µη0

2

)
ω0

η0
· r0 −

ωT

ηT
rT+1 +B

T∑
t=0

ωtηt + C

T∑
t=0

ωtη
2
t ,

(53)

where the equality is because of ωt =
ηt

ηt−1
exp

(
µ
2 ηt
)
ωt−1.

Now, we are going to upper bound ωt as follows

ωt =
L

L+ βµt
exp

(
3βµ

t∑
i=0

(L+ βµi)−1

)
(40)
≤ L

L+ βµt
exp

(
3βµ

∫ t

−1

(L+ βµi)−1 di

)

=
L

L+ βµt
·
(
L+ βµt

L− βµ

)3

=
L(L+ βµt)2

(L− βµ)3
.

(54)

13
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We lower bound ST as follows:

ST =

T∑
t=0

ωt =

T∑
t=0

L

L+ βµt
exp

(
3µβ

t∑
i=0

(L+ βµi)−1

)
(40)
≥

T∑
t=0

L

L+ βµt
exp

(
3µβ

∫ t

i=0

(L+ βµi)−1 di

)

=

T∑
t=0

L

L+ βµt

(
L+ βµt

L

)3 (39)
≥
∫ T

0

(
L+ βµt

L

)2

dt

=
L

3βµ

((
1 +

βµ

L
T

)3

− 1

)
≥ β2µ2

3L2
T 3.

(55)

We also have
T∑

t=0

ωtηt
(54)
≤

T∑
t=0

L(L+ βµt)2

(L− βµ)3
· 6β

L+ βµt

(39)
≤ 6Lβ

(L− βµ)3

∫ T+1

0

(L+ βµt) dt

≤6L(L+ βµ(T + 1))2

(L− βµ)3µ
,

(56)

and
T∑

t=0

ωtη
2
t

(54)
≤

T∑
t=0

L(L+ βµt)2

(L− βµ)3
·
(

6β

L+ βµt

)2

=
36Lβ2

(L− βµ)3
T. (57)

Dividing ST both sides of Eq. (53), we can obtain that

A

ST

T∑
i=0

ωtet ≤
exp

(
−µη0

2

)
ω0

ST η0
· r0 +

B

ST

T∑
t=0

ωtηt +
C

ST

T∑
t=0

ωtη
2
t

(55)(56)(57)
≤ L3

2β3µ2
· 1

T 3
· r0 +

18BL3(L+ βµ(T + 1))2

β2(L− βµ)3µ3T 3
+

108L3

µ2(L− βµ)3
· C

T 2
.

C. Proofs for Section 3
C.1. Proof of Lemma 3.1

Proof of Lemma 3.1. We prove the result by the induction. For t = 0, by the initialization, we have

s0 =
1

m

m∑
i=1

∇fi(q
(0)
t , ξ

(i)
0 ).

If ζt = 0, then qt+1 = qt. By the induction hypothesis and the fact 1⊤W = 1⊤, we have

st+1 = st =
1

m

m∑
i=1

∇fi(q
(i)
t , ξ(i)τ ) =

1

m

m∑
i=1

∇fi(q
(i)
t+1, ξ

(i)
τ ).

If ζt = 1, then qt+1 = xt. By the induction hypothesis,

st+1 =st +
1

m

m∑
i=1

(
∇fi(x

(i)
t , ξ

(i)
t )−∇fi(q

(i)
t , ξ(i)τ )

)
=

1

m

m∑
i=1

∇fi(q
(i)
t , ξ(i)τ ) +

1

m

m∑
i=1

(
∇fi(x

(i)
t , ξ

(i)
t )−∇fi(q

(i)
t , ξ(i)τ )

)
=

1

m

m∑
i=1

∇fi(x
(i)
t , ξ

(i)
t ) =

1

m

m∑
i=1

∇fi(q
(i)
t+1, ξ

(i)
t ) =

1

m

m∑
i=1

∇fi(q
(i)
t+1, ξ

(i)
τ ),
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where the last equality is because of τ = t if ζt = 1.

C.2. Proof of Lemma 3.2

Before the detailed proof, we first introduce the following lemma which describes the evolution of consensus error terms.

Lemma C.1. Suppose Assumptions 2.1-2.4 hold. Sequences {xt}, {st}, and {qt} are generated by Algorithm 1. We have
the following inequalities:

E
[
∥Πxt+1∥2 | Ft

]
≤ (1− θ) · ∥Πxt∥2 +

3η2t
θ

∥Πst∥2 +
(
η2t +

2η2t
θ

)
∥∇F (xt)−∇F (qt)∥2 + 2mη2t σ̄

2
(58)

and

E
[
∥Πst+1∥2 | Ft

]
≤ (1− θ) ∥Πst∥2 + 2p ∥∇F (xt)−∇F (qt)∥2 + 4mpσ̄2 (59)

and

E
[
∥∇F (qt+1)−∇F (1x∗)∥2 | Ft

]
≤(1− p) ∥∇F (qt)−∇F (1x∗)∥2 + 2pL2 ∥Πxt∥2 + 4mLp

(
f(xt)− f(x∗)

)
.

