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Abstract

Large Language Models (LLMs) offer substantial promise for clinical natural lan-
guage processing (NLP); however, a lack of standardized benchmarking method-
ologies limits their objective evaluation and practical translation. To address this
gap, we introduce ClinBench, an open-source, multi-model, multi-domain bench-
marking framework. ClinBench is designed for the rigorous evaluation of LLMs
on important structured information extraction tasks (e.g., tumor staging, histologic
diagnoses, atrial fibrillation, and social determinants of health) from unstructured
clinical notes. The framework standardizes the evaluation pipeline by: (i) operating
on consistently structured input datasets; (ii) employing dynamic, YAML-based
prompting for uniform task definition; and (iii) enforcing output validation via
JSON schemas, supporting robust comparison across diverse LLM architectures.
We demonstrate ClinBench through a large-scale study of 11 prominent LLMs
(e.g., GPT-4o series, LLaMA3 variants, Mixtral) across three clinical domains us-
ing configurations of public datasets (TCGA for lung cancer, MIMIC-IV-ECG
for atrial fibrillation, and MIMIC notes for SDOH). Our results reveal significant
performance-efficiency trade-offs. For example, when averaged across the four
benchmarked clinical extraction tasks, GPT-3.5-turbo achieved a mean F1 score
of 0.83 with a mean runtime of 16.8 minutes. In comparison, LLaMA3.1-70b ob-
tained a similar mean F1 of 0.82 but required a substantially longer mean runtime
of 42.7 minutes. GPT-4o-mini also presented a favorable balance with a mean
F1 of 0.81 and a mean runtime of 13.4 minutes. ClinBench provides a unified,
extensible framework and empirical insights for reproducible, fair LLM bench-
marking in clinical NLP. By enabling transparent and standardized evaluation,
this work advances data-centric AI research, informs model selection based on
performance, cost, and clinical priorities, and supports the effective integration of
LLMs into healthcare. The framework and evaluation code are publicly available
at https://github.com/ismaelvillanuevamiranda/ClinBench/.

1 Introduction

Large Language Models (LLMs) are becoming increasingly important in clinical natural language
processing (NLP), often outperforming traditional methods on tasks such as clinical information
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extraction and rare medical event detection [1–3]. However, the rapid adoption of LLMs in clinical
applications has outpaced the development of systematic evaluation methods. Current evaluations
typically rely on specialized datasets or informal testing protocols, lacking a unified, structured
approach to evaluating the practical utility and generalization of LLMs across various clinical
domains [4, 5]. Although initial benchmarking exists for broader biomedical NLP tasks [6, 7], these
efforts do not adequately address the specific challenges of clinical information extraction, such as
handling diverse medical terminology across multiple clinical areas.

Clinical reports from areas such as oncology, electrocardiography (ECG), and Social Determinants
of Health (SDOH) significantly differ in their terminology, writing style, and data formats [8, 9].
Additionally, privacy restrictions associated with proprietary cloud-based LLMs [10–12], and resource
or performance issues in open-source models, present major challenges to reliably selecting and
deploying these models in clinical settings. Thus, there is an urgent need for a clear and comprehensive
benchmarking framework specifically designed to evaluate LLMs in clinical information extraction
tasks.

To bridge these gaps and promote Data-Centric AI Research in clinical NLP, we introduce ClinBench,
an open-source benchmarking framework designed to assess multiple LLMs across different clinical
domains systematically. ClinBench evaluates the abilities of the models to extract structured clinical
information from medical texts through standardized methods. The framework defines key evaluation
components, including data requirements, prompt configurations specified in YAML, JSON-based
output validation, and a set of detailed performance metrics (e.g., F1 score, runtime).

To demonstrate the effectiveness of ClinBench, we conducted an extensive benchmarking study
involving 11 widely used LLMs, both open source and proprietary. This study evaluated models using
complex clinical information extraction tasks from three publicly available clinical datasets: (1) lung
cancer staging from TCGA pathology reports, (2) atrial fibrillation detection from MIMIC-IV-ECG
interpretations, and (3) extraction of SDOH factors from MIMIC clinical notes.

The main contributions of this paper are:

• ClinBench Framework: We introduce a modular, open-source framework designed for stan-
dardized, reproducible evaluations of LLMs across diverse clinical information extraction
tasks.

• Structured Multi-Domain Benchmark Tasks: We provide a reproducible and extensible
set of standardized tasks across three distinct clinical domains using publicly available
datasets (TCGA, MIMIC-IV-ECG, MIMIC clinical notes).

• Extensive Quantitative Analysis: We systematically compare 11 LLMs, highlighting their
performance metrics (such as F1 scores) and practical efficiency (runtime and cost) across
diverse clinical contexts.

• Openly Available Resources: All components of ClinBench, including evaluation methods,
prompt templates, benchmark results, dataset details, and metadata, are publicly accessible
to encourage further research and transparency.

2 Related work

Large Language Models (LLMs) are increasingly applied to clinical information extraction, with
studies demonstrating their utility for tasks ranging from identifying rare disease phenotypes [13] to
few-shot extraction from general clinical notes [14]. A significant body of research also focuses on
enhancing LLM performance through advanced prompt engineering, in-context learning strategies, or
instruction tuning specifically for information extraction [15–18]. While these contributions highlight
LLM capabilities and refined interaction methods, evaluations are often designed for specific tasks or
models and typically do not provide a broader, standardized framework for comparing diverse LLMs
across multiple clinical domains, especially with respect to practical aspects such as computational
efficiency and the reproducibility of the benchmarking process itself.

Efforts to systematically benchmark LLMs for medical applications are emerging. For instance,
MedGPTEval provides an evaluation system and datasets for LLMs in the Chinese medical context
[19], while LLM-AIx offers an open-source pipeline for information extraction using locally deploy-
able LLMs, demonstrated on tasks such as anonymization and TNM staging [20]. Other research
has introduced benchmarks for fine-grained information extraction, emphasizing the importance of
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detailed instructions and evaluating generalization [21]. These initiatives are valuable for assessing
LLMs in specific contexts or with particular deployment considerations.

However, there remains a clear need for an open-source, easily extensible framework specifically
designed to systematically evaluate a wide array of state-of-the-art LLMs, spanning both proprietary
and open-source architectures, across multiple clinical domains, using standardized configurations
of publicly available English-language datasets. Such a framework should also incorporate com-
putational efficiency as a key evaluation metric and ensure reproducible output structures through
mechanisms such as schema validation.

Figure 1: The ClinBench automated five-step benchmarking workflow. This diagram illustrates
the standardized pipeline from (1) ingestion of preprocessed clinical datasets, through (2) YAML-
configured, schema-guided LLM orchestrator processing and (3) model inference (local/API), to (4)
JSON-validated data extraction, and (5) comprehensive performance evaluation using standardized
metrics.

3 The ClinBench framework

This paper introduces ClinBench, an open-source, multi-model, multi-domain benchmarking frame-
work designed for the systematic, reproducible, and standardized evaluation of Large Language
Models (LLMs) on clinical information extraction tasks. ClinBench implements a core five-step
automated pipeline, as shown in Figure 1, that manages the evaluation process from data ingestion to
performance reporting. This structured workflow ensures that each LLM is assessed under uniform
conditions, promoting consistency and facilitating fair comparisons across diverse models and tasks.

The ClinBench workflow (Figure 1) begins by (1) ingesting task-specific datasets, which must
conform to a predefined, standardized format (typically structured CSV files) to ensure a consistent
evaluation baseline. (2) A central LLM Orchestrator agent then processes these datasets, dynamically
loading standardized prompts from version-controlled YAML configuration files. These YAMLs
are a key feature of ClinBench, encapsulating task instructions, relevant domain knowledge, and
precise JSON schemas for the expected LLM output format. (3) The orchestrator subsequently
manages model inference through a unified interface. This interface supports interactions with
both local open-source LLMs (e.g., via Ollama, enabling complete data control) and proprietary
API-based models via secure, institutionally compliant connections (e.g., via Azure OpenAI Service).
This dual capability is handled by the same orchestrator, ensuring standardized context window
utilization and uniform API call formatting to promote consistent evaluation conditions across model
hosting environments. (4) LLM-generated outputs, produced in the JSON format specified by the
prompt configurations, then undergo an automated validation step. This validation, facilitated by
the strictjson library [22], rigorously checks each output against its corresponding predefined JSON
schema to confirm structural correctness, data type adherence, and the use of permissible values,
thereby ensuring data quality and output standardization before evaluation. (5) Finally, a dedicated
evaluation module compares these validated outputs against expert-annotated ground truth, computing
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a comprehensive suite of performance metrics. This entire pipeline is designed for robust, end-to-end
execution.

Key design principles of ClinBench further enhance its utility and adaptability. The framework’s
unified orchestrator architecture for managing both local and secure remote model inferences (as
detailed in Step 3) provides crucial flexibility for diverse research and deployment scenarios, including
those with stringent data privacy requirements. Furthermore, ClinBench is built for extensibility; its
modularity, particularly the reliance on externalized YAML prompt configurations and standardized
data input formats, allows new datasets and LLM architectures to be readily integrated. This requires
minimal modifications to the core evaluation pipeline, positioning ClinBench as a durable and
evolving tool for ongoing research in clinical NLP.

4 Benchmark datasets

To demonstrate the ClinBench framework and establish a multi-domain benchmark, this study
employs three distinct clinical tasks requiring structured information extraction. These tasks utilize
curated configurations of publicly available datasets, ensuring the reproducibility and accessibility
of our benchmark. Each dataset configuration, detailed below, presents unique challenges in text
structure, clinical terminology, and extraction complexity, thereby contributing to a comprehensive
evaluation of LLM capabilities.

4.1 Lung cancer staging from pathology reports

Motivation and task: Accurate extraction of tumor characteristics (pT, pN classifications) and
overall stage from pathology reports is fundamental for oncological decision-making [23]. This task
evaluates LLMs on extracting these cancer staging elements according to established guidelines.

Data source and cohort configuration: The data for this task are derived from Pan-Lung Cancer
(TCGA, Nat Genet 2016) [24]. Information and aggregated data can be explored via portals such as
the cBioPortal for Cancer Genomics (e.g., the NSCLC TCGA Broad 2016 study at https://www.
cbioportal.org/study/clinicalData?id=nsclc_tcga_broad_2016). For ClinBench, the input
comprises a specific cohort of 774 free-text pathology reports selected from this project. The list of
unique identifiers for these 774 reports (e.g., case or file IDs) is provided as ‘Lung_notes_id.csv‘ in
our publicly available ClinBench code repository under the ‘benchmark_data_definitions/tcga_lung/‘
directory. This allows users with appropriate access to the original TCGA data to extract the
precise cohort used in our benchmark. The framework ingests these report texts. The corresponding
annotation reference file, containing the expert-annotated ground truth for tumor characteristics (pT,
pN, overall stage, and histologic diagnosis), is based on prior work [1] and aligned with AJCC 7th
edition criteria [25].

