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Abstract

In decentralized optimization, m agents form
a network and only communicate with their
neighbors, which gives advantages in data own-
ership, privacy, and scalability. At the same
time, decentralized stochastic gradient descent
(SGD) methods, as popular decentralized algo-
rithms for training large-scale machine learn-
ing models, have shown their superiority over
centralized counterparts. Distributed stochastic
gradient tracking (DSGT) (Pu & Nedi¢, 2021)
has been recognized as the popular and state-
of-the-art decentralized SGD method due to its
proper theoretical guarantees. However, the
theoretical analysis of DSGT (Koloskova et al.,
2021) shows that its iteration complexity is
~ 7 o _

o (J—ME + #(I_M(V‘VF)L)‘{/QCW\/E),Where the dou-
bly stochastic matrix W represents the network
topology and CYyy is a parameter that depends
on W. Thus, it indicates that the convergence
property of DSGT is heavily affected by the topol-
ogy of the communication network. To overcome
the weakness of DSGT, we resort to the snap-
shot gradient tracking skill and propose two novel
algorithms, snap-shot DSGT (SS_DSGT) and ac-
celerated snap-shot DSGT (ASS_DSGT). We fur-
ther justify that SS_DSGT exhibits a lower itera-
tion complexity compared to DSGT in the general
communication network topology. Additionally,
ASS_DSGT matches DSGT’s iteration complex-

: 52 VLs
ity O (mus + /L(l—)\Q(W))l/Z\/g) under the same
conditions as DSGT. Numerical experiments vali-
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date SS_DSGT’s superior performance in the gen-
eral communication network topology and exhibit
better practical performance of ASS_DSGT on the
specified W compared to DSGT.

1. Introduction

In this paper, we consider the decentralized optimization
problem, where there are m agents to cooperatively mini-
mize a common objective function f(x) with the following
formulation:

f@) = =3 fi)

with  fi(z) := ]Ef(l)N'D(i)fi(xvé-(i))'

The formulation assumes that the objective function f(x)
is composed of m-local functions f;(z),i € [m] =
{1,...,m}. The i-th agent maintains the private data set
D) and its objective function f;(z). The m agents form
a connected network and can only communicate with their
neighbors. Shi et al. (2015); Scaman et al. (2019); Ye et al.
(2020) indicate that the decentralized optimization has ad-
vantages over traditional centralized optimization in data
ownership, privacy, and scalability (Nedic, 2020; Kairouz
et al., 2021; Even et al., 2021; Shi et al., 2015; Qu & Li,
2017; Alghunaim et al., 2020; Zeng & Yin, 2018).

ey

Due to the imminent need to train large-scale machine
models, decentralized SGD methods are attracting signif-
icant attention recently because they are easy to implement,
and the computation cost of each iteration is cheap (Xin
etal., 2021b; Lu & De Sa, 2021; Alghunaim & Yuan, 2022;
Xin et al., 2021a). Especially, Lian et al. (2017) provides
the first theoretical analysis that indicates decentralized al-
gorithms might outperform centralized algorithms of dis-
tributed stochastic gradient descent (SGD). However, the
performance of decentralized SGD suffers from the data het-
erogeneity (Lian et al., 2017; Koloskova et al., 2020), that is,
training data is in a non-IID fashion distributed over agents.

Recently, the gradient tracking method developed by
Di Lorenzo & Scutari (2016) and Nedic et al. (2017) has
been widely used to overcome the data heterogeneity chal-
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lenge. Many decentralized algorithms based on the gradi-
ent tracking method have been proposed (Qu & Li, 2017;
Ye et al., 2020; Song et al., 2023). For instance, Pu &
Nedi¢ (2021) applied the gradient tracking to the decentral-
ized SGD and proposed the distributed stochastic gradient
tracking method (DSGT). DSGT effectively conquers the
dilemma of data heterogeneity, and its dominant computa-
tion complexity is the same as its centralized counterpart.
Furthermore, DSGT also has an advantage over centralized
SGD in communication complexity.

However, the performance of DSGT is heavily affected by
the topology of the communication network through which
the agents exchange information. For the L-smooth and p-
strongly convex functions, DSGT has the following iteration
complexity (Pu & Nedié, 2021) to achieve e-suboptimality

@< 52 . NG )
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u(l = Ao (W))3/2\/E

where &2 is the upper bound on the variance of the stochas-
tic noise (see Assumption 2.1) and A2 (W) is the second
largest eigenvalue of the doubly stochastic mixing matrix
W. The above equation shows that when Ao (W) is close to
one, DSGT still suffers from poor performance. Recently,
Koloskova et al. (2021) improved the convergence analysis
of DSGT, and obtain the following complexity
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where Cyy is a parameter no smaller than 1 — Ao(W).
Koloskova et al. (2021) showed that for a large number
of communication networks, Cyy is a constant independent
of A\o(W). In these cases, Eq. (3) provides a better com-
plexity than Eq. (2). Unfortunately, in the general case, Cyy
is no longer a constant. Eq. (3) may even reduce to Eq. (2)
in the worst case. Thus, the result in Eq. (2) is the best
iteration complexity of DSGT for general cases. It is still
an open question: can DSGT achieve lower communication
and computation complexities than Eq. (2) for all commu-
nication networks? Koloskova et al. (2021) also proposed
an open problem: is the parameter Cyy in Eq. (3) tight in
general for DSGT?

Instead of answering the above open questions, we design
two novel decentralized stochastic gradient descent track-
ing algorithms in this paper. We will justify that the pro-
posed algorithm without extra inner communication loops
can achieve lower complexities than Eq. (2), which take
the same communication strategy as DSGT. We first extend
the “snap-shot” gradient tracking method proposed by Song
et al. (2023) to the SGD. Then we propose a snap-shot decen-
tralized stochastic gradient tracking (SS_DSGT) algorithm
accordingly. SS_DSGT is shown that has the following iter-

ation complexity
_2 —
o2 n VL& ’
mpue  p(l = X(W))y/e

which is better than the one shown in Eq. (2). In addition,
we leverage the loopless Chebyshev acceleration technique
(Arioli & Scott, 2014; Scaman et al., 2019; Song et al., 2023)
to improve the performance of SS_DSGT on the specified
W ( doubly stochastic, positive semi-definite) and further
propose ASS_DSGT with the iteration complexity

52 VL&
¢ (mue - A2<W))1/2ﬁ> |

which aligns with the result in Alghunaim & Yuan (2024).
In contrast to the method in Alghunaim & Yuan (2024),
ASS_DSGT employs a decaying learning rate, which allows
a larger initial value of the learning rate and potentially
reduces the number of communication rounds required for
convergence in practical.

“

To the best of our knowledge, SS_DSGT achieves the best it-
eration complexity for the decentralized SGD without inner
communication loops in the general communication net-
work, whose iteration complexity is independent of the pa-
rameter C'y. Additionally, under the same typology of com-
munication network (i.e., the matrix W is doubly stochastic
and positive semi-definite), ASS_DSGT demonstrates an it-
eration complexity consistent with prior research.

2. Notation and Assumptions

Let x and s be two m x d matrices whose i-th rows x(*) and
s() are the local copy of the decision and gradient-tracking
variables for the ¢-th agent, respectively. Accordingly, we
define the averaging variables

R | 1
T::—ZX(Z) = —1"xe R, 35:= —1Tsec R
m =1 m

m

)
where 1 denotes the vector with all entries equal to 1. Now
we introduce the projection matrix

117
nm=1,-—. (6)
m
Using the projection matrix I, we can represent that
_ 117
I — 17 = |[x — ——x] = |TIx] .
m
[Is — 15[ = [|TTs]| .

We denote an aggregate objective function:

F(x) := Z Fi(x) )
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and its aggregate gradient
VF(x):= [Vfi(xW),..., Vi (x™)]T e R
In addition, let & := [¢() ... £(™)] € R™ and

VE(x,€) i= [V, D), .,V fin ™, 0]
Throughout this paper, we use ||| to denote the “Frobenius”
norm. That is, for a matrix x € R™>4_ it holds that

m,d 9
Il = 3 (x00)
i=1,j=1
Furthermore, we use ||x||, to denote the spectral norm which

is the largest singular value of x. For vectors z,y € R%, we
use (x,y) to denote the standard inner product of z and y.