(60)

Proof. First, we have

E
[
∥Π (xt − ηt (st +∇F (xt, ξt)−∇F (qt, ξτ )))∥2 | Ft

]
=E

[
∥Π (xt − ηtst)− ηt ·Π (∇F (xt, ξt)−∇F (qt, ξτ ))∥2 | Ft

]
= ∥Π(xt − ηtst)∥2 + η2t · E

[∥∥Π(∇F (xt, ξt)−∇F (qt, ξτ )
)∥∥2 | Ft

]
− 2ηt · E

[〈
Π(xt − ηtst),Π

(
∇F (xt, ξt)−∇F (qt, ξτ )

)〉
| Ft

]
= ∥Π(xt − ηtst)∥2 + η2t · E

[∥∥Π(∇F (xt, ξt)−∇F (qt, ξτ )
)∥∥2 | Ft

]
− 2ηt

〈
Π(xt − ηtst),Π

(
∇F (xt)−∇F (qt)

)〉
≤∥Π(xt − ηtst)∥2 + η2tE

[∥∥Π(∇F (xt, ξt)−∇F (qt, ξτ )
)∥∥2 | Ft

]
+

θ

2
∥Π(xt − ηtst)∥2 +

2η2t
θ

∥∥Π(∇F (xt)−∇F (qt)
)∥∥2

(43)
≤
(
1 +

θ

2

)
∥Π(xt − ηtst)∥2 + η2tE

[
∥∇F (xt, ξt)−∇F (qt, ξτ )∥2

]
+

2η2t
θ

∥∇F (xt)−∇F (qt)∥2

(50)
≤
(
1 +

θ

2

)
∥Π(xt − ηtst)∥2 +

(
η2t +

2η2t
θ

)
∥∇F (xt)−∇F (qt)∥2 + 2mη2t σ̄

2,

(61)

where the first inequality is because of the Cauchy’s inequality.
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Using above equation, we can obtain that

E
[
∥Πxt+1∥2 | Ft

]
=E

[
∥ΠW (xt − ηt (st + ζt (∇F (xt, ξt)−∇F (qt, ξτ ))))∥2 | Ft

]
(9)
≤ (1− θ)

2 · E
[
∥Π (xt − ηt (st + ζt (∇F (xt, ξt)−∇F (qt, ξτ ))))∥2 | Ft

]
(61)
≤ (1− θ)

2

(
1 +

θ

2

)
∥Π(xt − ηtst)∥2 +

(
η2t +

2η2t
θ

)
∥∇F (xt)−∇F (qt)∥2 + 2mη2t σ̄

2

≤ (1− θ)
2

(
1 +

θ

2

)((
1 +

θ

2

)
∥Πxt∥+

(
1 +

2

θ

)
η2t ∥Πst∥2

)
+

(
η2t +

2η2t
θ

)
∥∇F (xt)−∇F (qt)∥2 + 2mη2t σ̄

2

≤ (1− θ) ∥Πxt∥2 +
3η2t
θ

∥Πst∥2 +
3η2t
θ

∥∇F (xt)−∇F (qt)∥2 + 2mη2t σ̄
2,

which proves the result of Eq. (58).

Now, we are going to prove Eq. (59) and we have

E
[
∥Πst+1∥2 | Ft

]
=(1− p)E

[
∥ΠW st∥2 | Ft

]
+ pE

[
∥Π(W st +∇F (xt, ξt)−∇F (qt, ξτ ))∥2 | Ft

]
≤(1− p)E

[
∥ΠW st∥2 | Ft

]
+ 2pE

[
∥ΠW st∥2 + ∥∇F (xt, ξt)−∇F (qt, ξτ )∥2 | Ft

]
=(1 + p)E

[
∥ΠW st∥2 | Ft

]
+ 2pE

[
∥∇F (xt, ξt)−∇F (qt, ξτ )∥2 | Ft

]
(9)
≤(1 + p) (1− θ)

2 · ∥Πst∥2 + 2pE
[
∥∇F (xt, ξt)−∇F (qt, ξτ )∥2 | Ft

]
≤ (1− θ)E

[
∥Πst∥2

]
+ 2pE

[
∥∇F (xt, ξt)−∇F (qt, ξτ )∥2 | Ft

]
,

where the last inequality is because of p ≤ θ. Using Eq. (50), we can obtain that

E
[
∥Πst+1∥2 | Ft

] (50)
≤ (1− θ) ∥Πst∥2 + 2p ∥∇F (xt)−∇F (qt)∥2 + 4mpσ̄2.

By the update rule of qt, we have

E
[
∥∇F (qt+1)−∇F (1x∗)∥2 | Ft

]
(11)
= p ∥∇F (xt)−∇F (1x∗)∥2 + (1− p) ∥∇F (qt)−∇F (1x∗)∥2

(48)
≤ 2pL2 ∥Πxt∥2 + 4mLp

(
f(xt)− f(x∗)

)
+ (1− p) ∥∇F (qt)−∇F (1x∗)∥2 .