Extraction target and ground Truth: ClinBench tasks LLMs with extracting four variables from
the pathology report texts: primary tumor classification (pT), regional lymph node involvement (pN),
overall tumor stage, and histologic diagnosis. The expert-annotated ground truth for these variables
is provided during the evaluation step.

Benchmark relevance: This dataset configuration presents LLMs with highly specialized oncological
language. It involves extracting various interrelated text components based on complex clinical
classification systems, thereby testing a detailed understanding.

4.2 Atrial fibrillation detection from ECG reports

Motivation and task: Rapid, accurate identification of atrial fibrillation (AF) from electrocardiogram
(ECG) interpretations supports timely clinical intervention [26]. This task evaluates an LLM’s ability
to extract AF presence from narrative ECG reports.

Data source and cohort configuration: This task utilizes electrocardiogram (ECG) interpretations
from the MIMIC-IV-ECG Database v1.0 [27], available on PhysioNet at https://physionet.
org/content/mimic-iv-ecg/1.0/. Access to MIMIC-IV-ECG requires PhysioNet credentialing,
which involves completing human subjects research training and signing a data use agreement. For
ClinBench, our collaborators selected a specific cohort of 700 ECG report texts from MIMIC-IV-ECG
v1.0. This selection was performed to include only definitive atrial fibrillation (AF) or non-AF cases;
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paced rhythm and uncertain interpretations were excluded to ensure unambiguous ground truths
for evaluation, as per the original dataset documentation [27]. The text from these selected reports
was used as input for our benchmark. The list of identifiers (e.g., ‘note_id‘s) for these 700 reports
is provided as ‘ECG_notes_id.csv‘ in our publicly available ClinBench code repository within the
‘benchmark_data_definitions/mimic_ecg_af/‘ directory. This allows users with appropriate access to
MIMIC-IV-ECG v1.0 to extract the precise cohort used in our benchmark. The ground-truth labels
for this binary classification (AF/NotAF) were established through manual domain-expert annotation,
as described in the original MIMIC-IV-ECG dataset documentation [27].

Extraction target and ground truth: ClinBench tasks LLMs with classifying each ECG report
as indicating "AF" or "NotAF". Ground-truth labels for this binary classification were established
through manual domain-expert annotation (per the original dataset documentation [27]) and are
aligned with the input texts.

Benchmark relevance: This dataset configuration tests LLMs on concise, semi-structured clinical
reports with specialized terminology, focusing on a binary classification extraction important for
cardiovascular assessment.

4.3 Social determinants of health (SDOH) factor extraction

Motivation and task: Identifying SDOH from unstructured clinical notes is important for understand-
ing patient context and addressing health disparities [28]. This task evaluates an LLM’s capability to
extract key SDOH factors related to employment and housing.

Data source and cohort configuration: This task utilizes narrative clinical notes (discharge
summaries) from the MIMIC-III Clinical Database (e.g., v1.4), a large, de-identified public-
access database hosted on PhysioNet (https://physionet.org/content/mimiciii/). Access
to MIMIC-III requires PhysioNet credentialing, which involves completing human-subjects re-
search training and signing a data-use agreement. The ground truth annotations are derived
from the MIMIC-SBDH dataset by Ahsan et al. (2021) [29]. This resource, available at
https://github.com/hibaahsan/MIMIC-SBDH, provides annotations for 7,025 discharge summary
notes from MIMIC-III. For ClinBench, we utilized a cohort of 1,405 unique discharge summaries
selected from this MIMIC-SBDH dataset. The list of ‘SUBJECT_ID‘ and ‘HADM_ID‘ pairs iden-
tifying these specific admissions is provided as ‘sdoh_subjects_id.csv‘ in our publicly available
ClinBench code repository within the ‘benchmark_data_definitions/mimic _sdoh/‘ directory. This
allows users with appropriate access to MIMIC-III and the MIMIC-SBDH annotation files to recreate
the cohort and ground truth used in our benchmark. The text from these selected discharge summaries
was used as input. We did not perform additional preprocessing on the note texts beyond their original
provision.

Extraction target and ground truth: ClinBench aims to extract two SDOH variables: (1) employ-
ment status (categorized as "Employed", "Unemployed", or "Unknown") and (2) housing conditions
(classified as "Housing", "Homeless", or "Unknown"). Ground truth for these categories, derived
from the original SDOH dataset annotations, is structured for direct comparison with LLM outputs.

Benchmark relevance: This task challenges LLMs with longer, narrative-rich clinical texts. It
requires extracting information that is often implicitly stated and documented by multiple providers,
reflecting the complexity of capturing socio-environmental factors from patient records.

5 LLMs evaluated

To evaluate ClinBench and establish comprehensive baselines, we selected 11 diverse large language
models (LLMs). These models were chosen to be representative of different architectures and
capabilities available during our study period (Q1 2025)1. Our selection strategy aimed for breadth,
including proprietary and established open-source models from major developers. This range includes
models with different parameter sizes and incorporates both base and instruction-tuned variants. The
resulting variety of evaluated models provides ClinBench with a solid way to test its multi-model

1The experimental period concluded in Q1 2025; the models selected were available options available at that
time.
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capabilities. Additionally, ClinBench is built to be flexible, making it easy to add new models as
LLMs evolve.

From Meta, we included LLaMA3.1-70b and its instruction-tuned variant LLaMA3-70b [30], known
for large context processing and task-specific optimizations. OpenAI models included the effi-
cient GPT-4o-mini [31], the multimodal GPT-4o (version 2024-05-16) [32], and the widely-used
GPT-3.5-turbo (version 1109) [33]. We also assessed the instruction-tuned Qwen2-72b from Al-
ibaba, with extensive language support [34], and 01.AI’s bilingual Yi-34b, which features a large con-
text window [35]. From Mistral AI, we evaluated the sparse mixture-of-experts Mixtral (instruct ver-
sion), offering a balance of performance and efficiency [36], and the fine-tuned Mistral-OpenOrca
(7B) [37]. Finally, from Google DeepMind, we included the Gemma-7b (instruct) and the smaller
Gemma-2b (instruct) [38], both designed for instruction-following and reasoning.

A summary table detailing key architectural features (e.g., parameter counts where available), specific
context lengths, and versions for all evaluated LLMs, along with further notes on the selection
rationale, is provided in Supplementary Table 3.

6 Prompt strategy

Effective information extraction by LLMs from diverse clinical texts often requires task-specific
prompt engineering. ClinBench achieves standardization by (1) employing a consistent structural
template for all prompts, (2) managing these prompts in external, version-controlled YAML configu-
ration files, and (3) ensuring its LLM agent applies the defined prompts uniformly across all models
and tasks. This overall strategy ensures version control, facilitates reproducibility, and centralizes
prompt design. This prompt design prioritizes clarity for the LLM, uniform task presentation across
different models, and the generation of standardized, machine-readable JSON outputs required for
automated evaluation.

While the specific content of prompts—such as instructions, domain knowledge snippets, and target
variables—is created for each of the three clinical domains (Social Determinants of Health, Atrial
Fibrillation detection, and Lung Cancer staging) evaluated in this study, a standard structural template
guides their creation. This template typically includes components for an instructional preamble,
task-specific context, a detailed JSON output schema, and illustrative few-shot examples, which are
beneficial for complex tasks. This combination of a standardized general structure with controlled,
task-specific configurations allows ClinBench to effectively and fairly evaluate LLMs across varied
clinical scenarios. Comprehensive details of the general prompt architecture, its core components
(including system_prompt, task_instruction, domain_knowledge, output_json_schema, and
few_shot_examples), and illustrative dataset-specific adaptations from the YAML files are provided
in Appendix A.2.

7 Evaluation methodology

ClinBench employs a systematic process for the comprehensive and reproducible evaluation of Large
Language Models (LLMs) on structured clinical information extraction tasks. This process utilizes
established metrics and focuses on ensuring fair comparisons against well-defined ground truth for
each benchmark task configuration (detailed in Appendix A.1). A dedicated software module within
ClinBench conducts evaluations independently per task, managing consistent metric calculation for
reproducibility.

For the Atrial Fibrillation (AF) detection task, labels are derived from a curated cohort of the MIMIC-
IV-ECG dataset [27], where original cardiologist interpretations serve as ground truth. For the Social
Determinants of Health (SDOH) task, ground truth for employment and housing status is based on
annotations provided with a selected cohort of MIMIC-IV clinical notes and processed by Ahsan
et al. [29]. For the Lung Cancer staging task, expert-annotated ground truth for pT, pN, overall
stage, and histologic diagnosis is taken from reference annotations established in prior work by
Huang et al. (2024) [1], which utilized TCGA Pan-Lung Cancer project data [24, 39] and aligned
with AJCC 7th edition criteria [25]. Full details on these datasets are in Appendix A.1. To enable
fair comparison, both LLM-generated structured outputs and the corresponding ground truth data
undergo automated standardization in ClinBench’s evaluation module. This step applies predefined
transformation functions (e.g., mapping lung cancer stage mentions to specific AJCC categories) to
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mitigate inconsistencies caused by minor textual variations, ensuring that metrics reflect core LLM
extraction capabilities.

Model performance for each task configuration was assessed using standard metrics, applying
weighted averaging for multi-variable extractions (e.g., in Lung Cancer staging and Social Determi-
nants of Health). The F1 score was the primary metric, balancing precision and recall for overall
extraction accuracy. Sensitivity (Recall) was emphasized for its clinical importance in capturing
all relevant positive instances (e.g., true AF cases). Precision measured the reliability of positive
extractions, while Specificity assessed the correct identification of negative instances. Overall Accu-
racy served as a secondary measure, given potential class imbalances in clinical data. Runtime (total
execution time per model/task) was evaluated to assess computational efficiency, an important factor
for practical clinical application.

8 Experimental setup

Computational environment: All ClinBench evaluations for this study were performed on a system
equipped with an NVIDIA A100-SXM4 Graphics Processing Unit (GPU) with 80GB of memory.
Driver Version: 550.144.03, CUDA Version: 12.4.