Now we introduce several assumptions that will be used
throughout this paper. First, we state an assumption that the
stochastic gradients have bounded noise.

Assumption 2.1 (Bounded Noise). We assume that there
exists constant 7 s.t. for any x() € R? with i € [m)],

m

;;Egm {vai(x(i)vf(i))Vfi(x(i))‘ﬂ <52 ®

In this paper, we focus on the smooth and strongly-convex
functions. That is, the function f;(x) satisfies the following
assumption.

Assumption 2.2. Each f; : R? — R is p-strongly convex
and L-smooth, i.e., for any z,y € RY,

fily) 2fi@) + (Vfilw)y — ) + 5 e =yl

fily) SHi(a) + (V@) —2) + 4 e — ol

The agents are connected through a graph G = {V, E'} with
V' and E being the sets of nodes and edges. We assume
that the graph is undirected and connected. W' is an m x m
mixing matrix with W, ; being positive if and only if there
is an edge between i-th and j-th agents. We also assume
that W satisfies the following properties.

Definition 2.3 (Mixing matrix). Matrix W € [0, 1]™*"™ is
doubly stochastic, thatis W1 = 1, and 1"Tw=1".

We further suppose that the mixing matrix has the following
property to achieve the information average. Specifically,
we can represent the information exchange through matrix
multiplication.

Assumption 2.4. Letting W € R™*™ be a (random) mix-
ing matrix and parameter 6 € (0, 1], it satisfies that

Ew [[Wx - 13| < (1 - 0)* |x - 1],

with 6 =1— /A (E[WTW]).

€))

Algorithm 1 Snap-Shot Decentralized Stochastic Gradient
Tracking
Input: zo, mixing matrix W, initial step size 7.
Initialization: Set xo = 10, qo = 1z, s = Vf;(x”, &),
in parallel for i € [m], 7 = 0.
fort=1,...,Tdo
Generate (; with probability p.
Sample 5,5” in parallel for all m agents and update

Xep1 = W (x¢ — ne (st + VF(x¢, &) — VF(qq, fr))()l-o)

di+1 = Gxe + (1 — )qe. 11

Update

Update

sty1 = Wsi + G (VF(x¢,&) — VF(a, &) . (12)

{t7
T =
T,

Set
if e =1,
otherwise.

end for

Assumption 2.4 says that the mixing matrix W can achieve
averaging in expectation but without any other constraint.
As a concrete example, Boyd et al. (2006) showed that
randomized gossip matrices with time-varying topologies
satisfy Assumption 2.4.

3. Snap-Shot Decentralized Stochastic
Gradient Tracking

In this section, we propose the SS_DSGT algorithm. We
first give the algorithm description and the intuition behind
our algorithm. Then, we provide a detailed convergence
analysis of SS_DSGT.

3.1. Algorithm Description

Our work extends the idea of snap-shot gradient tracking
(SS_GT) proposed by Song et al. (2023) to the decentralized
SGD. The detailed algorithm description is in Algorithm 1.

Following the idea of SS_GT, our algorithm introduces a
variable q; to record some history position of x; and updates
it with probability p. Furthermore, instead of updating the
gradient tracking variable s, with the aggregated stochastic
gradient VF(x411,&+1) for each iteration in DSGT (refer
to Eq. (67)), SS_DSGT updates s; with gradient information
also with probability p. The value of 5; is updated only
when (; = 1. If (; = 1, we need to update the 7 which
records the time update q;.

Unlike DSGT whose s; tracks the average of VF'(x,&:)
(Pu & Nedié, 2021), s; of our algorithm tracks the average
of VF(qy, &) which is shown by the following lemma.
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Lemma 3.1. Ler sequence {s;} be updated as Eq. (12).
Then, for any 0 < t < T, it holds that

Zsz (qp”,€D). (13)

Since s; tracks the value of VF(qt ;) instead of
V F(x¢,&:), our algorithm proposes the update rule (10)
in contrast to using s; to update x; directly which is used in
DSGT (See Algorithm 3). Such modification follows from
the fact

1T (80 + VE(xt, &) = VF(ar. &) ) 2 1TV F(x1, ).

Note that, our algorithm is inspired by the SS_GT proposed
by Song et al. (2023), and its idea originates from SVRG
(Johnson & Zhang, 2013), L-SVRG (Kovalev et al., 2020)
and ANITA (Anita, 2021). However, SS_DSGT is not an
easy extension of SS_GT. The original SS_GT strongly cor-
relates to the loopless Katyusha (Kovalev et al., 2020). Extra
variables such as U, compared to our algorithm and “nega-
tive momentum” are important in the building of SS_GT in
(Song et al., 2023). Moreover, a large part of the proof of
SS_GT follows the framework of loopless Katyusha. Thus,
it is unknown whether the idea of SS_GT has a broader appli-
cation. Our work tries to explore the application range of the
idea SS_GT and try to extend it to decentralized stochastic
gradient descent.

3.2. Convergence Analysis

We will first study the evolution of E|:||th||2},

E[Hnstnﬂ and E [||VF(qt)_VF(1a:*)||2] We in-
troduce a Lyapunov function to describe the dynam-
ics of consensus errors and |VF(q:)— VF(1z*)].
Let us denote by JF; the o-algebra generated by

{(SOa <0)7 (517 Cl)a SR (gt—lv gt—l)} and define £ [ | ff] as

the conditional expectation given F;.

Lemma 3.2. Suppose Assumptions 2.1-2.4 h0ld Let {n:}
be a non-increasing sequence and satisfy ny < 16 7. Setting
Ci=4n; 2/62, Coy = 2n/(LB), and p = 6, it holds that

(W * Smm) (f@) — f(a))+

0
1—-)-¥
( 4> t+
where we denote

U, & ||HX15||2 +Chq ||Hst||2 +
Cot |[VF(qr) — VF(1z*)|*.

E[Ui | F] <

18mn; 52

(14)

Lemma 3.2 shows that ¥, will converge to zero under the
condition that the step size 7, will decrease to zero and

f@) - fla

will converge to zero, that is, the distance ’

*) is non-increasing. This implies that ||TIx;||

x 7, H will

vanish as ¢ goes. Next, we are going to upper bound the
distance ||T; — z*|].

Lemma 3.3. Suppose Assumptions 2.1-2.4 hold. Then we
have the following inequality:

E (@1 — 2| | 7]

< ( /“715) [E2

52
ni - — =2 (1= 2n.L) (f(30) = f(27)).

T, |* +

— H +T

15)

Lemma 3.2 and 3.3 show that the dynamics of ¥, and
[Z; — 2*||* correlate to each other. Based on above two
lemmas, we obtain the following convergence properties.

Lemma 3.4. Suppose Assumptions 2.1-2.4 hold. Let {n;}

be a non-increasing sequence and satisfy n; < ﬁ It
holds that
N 24 Ly,
E {thﬂ R e 8 Y ]:t]
mo
24L
< exp (1) (-2 4 2 )
2 mo
™m _ . 24.3%. Lp? _ o
?t(f(zt)*f(fr ))JFTtUZJFUE'E
(16)

Based on Lemma 3.4, we can derive the desired convergence
properties shown in the following theorem. The proof is
deferred in Appendix C.

Theorem 3.5. Suppose Assumptions 2.1-2.4 hold. Se-
quences {x:}, {q:}, and {s;} are generated by Algorithm 1.
Then Algorithm 1 has the following convergence properties:

e If52 = 0 and step size n, = 565 T 3 T, it holds that

1
E |:||SUT — l‘*”Q + 8’rn\IIT:|

6 . 1
<ewp (~grtgr T) - (Ima =o'+ o).

7)

e If 3% > 0, the set the step size sequence {n;} and
weight sequence {w;} as follows:

68 Mt RN
and w; = —exp| = i |,
"= T G £ =P | 5 ;n
where 3 = %. Letting ST = E;‘F:O wy, then it holds
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that
1z
5 D wi(Elf @) - £))
=0
24 (L+Bu(T+1))? % 22.35.L &
< 2,373 g 202 2T
B2u3T m u20 T
M.i. [ —x*HQ—I—&
63 12 T3 8m
(18)

Based on Theorem 3.5, we can directly obtain the itera-
tion complexities for both @ = 0 and o > 0. The proof is
deferred to Appendix C.6.