By the above lemma and the setting of parameters, we can prove Lemma 3.2 as follows.
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Proof of Lemma 3.2. First, we have

E
[
∥Πxt+1∥2 + C1,t+1 ∥Πst+1∥2 + C2,t+1 ∥∇F (qt+1)−∇F (1x∗)∥2

]
(58)(59)(60)

≤
(
1− θ + 2pL2C2,t

)
· ∥Πxt∥2 +

(
1− θ +

3η2t
θC1,t

)
C1,t ∥Πst∥2

+ (1− p)C2,t ∥∇F (qt)−∇F (1x∗)∥2 +
(
η2t +

2η2t
θ

+ 2pC1,t

)
∥∇F (xt)−∇F (qt)∥2

+
(
2mη2t + 4mpC1,t

)
σ̄2 + 4mLpC2,t

(
f(xt)− f(x∗)

)
(49)
≤
(
1− θ + 2pL2C2,t + 4L2η2t +

8L2η2t
θ

+ 8pL2C1,t

)
· ∥Πxt∥2 +

(
1− θ +

3η2t
θC1,t

)
C1,t ∥Πst∥2

+

(
1− p+

2η2t
C2,t

+
4η2t
θC2,t

+
4pC1,t

C2,t

)
C2,t ∥∇F (qt)−∇F (1x∗)∥2

+
(
2mη2t + 4mpC1,t

)
σ̄2 + 4mL

(
pC2,t + 2η2t +

4η2t
θ

+ 4pC1,t

)(
f(xt)− f(x∗)

)
=

(
1− θ + 4Lηt +

(4θ + 8 + 32)L2η2t
θ

)
· ∥Πxt∥2 +

(
1− θ +

3θ

4

)
C1,t ∥Πst∥2

+ (1− θ + ηtLθ + 2Lηt + 8ηtL) · C2,t ∥∇F (qt)−∇F (1x∗)∥2

+

(
2mη2t +

16mη2t
θ

)
σ̄2 + 4mL

(
2ηt
L

+ 2η2t +
4η2t
θ

+
16η2t
θ

)(
f(xt)− f(x∗)

)
≤
(
1− θ

4

)
·
(
∥Πxt∥2 + C1,t ∥Πst∥2 + C2,t ∥∇F (qt)−∇F (1x∗)∥2

)
+

18mη2t
θ

σ̄2 +

(
88mLη2t

θ
+ 8mηt

)(
f(xt)− f(x∗)

)
,

where the first equality is because of C1,t = 4η2t /θ
2, C2,t = 2ηt/(Lθ), p = θ and the last inequality is because of

ηt ≤ θ
16L .

C.3. Proof of Lemma 3.3

Proof of Lemma 3.3. By the update rule of xt, we have

E
[
∥xt+1 − x∗∥2 | Ft

]
= ∥xt − x∗∥2 − 2ηtE

[〈
st +

1

m

m∑
i=1

(
∇fi(x

(i)
t , ξ

(i)
t )−∇fi(q

(i)
t ), ξ(i)τ

)
, xt − x∗

〉
| Ft

]

+ η2tE

[∥∥∥∥∥st + 1

m

m∑
i=1

(
∇fi(x

(i)
t , ξ

(i)
t )−∇fi(q

(i)
t ), ξ(i)τ

)2∥∥∥∥∥ | Ft

]

(13)
= ∥xt − x∗∥2 − 2ηtE

[〈
1

m

m∑
i=1

∇fi(x
(i)
t , ξ

(i)
t ), xt − x∗

〉
| Ft

]
+ η2tE

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t , ξ

(i)
t )

∥∥∥∥∥
2

| Ft


= ∥xt − x∗∥2 − 2ηt

〈
1

m

m∑
i=1

∇fi(x
(i)
t ), xt − x∗

〉
+ η2tE

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t , ξ

(i)
t )

∥∥∥∥∥
2

| Ft


(45)
≤
(
1− µηt

2

)
∥xt − x∗∥2 − 2ηt

(
f(xt)− f(x∗)

)
+

2Lηt
m

∥Πxt∥2

+ η2tE

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t , ξ

(i)
t )

∥∥∥∥∥
2

| Ft

 .

(62)
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Furthermore, using the fact that E
[
∇fi(x

(i)
t , ξ

(i)
t )−∇fi(x

(i)
t ) | Ft

]
= 0, we have

E

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t , ξ

(i)
t )

∥∥∥∥∥
2

| Ft


(42)
≤E

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t , ξ

(i)
t )− 1

m

m∑
i=1

∇fi(x
(i)
t )

∥∥∥∥∥
2

| Ft

+

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t )

∥∥∥∥∥
2

(41)
=

1

m2

m∑
i=1

E
[∥∥∥∇fi(x

(i)
t , ξ

(i)
t )−∇fi(x

(i)
t )
∥∥∥2 | Ft

]
+

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t )

∥∥∥∥∥
2

(8)
≤ σ̄2

m
+

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x
(i)
t )

∥∥∥∥∥
2

(47)
≤ 2L2

m
∥Πxt∥2 + 4L

(
f(xt)− f(x∗)

)
+

σ̄2

m
.