Models instantiation and parameters: ClinBench managed interactions with LLMs via its LLM-
powered agent (detailed in Section 3). For this study, locally hosted open-source models were
instantiated using Ollama. Proprietary models (e.g., GPT series) were accessed via their respective
APIs, utilizing Azure Services for OpenAI models to ensure secure communication. We applied stan-
dardized context length considerations (e.g., 8K tokens for local models). Crucially, the temperature
inference parameter for all LLMs was set to 0. This setting minimizes randomness in the output,
aiming for deterministic and therefore reproducible results from the models for each extraction task.
Other inference parameters (e.g., top_p) were kept to model-specific defaults suitable for factual
generation.

Runtime measurement: Computational efficiency was assessed by the total runtime for each LLM
to process all instances per dataset configuration, excluding initial model loading times for fair
throughput comparison. Runtimes are reported in minutes or hours.

9 Results

The ClinBench framework, designed to standardize prompt design, input data handling, and structured
output validation, was employed to conduct reproducible and fair comparisons of 11 LLMs. This
section details model performance across three diverse clinical information extraction tasks derived
from the Lung Cancer (TCGA), Atrial Fibrillation (MIMIC-IV-ECG), and Social Determinants of
Health (MIMIC) datasets. We primarily report F1 scores for brevity in the main text, alongside key
observations on sensitivity and runtime. Comprehensive performance metrics, including precision,
specificity, and accuracy for all extracted variables and sub-tasks, are available in Supplementary
Tables S4-S19 and Figures S1-S7.

9.1 Lung cancer staging from pathology reports

In extracting information from lung cancer pathology reports—targeting primary tumor (pT) and
lymph node (pN) classifications, overall tumor stage, and histologic diagnosis—OpenAI’s GPT-4o
and GPT-4o-mini demonstrated leading overall performance with F1 scores of 0.92. These models
also showed high precision (0.92-0.93) and specificity (0.97), along with efficient inference times
(approximately 24-29 minutes on the dataset). Meta’s LLaMA3-70b and LLaMA3.1-70b achieved
comparable overall F1 scores (0.91) but required substantially longer runtimes (approximately 83-106
minutes). For specific sub-tasks, LLaMA3.1-70b excelled in pT (F1 0.91) and histologic diagnosis
(F1 0.99) extraction, while OpenAI models generally led in pN and overall tumor stage extraction
(F1 scores 0.91-0.94 and 0.86-0.87, respectively). Other models, such as Mixtral (Mixtral: Instruct)
and Gemma-2b, exhibited lower overall accuracy and sensitivity on this complex task. Detailed
performance metrics are presented in Supplementary Tables S4-S8 and Figures S1-S4.
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9.2 Atrial fibrillation detection from ECG reports

For identifying atrial fibrillation (AF) versus non-AF cases from ECG reports, GPT-3.5-turbo and
LLaMA3.1-70b showed strong overall performance, both achieving 95% accuracy with F1 scores
near 0.79. Notably, GPT-3.5-turbo offered higher precision (0.97) and good sensitivity (0.71)
with an efficient runtime (5.9 minutes). GPT-4o-mini, while slightly lower in sensitivity (0.68),
processed the dataset faster (4.3 minutes) and maintained high precision (0.97) and specificity (1.00).
Some models, including Qwen2-72b and LLaMA3-70b, achieved perfect specificity but with reduced
sensitivity (0.57). These results suggest that for AF detection, specific models can provide a favorable
balance of accuracy, precision, and runtime. Comprehensive metrics are available in Supplementary
Tables S9-S11 and Figure S5.

9.3 Social determinants of health (SDOH) extraction

Extracting SDOH information involved identifying employment status (Employed, Unemployed,
Unknown) and housing status (Housing, Homeless, Unknown) from clinical notes. For employment
status, OpenAI’s GPT-4o, GPT-4o-mini, and Meta’s LLaMA3.1-70b were top performers, each
reaching 91% accuracy. GPT-4o-mini was most efficient (12.6 minutes), maintaining high sensitivity
(0.87) and the highest specificity (0.94) for this sub-task. For housing status, Qwen2-72b achieved the
highest F1 score (0.82) with 92% accuracy. GPT-4o-mini and LLaMA3-70b also performed well (93%
accuracy, F1 0.76), with GPT-4o-mini again being notably faster. These findings indicate variability
in model performance across different SDOH categories, with ClinBench highlighting models that
excel in precision versus those that offer a better balance of accuracy and speed. Detailed metrics for
all SDOH sub-categories are provided in Supplementary Tables S12-S19 and Figures S6-S7.

Figure 2: Comprehensive overview of LLM performance and efficiency on ClinBench tasks. (a)
Heatmap of F1 Scores: Comparative F1 scores of 11 LLMs across four clinical extraction tasks
(Pan-Lung Cancer, MIMIC-IV-ECG AF detection, SDOH-Employment, SDOH-Housing). The
rightmost highlighted column shows the mean F1 score for each model averaged over these four
tasks. Greener shades indicate higher F1 scores (values closer to 1.0). (b) Performance-Efficiency
Trade-off: Scatter plot of mean F1 score (Y-axis, averaged over the four tasks) versus mean runtime
in minutes (X-axis, averaged over the four tasks) for each LLM. Models positioned towards the
top-left offer a better balance between high accuracy and lower computational cost.

9.4 Cross-task performance and efficiency analysis

The ClinBench framework facilitated a comprehensive comparison of LLM capabilities across three
distinct clinical domains, encompassing four specific extraction tasks: Lung Cancer staging, MIMIC-
IV-ECG AF detection, SDOH-Employment, and SDOH-Housing. An overview of F1 scores for each
model on each task, along with their calculated mean F1 score (averaged across these four tasks), is
presented in Figure 2a. This reveals that GPT-3.5-turbo (Mean F1: 0.83), LLaMA3.1-70b (Mean
F1: 0.82), and GPT-4o-mini (Mean F1: 0.81) achieved the highest average F1 scores. Other models,
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including GPT-4o (Mean F1: 0.78), Qwen2-72b (Mean F1: 0.78), and LLaMA3-70b (Mean F1: 0.77),
also demonstrated strong overall performance across the combined tasks.

A critical aspect for clinical deployment is the balance between performance and computational
cost. Figure 2b plots the mean F1 score against the mean runtime (in minutes, averaged across
the four tasks) for each LLM, illustrating the performance-efficiency trade-offs. Several models
achieved a favorable balance in the desirable top-left quadrant (high F1, low runtime) of the plot:
GPT-3.5-turbo (Mean F1: 0.83, Mean Runtime: 16.8 min), GPT-4o-mini (Mean F1: 0.81, Mean
Runtime: 13.4 min), and GPT-4o (Mean F1: 0.78, Mean Runtime: 18.5 min). In contrast, while large
open-source models like LLaMA3.1-70b (Mean F1: 0.82, Mean Runtime: 42.7 min) and LLaMA3-70b
(Mean F1: 0.77, Mean Runtime: 37.0 min) achieved high mean F1 scores, their mean inference
times were substantially longer. Similarly, Qwen2-72b (Mean F1: 0.78, Mean Runtime: 33.0 min)
and Yi-34b (Mean F1: 0.75, Mean Runtime: 40.3 min) showed good F1 performance but required
more computation time. Notably, Gemma-7b’s mean runtime (211.4 min) was significantly higher,
primarily influenced by its extended processing time on one specific task, despite a moderate mean
F1 score (0.61). To provide a more complete efficiency analysis, we calculated the token usage and
associated API costs for all OpenAI models (details in Supplementary Table S18). This analysis
shows a clear trade-off between cost and performance. For instance, on the complex Lung Cancer
task, GPT-4o costs $9.66 to process the dataset, while GPT-4o-mini, which achieves a similar overall
F1 score on that task, costs only $0.30. This demonstrates that while larger models may offer marginal
performance gains, the financial implications can be substantial, a critical consideration for real-world
clinical deployment.

10 Discussion

We introduced ClinBench, a multi-domain benchmarking framework. We demonstrated its utility
by evaluating 11 Large Language Models (LLMs) on three distinct clinical information extraction
tasks: lung cancer staging, atrial fibrillation (AF) detection, and Social Determinants of Health
(SDOH) extraction (Figure 1). ClinBench advances standardized evaluation in clinical NLP by
establishing consistent input data requirements, employing YAML-configured prompt engineering,
and enforcing schema-validated structured outputs. Unlike prior studies, which are often limited to
narrower scopes or lack methodological transparency, ClinBench offers a scalable and generalizable
approach. This approach enables robust, fair cross-domain LLM assessment, accommodating diverse
model architectures and their computational demands.

Our evaluations (Figures 2a and 2b) showed clear performance-efficiency trade-offs. While leading
proprietary and large open-source LLMs achieved high F1 scores, open-source models often required
greater runtimes. This highlights the importance of multidimensional evaluation; for example,
comparing mean F1 scores alone might suggest that LLaMA3.1-70b outperforms GPT-4o, whereas
performance-efficiency plots and token-cost analysis reveal that GPT-4o offers more favorable trade-
offs for real-world deployment. However, open-source models often require greater runtimes. For
instance, GPT-4o showed strong, relatively efficient performance in lung cancer and SDOH extraction,
while GPT-3.5-turbo provided an effective balance for AF detection. ClinBench allows for a more
refined selection of models, emphasizing that optimal choices depend on balancing performance
with computational resources and specific clinical application needs. The framework’s ability to
differentiate model strengths across varied healthcare contexts highlights the value of its multi-domain,
multi-model benchmarking capability. The consistent application of a standardized prompting strategy
(detailed in Appendix A.2) was fundamental to these fair comparisons and suggests that while task-
specific prompt content is necessary, a structured framework for its management and application
significantly enhances benchmarking rigor. Our ablation studies further confirmed that this structured
YAML approach yields substantial performance gains over unstructured prompts (Appendix A.5).
The decision to use a static, YAML-based knowledge injection rather than a dynamic Retrieval-
Augmented Generation (RAG) approach was intentional for benchmarking purposes. The static
approach provides a fully transparent and controlled environment to isolate and reliably measure
an LLM’s reasoning performance on a fixed set of rules, removing the retriever’s performance as
a confounding variable. While RAG is powerful for production systems, our method ensures that
benchmark scores are a more precise measure of the LLM’s capabilities alone.
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11 Conclusion and future work

In conclusion, ClinBench offers a valuable open-source tool and a reproducible methodology for
benchmarking LLMs in clinical NLP. Through its emphasis on transparent and standardized evaluation
across multiple domains, ClinBench supports data-centric AI research, informs practical model
selection by highlighting performance-efficiency trade-offs, and contributes to the responsible and
effective integration of LLMs into healthcare.