Corollary 3.6. Suppose Assumptions 2.1-2.4 hold and the
mixing matrix W is fixed. Parameters of Algorithm I are set
as Theorem 3.5, then Algorithm 1 has the following iteration
complexity:

e If 32 = 0, to achieve s-suboptimality, the iteration
complexity of Algorithm 1 is

7= (s es)

e If 52 > 0, to achieve s-suboptimality, the iteration
complexity of Algorithm 1 is

19)

2 VL&
L
T

Remark 3.7. According to Corollary 3.6, when either 52 =
0 or 32 > 0, SS_DSGT achieves lower complexity than
DSGT. Specifically,

e When 62 = 0, our algorithm achieves a linear
convergence rate and its iteration complexity is

O (m log f). In contrast, the iteration com-

plexity of DSGT is O (T(VV))IOg %) (Pu &

Nedi¢, 2021; Qu & Li, 2017). Thus, our SS_DSGT has
better performance than DSGT theoretically.

e When 52 > 0, we can observe that the iteration com-
plexity of SS_DSGT depends on (1 — Ao (W))~! while
DSGT depends on (1 — \o(W))~3/2 (see Eq. (2)).
Thus, SS_DSGT also outperforms DSGT when 52 > 0.

4. Acceleration with Loopless Chebyshev
Acceleration

In this section, we try to further improve SS_DSGT and
combine it with the loopless Chebyshev acceleration pro-
posed by Song et al. (2023). Because the loopless Cheby-
shev acceleration only works for the static networks, we

assume that for all iterations, it shares the same mixing ma-
trix W in this section. For the static networks, Corollary 3.6
shows that the iteration complexity of SS_DSGT depends
on §~1 = (1 — X\o(W))~L. In this section, we propose
ASS_DSGT which achieves an iteration complexity depend-

ing on (1 - )\Q(W)) . instead of (1 - )\Q(W))_l.

4.1. Algorithm Description

Before introducing ASS_DSGT, we make an additional as-
sumption on the mixing matrix and define some new neces-
sary notations.

Assumption 4.1. The mixing matrix W € R™*™ is sym-
metric positive semi-definite.

The above assumption can be easily satisfied since we can
choose # as the mixing matrix that is positive semi-
definite for any mixing matrix W.

Now, we introduce 2m x 2m augmented matrices W and IT
for the mixing matrix W and projection matrix IT defined
as follows:

—~ 1+yW —AW

II o
e S }

} , and 1= [ o Tl
(2D
Accordingly, we define the augmented decision variable
X € R?mxd and gradient-tracking variable s € R27™*9,
Furthermore, we denote that x; := x,gl m) , that is, x; takes
the value of the first m rows of X;. G1ven these notations,

we describe ASS_DSGT in Algorithm 2.

We can observe that Algorithm 2 shares almost the same
algorithmic structure to the one of Algorithm 1. The ad-
vantage of ASS_DSGT mainly depends on the following
property.

Lemma 4.2 (Lemma 11 of Song et al. (2023)). Under
Assumption 4.1, for any x € R™*< and t > 0, it holds that

(25)

TV ’ )" ?
x; x]|| <al(l-6) |IIx],

where o < 14 and = (’)( 1- Ag(W)).

The above property is also used in the analysis of the heavy
ball method and shows that the heavy ball method can
achieve a faster convergence rate than the gradient descent
(Recht, 2010).

4.2. Convergence Analysis

First, we will show that the first and last m rows of x; share
the same mean. This property also holds for s;.

Lemma 4.3. Letting sequences {X;} and {S;} are gener-
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Algorithm 2 Snap-Shot Decentralized Stochastic Gra-
dient Tracking with Loopless Chebyshev Acceleration
(ASS_DSGT)

Input: zo, mixing matrix W, initial step size 7.

Initialization: Set X, = [lzo;1z0), qo = 1o, s’ =

Vfi (xéi) ,&0), in parallel for ¢ € [m], Sp
fort=1,...,T do
Generate (; with probability p.

= [so; 0], and 7 = 0.

Sample 5,5“ in parallel for all m agents and update

Ryl = W(it . ('s; + [VE(xe,&); VE(xe,&)] —

VE(a &) VE(an &)l ))-

(22)
Update
AQer1 = Gxe + (1 — G)ae- (23)
Update
St41 = W5, + Ct([VF(Xt,ft) VF(xt,8)] — (24)
[VE(ar,&); VF(qe,&r)]).
Set
{t, ife, =1,
T = .
7, otherwise.
end for

ated by Algorithm 2, then it holds that

m 2m m 2m
Yox'= > w) YE' =3 5 e
=1 1=m+1 =1 i=m+1

and

o Z” =— Z Vi, e). 27)

Above lemma shows that the means of X; and s; equal to
7y and Sy, respectively. Thus, Lemma 3.3 still holds for
ASS_DSGT. Next, we will focus on analyzing the conver-
gence properties of consensus errors which are different
from the ones of SS_DSGT.

Lemma 4.4. Letting sequences {X;} and {S;} are gener-
ated by Algorithm 2, it holds that

E [Hﬁit

2 ~
:| S E.r,t and E |:HH§t

2
} <& (28)

with

gs,t+1

0
5)Est +2m0” + dap(|VF (x:) = VF(q0)[*)

(29)

<(1-

gmq,t—i-l
é 3o 2 2
< (1= 5)Eas+ 20 (Ees +2[VF () — VF(a)|)
+ 2ama’n?
(30)

and

~ 2
oo =20 |Tsol?, Euo ZaHHXOH . 3D

Based on the above lemma about the consensus error terms,
we can obtain the following lemma similar to Lemma 3.2.

Lemma 4.5. Suppose Assumptions 2.1-2.2 and Assump-
tion 4.1 hold. Let {n:} be a non-increasing sequence

Setting C1 ; = 12c

and satisfy n; < ﬁ
16(14+8a)n;

52 , p = 0, then we can obtain that
~ 212,32 . 2

Uy < (1 — é) U, + 52+

(32)
212.32 . mLn? _ .
(@) - fa).
where we define
\Tft =81+ Crt &t +Cot IVF(qr) — VF(LU*)”2 .
(33)

Combining Lemma 4.5 and Lemma 3.3, we can obtain a
lemma similar to Lemma 3.4.

Lemma 4.6. Suppose Assumptions 2.1-2.2 and Assump-
tion 4.1 hold. Let {n+} be a non-increasing sequence and

satisfy n; < sw51 3 7. Then, it holds that
. 48L ~
]E |:||'It+1 — X H2 =+ 777?.4_1 \I/t+1:|
mo
48 L n252
<exp (-1 )<|| 2P + =" \Ift>+ 7y
mo

216, 32 “Lmd o, Ty

— ot -

(34

Based on Lemma 4.6, we can derive the desired convergence

properties shown in the following theorem. The proof is
deferred in Appendix D.

Theorem 4.7. Suppose Assumptions 2.1-2.2 and Assump-

tion 4.1 hold. Sequences {x.}, {q.}, and {s;} are gener-

ated by Algorithm 2. Then Algorithm 2 has the following
convergence properties:

o If 572 = 0 and step size 1, = SE3T 3 T, it holds that

1
E ||zr — z*|? +3 \I'T}

9 1
28 T) (HLU() — LU*||2 + 8’!71\110)

sepl-5r 3
(35)
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 If52 > 0, set the step size sequence {n;} and weight
sequence {w;} as follows:

t
Ui H
and w; = —exp| = ni |

=0

653

ne = =
! L+ But

where 3 = %. Letting ST = EtT:O wy, then it holds
that

1 T
5 > wn (Bl @) — f(a"))
t=0

S24-(LJ~FBH(T+1))2.572+220~-34-L.fi2+
23T m 622 T2
228.35.13 1 _ PR
T e T8 ||$0—$H+167m

(36)

Corollary 4.8. Suppose Assumptions 2.1-2.2 and Assump-
tion 4.1 hold. Parameters of Algorithm 2 are set as Theo-
rem 4.7, then Algorithm 2 has the following iteration com-

plexity:

» If 52 = 0, to achieve s-suboptimality, the iteration
complexity of Algorithm 1 is

L 1
T=0| —————1log - 37
(M 1= (W) Og5> 7

e If 2 > 0, to achieve e-suboptimality, the iteration
complexity of Algorithm 1 is

o + VLo +
Hme H V 1- )‘Q(W)\/g (38)

)
1 — A (W)puet/3

Remark 4.9. Eq. (38) shows that the loopless Chebyshev
acceleration can effectively reduce the iteration complex-
ity. Comparing Eq. (38) with Eq. (3), we can conclude that
ASS_DSGT can achieve good performance comparable to
DSGT for all cases (no C'y). In contrast, DSGT can only
achieve good performance on the limited kinds of commu-
nication networks.