Combining above results, we can obtain that

E
[
∥xt+1 − x∗∥2 | Ft

]
≤
(
1− µηt

2

)
∥xt − x∗∥2 − 2ηt

(
f(xt)− f(x∗)

)
+

2Lηt
m

∥Πxt∥2 + η2t ·
σ̄2

m

+
2η2tL

2

m
∥Πxt∥2 + 4η2tL

(
f(xt)− f(x∗)

)
=
(
1− µηt

2

)
∥xt − x∗∥2 − 2ηt (1− 2ηtL)

(
f(xt)− f(x∗)

)
+ η2t ·

σ̄2

m

+
2Lηt (1 + 2ηtL)

m
∥Πxt∥2 .
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C.4. Proof of Lemma 3.4

Proof of Lemma 3.4. We have

E
[
∥xt+1 − x∗∥2 + 24Lηt+1

mθ
Ψt+1 | Ft

]
(15)(14)
≤

(
1− µηt

2

)
∥xt − x∗∥2 − 2ηt (1− 2ηtL)

(
f(xt)− f(x∗)

)
+ η2t ·

σ̄2

m

+
2Lηt (1 + 2ηtL)

m
∥Πxt∥2 +

(
1− θ

4

)
· 24Lηt

mθ
Ψt

+
24 · 33 · Lη3t

θ2
σ̄2 +

(
28 · 32 · L2η3t

θ2
+

26 · 3 · Lη2t
θ

)
·
(
f(xt)− f(x∗)

)
=
(
1− µηt

2

)
∥xt − x∗∥2 − 2ηt

(
1− 2ηtL− 27 · 32 · L2η2t

θ2
− 25 · 3 · Lηt

θ

)(
f(xt)− f(x∗)

)
+ η2t ·

σ̄2

m
+

24 · 33 · Lη3t
θ2

σ̄2 +
3Lηt
m

∥Πxt∥2 +
(
1− θ

4

)
· 24Lηt

mθ
Ψt

ηt≤ θ
26·3·L
≤

(
1− µηt

2

)
∥xt − x∗∥2 − 7ηt

8

(
f(xt)− f(x∗)

)
+

(
1− θ

4
+

3Lηt
m

· mθ

24Lηt

)
· 24Lηt

mθ
Ψt

+
24 · 33 · Lη3t

θ2
σ̄2 + η2t ·

σ̄2

m

=
(
1− µηt

2

)
∥xt − x∗∥2 +

(
1− θ

8

)
· 24Lηt

mθ
Ψt −

7ηt
8

(
f(xt)− f(x∗)

)
+

24 · 33 · Lη3t
θ2

σ̄2 + η2t ·
σ̄2

m

≤
(
1− µηt

2

)(
∥xt − x∗∥2 + 24Lηt

mθ
Ψt

)
− 7ηt

8

(
f(xt)− f(x∗)

)
+

24 · 33 · Lη3t
θ2

σ̄2 + η2t ·
σ̄2

m

≤ exp
(
−µηt

2

)(
∥xt − x∗∥2 + 24Lηt

mθ
Ψt

)
− 7ηt

8

(
f(xt)− f(x∗)

)
+

24 · 33 · Lη3t
θ2

σ̄2 + η2t ·
σ̄2

m
,

where the last inequality is because of 1− x ≤ exp(−x) when 0 < x < 1.

C.5. Proof of Theorem 3.5

Proof of Theorem 3.5. For the case σ̄2 = 0, Eq. (16) reduces to

E
[
∥xt+1 − x∗∥2 + 24Lηt+1

mθ
Ψt+1 | Ft

]
≤ exp

(
−µηt

2

)(
∥xt − x∗∥2 + 24Lηt

mθ
Ψt

)
− 7ηt

8

(
f(xt)− f(x∗)

)
≤ exp

(
−µηt

2

)(
∥xt − x∗∥2 + 24Lηt

mθ
Ψt

)
.

Using above equation recursively and replacing ηt =
θ

26·3·L , we can obtain the first result.

The result for the case σ̄2 > 0 follows from Lemma B.4 with et = f(xt)− f(x∗), rt = ∥xt − x∗∥2 + 24Lηt

mθ Ψt, A = 7
8 ,
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B = σ̄2

m , and C = 24·33·L
θ2 σ̄2. Specifically, we have

1

ST

T∑
t=0

ωt

(
E[f(xt)]− f(x∗)

)
(52)
≤ 224 · 36 · L3

θ3µ2
· 1

T 3
·
(
∥x0 − x∗∥2 + 24Lη0

mθ
Ψ0

)
+

18 · 8 · L3(L+ βµ(T + 1))2

7 · β2(L− βµ)3µ3T 3
· σ̄

2

m

+
29 · 36 · L4

7µ2θ2(L− βµ)3
· σ̄

2

T 2

≤224 · 36 · L3

θ3µ2
· 1

T 3
·
(
∥x0 − x∗∥2 + Ψ0

8m

)
+

18 · 8 · L3(L+ βµ(T + 1))2

7 · (6L3/7) · β2µ3T 3
· σ̄

2

m
+

29 · 36 · L4

7µ2θ2 · (6L3/7)
· σ̄

2

T 2

=
224 · 36 · L3

θ3µ2
· 1

T 3
·
(
∥x0 − x∗∥2 + Ψ0

8m

)
+

24 · (L+ βµ(T + 1))2

β2µ3T 3
· σ̄

2

m
+

28 · 35 · L
µ2θ2

· σ̄
2

T 2
,

where the second inequality is because of 0 < θ < 1 and µ ≤ L and

L− βµ = L− θ

27 · 32
µ ≥ L− L

27 · 32
≥ L

(
6

7

)1/3

.