Future work should aim to extend ClinBench by incorporating multi-institutional datasets to enhance
generalizability and further test model robustness. Investigating advanced LLM strategies, such as
Retrieval-Augmented Generation (RAG) [40] and parameter-efficient fine-tuning techniques [41, 42],
represents a valuable direction. Future work could also include ablation studies on prompt design
to empirically quantify the impact of standardized prompt engineering, alongside case studies on
terminological ambiguities to offer insights into failure modes. Additionally, conducting real-time
expert evaluations and advancing methods for improved LLM interpretability [43, 44] are important
next steps for the field.

12 Limitations

This study has several limitations. First, the evaluated LLMs were benchmarked without task-specific
fine-tuning. Our study focused on the out-of-the-box capabilities of general-purpose models. A
direct comparison with models specifically fine-tuned on clinical data, providing an upper bound
on performance, represents a valuable direction for future work. Similarly, including a random
baseline to establish a lower bound would provide crucial context for interpreting performance scores.
Second, reported runtime metrics are inherently hardware-dependent and may vary across different
computational environments, though our inclusion of token-based cost analysis helps mitigate this.
Third, the datasets, although derived from established public sources, represent specific subsets
and may not capture the full spectrum of real-world clinical documentation. Fourth, this work did
not include prospective validation of LLM performance within active clinical workflows, meaning
practical integration challenges remain to be assessed. Finally, data governance and patient privacy
regulations (e.g., HIPAA [45], GDPR [46]) impose ongoing operational considerations for LLM
deployment in healthcare, particularly for models requiring off-site data processing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately outline the paper’s main contributions.
These include the introduction of ClinBench, a standardized open-source framework for
evaluating LLMs in clinical information extraction; the provision of structured multi-domain
benchmark tasks using public datasets; an extensive quantitative analysis of 11 LLMs
highlighting performance-efficiency trade-offs; and the open availability of the framework
and associated resources. The scope is consistently focused on clinical information extraction
using LLMs.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated "Limitations" section where we discuss several
aspects. These include the lack of task-specific fine-tuning for the evaluated LLMs, the
hardware-dependent nature of runtime metrics, the scope of the datasets used, the absence of
prospective validation in clinical workflows, and considerations regarding data governance
and privacy.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: In this paper, we introduce an empirical benchmarking framework and present
experimental results. We do not present theoretical claims, theorems, or mathematical proofs
as part of our primary contributions.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of the ClinBench framework, the configu-
rations of publicly available datasets used for benchmarking, the specific LLM versions
and key inference parameters (such as setting temperature to 0 for reproducibility), and the
evaluation methodology. Furthermore, we state that the framework, dataset configurations,
prompt details, and evaluation code are publicly accessible.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We state in the paper that ClinBench is an open-source framework and
that its components, including the evaluation code, dataset configurations derived from
public sources, and prompt details, are publicly accessible (GitHub). Detailed information
to support reproducibility is provided in the main paper and further elaborated in the
supplementary material.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: We specify the configurations of the evaluation datasets derived from public
sources, the versions of the 11 LLMs used, and key inference parameters such as setting
temperature to 0 for all models to ensure reproducibility and using default settings for other
parameters like top_p. We also detail our prompting strategy using YAML configurations
and the evaluation metrics. Further details on datasets, prompts, and LLM specifics are
provided in the supplementary material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report performance metrics as point estimates derived from our determinis-
tic experimental runs (e.g., temperature set to 0). We do not include error bars, confidence
intervals, or formal statistical significance tests comparing the performance of different
models in this work.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the computational environment used for conducting the experi-
ments, including the type of GPU (NVIDIA A100-SXM4), its memory (80GB), and relevant
driver/CUDA versions. Execution times (runtimes) for each LLM on each benchmark task
are also reported.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and conducted our research
aiming to conform to its principles. Our work utilizes publicly available, de-identified
clinical datasets (TCGA, MIMIC-IV-ECG, MIMIC notes), respecting their original data use
agreements and focusing on privacy preservation. We acknowledge limitations regarding
dataset representativeness in Section 12. The ClinBench framework is open-source, and we
commit to making associated artifacts (code, dataset configurations, prompt details) publicly
accessible to ensure transparency, enable reproducibility, and allow for external scrutiny,
all of which are crucial for responsible AI development in healthcare as emphasized by the
Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We highlight positive societal impacts, such as ClinBench facilitating standard-
ized evaluation for the responsible integration of Large Language Models into healthcare.
Potential negative societal impacts are also considered, for instance, through our discussion
of patient privacy and data governance challenges related to LLM deployment in the limita-
tions section. The framework itself, by promoting rigorous and transparent benchmarking,
aims to contribute to mitigating potential risks associated with LLM adoption in clinical
settings.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The primary assets we release are the ClinBench open-source software frame-
work and configurations for using publicly available, de-identified clinical datasets. We
are not releasing new pre-trained language models or raw sensitive datasets that inherently
carry a high risk for misuse requiring specific release safeguards from our end. The Large
Language Models evaluated within ClinBench are existing models, and their responsible use
and release safeguards are primarily addressed by their original creators. Our framework
aims to promote transparent and rigorous evaluation of these existing models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the original creators for all existing assets used, including
the datasets (TCGA, MIMIC-IV-ECG, MIMIC notes) and the evaluated Large Language
Models, providing version information where applicable. Explicit details regarding the
licenses (e.g., PhysioNet license for MIMIC datasets, Apache 2.0 or specific community
licenses for the LLMs) and terms of use for these third-party assets are provided in our
supplementary material, specifically in the appendices detailing the datasets and LLMs. We
have ensured that all terms of use are respected in our research.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new assets including the ClinBench open-source framework,
specific benchmark task configurations derived from public datasets, YAML-based prompt
templates, and JSON output schemas. These assets are documented within the main paper
(describing the framework architecture, dataset creation, and prompting strategy) and further
detailed in the supplementary material. The framework, evaluation code, and all associated
configurations are stated to be publicly available, where they will be accompanied by
standard documentation such as README files, usage instructions, and an open-source
license.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research involves the use of existing, publicly available, and de-identified
clinical datasets (TCGA, MIMIC-IV-ECG, MIMIC notes) which feature pre-existing anno-
tations from prior work. We did not conduct new experiments involving crowdsourcing or
direct interaction with human subjects for data collection or annotation as part of the work
presented in this paper.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research utilizes existing, publicly available, and de-identified clinical
datasets (TCGA, MIMIC-IV-ECG, MIMIC notes) for which ethical approvals and patient
consent were addressed by the original data creators. We did not conduct new research

16



involving direct interaction with human subjects or collect new identifiable private informa-
tion for this study; therefore, obtaining new IRB approval specifically for this secondary
analysis work was not applicable.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The core methodology of this research is the ClinBench framework, which
is explicitly designed for the standardized evaluation of Large Language Models (LLMs)
on clinical information extraction tasks. Our paper extensively describes the setup, specific
versions, prompting strategies (using YAML configurations), interaction mechanisms (local
and API-based), and evaluation procedures for the 11 distinct LLMs benchmarked. The use
and detailed characterization of these LLMs are fundamental to the research contributions.
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A Supplementary Material

A.1 Benchmark Dataset Configurations

This subsection details the specific configurations of publicly available datasets used in the ClinBench
study. For each, we describe the original data source, the methodology used to establish the particular
cohort and its ground truth annotations for ClinBench, and the key characteristics of the resulting
data input. It is important to note that for this ClinBench study, we utilized existing annotations from
these public datasets or from prior curated work; ClinBench itself did not involve de novo manual
annotation of the raw clinical texts for establishing the primary ground truth.

A.1.1 Lung Cancer Staging Dataset Configuration (TCGA-Derived)

Data Source and Provenance. This dataset configuration is derived from The Cancer Genome Atlas
(TCGA) Pan-Lung Cancer project [24, 39], which provides extensive data on lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC). The specific set of 774 free-text pathology
reports and the corresponding expert-curated structured ground truth data were established and
detailed in prior work by Huang et al. (2024) [1]. ClinBench uses this previously defined dataset
configuration directly.

Input Data Characteristics for ClinBench. The input for ClinBench consists of the de-identified,
free-text content of the 774 pathology reports, each linked to a unique patient identifier (‘pid‘). The
methodology for sourcing these reports from TCGA and their initial preparation is described in Huang
et al. (2024) [1]. The ground truth is provided in a separate structured reference file, containing
expert-annotated values for primary tumor classification (pT), regional lymph node involvement (pN),
overall pathologic tumor stage, and histologic diagnosis, all aligned with AJCC 7th edition criteria
[25].

Relevance as a Benchmark Dataset. This dataset provides highly specialized oncological termi-
nology within complex narrative structures. Its value lies in testing an LLM’s ability to comprehend
and correctly categorize multiple, inter-related staging components based on established clinical
guidelines from a well-characterized cancer research cohort.

A.1.2 Atrial Fibrillation (AF) Detection Dataset Configuration (MIMIC-IV-ECG)

Data Source and Provenance. This study included patients from the Medical Information Mart for
Intensive Care IV (MIMIC-IV) ECG database2. MIMIC-IV is a publicly available clinical database
containing electronic health records from critically ill patients admitted to the emergency department
(ED) of the Beth Israel Deaconess Medical Center (BIDMC) in Boston, MA, between 2008 to 201934.
MIMIC-IV-ECG contains a subset of patients from MIMIC-IV with ECG recordings acquired in the
ED, ICU, and outpatient centers at BIDMC2. The ECG recordings are 10-second, 12-lead signals
sampled at 500 Hz, with corresponding cardiologist reports obtained from the MIMIC-IV-Notes
database5.

Cohort Curation and Input Data Characteristics for ClinBench. For the ClinBench AF detec-
tion task, a specific cohort of 700 ECG report texts was utilized. This cohort was derived from the
larger MIMIC-IV-ECG dataset by selecting reports based on a review of the original cardiologist
interpretations. The selection criteria focused on identifying reports where the presence or absence
of Atrial Fibrillation (AF), or Atrial Flutter (AFL, considered equivalent to AF for this task), was
definitively stated by the interpreting cardiologist. Reports containing ambiguous findings or un-
certain mentions regarding AF/AFL were excluded from this specific benchmark cohort to ensure

2Gow B, Pollard T, Nathanson LA, et al. Mimic-iv-ecg-diagnostic electrocardiogram matched subset. Type:
dataset. 2023.

3Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a freely accessible electronic health record dataset.
Sci Data. Jan 3 2023;10(1):1. doi:10.1038/s41597-022-01899-x

4Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a
new research resource for complex physiologic signals. circulation. 2000;101(23):e215-e220

5Johnson A, Pollard T, Horng S, Celi L, Mark R. MIMIC-IV-Note: Deidentified free-text clinical notes
(version 2.2). PhysioNet. 2023
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an unambiguous ground truth for binary classification. The resulting input data for ClinBench is a
structured CSV file. Each row contains a unique report identifier (e.g., ‘note_id‘), the full narrative
report text (e.g., ‘text‘), and a binary ground truth label (‘AF_gt‘: "AF" or "NotAF") determined by
this selection and filtering process based on the original interpretations.

Relevance as a Benchmark Dataset. This configuration provides concise, semi-structured clinical
reports rich in specialized cardiovascular terminology. The curation for definitive AF/Non-AF cases
offers a clear basis for evaluating LLM accuracy on discerning a common and clinically important
finding.

A.1.3 Social Determinants of Health (SDOH) Dataset Configuration

Data Source and Provenance. This dataset configuration uses narrative clinical notes (primarily
discharge summaries) derived from the MIMIC-IV database. The specific cohort of 1,405 records
contains existing SDoH annotations and labels (covering categories like economics, environment)
made by Ahsan et al. [29].

Cohort Characteristics and Input Data for ClinBench. The input data for ClinBench is a struc-
tured CSV file containing these 1,405 clinical narratives (under a ‘TEXT‘ column) alongside patient
and admission identifiers (‘SUBJECT_ID‘, ‘HADM_ID‘, ‘ROW_ID‘). This CSV also includes the
source annotations (e.g., ‘economics_True‘, ‘environment_False‘). For its SDOH tasks, ClinBench
focuses on extracting two primary variables with predefined categories: (1) Employment Status
(categories: "Employed", "Unemployed", "Unknown") and (2) Housing Conditions (categories:
"Housing", "Homeless", "Unknown"). The ground truth for these specific ClinBench extraction
targets is directly established using the existing, more granular annotations present in the input CSV
file. For instance, the "Employment Status" target for ClinBench aligns with relevant "economics"-
related annotations in the source CSV, and "Housing Conditions" aligns with pertinent "environment"
and/or other relevant SDoH factor annotations indicating housing stability. The precise way these
existing source annotations correspond to and provide the ground truth for ClinBench’s defined target
categories is detailed in our publicly available resources (e.g., code repository documentation or
data statements). This approach leverages the rich, existing annotations to provide clear, categorical
ground truth for ClinBench’s specific extraction tasks without requiring new manual annotation of
the clinical texts for these specific derived labels.

Relevance as a Benchmark Dataset. This SDOH configuration presents challenges related to
extracting complex information from lengthy, narrative-rich texts where the target factors are often
implicitly stated, reflecting real-world complexities in understanding socio-environmental patient
information.
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A.2 Detailed Prompt Engineering Strategy in ClinBench

This section provides a detailed explanation of the prompt engineering strategy employed by the
ClinBench framework. The primary goal of ClinBench’s prompting methodology is to ensure
standardized, reproducible, and effective interaction with diverse Large Language Models (LLMs)
for complex clinical information extraction tasks.

The configurations detailed below for the Lung Cancer, Atrial Fibrillation (AF) detection, and Social
Determinants of Health (SDOH) tasks serve as illustrative examples of our approach. The underlying
YAML-based structure is designed for extensibility, allowing researchers to readily adapt ClinBench
for new clinical datasets or novel extraction tasks by following the same structured procedure. This
involves creating a new YAML configuration file that defines the key components of a prompt. These
main components include:

• system_prompt: Sets the overall context, LLM persona, and high-level directives.

• task_instruction: Provides specific instructions for the extraction task (often integrated
within the system_prompt for coherence).

• domain_knowledge: Supplies relevant contextual information, definitions, or clinical guide-
lines (e.g., AJCC criteria, diagnostic indicators) crucial for accurate interpretation by the
LLM. This is often embedded within the system_prompt.

• output_json_schema: Explicitly defines the desired JSON structure for the LLM’s output,
including field names, data types, and permissible values (e.g., enums). This is important
for enabling automated downstream validation and analysis.

• few_shot_examples: (Optional but recommended for complex tasks) Provides illustrative
input-output pairs to guide the LLM’s response generation and formatting.

By populating these standardized components within a new YAML file, users can configure Clin-
Bench to benchmark any LLM performance on additional clinical information extraction challenges,
leveraging the framework’s reproducible evaluation pipeline. The complete YAML files for the tasks
benchmarked in this study are available en the following sections and in our public code repository.

Lung Cancer Staging from Pathology Reports: The multi-variable lung cancer staging task
requires extracting primary tumor classification (pT), regional lymph node involvement (pN), overall
tumor stage, and histologic diagnosis. An illustrative YAML configuration for this task is provided
below (see YAML Configuration box). The system_prompt within this configuration is extensively
detailed: it assigns the LLM the role of a pathologist’s assistant, mandates strict adherence to
JSON-only output, and provides guidance on inferring tumor stage based on pT and pN categories.
Crucially, this system_prompt embeds substantial domain_knowledge, including key considerations
for T-category assessment and explicit AJCC 7th edition criteria for pT, pN, and overall staging
groups [25]. The output_format section of the YAML then precisely defines the expected structure
and value constraints for each of the extracted variables (e.g., ‘Size‘, ‘tumor_size_unit‘, ‘pT‘,
‘pN‘, ‘tumor_stage‘, ‘histologic_diagnosis‘, and ‘certainty_degree‘), guiding the LLM to produce a
standardized JSON output.

Lung Cancer Prompt – YAML Configuration

configurations:
lungcancer:

system_prompt: |
You are an AI Assistant that follows instructions extremely well. You work as a

pathologist assistant helping to extract and infer information from Pathology
Reports using the AJCC 7th edition criteria for lung cancer staging.

Your most important work is tofollow these two very important rules:
1) You must respond exclusively in a JSON format with the required data.
2) Do not include any explanatory text outside of the JSON structure.
3) Remember that you only need to provide the requested information in JSON format.

Please estimate the tumor stage category based on your estimated pT category and pN
category using AJCC 7th edition criteria. For example , if pT is estimated as
T2a and pN as N0,
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without information showing distant metastasis , then by AJCC 7th edition criteria ,
the tumor stage is Stage I B . Please ensure to make valid inferences for
attribute estimation based on evidence.

Key points to consider:
- Identify the presence of multiple tumor nodules , their locations , and their sizes.
- Determine if the tumors involve specific regions such as the pleura , mediastinum ,

or hilar region.
- Recognize that multiple tumors in different lobes or invasion of key structures

classify as T4.
- Account for regional lymph node involvement when determining the pN category.

AJCC 7th Edition Criteria for Lung Cancer Staging:
pT:
- T0: No evidence of primary tumor.
- Tis: Carcinoma in situ.
- T1: Tumor 3 cm in greatest dimension , surrounded by lung or visceral pleura ,

without bronchoscopic evidence of invasion more proximal than the lobar
bronchus.

- T1a: Tumor 2 cm in greatest dimension.
- T1b: Tumor >2 cm but 3 cm in greatest dimension.
- T2: Tumor >3 cm but 7 cm or tumor with any of the following features: involves

main bronchus 2 cm distal to carina , invades visceral pleura , associated
with atelectasis or

obstructive pneumonitis that extends to the hilar region but does not involve the
entire lung.

- T2a: Tumor >3 cm but 5 cm.
- T2b: Tumor >5 cm but 7 cm.
- T3: Tumor >7 cm or one that directly invades any of the following: chest wall ,

diaphragm , phrenic nerve , mediastinal pleura , parietal pericardium; or tumor
in the same lobe as a separate nodule.

- T4: Tumor of any size that invades any of the following: mediastinum , heart ,
great vessels , trachea , recurrent laryngeal nerve , esophagus , vertebral body ,
carina; or separate tumor nodules in a different ipsilateral lobe.

- TX: Primary tumor cannot be assessed or tumor proven by the presence of malignant
cells in sputum or bronchial washings but not visualized by imaging or
bronchoscopy.

pN:
- N0: No regional lymph node metastasis.
- N1: Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes ,

and intrapulmonary nodes , including involvement by direct extension.
- N2: Metastasis in ipsilateral mediastinal and/or subcarinal lymph nodes.
- N3: Metastasis in contralateral mediastinal , contralateral hilar , ipsilateral or

contralateral scalene , or supraclavicular lymph nodes.
- NX: Regional lymph nodes cannot be assessed.

AJCC 7th Edition Staging Groups for Lung Cancer.
Possible combinations for each stage are as follows:
- Stage 0: [Tis , N0]
- Stage IA: [T1a , N0] or [T1b , N0]
- Stage IB: [T2a , N0]
- Stage IIA: [T2b , N0] or [T1a , N1] or [T1b , N1] or [T2a , N1]
- Stage IIB: [T2b , N1] or [T3, N0]
- Stage IIIA: [T1a , N2] or [T1b , N2] or [T2a , N2] or [T2b , N2] or [T3, N1] or [T3,

N2] or [T4, N0] or [T4, N1]
- Stage IIIB: [T4, N2] or [Any T, N3]
- Stage IV: [Any T, Any N]

output_format:
Size: ’Extract the greatest dimension of tumor in Centimeters (cm) or "Unknown ". If

the value is in mm convert it to cm. Do not include the unit.’
tumor_size_unit: Extract the greatest dimension size of the tumor.’
pT: ’Only one value: "T0", "Tis", "T1", "T1a", "T1b", "T2", "T2a", "T2b", "T3",

"T4", "TX", "Unknown".’
pN: ’Only one value: "N0", "N1", "N2", "N3", "NX", "Unknown".’
tumor_stage: ’Only one value: "Stage 0", "Stage I", "Stage IA", "Stage IB", "Stage

II", "Stage IIA", "Stage IIB", "Stage III", "Stage IIIA", "Stage IIIB", "Stage
IV", "Unknown"’

histologic_diagnosis: ’Only one value: "Lung Adenocarcinoma", "Lung Squamous Cell
Carcinoma", "Lung Adenosquamous Carcinoma", "Other", "Unknown"’

certainty_degree: ’The certainty degree of the attribute estimation. It should be a
float value between 0.00 and 1.00.’