T:O(

5. Experiment

In this section, we carry out numerical experiments
to validate the convergence property of SS_DSGT and
ASS_DSGT compared to DSGT on the following I»-
penalized logistic regression problem:

. . v
fi() = Exo o log (14 exp(—yDaT20)) + 2 o],

Table 1. Summary of data sets, the number of agent, the regular-
ization coefficient, and the batch size used in our experiments

Data Set n d m ) Batch Size
banknote 1360 4 20 1072 30
a9a 32560 123 20 102 200
ijennl 49980 22 20 1072 200

where z(Y) € R? is the feature vector, (") € {—1,1} is the
label, and v is the regularization coefficient.

In Table 1, we present three datasets used in our experi-
ments along with their respective settings. The *banknote’
dataset is sourced from the UCI Machine Learning Reposi-
tory website!, while *a9a’ and ’ijcnn1’ are obtained from the
LIBSVM website?. We utilize m = 20 agents, distributing
the data randomly and equally among them. These meth-
ods are executed in batch mode, and hyperparameters are
fine-tuned for optimal performance.

Here, we construct an asymmetric mixing matrix W2 fol-
lowing the approach of Gharesifard & Cortés (2012). This
asymmetric topology is common in decentralized settings
(Nedi¢ & Olshevsky, 2014; Jiang et al., 2021; Freund et al.,
2023), and the W is a representation of the diverse gen-
eral communication network typologies. Moreover, WY
challenges the previous assumption about the communica-
tion network topology (Scaman et al., 2019), and the inferior
performance of DSGTis expected based on Eq. (4). To elab-
orate, we initially generate a symmetric mixing matrix W<¢
with its elements set as follows:

L (i,j)€E
cyc th .
() — ) 2 t=J

0, otherwise

where the edge setis givenby E = {(i,i+1) : 1 <i < m—
1}U{(m,1)}. Subsequently, the asymmetric mixing matrix
w* is generated by randomly adding additional 20 edges
to the cycle W%, Simultaneously, we set the symmetric
matrix W to be identical to W%°. The values of 6 for
Wasy and W* are 0.0761 and 0.024, respectively. Since
ASS_DSGT is not applicable in this asymmetric setting, we
compare the performance of SS_DSGT and DSGT on W%,
For all experiments, we run the centralized gradient descent
method to find the optimal point 2* and f(z*).

In Figure 1, we compare the distance ||Z; — 2*|| between
SS_DSGT and DSGT on the asymmetric mixing matrix
WaY, SS_DSGT demonstrates superior performance across
the three datasets, particularly depicted in Figure 1(b). This

"https://archive.ics.uci.edu/dataset/267/
banknote+authentication

https://wuw.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html
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(b)

Figure 1. Comparison of SS_DSGT and DSGT for the term ||Z; — z*
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—:— DSGT
SS-DSGT
1 -=- ASS-DSGT

0.8

I

%= x|
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¢ —-— DSGT
i —— SS-DSGT
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1x10* 2x10* 3x10°

communication round

4x10° 1x10° 2x10°

(a) banknote

(b)

Figure 2. Comparison of different methods for the term ||z, — =™ ||
W,

performance superiority validates the lower iteration com-
plexity of SS_DSGT compared to DSGT for the general
topology of communication network, as indicated in Eq. (3).
Besides, we also conduct a comparison of the training loss
for the proposed methods against DSGT, with additional
figures presented in Appendix F.

As shown in Figure 2, we compare the distance ||z; — 2*||*
among the three methods on the symmetric matrix W*.
Notably, although ASS_DSGT and DSGT have the same
iteration complexity as DSGT, ASS_DSGT exhibits better
practical performance across these three datasets, likely
attributed to the incorporation of the acceleration technique.
Besides, ASS_DSGT obtains better performance than DSGT,
indicating potential improvements in iteration complexity
in this symmetric setting.

6. Conclusion

In this paper, we explore the application range of the
idea of SS_GT and extend it to design novel decentralized

communication round

3x10° 4x10° 5x10° 4x10° 6x10°

communication round

8x10° 10x10°

a%a (c) ijennl

2 . . . .. .
versus the communication round on the symmetric mixing matrix

SGD methods. We propose two novel algorithms named
SS_DSGT and ASS_DSGT based on the idea of SS_GT.
These two algorithms have similar algorithmic structure
to DSGT and they both take single loop communication
strategy, which is the same as DSGT. SS_DSGT can achieve
better convergence rate than DSGT for the general topology
of communication network, and the iterative complexity of
ASS_DSGT aligns with the result of DSGT (Kairouz et al.,
2021) on the mixing matrix W. The numerical experiment
validates the lower iteration complexity of SS_DSGT in the
general cases compared to DSGT and demonstrates better
practical performance of ASS_DSGT.

Acknowledge

This work was supported by the National Natural Science
Foundation of China under Grant 12101491, the National
Natural Science Foundation for Outstanding Young Scholars
of China under Grant 72122018, the MOE Project of Key
Research Institute of Humanities and Social Sciences No.
22JID110001, and A*star Centre for Frontier AI Research.



Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Alghunaim, S. A. and Yuan, K. A unified and refined con-
vergence analysis for non-convex decentralized learning.
IEEE Transactions on Signal Processing, 70:3264-3279,
2022.

Alghunaim, S. A. and Yuan, K. An enhanced gradient-
tracking bound for distributed online stochastic convex
optimization. Signal Processing, 217:109345, 2024.

Alghunaim, S. A., Ryu, E. K., Yuan, K., and Sayed, A. H.
Decentralized proximal gradient algorithms with linear
convergence rates. IEEE Transactions on Automatic Con-
trol, 66(6):2787-2794, 2020.

accelerated
arXiv preprint

Anita, Z. L. An optimal loopless
variance-reduced gradient method.
arXiv:2103.11333, 2021.

Arioli, M. and Scott, J. Chebyshev acceleration of iterative
refinement. Numerical Algorithms, 66(3):591-608, 2014.

Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. Random-
ized gossip algorithms. IEEE Transactions on Informa-
tion Theory, 52(6):2508-2530, 2006.

Di Lorenzo, P. and Scutari, G. Next: In-network nonconvex
optimization. /EEE Transactions on Signal and Informa-
tion Processing over Networks, 2(2):120-136, 2016.

Even, M., Hendrikx, H., and Massoulie, L. Decentralized
optimization with heterogeneous delays: a continuous-
time approach. arXiv e-prints, pp. arXiv—2106, 2021.

Freund, D., Lykouris, T., and Weng, W. Efficient decentral-
ized multi-agent learning in asymmetric bipartite queue-
ing systems. Operations Research, 2023.

Gharesifard, B. and Cortés, J. Distributed strategies for gen-
erating weight-balanced and doubly stochastic digraphs.
European Journal of Control, 18(6):539-557, 2012.

Jiang, J., Zhang, W., Gu, J., and Zhu, W. Asynchronous
decentralized online learning. Advances in Neural Infor-
mation Processing Systems, 34:20185-20196, 2021.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. Advances in
Neural Information Processing Systems, 26, 2013.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1-2):1-210, 2021.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich,
S. A unified theory of decentralized sgd with changing
topology and local updates. In International Conference
on Machine Learning, pp. 5381-5393. PMLR, 2020.

Koloskova, A., Lin, T., and Stich, S. U. An improved
analysis of gradient tracking for decentralized machine
learning. Advances in Neural Information Processing
Systems, 34:11422-11435, 2021.

Kovalev, D., Horvéath, S., and Richtarik, P. Don’t jump
through hoops and remove those loops: Svrg and
katyusha are better without the outer loop. In Algorithmic
Learning Theory, pp. 451-467. PMLR, 2020.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W.,
and Liu, J. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. Advances in Neural
Information Processing Systems, 30, 2017.

Lu, Y. and De Sa, C. Optimal complexity in decentral-
ized training. In International Conference on Machine
Learning, pp. 7111-7123. PMLR, 2021.