C.6. Proof of Corollary 3.6

Proof of Corollary 3.6. If σ̄2 = 0, to achieve ε-suboptimality, by Eq. (17), it requires that

exp

(
− 1

27 · 3
· θµ
L

· T
)
·
(
∥x0 − x∗∥2 + 1

8m
Ψ0

)
≤ ε,

which leads to

T =
27 · 3 · L

µθ
log

∥x0 − x∗∥2 + 1
8mΨ0

ε

= O
(

L

µ(1− λ2(W ))
log

1

ε

)
,

where the last equality is because of the fact that θ = 1− λ2(W ) when W is a fixed mixing matrix.

If σ̄2 > 0, supposing T is sufficient large that βµ(T + 1) dominates L, in this case, Eq. (18) reduces to

1

ST

T∑
t=0

ωt

(
E[f(xt)]− f(x∗)

)
= O

( 1

T
· σ̄2

mµ
+

L

µ2θ2
· σ̄

2

T 2
+

L3

θ3µ3
· 1

T 3
· (∥x0 − x∗∥2 + Ψ0

8m
)
)
.

Thus, to achieve ε-suboptimality, the iteration complexity is

T = O

(
σ̄2

µmε
+

√
Lσ̄

µθ
√
ε
+

L

θµε1/3

)
.

Replacing θ = 1− λ2(W ) to above equation concludes the proof.
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D. Proofs of Section 4
D.1. Proof of Lemma 4.3

Proof of Lemma 4.3. We prove the result by the induction. For the case t = 0, the it holds that
∑m

i=1 x̃
(i)
0 =

∑2m
i=m+1 x̃

(i)
0

trivially by the initialization of Algorithm 2. Assuming that Eq. (26) holds for t, then we have

m∑
i=1

x̃
(i)
t+1 =(1 + γ)1⊤W x̃

(1:m)
t − γ1⊤W x̃

(m+1:2m)
t + 1⊤ (∇F (xt, ξt)−∇F (qt, ξτ ))

=1⊤W x̃
(1:m)
t + 1⊤ (∇F (xt, ξt)−∇F (qt, ξτ ))

=

2m∑
i=m+1

x̃
(i)
t+1

where the second equality is because of the induction assumption, the first and third equality are because of definition of W̃
and update rule of x̃t. The result

∑m
i=1 s̃

(i)
t =

∑2m
i=m+1 s̃

(i)
t can be proved similarly.

Since
∑m

i=1 s̃
(i)
t =

∑2m
i=m+1 s̃

(i)
t , then Eq. (27) can be proved as the same to the one of Eq. (13).

D.2. Proof of Lemma 4.4

Proof of Lemma 4.4. First, for notation convenience, we denote that

A# :=

[
A
A

]
, ∀ A ∈ Rm×d.

By the update rule of s̃t, we can obtain that

E
[∥∥∥Π̃s̃t+1

∥∥∥2]
=(1− p)

∥∥∥Π̃W̃ Π̃s̃t

∥∥∥2 + pE
[∥∥∥Π̃W̃ Π̃s̃t + Π̃

(
∇F (xt, ξt)# −∇F (qt, ξτ )#

)∥∥∥2]
≤(1 + p)

∥∥∥Π̃W̃ Π̃s̃t

∥∥∥2 + 2pE
[
∥∇F (xt, ξt)# −∇F (qt, ξτ )#∥2

]
.

Similar to above equation, we have

E
[∥∥∥Π̃W̃ Π̃s̃t

∥∥∥2] ≤ (1 + p)
∥∥∥Π̃W̃ 2Π̃s̃t−1

∥∥∥2 + 2p
∥∥∥Π̃W̃ Π̃

(
∇F (xt−1, ξt−1)# −∇F (qt−1, ξτ )#

)∥∥∥2 .
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Using above equation recursively, we can obtain that

E
[∥∥∥Π̃s̃t+1

∥∥∥2]
≤(1 + p)

∥∥∥Π̃W̃ Π̃s̃t

∥∥∥2 + 2pE
[
∥∇F (xt, ξt)# −∇F (qt, ξτ )#∥2

]
≤E

[
t∑

i=0

2p(1 + p)t−i
∥∥∥Π̃W̃ t−iΠ̃

(
∇F (xi, ξi)# −∇F (qi, ξτi)#

)∥∥∥2]

+ (1 + p)t+1
∥∥∥Π̃W̃ t+1Π̃s̃#,0

∥∥∥2
(25)
≤E

[
t∑

i=0

2αp(1 + p)t−i
(
1− θ̃

)2(t−i)

∥∇F (xi, ξi)# −∇F (qi, ξτi)#∥
2

]

+ α(1 + p)t+1(1− θ̃)2(t+1)
∥∥∥Π̃s̃0

∥∥∥2
≤E

[
t∑

i=0

4αp
(
1− θ̃

)t−i

∥∇F (xi, ξi)−∇F (qi, ξτi)∥
2

]
+ 2α

(
1− θ̃

)t+1

∥Πs0∥2

(50)
≤E

[
t∑

i=0

4αp
(
1− θ̃

)t−i (
∥∇F (xi)−∇F (qi)∥2 + 2mσ̄2

)]
+ 2α

(
1− θ̃

)t+1

∥Πs0∥2

=Es,t+1

where the forth inequality is because of p ≤ θ. By the definition of Es,t, we have

E
[∥∥∥Π̃s̃t

∥∥∥2] ≤ Es,t (63)

and

Es,t+1 ≤
(
1− θ̃

)
Es,t + 4αp

(
∥∇F (xt)−∇F (qt)∥2 + 2mσ̄2

)
. (64)
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Now, we are going to prove the consensus error related to x̃t. First, we have