Atrial Fibrillation (AF) Detection from ECG Reports: For the AF detection task, prompts
were designed to instruct the LLM to classify ECG report interpretations as indicating either "AF"
or "Non-AF". The YAML configuration for this task, exemplified in the "ECG Prompt – YAML
Configuration" box below, features a comprehensive system_prompt. This system_prompt clearly
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defines the LLM’s role as a medical text analysis assistant and specifies the core task: to determine if
a patient was diagnosed with AF, crucially treating any mention of Atrial Flutter (AFL) as equivalent
to AF. A significant portion of the system_prompt is dedicated to an embedded "Knowledge Base".
This knowledge base provides the LLM with contextual information, including: definitions and
characteristics of AF and AFL; common symptoms; typical ECG findings (e.g., irregular R-R intervals
for AF, sawtooth patterns for AFL); other diagnostic tests; and relevant risk factors. Furthermore,
"Special Instructions" within the prompt guide the LLM on identifying keywords (e.g., "Atrial
Fibrillation", "AFL") and specific clinical indicators from the report text. The output_format
section in the YAML explicitly defines the single target field, diagnosis, and its expected categorical
string values: "AF" or "NotAF", thereby guiding the LLM to produce a standardized JSON output.

ECG Prompt – YAML Configuration

configurations:
ecg:

system_prompt: |
You are a medical text analysis assistant that follows instructions extremely well.
Your task is to determine if a clinical report mentions that a patient was

diagnosed with Atrial Fibrillation (AF).
For the purposes of this task , consider any mention of Atrial Flutter (AFL) as

equivalent to Atrial Fibrillation.
You should treat both AF and AFL as the same diagnosis.

In order to extract information from a report , you need to understand the concepts
in the following knowledge base to be used as a reference along with your own
knowledge.

Knowledge Base

Atrial Fibrillation (AF) and Atrial Flutter (AFL) are types of arrhythmias
characterized by abnormal heart rhythms. Both conditions lead to irregular
heartbeats , but they are treated as the same for this analysis.

Characteristics of AF and AFL:
- AF: An irregular and often rapid heart rate where the upper chambers (atria) beat

chaotically and out of sync with the lower chambers (ventricles).
- AFL: A type of arrhythmia where the atria beat very fast but at a regular rate ,

leading to a fluttering rhythm.

Common Symptoms:
- Palpitations (sensations of a racing , uncomfortable , irregular heartbeat or a

flip -flopping in the chest)
- Weakness
- Fatigue
- Lightheadedness or dizziness
- Shortness of breath
- Chest pain or discomfort

Electrocardiogram (ECG/EKG):
- AF: Shows irregular R-R intervals with no distinct P waves.
- AFL: Shows a characteristic sawtooth pattern of atrial flutter waves.
- Holter Monitor/Event Recorder: Used to detect intermittent episodes of AF or AFL.
- Echocardiogram: May reveal structural heart issues or blood clots.
- Electrophysiological Study: Maps the heart ’s electrical activity and pinpoints

the origin of the arrhythmia (primarily used for AFL).

Risk Factors:
- Age (more common in older adults)
- High blood pressure (hypertension)
- Heart disease (such as heart valve problems , previous heart attacks , or

congestive heart failure)
- Thyroid disease (hyperthyroidism or hypothyroidism)
- Sleep apnea
- Excessive alcohol or caffeine consumption
- Obesity
- Diabetes
- Family history of AF or AFL
- Clinical Report Analysis Criteria:

Special Instructions:
- Look for terms indicating a diagnosis of AF or AFL , such as "Atrial

Fibrillation ," "AF ," "Atrial Flutter ," or "AFL."
- Identify clinical indications and observations that suggest AF or AFL:

- Rapid ventricular response: An indication of AF or AFL when the ventricles beat
very quickly.
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- Presence of a more regular rhythm compared to AF: Indicative of AFL , but for
this task , treat it as AF.

- Sawtooth pattern in ECG: A hallmark sign of AFL , but for this task , treat it as
AF.

- Rapid and irregular ventricular response: Characteristic of AF.
- Absence of a regular atrial rhythm (irregularly irregular): Indicates AF.
- Association with other cardiac complications like myocardial infarction , heart

failure , or stroke , which may be linked to AF or AFL.
- Consider patient history , symptoms , and risk factors mentioned in the report.

Instructions for Analysis:
- Read the entire clinical report carefully. Pay close attention to sections that

mention diagnoses , patient history , symptoms , and diagnostic test results.
- Identify keywords and phrases related to AF and AFL , including medical terms

and descriptions of symptoms or diagnostic findings.
- Determine if the report explicitly mentions a diagnosis of AF or AFL. If either

is mentioned , conclude that AF is diagnosed.
- Analyze diagnostic test results such as ECG/EKG findings , looking for patterns

indicative of AF or AFL (e.g., irregular R-R intervals , sawtooth patterns).
- Consider clinical observations and symptoms that align with AF or AFL , even if

the terms "Atrial Fibrillation" or "Atrial Flutter" are not directly
mentioned.

output_format:
diagnosis: ’AF,NotAF ’

Social Determinants of Health (SDOH): For the SDOH task, prompts guided the LLM to extract
employment status and housing conditions from clinical notes. The YAML configuration for this task,
illustrated in the "SDOH Prompt – YAML Configuration" box below, begins with a system_prompt
that defines the LLM’s role as an information extraction tool for SDOH elements and outlines the
two main categories of interest. The system_prompt further directs the LLM to utilize an embedded
"KNOWLEDGE BASE" for its decision-making. This knowledge base provides detailed definitions
and illustrative example phrases for sub-categories of employment (e.g., "Employed," "Unemployed,"
with "Retired" often contextualized under "Unemployed") and housing (e.g., "Housing," "Home-
less," "Unknown"). The output_format section of the YAML then specifies the structure for the
JSON output, defining a field for employment with permissible enumerated values including "Em-
ployed", "Unemployed", "Retired", and "Unknown", and a field for housing with values "Housing",
"Homeless", or "Unknown".

SDOH Prompt – YAML Configuration

configurations:
SDOH:

system_prompt: |
You are an information extract tool that follows instructions very well and is

specifically trained to extract social determinants of health elements from
hospital medical reports.

The two categories are employment and housing. For employment , you will assign one
of the following categories: Employed , Unemployed , Unknown. For housing , you
will assign one of the following categories: Housing , Homeless , Unknown.

In order to take your final decision , you need to understand the information from
the knowledge base:

KNOWLEDGE BASE:

1. Employment Status Definitions:

Employed: The patient is currently working in a job or is a student. This includes
any explicit mention of active employment or current educational status.

Example phrases: "Patient is employed as a teacher ," "Currently working as a
technician ," "Student at a local university ."

Unemployed: The patient is currently without a job , underemployed , or has a
disability preventing employment. This includes retirement or any other
explicit mention of not being employed.

Example phrases: "Patient is unemployed ," "Retired teacher ," "Currently looking for
work ," "Disabled and not working ."

Unknown: The medical report does not mention any information regarding the current
employment status of the patient.
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Example phrases: "No mention of employment status ," "Employment status not
documented ."

2. Housing Status Definitions:

Housing: The patient has stable housing arrangements , living at home , with a
partner , or in supportive housing. This includes any explicit mention of
non -adverse housing status.

Example phrases: "Lives at home with family ," "Currently living with a partner ,"
"Resides in supportive housing ."

Homeless: The patient does not have stable housing and is living in adverse
conditions such as being homeless or living in a shelter. This includes any
explicit mention of adverse housing status.

Example phrases: "Patient is homeless ," "Living in a shelter ," "No stable housing ."

Unknown:The medical report does not mention any information regarding the current
housing status of the patient.

Example phrases: "No mention of housing status ," "Housing status not documented ."

output_format:
employment: ’Employment information using criteria from the knowledge base , type :

Enum[" Employed"," Unemployed ","Retired","Unknown"]’
housing: ’Housing information using criteria from the knowledge base , type :

Enum[" Housing","Homeless","Unknown"]’

A.3 Extensibility to Other Clinical Tasks

ClinBench is designed for extensibility. For radiology reports, its YAML system can incorporate
domain-specific knowledge, such as BI-RADS or RECIST criteria. For complex relational tasks
like temporal extraction (e.g., "Pneumonia diagnosed July 5th, Amoxicillin started same day, cough
resolved by July 10th"), schema-based validation can enforce structured JSON outputs that explicitly
capture events and their temporal relationships (e.g., {from_event: E1, to_event: E3, type: BE-
FORE}), making the output immediately usable for downstream applications like patient journey
modeling

A.4 Token Cost Analysis for API-Based Models

Table 1: Token usage and estimated API costs for OpenAI models across the three benchmark tasks,
based on pricing as of Q2 2025

Tokens Costs ($)
Dataset Model Prompt Completion Total Prompt Completion Total

SDOH
gpt-3.5-turbo-1106 753,207 33,044 786,251 $0.75 $0.07 $0.82
gpt-4o-2024-05-13 753,207 28,506 781,713 $3.77 $0.43 $4.19
gpt-4o-mini 753,207 32,932 786,139 $0.11 $0.02 $0.13

ECG
gpt-3.5-turbo-1106 631,568 3,869 635,437 $0.63 $0.01 $0.64
gpt-4o-2024-05-13 631,568 3,855 635,423 $3.16 $0.06 $3.22
gpt-4o-mini 631,568 13,322 644,890 $0.09 $0.01 $0.10

Lung
gpt-3.5-turbo-1106 1,747,615 61,349 1,808,964 $1.75 $0.12 $1.87
gpt-4o-2024-05-13 1,747,615 61,656 1,809,271 $8.74 $0.92 $9.66
gpt-4o-mini 1,747,615 61,539 1,809,154 $0.26 $0.04 $0.30

A.5 Ablation Study on Prompting Strategy

To empirically validate the contribution of our structured prompting methodology, we conducted a
targeted ablation study.

Ablation Study Design We selected the complex Lung Cancer dataset and the high-performing
GPT series models. We compared the performance using our structured YAML prompts against
unstructured, free-text prompts that contained the same core information but presented it in a single
narrative paragraph.
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Results The study revealed a dramatic performance degradation with unstructured prompts, con-
firming our hypothesis that structure is a key driver of reliability.

Discussion Unstructured prompts mix different instruction types (role, rules, output format), cre-
ating high "instructional complexity" that can confuse models or cause them to ignore parts of the
prompt [47]. Our structured YAML approach, by analogy to Chain-of-Thought prompting, separates
these concerns. It breaks a complex request into manageable parts, dedicating a distinct slot for
domain knowledge to prevent the "lost in the middle" problem where key facts are buried in a long
context [48]. The output_format schema then strongly guides the model’s output. This combination
enables the LLM to focus on the core extraction task, resulting in significantly higher performance.
For full transparency, the scripts and raw result files for this ablation study are available in our public
GitHub repository.