Nedic, A. Distributed gradient methods for convex machine
learning problems in networks: Distributed optimization.
IEEE Signal Processing Magazine, 37(3):92-101, 2020.

Nedié, A. and Olshevsky, A. Distributed optimization over
time-varying directed graphs. IEEE Transactions on Au-
tomatic Control, 60(3):601-615, 2014.

Nedic, A., Olshevsky, A., and Shi, W. Achieving geomet-
ric convergence for distributed optimization over time-
varying graphs. SIAM Journal on Optimization, 27(4):
2597-2633, 2017.

Pu, S. and Nedié, A. Distributed stochastic gradient track-
ing methods. Mathematical Programming, 187:409—-457,
2021.

Qu, G. and Li, N. Harnessing smoothness to accelerate
distributed optimization. IEEE Transactions on Control
of Network Systems, 5(3):1245-1260, 2017.

Recht, B. Cs726-lyapunov analysis and the heavy ball
method. Department of Computer Sciences, University
of Wisconsin—-Madison, 2010.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié,
L. Optimal convergence rates for convex distributed op-
timization in networks. Journal of Machine Learning
Research, 20:1-31, 2019.



Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods

Shi, W., Ling, Q., Wu, G., and Yin, W. Extra: An exact first-
order algorithm for decentralized consensus optimization.
SIAM Journal on Optimization, 25(2):944-966, 2015.

Song, Z., Shi, L., Pu, S., and Yan, M. Optimal gradient
tracking for decentralized optimization. Mathematical
Programming, pp. 1-53, 2023.

Xin, R., Khan, U. A., and Kar, S. A fast randomized in-
cremental gradient method for decentralized nonconvex
optimization. /[EEE Transactions on Automatic Control,
67(10):5150-5165, 2021a.

Xin, R., Khan, U. A., and Kar, S. An improved convergence
analysis for decentralized online stochastic non-convex
optimization. IEEE Transactions on Signal Processing,
69:1842-1858, 2021b.

Ye, H., Zhou, Z., Luo, L., and Zhang, T. Decentralized ac-
celerated proximal gradient descent. Advances in Neural
Information Processing Systems, 33:18308-18317, 2020.

Zeng, J. and Yin, W. On nonconvex decentralized gradient
descent. IEEE Transactions on Signal Processing, 66
(11):2834-28438, 2018.

10



Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods

A. Useful Lemmas

In this section, we will introduce several useful lemmas that will be used in our proofs. These lemmas are easy to check or
prove. Thus, we omit the detailed proofs of these lemmas.

Lemma A.1. Let g(x) be a monotonically increasing function in the range [to, T, then it holds that

T T T+1
/ g(x) dz <Y g(k) < / g(x) da. (39)

to k=to to

If f(x) is monotonically decreasing in the range [to, T), then it holds that

T+1 T T
/ g(x) dx < Z g(k) < / 1 g(x) dx. (40)
to k=to to—

Lemma A.2. If a;’s are independent random variables with expectation E[a;] = O, then it holds that

2
1 m
E = W;E [lal?] @)

m
1

72 a;

m“
=1

and for any consistent random variable b being independent of a;, it holds
E [lla: +bl°] =E [flaill* + 1p]*] - (42)
Lemma A.3. For any matrix X € R™*, it holds that for the projection matrix II defined in Eq. (6),
ITEX || < [ X (43)

Lemma A.4 (Lemma 6 of (Qu & Li, 2017)). Let Assumption 2.2 hold, then

L
< ﬁ [ TIx || . 44)

Lemma A.5 (Lemma 3 of (Song et al., 2023)). Let f; : RY — R satisfy Assumption 2.2. Denoting that G, =
Ly V£i(x\Y), it holds that

L
L R e e [ = (45)

B. Important Lemmas Related to QOur Algorithms

Lemma B.1. Letting Assumption 2.2 hold, then we have the following inequalities:

2

1 & ; 1 & ; 1
S VAT = Y V@) < S IVEGe) - VE(@)]?, (46)
i=1 i=1
2
1 & ; 2L2
=Y OVAD)| < T T* AL (f @) - f(@). )
=1

Proof. For the first inequality, we have

m 2 m
H; > (VA - VH@)|| < fng [V = Vsta)||| = 19 P ~ R (@)

i=1

11
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For the second inequality, we have

2 2

1 — i 1 & i -~ o @b 2L2 _
S VA =2|| =3 VAT - Vi@ F20VF@)IT < — IT]® 2 V(@)
i=1 i=1
212 _ X
S T, ||* + 4L(f (@:) — f (%)),
where the last inequality is because f(-) is L-smooth implied by Assumption 2.2. O

Lemma B.2. Letting Assumption 2.2 hold, then we have the following inequalities:
IVF(x:) = VF(12*)|* <21 |TIx||* + 4mL(f (@:) - f (")), (48)
IVF(xe) = VF(@u)[|* <4L% |TIxe||* + 2| VF(qr) = VF(La")|* + 8mL(f(@:) — f(a7)). (49)
Proof. First, we have

IVF(x;) — VF(12*)||> <2|VF(x;) — VF(1T,)|*> + 2||[VF(1%,) — VF(1z*)|]?
<2L? |TIxy||* 4+ 2| VF(1T;) — VF(12%)|?,

where the last inequality is because of VF'(x) is L-smooth implied by Assumption 2.2. In addition, applying the L-
smoothness of f; again, we can obtain that

3

IVF() = VEQ2") | =3 IV fi(@) = Vi)l

3

Il
—

2L (fi(me) — fi(z™) — (Vfi(z"), 7 — 2¥))

&

I
—

=2mL <f(3?t) — f(=*) - <§1 vai(x*)@t - $*>)
=2mL(f(z,) — f(z")),

where the last equality is because of 1 3" | V f;(z*) = V f(2*) = 0. Combining above two inequality, we can obtain
Eq. (48).

Furthermore,
IVF(x:) = VF(aqu)||* <2[|VF(x¢) = VF(12")|* + 2 |VF(q,) — VF(127)|?
CuL2 0?4 2 |VF (@) - VE(L) 2 4+ 8mL(f(70) — £(7)).
which concludes the proof. O

Lemma B.3. Letting Assumption 2.1 hold, then it holds that

E[IVF(xe, &) = VF(au &)II°] < 2ma? + [VF(x) = VP(a)| (50)

Proof. First, using the fact that E [VF (x¢,&:) — VF(qt, &) — (VF(x¢) — VF(qt))] = 0, we can obtain that

E[IVF(xe, &) = VF(an &)

DE [|IVF(xi, &) = VF(a &) = (VF(x:) = V(@) || + IVF(x) = VF(o)])-

12
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Similarly, it holds that E [V F(x¢,&:) — VF(x¢)] = 0and E [VF(qt,&,) — VF(q:)] = 0. Consequently,

E[IVF(xi,&) = VF(an &) = (VP(x:) = VF(a)|]’]

—E [|[VF(x:.&) = VEG)| + [VF(ar &) — VF(a0)| ]

m

= Z(Hw; V) - VR v, 5“)—Vfi<q§”)H2)1

z:l

<2ma?
Combining above two equations, we can obtain that
E[IVF(xi, &) = VF(a &) ] < 2mo® + IVF(x) = VF(a)*

O

Lemma B.4. Let A, B, and C be three positive constants. Non-negative sequences {1}, {e:}, and {n:} satisfies the follow
property
rir1 < exp (—%) re —mecA+niB 4+ nPC. (51

Set step size sequence and weight sequence as follows
i H® ;
ne =66 (L + 5Mt)_1 , and  wy = *teXP (2 Zm) .

Letting St = ZZ;O wy, then it holds that

L 1 18BL*(L 4 fu(T +1))? 108L3 C
T TR BT WL B T2 e

T T
S (2 ) :
A wiep < —_— T — U*TtJrl + Bwny + Cwyny
t

— — Tt
t=0 t=0 (53)
exp (—8) :
= 2 R BY wm + Czwt%
"o nr t=0 t=0
where the equality is because of w; = ;7 exp (5me) we1.
Now, we are going to upper bound w; as follows
L (40) L t
w exp | 3 (L + Bui < —exp (3 / L+ Bui)~ " di
=TT Bt p(ﬁug Bpi)~ ) T B p(ﬂu _1( Bi) ) ",
L .<L+5ut)3_L(L+ﬁ,ut)2
L+pBut \ L—pu (L—Bp)?