E
[∥∥∥Π̃W̃ Π̃

(
x̃t − ηt

(
s̃t +∇F (xt, ξt)# −∇F (qt, ξτ )#

))∥∥∥2]
≤E

[∥∥∥Π̃W̃ Π̃(x̃t − ηts̃t)
∥∥∥2]+ η2tE

[∥∥∥Π̃W̃ Π̃
(
∇F (xt, ξt)# −∇F (qt, ξτ )#

)∥∥∥2]
− 2ηtE

[〈
Π̃W̃ Π̃x̃t, Π̃W̃ Π̃

(
s̃t +∇F (xt, ξt)# −∇F (qt, ξτ )#

)〉]
=E

[∥∥∥Π̃W̃ Π̃(x̃t − ηts̃t)
∥∥∥2]+ η2tE

[∥∥∥Π̃W̃ Π̃
(
∇F (xt, ξt)# −∇F (qt, ξτ )#

)∥∥∥2]
− 2ηt

〈
Π̃W̃ Π̃(x̃t − ηts̃t), Π̃W̃ Π̃

(
∇F (xt)# −∇F (qt)#

)〉
≤E

[∥∥∥Π̃W̃ Π̃(x̃t − ηts̃t)
∥∥∥2]+ η2tE

[∥∥∥Π̃W̃ Π̃
(
∇F (xt, ξt)# −∇F (qt, ξτ )#

)∥∥∥2]
+

θ̃

2

∥∥∥Π̃W̃ Π̃(x̃t − ηts̃t)
∥∥∥+ 2η2t

θ̃

∥∥∥Π̃W̃ Π̃
(
∇F (xt)# −∇F (qt)#

)∥∥∥2
=

(
1 +

θ̃

2

)∥∥∥Π̃W̃ Π̃(x̃t − ηts̃t)
∥∥∥2 + η2tE

[∥∥∥Π̃W̃ Π̃
(
∇F (xt, ξt)# −∇F (qt, ξτ )#

)∥∥∥2]
+

2η2t

θ̃

∥∥∥Π̃W̃ Π̃
(
∇F (xt)# −∇F (qt)#

)∥∥∥2
≤

(
1 +

θ̃

2

)((
1 +

θ̃

2

)∥∥∥ΠW̃Πx̃t

∥∥∥2 + (1 + 2

θ̃

)
η2t

∥∥∥ΠW̃Πs̃t

∥∥∥2)

+ η2tE
[∥∥∥Π̃W̃ Π̃

(
∇F (xt, ξt)# −∇F (qt, ξτ )#

)∥∥∥2]+ 2η2t

θ̃

∥∥∥Π̃W̃ Π̃
(
∇F (xt)# −∇F (qt)#

)∥∥∥2
≤

(
1 +

θ̃

2

)2 ∥∥∥ΠW̃Πx̃t

∥∥∥2 + 6η2t

θ̃

∥∥∥ΠW̃Πs̃t

∥∥∥2
+ η2tE

[∥∥∥Π̃W̃ Π̃
(
∇F (xt, ξt)# −∇F (qt, ξτ )#

)∥∥∥2]+ 2η2t

θ̃

∥∥∥Π̃W̃ Π̃
(
∇F (xt)# −∇F (qt)#

)∥∥∥2
=

(
1 +

θ̃

2

)2

E
[∥∥∥Π̃W̃ 2Π̃

(
x̃t−1 − ηt−1

(
s̃t−1 +∇F (xt−1, ξt−1)# −∇F (qt−1, ξτ )#

))∥∥∥2]
+

6η2t

θ̃

∥∥∥ΠW̃Πs̃t

∥∥∥2 + η2tE
[∥∥∥Π̃W̃ Π̃

(
∇F (xt, ξt)# −∇F (qt, ξτ )#

)∥∥∥2]
+

2η2t

θ̃

∥∥∥Π̃W̃ Π̃
(
∇F (xt)# −∇F (qt)#

)∥∥∥2 ,

where the second and third inequality are because of Cauchy’s inequality.
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Using above equation recursively, we can obtain that

E
[∥∥∥Π̃W̃ Π̃

(
x̃t − ηt

(
s̃t +∇F (xt, ξt)# −∇F (qt, ξτ )#

))∥∥∥2]

≤

(
1 +

θ̃

2

)2t ∥∥∥Π̃W̃ t+1Π̃x̃0

∥∥∥2 + 6

θ̃

t∑
i=0

η2i

(
1 +

θ̃

2

)2(t−i) ∥∥∥Π̃W̃ t+1−iΠ̃s̃i

∥∥∥2
+

t∑
i=0

η2i

(
1 +

θ̃

2

)2(t−i)

E
[∥∥∥Π̃W̃ t+1−iΠ̃

(
∇F (xi, ξi)# −∇F (qi, ξτi)#

)∥∥∥2]

+
2

θ̃

t∑
i=0

η2i

(
1 +

θ̃

2

)2(t−i) ∥∥∥Π̃W̃ t+1−iΠ̃
(
∇F (xi)# −∇F (qi)#

)∥∥∥2
≤α

(
1 +

θ̃

2

)2t

(1− θ̃)2(t+1)
∥∥∥Π̃x̃0

∥∥∥2 + 6α

θ̃

t∑
i=0

η2i

(
1 +

θ̃

2

)2(t−i)