Table 2: Impact of Unstructured Prompts on ClinBench Performance
F1 Score

Model ClinBench Unstructured Prompt Performance Drop
gpt-4o 0.92 0.46 -50%
gpt-4o-mini 0.92 0.38 -59%
gpt-3.5-turbo 0.90 0.24 -73%
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A.6 Large Language Models Details

Table 3: Overview of the large language models evaluated in this work.
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A.7 Supplementary Tables

Note: The highest values for each performance metric in the tables are highlighted in green .

Benchmarking Results for Lung Cancer Information Extraction

Table S4: Overall Performance of LLMs on Lung Cancer dataset: Information Extraction Across All
Tasks

Overall Performance
Organization Model Accuracy Precision Sensitivity Specificity F1 Score Running Time (min)

Others (Alibaba Group & 01.AI) qwen2:72b-instruct 0.88 0.90 0.88 0.96 0.88 60.71
yi:34b 0.86 0.87 0.86 0.95 0.86 103.53

Google DeepMind gemma:7b-instruct 0.72 0.78 0.72 0.89 0.73 33.75
gemma:2b-instruct 0.57 0.69 0.57 0.83 0.56 11.44

Meta llama3:70b-instruct 0.91 0.91 0.91 0.97 0.91 82.60
llama3.1:70b 0.90 0.92 0.90 0.97 0.91 106.00

Mistral AI mixtral:instruct 0.83 0.88 0.83 0.94 0.85 42.33
mistral-openorca:latest 0.73 0.83 0.73 0.92 0.77 25.46

OpenAI
gpt-4o-2024-05-13 0.92 0.93 0.92 0.97 0.92 28.70
gpt-4o-mini 0.92 0.92 0.92 0.97 0.92 24.00
gpt-3.5-turbo-0125 0.90 0.90 0.90 0.96 0.90 22.38

Table S5: Performance of LLMs in Extracting Primary Tumor (pT) Stage from Lung Cancer Reports.
pT

Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.86 0.87 0.86 0.95 0.86
qwen2:72b-instruct 0.87 0.89 0.87 0.96 0.87

Google DeepMind gemma:7b-instruct 0.82 0.86 0.82 0.93 0.82
gemma:2b-instruct 0.53 0.82 0.53 0.88 0.62

Meta llama3:70b-instruct 0.90 0.90 0.90 0.97 0.89
llama3.1:70b 0.91 0.91 0.91 0.96 0.91

Mistral AI mixtral:instruct 0.78 0.84 0.78 0.91 0.78
mistral-openorca:latest 0.75 0.86 0.75 0.93 0.80

OpenAI
gpt-4o-mini 0.89 0.90 0.89 0.97 0.89
gpt-4o-2024-05-13 0.89 0.90 0.89 0.96 0.89
gpt-3.5-turbo-0125 0.89 0.89 0.89 0.96 0.89

Table S6: Performance of LLMs in Extracting Lymph Node Involvement (pN) Stage from Lung
Cancer Reports.

pN
Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.87 0.91 0.87 0.96 0.89
qwen2:72b-instruct 0.89 0.92 0.89 0.97 0.89

Google DeepMind gemma:7b-instruct 0.70 0.86 0.70 0.92 0.76
gemma:2b-instruct 0.68 0.73 0.68 0.89 0.70

Meta llama3:70b-instruct 0.93 0.94 0.93 0.98 0.93
llama3.1:70b 0.89 0.94 0.89 0.97 0.91

Mistral AI mixtral:instruct 0.85 0.92 0.85 0.96 0.88
mistral-openorca:latest 0.73 0.90 0.73 0.93 0.79

OpenAI
gpt-4o-mini 0.94 0.93 0.94 0.98 0.93
gpt-4o-2024-05-13 0.93 0.94 0.93 0.98 0.94
gpt-3.5-turbo-0125 0.91 0.92 0.91 0.98 0.91
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Table S7: Performance of LLMs in Extracting Tumor Staging Information from Lung Cancer Reports.
Tumor Stage

Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.74 0.74 0.74 0.90 0.74
qwen2:72b-instruct 0.80 0.81 0.80 0.93 0.80

Google DeepMind gemma:7b-instruct 0.56 0.55 0.56 0.80 0.51
gemma:2b-instruct 0.48 0.46 0.48 0.76 0.37

Meta llama3:70b-instruct 0.83 0.83 0.83 0.93 0.83
llama3.1:70b 0.80 0.84 0.80 0.93 0.82

Mistral AI mixtral:instruct 0.78 0.79 0.78 0.91 0.78
mistral-openorca:latest 0.56 0.63 0.56 0.84 0.59

OpenAI
gpt-4o-2024-05-13 0.86 0.88 0.86 0.95 0.87
gpt-4o-mini 0.86 0.87 0.86 0.95 0.86
gpt-3.5-turbo-0125 0.82 0.83 0.82 0.93 0.82

Table S8: Performance of LLMs in Extracting Histologic Diagnosis from Lung Cancer Reports.
Histologic Diagnosis

Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.96 0.97 0.96 0.99 0.96
qwen2:72b-instruct 0.97 0.97 0.97 0.99 0.97

Google DeepMind gemma:2b-instruct 0.57 0.75 0.57 0.81 0.53
gemma:7b-instruct 0.82 0.85 0.82 0.91 0.81

Meta llama3:70b-instruct 0.98 0.98 0.98 0.99 0.98
llama3.1:70b 0.99 0.99 0.99 1.00 0.99

Mistral AI mixtral:instruct 0.92 0.96 0.92 0.98 0.94
mistral-openorca:latest 0.87 0.95 0.87 0.96 0.91

OpenAI
gpt-4o-mini 0.98 0.98 0.98 0.99 0.98
gpt-3.5-turbo-0125 0.98 0.98 0.98 0.99 0.98
gpt-4o-2024-05-13 0.98 0.98 0.98 0.99 0.98

Benchmarking Results for ECG Information Extraction

Table S9: Overall Performance of LLMs on ECG dataset: Information Extraction Across All Tasks
Overall Performance

Organization Model Accuracy Precision Sensitivity Specificity F1 Score Running Time (min)

Others (Alibaba Group & 01.AI) yi:34b 0.92 0.74 0.69 0.97 0.71 9.20
qwen2:72b-instruct 0.92 0.96 0.57 1.00 0.60 9.60

Google DeepMind gemma:7b-instruct 0.73 0.51 0.52 0.78 0.49 577.70
gemma:2b-instruct 0.88 0.61 0.60 0.94 0.60 7.00

Meta llama3:70b-instruct 0.92 0.96 0.57 1.00 0.60 9.40
llama3.1:70b 0.95 0.96 0.72 1.00 0.79 9.30

Mistral AI mixtral:instruct 0.73 0.54 0.59 0.76 0.53 20.40
mistral-openorca:latest 0.40 0.53 0.60 0.36 0.36 2.10

OpenAI
gpt-4o-mini 0.94 0.97 0.68 1.00 0.75 4.30
gpt-4o-2024-05-13 0.92 0.96 0.55 1.00 0.57 6.00
gpt-3.5-turbo-1106 0.95 0.97 0.71 1.00 0.79 5.90
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Table S10: Performance of LLMs in Extracting Atrial Fibrillation (AF) Information from ECG
Reports.

Atrial Fibrillation
Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b-8K 0.92 0.94 0.97 0.97 0.95
qwen2:72b-instruct-8K 0.92 0.92 1.00 1.00 0.96

Google DeepMind gemma:7b-instruct-8K 0.73 0.92 0.78 0.78 0.84
gemma:2b-instruct-8K 0.88 0.93 0.94 0.94 0.93

Meta llama3:70b-instruct-8K 0.92 0.92 1.00 1.00 0.96
llama3.1:70b-8K 0.95 0.95 1.00 1.00 0.97

Mistral AI mixtral:instruct-8K 0.73 0.93 0.76 0.76 0.84
mistral-openorca:latest-8K 0.40 0.96 0.36 0.36 0.52

OpenAI
gpt-4o-mini 0.94 0.94 1.00 1.00 0.97
gpt-4o-2024-05-13 0.92 0.92 1.00 1.00 0.96
gpt-3.5-turbo-1106 0.95 0.95 1.00 1.00 0.97

Table S11: Performance of LLMs in Extracting Non-Atrial Fibrillation (Non-Afib) Information from
ECG Reports

Non-Atrial Fibrillation
Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b-8K 0.92 0.53 0.41 0.97 0.96
qwen2:72b-instruct-8K 0.92 1.00 0.13 1.00 0.23

Google DeepMind gemma:7b-instruct-8K 0.73 0.10 0.26 0.78 0.15
gemma:2b-instruct-8K 0.88 0.29 0.26 0.94 0.27

Meta llama3:70b-instruct-8K 0.92 1.00 0.13 1.00 0.23
llama3.1:70b-8K 0.95 0.96 0.44 1.00 0.61

Mistral AI mixtral:instruct-8K 0.73 0.15 0.43 0.76 0.22
mistral-openorca:latest-8K 0.40 0.10 0.83 0.35 0.19

OpenAI
gpt-4o-mini 0.94 1.00 0.36 1.00 0.53
gpt-4o-2024-05-13 0.92 1.00 0.10 1.00 0.18
gpt-3.5-turbo-1106 0.95 1.00 0.43 1.00 0.60

Benchmarking Results for SDOH Information Extraction

Employment

Table S12: Overall Performance of LLMs on the SDOH dataset (Employment): Information Extrac-
tion Across All Tasks

Overall Performance
Organization Model Accuracy Precision Sensitivity Specificity F1 Score Running Time (min)

Others (Alibaba Group & 01.AI) yi:34b 0.88 0.76 0.81 0.91 0.76 24.18
qwen2:72b-instruct 0.90 0.79 0.86 0.93 0.81 30.90

Google DeepMind gemma:7b-instruct 0.84 0.71 0.69 0.85 0.69 117.08
gemma:2b-instruct 0.53 0.67 0.42 0.68 0.28 7.02

Meta llama3:70b-instruct 0.90 0.78 0.87 0.93 0.81 28.04
llama3.1:70b 0.91 0.80 0.87 0.93 0.82 27.66

Mistral AI mixtral:instruct 0.87 0.74 0.81 0.91 0.75 40.73
mistral-openorca:latest 0.80 0.72 0.75 0.88 0.66 8.11