13



Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods

We lower bound S as follows:

T

T
STZZWt:ZL+L5 teXP(?’MBZ L + Bui) 1)
@
> ZL Bt O <3uﬁ/i_O(L+ﬂui)1 di)
T L+ 8ut\> @ [T (L+But)>
S (5) B ()

t=0
L B 52 2
‘5(( ) ‘1>— szl

Ghe~ L(L+pBut)* 68 6L3  [TF!
Zwmt ‘tz; ey 7 abs i o m  CEETL

SOL(L + (T +1))?

We also have

O TR
and . .
2 2
Zwmf <5§4 Z L(L + But)? ( 68 ) _ 36L03 i
—~ — (L—pu)? L+ But (L —Bu)
Dividing St both sides of Eq. (53), we can obtain that
T T
A exp (—442) wo 5
?T;wt&g ST Jr*waer T;wtnt
G9COEn_LP 1 - 18BL3(L + Bu(T +1))? 108L3 C
233 T3 " B(L — Bu)*psT? p2(L = pp)® T

C. Proofs for Section 3
C.1. Proof of Lemma 3.1

Proof of Lemma 3.1. We prove the result by the induction. For ¢ = 0, by the initialization, we have

S0 = — Zv.fz ’ O

If ¢; = 0, then q;,1 = q;. By the induction hypothesis and the fact 1" W = 1T, we have

St41 va ( ) f() vaz ‘1t+17§(z )-

If (; = 1, then q;4+1 = x;. By the induction hypothesis,

Si41 =5¢ + % Z (Vfi(x( )v t ) Vi (Qt 75(1 ))
f—Zsz a0+ Z(sz( 0.69) - Vraf),€9))
—Zsz vaz qt+17 vaz qt+1>£( ))
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where the last equality is because of 7 =t if (; = 1. O

C.2. Proof of Lemma 3.2

Before the detailed proof, we first introduce the following lemma which describes the evolution of consensus error terms.

Lemma C.1. Suppose Assumptions 2.1-2.4 hold. Sequences {x:}, {s;}, and {q;} are generated by Algorithm 1. We have
the following inequalities:

E ||TOxpi1]* | F

(58)
<(1—0)- M+ 2 s, +(nt+) IVF () — V(@) + 2mn?s”

and

E || Tsall* | | < (1= 0) | Tsi]* + 20 [V F(x) = VF(@)|* + 4mps® (59)

and

E IV F(ai1) - VP12 | 7

(60)
<(1=p) [VF(ar) = VF(La")[|* + 2pL* | Tx; |* + dmLp(f (T:) — f(")).

Proof. First, we have

E [IITE (e = e (50 + VF(x1, &) = VEF(a &) | Fi]

=E ||TL(x; = misy) — s - TL(VE(x1, &) = VE(ar &) | 7]

= [TTx, = mes)|I* + 02 - E [[T(VE(x0, ) = VF (@ &) || 72
—2n-E [<H(Xt - UtSt),H(VF(Xt»ft) - VF(qt,g'r))> | Ft}

= [TTx, = meso)|I” + 2 - E [[TU(VE(x0, &) = VF(a &) || 72
— 20 (TX(x; — mis¢), IL(VF(x;) — VF(qy)))

< T, — mese) | + 7B [HHWF(xt,ft) ~ VF(an&)|* | 7] ©

+ g ITE(x; — mesy) || 4 20 HH(VF (x:) = VF(a)]”
(14 5) o, - ) +nf1E IV F (e, &) ~ VP (@ &)
+ 2 v () - V()

0) 2n
<1+ 2) 0t = sl + (a7 + 220 ) 1V P() = 98 (@) + 2o,

where the first inequality is because of the Cauchy’s inequality.
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Using above equation, we can obtain that

E [ x| | 7]

~E [HHW (0 = e (0 + G (VP (xe, &) = VP(aw &I | 7]
(1 0)* [T (0 — i 50 + G (VE(x0,6) — V(@ &) | 7]
(61) 2

2n
s<1—9>2(1+ H(xt—mst>||2+(m+) IVE(x) = VE(@)|]? + 2mn?”

<o (1) ((1+5) I+ (143 ) ot sar?

2 2
+( +) IVF () - VF<qt>||2+2mn?a2

N D

[\]

— ) [ ? 4 2 ||H 7+ 2 IIVF(Xt) VE(q)| + 2mnia’,

which proves the result of Eq. (58).

Now, we are going to prove Eq. (5§9) and we have

E[ITs.a ) | 7]
=1 = p)E [IITWs,|* | Fi| + pE [[TL(Ws: + VF(x:. &) = VF(au &) | 7]
<(U=p)E [[TWs,|* | ] + 2 ||[T0Ws,|* + |[VF(x,, &) = VF(ar, &) | 7.
~(1+P)E [|OWs,|* | 7] + 2 [|VF(x1, &) — VF(ar,&)I* | 7]
©))

<(1+p) (1= 0)° - |TIsq | + 29 | IV F(x1,&) = VF(ar, &) | F]

< (L= 0)E [[Tsi[*] +26E [|VF (1. &) — VE (&) | 7]

where the last inequality is because of p < 6. Using Eq. (50), we can obtain that
2 0 2 2 _9
E (M l* | 7| < (1= 0) [Tsill” + 20 IVF(xi) = VF(a) |* + 4mps®.

By the update rule of q;, we have

E[IVF(ar1) - VP | 7]
Zp|IVF(x) — VF12)|” + (1 - p) [VF(q,) — VF(1a")|

QopL? [T, + 4mLp(f (@) — F(*)) + (1 - p) [VF(ar) — VF(12")]?.

By the above lemma and the setting of parameters, we can prove Lemma 3.2 as follows.

16



Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods

Proof of Lemma 3.2. First, we have

E[IMxe 1| + Cr gt [Msesa | + Coin [VF(@rs1) = VF(12%)|
(58)(59)(60)
<

2
(1 -6+ 2pL*Cyy) - | TIx|)* + (1 —0+ 56 ) Cy ¢ [ Ts, |

2
(1 p) Coy IVF(qr) — VE(2")| + <nt Bl 2pcl,t) IVF(xe) — VF(@)]?

0
+ (2mag} + 4mpCie) 6° + 4mLpCae (f(T1) — f ()
(4 3 2
(1—9+2pL202t+4L2 Cm) [T || * + (1— ac, ) Cy [T,
27 477t 4pCy t) (12
+(1-p+ St 4 + L) oy |VF(qr) — VF(1a
(1= ZE g+ 24 o |V F ()~ VF (1)
4
+ (2mm + 4mpCh ;) 6% + 4mL (pC'g ¢+ 207 + Zt + 4p01,t> (f@e) = f(z"))
40 + 8 + 32)L%n? 30
<19+4Lnt+( + ; ) ”t>.||nxt||2+<19+ >Clt||1_[st||

+(1—60+mnL0+ 2L77t +8n.L) -

(ar) — VF(lx*)II
2

(1—) (||th|| +Cu s + Gy [ V(@) - VF(L) )

N 18757% 54 (88mL77t2

. +8m77t> (F(@) — f()),

where the first equality is because of Cy, = 4n?/62, Cay = 21,/(L6), p = 0 and the last inequality is because of
0

N < 161~ O
C.3. Proof of Lemma 3.3
Proof of Lemma 3.3. By the update rule of x;, we have

E [l — I | 7

= ||z — z*|* — 2n,E

)
<st+ﬂl%§:<Vfi(X ) t ) Vf( )7§$i)>79€t—3€*> ]:t]

+77t

lm @\
et > (VA 67 - Vil m)Hm

1=

| Fi

(Vi
1
(2)||mt z*|)* — 2B l< ZVfZ ,ft , Tt —ac*> | Fi

2

1 ¢ (@) ()

+77t2E H§ Vfi(xt L& )
m — (62)

| Fi

2
_ . 1 « i)\ — . 1« i) G
=z —= |2_2nt<mzvfi(xi(t))u‘rt_'r >+77t2E Hmzvfi(xz(:)7ft))
i=1 i=1

t — * — * L t
(RO TERE P n(fte 1) + 2

+nfE H Zwl (xi”, &) |ft
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Furthermore, using the fact that E [V fi (xt , § )=V (xy)) | ]-"t} = 0, we have