(1− θ̃)2(t+1−i)
∥∥∥Π̃s̃i

∥∥∥2
+

t∑
i=0

η2i

(
1 +

θ̃

2

)2(t−i) (
1− θ̃

)2(t+1−i)

E
[∥∥∥Π̃ (∇F (xi, ξi)# −∇F (qi, ξτi)#)

∥∥∥2]

+
2

θ̃

t∑
i=0

η2i

(
1 +

θ̃

2

)2(t−i) (
1− θ̃

)2(t+1−i) ∥∥∥Π̃(∇F (xi)# −∇F (qi)#

)∥∥∥2
≤α

(
1− θ̃

2

)t+1 ∥∥∥Π̃x̃0

∥∥∥2 + 6α

θ̃

t∑
i=0

η2i

(
1− θ̃

2

)t+1−i ∥∥∥Π̃s̃i

∥∥∥2
+ α

t∑
i=0

η2i

(
1− θ̃

2

)t+1−i

E
[∥∥∥Π̃ (∇F (xi, ξi)# −∇F (qi, ξτi)#)

∥∥∥2]

+
2α

θ̃

t∑
i=0

η2i

(
1− θ̃

2

)t+1−i ∥∥∥Π̃(∇F (xi)# −∇F (qi)#

)∥∥∥2
(50)
≤ α

(
1− θ̃

2

)t+1 ∥∥∥Π̃x̃0

∥∥∥2 + 6α

θ̃

t∑
i=0

η2i

(
1− θ̃

2

)t+1−i ∥∥∥Π̃s̃i

∥∥∥2
+

3α

θ̃

t∑
i=0

η2i

(
1− θ̃

2

)t+1−i ∥∥∥Π̃(∇F (xi)# −∇F (qi)#

)∥∥∥2
+ 2αmσ̄2

t∑
i=0

η2i

(
1− θ̃

2

)t+1−i

=Ex,t+1.

By the definition of Ex,t+1, we can obtain the following inequality

Ex,t+1

≤

(
1− θ̃

2

)
Ex,t +

3α

θ̃

(
1− θ̃

2

)
η2t

(∥∥∥Π̃s̃t

∥∥∥2 + 2 ∥∇F (xt)−∇F (qt)∥2
)
+ 2αmσ̄2

(
1− θ̃

2

)
η2t

≤

(
1− θ̃

2

)
Ex,t +

3α

θ̃
η2t

(
Es,t + 2 ∥∇F (xt)−∇F (qt)∥2

)
+ 2αmσ̄2η2t .

By the update rule of x̃t, it holds that

E
[∥∥∥Π̃x̃t+1

∥∥∥2] = E
[∥∥∥Π̃W̃ Π̃

(
x̃t − ηt

(
s̃t + ζt (∇F (xt)# −∇F (qt)#)

))∥∥∥2] ≤ Ex,t+1. (65)
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D.3. Proof of Lemma 4.5

Proof of Lemma 4.5. By the definition of Ψ̃t+1, we have

Ex,t+1 + C1,t+1 · Es,t+1 + C2,t+1 · ∥∇F (qt+1)−∇F (1x∗)∥2

(29)(30)(60)
≤

(
1− θ̃

2

)
Ex,t +

(
1− θ̃

2
+

3αη2t

θ̃C1,t

)
C1,t · Es,t + (1− p)C2,t ∥∇F (qt)−∇F (1x∗)∥2

+

(
6αη2t

θ̃
+ 4αpC1,t

)
∥∇F (xt)−∇F (qt)∥2 +

(
2αmη2t + 8αmpC1,t

)
σ̄2

+ 4mLpC2,t

(
f(xt)− f(x∗)

)
+ 2pL2C2,t ∥Πxt∥2

(49)(28)
≤

(
1− θ̃

2
+

24αL2η2t

θ̃
+ 16αpL2C1,t + 2pL2C2,t

)
· Ex,t

+

(
1− θ̃

2
+

3αη2t

θ̃C1,t

)
C1,t · Es,t

+

(
1− p+

12αη2t

θ̃C2,t

+ 8αp · C1,t

C2,t

)
C2,t ∥∇F (qt)−∇F (1x∗)∥2

+
(
2αmη2t + 8αmpC1,t

)
σ̄2 +

(
4mLpC2,t +

48αmLη2t

θ̃
+ 32αpmLC1,t

)(
f(xt)− f(x∗)

)
≤

(
1− θ̃

4

)(
Ex,t + C1,t · Es,t + C2,t ∥∇F (qt)−∇F (1x∗)∥2

)
212 · 32 ·mη2t

θ̃
· σ̄2 +

212 · 32 ·mLη2t

θ̃
·
(
f(xt)− f(x∗)

)
,

where the last inequality is due to the setting of parameters.

D.4. Proof of Lemma 4.6

Proof of Lemma 4.6. By Lemma 4.3, we can conclude that Lemma 3.3 still holds.

E
[
∥xt+1 − x∗∥2 + 48Lηt+1

mθ̃
Ψ̃t+1

]
(15)(32)
≤

(
1− µηt

2

)
∥xt − x∗∥2 − 2ηt (1− 2ηtL)

(
f(xt)− f(x∗)

)
+ η2t ·

σ̄2

m
+

2Lηt (1 + 2ηtL)

m
∥Πxt∥2 +

(
1− θ̃

4

)
48Lηt

mθ̃
Ψ̃t

+
216 · 32 · Lη3t

θ̃2
σ̄2 +

216 · 32 · L2η3t

θ̃2
·
(
f(xt)− f(x∗)

)
≤
(
1− µηt

2

)
∥xt − x∗∥2 − 2ηt

(
1− 2ηtL− 215 · 32 · L2η2t

θ̃2

)(
f(xt)− f(x∗)

)
+

(
1− θ̃

4

)
48Lηt

mθ̃
Ψ̃t +

6Lηt · Ex,t
m

+ η2t ·
σ̄2

m
+

216 · 32 · Lη3t
θ̃2

· σ̄2

ηt≤ θ̃
28·3·L
≤

(
1− µηt

2

)(
∥xt − x∗∥2 + 48Lηt

mθ̃
· Ψ̃t

)
− 7ηt

8

(
f(xt)− f(x∗)

)
+ η2t ·

σ̄2

m
+

216 · 32 · Lη3t
θ̃2

· σ̄2

≤ exp
(
−µηt

2

)(
∥xt − x∗∥2 + 48Lηt

mθ̃
· Ψ̃t

)
− 7ηt

8

(
f(xt)− f(x∗)

)
+ η2t ·

σ̄2

m
+

216 · 32 · Lη3t
θ̃2

· σ̄2,
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where the last inequality is because of 1− x ≤ exp(−x) for 0 ≤ x < 1.

D.5. Proof of Theorem 4.7

Proof of Theorem 4.7. For the case σ̄2 = 0, Eq. (34) reduces to

E
[
∥xt+1 − x∗∥2 + 48Lηt+1

mθ̃
Ψ̃t+1

]
≤ exp

(
−µηt

2

)(
∥xt − x∗∥2 + 48Lηt

mθ̃
Ψ̃t

)
− 7ηt

8

(
f(xt)− f(x∗)

)
≤ exp

(
−µηt

2

)(
∥xt − x∗∥2 + 24Lηt

mθ̃
Ψ̃t

)
.

Using above equation recursively and replacing ηt =
θ

28·3·L , we can obtain the first result.

The result for the case σ̄2 > 0 follows from Lemma B.4 with et = f(xt)− f(x∗), rt = ∥xt − x∗∥2 + 48Lηt

mθ̃
Ψt, A = 7

8 ,

B = σ̄2

m , and C = 216·33·L
θ̃2

σ̄2. Specifically, we have

1

ST

T∑
t=0

ωt

(
E[f(xt)]− f(x∗)

)
(52)
≤ 228 · 35 · L3

θ̃3µ2
· 1

T 3
·
(
∥x0 − x∗∥2 + 48Lη0

mθ̃
Ψ̃0

)
+

18 · 8 · L3(L+ β̃µ(T + 1))2

7 · β̃2(L− β̃µ)3µ3T 3
· σ̄

2

m

+
221 · 35 · L4

7µ2θ2(L− β̃µ)3
· σ̄

2

T 2

≤228 · 35 · L3

θ̃3µ2
· 1

T 3
·

(
∥x0 − x∗∥2 + Ψ̃0

16m

)
+

18 · 8 · L3(L+ β̃µ(T + 1))2

7 · (6L3/7) · β̃2µ3T 3
· σ̄

2

m
+

221 · 35 · L4

7µ2θ2 · (6L3/7)
· σ̄

2

T 2

=
228 · 35 · L3

θ̃3µ2
· 1

T 3
·

(
∥x0 − x∗∥2 + Ψ̃0

16m

)
+

24 · (L+ β̃µ(T + 1))2

β̃2µ3T 3
· σ̄

2

m
+

220 · 34 · L
µ2θ̃2

· σ̄
2

T 2
,

where the second inequality is because of 0 < θ < 1 and µ ≤ L and

L− β̃µ = L− θ

27 · 32
µ ≥ L− L

27 · 32
≥ L

(
6

7

)1/3

.

E. Decentralized Stochastic Gradient Tracking
In Algorithm 3, we present the algorithm of DSGT.

Algorithm 3 Decentralized Stochastic Gradient Tracking
Input: x0, mixing matrix W , initial step size η.
Initialization: Set x0 = 1x0, q0 = 1x0, s(i)0 = ∇fi(x

(i)
0 , ξ0), in parallel for i ∈ [m], τ = 0.

for t = 1, . . . , T do
Update

xt+1 =W (xt − ηtst) , (66)
st+1 =W st +∇F (xt+1, ξt+1)−∇F (xt, ξt). (67)

end for
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Figure 3. Comparison of SS DSGT and DSGT for the training loss versus the communication round on the asymmetric mixing matrix
W asy. The optimal values f(x∗) on these three data sets are 0.1336, 0.3727, and 0.3965, respectively.
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Figure 4. Comparison of different methods for the training loss versus the communication round on the symmetric mixing matrix W sy.
The optimal values f(x∗) on these three data sets are 0.1335, 0.3727, and 0.3965, respectively.

F. Additional Experiment Results
In Figure 3 and Figure 4, we compare the training loss of the methods across these three data sets on the asymmetric mixing
matrix W asy and symmetric mixing matrix W sy, respetively.
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