E Zw; (=7, &) |ft
L 2
(42) 1 (4) (z) (z) (1)
<E EZVfi(xt & Zv]z Zsz
i=1
1_ - 2 1 & ’
41) i A 7
WZE{HWM% D)= Vi) |ft} — 3 VA
=1 =1
(8)0 2
Zwl
“D2L? . o2
<= T |* o+ AL(f (@) — f(27) +
Combining above results, we can obtain that
— * 12
(I =2 | 7]
BN\ = _) _ * 2L77t
< (1= B Jm — ) = 20 (f (@) = f(2)) + =20 T+ -
22 L2 *
+ 2 x| + 4n?L(f(72) - £ (7))
=2
" o
(1—@)” 7o —a*|* = 2m0 (1= 20L) (F(@) = () + - =

2L77t (1 + 277t ) HHX H
m t '
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C.4. Proof of Lemma 3.4
Proof of Lemma 3.4. We have

24L
24 ﬁq}tﬂ | ]_‘t}

E |7 - + 22
P () P 2 (L 2 () - £ -
+ W I TIx, || + <1 - Z) 24L9”tx11t
Bl gy (B BB LY (42— o)
(1 B @) 170 — 2 — 2, (1 ol 27 . 322 L 20 30. Lnt> (F@) — f()
A 7
e (- 52 8) e
N 94 3;2 Ln§,2+nt2 . %2
=(1-E8) I -+ (1- z> : Qifg’t\lft - %(f(ft) — f(z"))
N 04 3632. L} -y %2
§< /mt) (II S+ 24L0nt \Ijt> ~ %(f@) )+ 94. 3;2 L} _» e %2
<oxp (_777) (” 70— 2| 24L077t\1;t> —%(f(mt)—f(ac*)) 2. 3;2 L} 524l %2
where the last inequality is because of 1 — z < exp(—z) when 0 < z < 1. O
C.5. Proof of Theorem 3.5
Proof of Theorem 3.5. For the case 2 = 0, Eq. (16) reduces to
E [||=’17t+1 —z*)* + %\Pt+l | ft}
<exp (-5 <|$t — | + Qifg’t %) - %(f(@) — f(a")
<exp (-1 (I - o + 2t
= ﬁ, we can obtain the first result
2y iy, 4T,

Using above equation recursively and replacing 7,
f@), re = ||z — 2]

The result for the case 2 > 0 follows from Lemma B.4 with e;
19
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1 T

493 7 _
2(';’;2LO_2

. Specifically, we have
18-8- L3 (L + Bu(T +1))* °
m

(@)] — f(z7))
7-B2(L — Bu)?PT

=2

924
o \1/0) +

(520924 .36 .13 1 B w2
< 03u2 ﬁ ”5170—1' || + mo
29.36. 14 52
TP B T2
24.30.0° 1 o — 2| Wy 18-8- L3 (L + Bu(T +1))* &° 20.30. 14 &%
6312 T3 0 8m 7-(6L3/7) - BPu3T3 m - Tup26% - (6L3/7) T2
224.36. 13 1 v 24 - (L T+1)? 62 28.3°.L &2
03112 T3 8m B2u3T3 m 11202 T2
where the second inequality is because of 0 < # < 1 and p < L and
0 L 6)""*
L-pBu=L— —=—=p>L— >L| =
P o g2l = T T = (7>

C.6. Proof of Corollary 3.6

Proof of Corollary 3.6. If 3% = 0, to achieve e-suboptimality, by Eq. (17), it requires that

N 1
7) - (ol + oo ) <=

o (=
P AT 31
which leads to
27 .3. [ = 2 1y
T - 3 log 1To — 2*||” + 5= Yo
uo €
)

L
-0 (s e

where the last equality is because of the fact that @ = 1 — Ao (W) when W is a fixed mixing matrix.

If 52 > 0, supposing T is sufficient large that 34 (T + 1) dominates L, in this case, Eq. (18) reduces to

=2

1 T
5 ;Wt (E[f@0)] - f(=))

_ @<1 & L2
C\T mp p202 T2
L2 1 _ a2 Yo
W'ﬁ'(”xo—l‘ | +%)>-
Thus, to achieve e-suboptimality, the iteration complexity is
o2 Lo L
r_of 2 Vo, .
ume  pby/e  OQuet/3

Replacing § = 1 — \y(W) to above equation concludes the proof.
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D. Proofs of Section 4
D.1. Proof of Lemma 4.3

Proof of Lemma 4.3. We prove the result by the induction. For the case t = 0, the it holds that 3> %) = 2 i ("
trivially by the initialization of Algorithm 2. Assuming that Eq. (26) holds for ¢, then we have

foﬂ A +NTTWEE™ A1 T2 T (VR (%, &) — VF(ar, &)
:lTWSVCgl:m) +17 (VF(x¢,&) — VF(at, &)
2m
>,

1=m-+1

where the second equality is because of the induction assumption, the first and third equality are because of definition of W

and update rule of X;. The result >_." | §£i) = mem S ( ) can be proved similarly.

Since > 1,8 30 = Zf;"m_H 3\". then Eq. (27) can be proved as the same to the one of Eq. (13).

D.2. Proof of Lemma 4.4

Proof of Lemma 4.4. First, for notation convenience, we denote that

By the update rule of 's;, we can obtain that

~ 2
S

=(1-p) HﬁWﬁ’s}

’ + pE U’ﬁWﬁfS} + ﬁ(VF(Xt’ft)# - vF(qt’gT)#) HQ}

~~ ~ 2
<(1+p) [ FOWTES|| + 2 [IVF (e, €04 — VF(an &) )] -

Similar to above equation, we have

UHWH}H } (1+p) HHW s, 1” +2pHHWH VE(xeo1,€r1)s — VE(Qo1, &) s )H2.
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Using above equation recursively, we can obtain that

M~ 2
s e ]

IA
=

+p) HﬁWﬁ’s}

2
+ 2B | [VF(x1, &) 4 — VE(a &) 4]
t
<E|) 2p(1+p)'
Li=0

W' TL(VF (x:,&)4 — VF(ai,&,)#) Hzl

~ — ~ 2
(14 p)tH! "HWt+1H§#7O"
e |

i , - 2(t=i)
<E | 2ap(1+p)" (1_9) t ||VF(Xia€i)#—VF(qz-,fn)#Hz}

Li=0 ~ - ,
e LY

= lz tap (1-0) 7 IVF(,6) - VF(@n &)

- t+1 2
+ 20 (1 - 9) | TIso |
1=0

(50)

<E [i‘lap (1-9) (IVP6x) = VP (@) + 2mo?)
=0

:8s,t+1

-\ t+1 2
+ 20 (1 - 9) | TIso |

where the forth inequality is because of p < 6. By the definition of &, +, we have

E [Hﬁ’ét 2} <&, (63)

and

Eorr1 < (1 - é) ot + dap (||VF(xt) — VF(q)|® + 2m62) . (64)
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Now, we are going to prove the consensus error related to X;. First, we have

HWH( m(st+VF(Xu§t)# VE(ar, &) ))M

27
HWH(xt en)

+n2E HHWH VF(x¢,8)% — VF(qe, & )% )H2

- QmE (T, HWH(§t + VE(x6)% — VF(a6)4) )]

TR, - ntSt)\j2_ +17E Hﬁﬁﬁ(w(xt,@#—VF(qt,fT)#)HQ:

— 277,5 <ﬁWﬁ()~<t — M¢St), ﬁWﬁ<VF(Xt)# - VF(qt)#)>

o ;
AW — 00| | + 028 | [AWIL(VF (i €04 - V(@ 6)4)|

2n?

+ —
0

+ g HﬁWﬁ(ﬁt — 1)¢S¢) ﬁWﬁ(VF(Xt)# — VE(a)y) H2

+?7t]EU'1'IWH VI, &)y = VE(ar & )¢ H]

)

(H ) |f i, - )

. 2% |TOWIL(VF ()4 — VF(a0)4) H2

§<1+§> <<1+ )HHWth +(1+Z~>n§

+77tIEMHWH VE(xe, &)y = VE(Qr, &0 )4 M

< (1+9) s

+ 72K [HHWH VE(xt, &) — VE(ae, &) # H }

2

1V ()~ V()|

Gnt HHWH~1:H

2

WIL(VF ()5 — V()|

2
= (1 + Z) E [Hf[wa[ ()th71 —Nt-1 <,svt71 + VF(x¢—1,§-1)% — VF(qt*l’gT)#)) HQ}

GZt WIS, er MHWH VE(xt, &) — V(&) % H}

2

)

277t

TWIL(VF(x:)4 — VF ()4 )‘

where the second and third inequality are because of Cauchy’s inequality.
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Using above equation recursively, we can obtain that

{HHWH(X, nf(sﬁvzr(xf,gt)# VF(qu, &) ))M

-\ 2t . 0 2(t—1) L )
1+ HHW HXOH + an 1+3 HHW H§H
¢ é 2(t—1) _ 9
n ;nf <1 n 2) E _HHW”HH (VF(xi,fi)# _ VF(qi,gn)#) H ]
9 ¢ é 2(t—1) )
+50 0 <1 + 2) [T (VF(xi)4 — VP(ai) 4 ) |
1=0

~ 2
|

~\ 2t 2(t—1)
0 ~ ~ |2 ~ ,
<a (1 + 2) (1— 9)2(t+1) ’HXOH Jr E :777 (1 + > (1— 9)2(t+171)

() ) (e - vr) |
' é t+1 B 5 6a t é. t+1—1 B 5
<a (1_2> [ | P (1_2> |

t é t4+1—1 9
+ad (1— 2) | [F (776605 - VFag)s) |
0

. t+1—i 9
() ena )

t+1—1

~\ t+1
(50) 0 ~ 2
2a(1-3) i Ri(-3) Il

=Cx,t+1-

By the definition of &, 1, we can obtain the following inequality

gw,t+l

0 3a 0 9 [~ ||?
<[1-2 “l1-=

6 Ja
< (1 — 2) gm,t + ?77,52 (557t +2 ||VF(Xt) — VF(qt)||2) + 2am5277t2.

0
+2||VF(x¢) — VF(qt)”Q) + 2ama? (1 - 2) n?

By the update rule of Xy, it holds that

E [Hﬁimm MHWH (% — (30 + G (VE(x0) — VF(qu) % H } < Earir. (65)
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D.3. Proof of Lemma 4.5
Proof of Lemma 4.5. By the definition of {Ith+1, we have
a1 + Crist - Espr1 + Copir - |[VF(qe1) — VF (12"

(29)(30)(60) 0 6 3an?
< (1 ) Exp + (1 A > Cri-Esi+(1=p)Coyt ||[VF(qr) — VF(12")|?

2 0C,

6 2
+ < St 4apcl,t) IVE(x) = VE(@)|” + (20mn; + 8ampCy ) 5°

+ 4mLpCsy, (f(ft) _ f(x*)) +2pL2Cy, |Tx,|?

(49)(28) 0 24al?n?
< (1 + 220 Y 6apLCyy + 2pL2CQ¢> s

2

6  3an?
b1 24 20 Cr-Est
2 00,

) Co

12am? C
+ (1 —p+ M § ap- ) Cot |[VF(qr) — VF(12")||?
2.t s

48amLn?
+ (2amn; + 8ampCy ) 6° + (4mLp02,t + % + 32ameC1,t) (f (@) — f (l’*))

4

0
< (1 - > (Ex,t +Cre - Esp+ Co [[VF(ar) — VF(lx*)HQ)
12 92 . 2 12 32, 2
2 3~ muny . 5_2 + 2 3 ant . (f(ft) _ f(.’l?*)),

7 0
where the last inequality is due to the setting of parameters.

D.4. Proof of Lemma 4.6

Proof of Lemma 4.6. By Lemma 4.3, we can conclude that Lemma 3.3 still holds.
N 48L ~
E {xm —z*|* + ”E“\ptﬂ}
mb

UL (1 ) - ) o (1 - 20 () — F(a))

- 2
52 2Ln, (1+2n,L 6\ 48Ln; ~
+nf~a—+M||th||2+ 1-2 "y,
m m 4] mo

216 . 32 . LnB _ 216 . 32 . L2773 - .
+ éQ t0,2_|_ 92 ! (f(CCt)—f(ﬂ? ))

15 92 72,2
< (1= 28 fm -1 - 2 (1= 2t = 2 (5 - )

02
0\ 48Ln; ~  6Ln; - &, g2 216.32. [y}
+<1_> ?twt+ Mt ,t+m2.7+~7m.52
4] m m m 02

S E 48Lm  ~ 7 o2  216.32. Ly}
< (-EE) (P =) = S (f@) - fah) 4 T 5
2 meo m 62

8
e _ w2, 48Lmy =~ ™ [, . o 0% 21932 L},
< — — — . - — PR N —_
_GXP( 5 ) (”It " + 3 ‘I’t> 3 (f(xt) [z )) Ry 72 o
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where the last inequality is because of 1 — z < exp(—z) for 0 < z < 1.

D.5. Proof of Theorem 4.7
Proof of Theorem 4.7. For the case 62 = 0, Eq. (34) reduces to

Lo A8Li ~
E g - o) + PG,
i _ w2 48Lmy ~ M, N
< _Bm _ - _r _
<exp (-1 (I -+ 215, ) - T2 (1600) - 110)

24Ln; ~
<exp (<2) (I -l + 220,
m

we can obtain the first result.

Using above equation recursively and replacing 7; = ﬁ,
The result for the case 52 > 0 follows from Lemma B.4 with e; = f(T;) — f(z*), re = |7 — 2*||> + %‘I’t, A=1,

_ 3 _2'93%L -2 .
B =% ,and C' = g0 Specifically, we have

& > (@) - £6)

2

629228.35. 13 1 48Lmg ~ 18-8- L3(L+ Bu(T +1))% &
<~77‘3 (|$0—JU*||2—|— ?OWO) i ( ﬁ/ﬁ( )) N
03 p? T mo 7-B2(L — Bu)dudTs m
221 . 35 . L4 6'2
Tu262(L — fp)? T2
2 221 . 35 . L4 5,2

7-(6L3/7)- 2T omo Tu0? - (6L13/7) T2

228.35. 13 1 U 18-8-L3(L + Bu(T +1))? &

= @32 T3 16m
2.3 1 %0 — 2| + T 24-(L+BM(T+1))2.672+220-34~L.672
032 T3 0 16m 23T m 11262 T2’

where the second inequality is because of 0 < 6 < 1 and p < L and

. 0 L 6\ /3
L-fu=L—— y>p——_>r(2) .
P o7 gl =T oT g = (7>

E. Decentralized Stochastic Gradient Tracking

In Algorithm 3, we present the algorithm of DSGT.

Algorithm 3 Decentralized Stochastic Gradient Tracking
Input: z(y, mixing matrix W, initial step size 7.
Initialization: Set xqg = 1z, qo = 1z, sg) =V/; (xé’), &o), in parallel for ¢ € [m], 7 = 0.

fort=1,...,Tdo
Update

X1 =W (x¢ — meSt) (66)
Sit1 =Wsi + VF(x441,&41) — VF (x4, &). (67)

end for

26



Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods

0.1

0.4 0.
—-— DSGT —-— DSGT —-— DSGT
—— SS-DSGT ~—— SS-DSGT —— SS-DSGT
0.7 0.43
0.401
2 0.16{ @ @ 0.42
s s s
2 2 0.39] 2
< = =
Lois e £ 0.1
0.14- 0.40{ - — e ¢
0.1 0.3 0.
0 1x10¢ 2x10¢ 3x10¢ 4x10¢ 5x10¢ 0 2x10° 4x10°

6x10° 8x10° 10x10° 0 2x10° 4x10° 6x10° 8x10° 10x10°

communication round ‘communication round ‘communication round

(a) banknote (b) a9a (c) ijennl

Figure 3. Comparison of SS_DSGT and DSGT for the training loss versus the communication round on the asymmetric mixing matrix
WY, The optimal values f(z*) on these three data sets are 0.1336, 0.3727, and 0.3965, respectively.
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Figure 4. Comparison of different methods for the training loss versus the communication round on the symmetric mixing matrix W*.
The optimal values f(x*) on these three data sets are 0.1335, 0.3727, and 0.3965, respectively.

F. Additional Experiment Results

In Figure 3 and Figure 4, we compare the training loss of the methods across these three data sets on the asymmetric mixing
matrix WY and symmetric mixing matrix W*, respetively.
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