OpenAI
GPT-4o-mini 0.91 0.79 0.87 0.94 0.82 12.59
gpt-4o-2024-05-16 0.91 0.79 0.86 0.93 0.82 19.59
gpt-3.5-turbo-1109 0.91 0.79 0.87 0.93 0.82 19.55
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Table S13: Performance of LLMs in Extracting Employment Status (Employed) from SDOH Reports.
Employed

Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.88 0.49 0.88 0.88 0.63
qwen2:72b-instruct 0.91 0.58 0.89 0.92 0.70

Google DeepMind gemma:7b-instruct 0.89 0.51 0.64 0.92 0.57
gemma:2b-instruct 0.91 0.74 0.27 0.99 0.39

Meta llama3:70b-instruct 0.91 0.55 0.89 0.91 0.68
llama3.1:70b 0.92 0.61 0.89 0.93 0.72

Mistral AI mixtral:instruct 0.86 0.43 0.85 0.86 0.58
mistral-openorca:latest 0.73 0.29 0.94 0.71 0.45

OpenAI
gpt-4o-mini 0.91 0.58 0.89 0.92 0.70
gpt-4o-2024-05-13 0.91 0.59 0.86 0.92 0.70
gpt-3.5-turbo-1106 0.92 0.59 0.87 0.92 0.71

Table S14: Performance of LLMs in Extracting Unemployment Status from SDOH Reports.
Unemployed

Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.88 0.86 0.70 0.96 0.77
qwen2:72b-instruct 0.91 0.84 0.84 0.94 0.84

Google DeepMind gemma:7b-instruct 0.84 0.80 0.56 0.95 0.66
gemma:2b-instruct 0.30 0.28 0.98 0.05 0.43

Meta llama3:70b-instruct 0.91 0.83 0.87 0.93 0.85
llama3.1:70b 0.91 0.84 0.84 0.94 0.84

Mistral AI mixtral:instruct 0.91 0.87 0.78 0.95 0.82
mistral-openorca:latest 0.87 0.90 0.57 0.98 0.70

OpenAI
gpt-4o-mini 0.92 0.82 0.89 0.93 0.86
gpt-4o-2024-05-13 0.92 0.84 0.87 0.94 0.85
gpt-3.5-turbo-1106 0.92 0.83 0.88 0.93 0.85

Table S15: Performance of LLMs in Extracting Unknown Employment Status from SDOH Reports.
Unknown

Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.87 0.92 0.86 0.88 0.89
qwen2:72b-instruct 0.88 0.95 0.85 0.92 0.90

Google DeepMind gemma:7b-instruct 0.80 0.81 0.88 0.67 0.84
gemma:2b-instruct 0.39 1.00 0.00 1.00 0.00

Meta llama3:70b-instruct 0.89 0.97 0.84 0.97 0.90
llama3.1:70b 0.88 0.94 0.86 0.91 0.90

Mistral AI mixtral:instruct 0.85 0.93 0.81 0.91 0.87
mistral-openorca:latest 0.81 0.96 0.72 0.96 0.82

OpenAI
gpt-4o-mini 0.89 0.97 0.84 0.96 0.90
gpt-4o-2024-05-13 0.89 0.95 0.85 0.94 0.90
gpt-3.5-turbo-1106 0.89 0.96 0.85 0.95 0.90

Housing
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Table S16: Overall Performance of LLMs on the SDOH dataset (Housing): Information Extraction
Across All Tasks

Overal Performance
Organization Model Accuracy Precision Sensitivity Specificity F1 Score Running Time (min)

Others (Alibaba Group & 01.AI) yi:34b 0.89 0.64 0.85 0.89 0.66 24.18
qwen2:72b-instruct 0.92 0.78 0.88 0.91 0.82 30.90

Google DeepMind gemma:7b-instruct 0.77 0.51 0.73 0.80 0.53 117.08
gemma:2b-instruct 0.48 0.49 0.45 0.70 0.17 7.02

Meta llama3:70b-instruct 0.93 0.73 0.89 0.92 0.76 28.04
llama3.1:70b 0.92 0.71 0.89 0.92 0.75 27.66

Mistral AI mixtral:instruct 0.87 0.74 0.83 0.86 0.78 40.73
mistral-openorca:latest 0.85 0.66 0.78 0.82 0.65 8.11

OpenAI
GPT-4o-mini 0.93 0.72 0.89 0.92 0.76 12.59
gpt-4o-2024-05-16 0.87 0.85 0.82 0.84 0.82 19.59
gpt-3.5-turbo-1109 0.87 0.84 0.81 0.84 0.81 19.55

Table S17: Performance of LLMs in Identifying Housing Stability (Having a Place to Live) from
SDOH Reports.

Housing
Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.84 0.87 0.87 0.78 0.87
qwen2:72b-instruct 0.89 0.88 0.95 0.78 0.91

Google DeepMind gemma:7b-instruct 0.68 0.81 0.64 0.76 0.71
gemma:2b-instruct 0.51 0.75 0.32 0.82 0.45

Meta llama3:70b-instruct 0.90 0.88 0.97 0.78 0.92
llama3.1:70b 0.89 0.89 0.94 0.80 0.91

Mistral AI mixtral:instruct 0.80 0.85 0.83 0.75 0.84
mistral-openorca:latest 0.78 0.76 0.95 0.50 0.84

OpenAI
gpt-4o-mini 0.90 0.90 0.94 0.83 0.92
gpt-4o-2024-05-13 0.81 0.79 0.96 0.57 0.87
gpt-3.5-turbo-1106 0.81 0.79 0.95 0.57 0.86

Table S18: Performance of LLMs in Extracting Homelessness Status (Lacking a Stable Place to Live)
from SDOH Reports.

Homeless
Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.96 0.18 0.93 0.96 0.30
qwen2:72b-instruct 0.99 0.57 0.93 0.99 0.70

Google DeepMind gemma:7b-instruct 0.95 0.15 0.86 0.95 0.26
gemma:2b-instruct 0.29 0.01 1.00 0.28 0.03

Meta llama3:70b-instruct 0.98 0.35 0.93 0.98 0.51
llama3.1:70b 0.98 0.32 0.93 0.98 0.47

Mistral AI mixtral:instruct 0.99 0.65 0.93 0.99 0.76
mistral-openorca:latest 0.98 0.33 0.93 0.98 0.49

OpenAI
gpt-4o-mini 0.98 0.34 0.93 0.98 0.50
gpt-4o-2024-05-13 1.00 0.87 0.93 1.00 0.90
gpt-3.5-turbo-1106 1.00 0.87 0.93 1.00 0.90

Table S19: Performance of LLMs in Extracting Unknown Housing Status from SDOH Reports.
Unknown

Organization Model Accuracy Precision Sensitivity Specificity F1 Score

Others (Alibaba Group & 01.AI) yi:34b 0.87 0.86 0.75 0.90 0.80
qwen2:72b-instruct 0.89 0.91 0.77 0.96 0.83

Google DeepMind gemma:7b-instruct 0.68 0.55 0.69 0.68 0.61
gemma:2b-instruct 0.64 0.69 0.02 0.99 0.03

Meta llama3:70b-instruct 0.91 0.97 0.76 0.99 0.85
llama3.1:70b 0.90 0.94 0.79 0.97 0.86

Mistral AI mixtral:instruct 0.80 0.73 0.73 0.91 0.73
mistral-openorca:latest 0.78 0.90 0.46 0.85 0.61

OpenAI
gpt-4o-mini 0.91 0.92 0.81 0.93 0.86
gpt-4o-2024-05-13 0.81 0.88 0.56 0.96 0.69
gpt-3.5-turbo-1106 0.81 0.87 0.56 0.95 0.68
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A.8 Confusion Matrices

Figure S1: Confusion matrices for 11 LLMs on the Lung Cancer Overall Tumor Stage extraction task
from TCGA pathology reports. Each subplot details an LLM’s performance, with rows representing
true AJCC 7th edition stage categories and columns representing predicted stage categories. Cell
values indicate instance counts; darker shades correspond to higher counts. These matrices reveal
model accuracy and misclassification patterns for overall tumor staging.
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Figure S2: Confusion matrices for 11 LLMs on the Lung Cancer primary tumor (pT) classification task
from TCGA pathology reports. Each subplot details an LLM’s performance, with rows representing
true AJCC 7th edition pT categories (e.g., pT1-pT4) and columns representing predicted categories.
Cell values indicate instance counts; darker shades correspond to higher counts. These matrices
highlight model accuracy and error types in pT classification.
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Figure S3: Confusion matrices for 11 LLMs on the Lung Cancer regional lymph node (pN) clas-
sification task from TCGA pathology reports. Each subplot details an LLM’s performance, with
rows representing true AJCC 7th edition pN categories (e.g., pN0-pN3) and columns representing
predicted categories. Cell values indicate instance counts; darker shades correspond to higher counts.
These matrices illustrate model accuracy and misclassification patterns for pN classification.
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Figure S4: Confusion matrices for 11 LLMs on the Lung Cancer Histologic Diagnosis extraction task
(e.g., Adenocarcinoma, Squamous Cell Carcinoma) from TCGA pathology reports. Each subplot
details an LLM’s performance, with rows representing true histologic types and columns representing
predicted types. Cell values indicate instance counts; darker shades correspond to higher counts.
These matrices show model accuracy and error patterns in identifying lung cancer histologies.

35



Figure S5: Confusion matrices for 11 LLMs on the Atrial Fibrillation (AF) detection task from
MIMIC-IV-ECG reports. Each subplot displays the performance of an individual LLM, with rows
representing true labels (AF, Non-AF) and columns representing predicted labels. Cell values indicate
instance counts, and darker shades correspond to higher counts. These matrices provide a detailed
view of classification accuracy, including true positives (correct AF detection), true negatives (correct
Non-AF identification), false positives (Non-AF incorrectly identified as AF), and false negatives
(AF incorrectly identified as Non-AF).
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Figure S6: Confusion matrices for 11 LLMs on the Social Determinants of Health (SDOH) Employ-
ment Status extraction task from MIMIC clinical notes. Each subplot details an LLM’s performance,
with rows representing true labels (e.g., "Employed", "Unemployed", "Unknown") and columns
representing predicted labels. Cell values indicate instance counts; darker shades correspond to higher
counts. These matrices illustrate model-specific classification accuracy and common error patterns
for employment status identification.
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Figure S7: Confusion matrices for 11 LLMs on the Social Determinants of Health (SDOH) Housing
Status extraction task from MIMIC clinical notes. Each subplot details an LLM’s performance, with
rows representing true labels (e.g., "Housing", "Homeless", "Unknown") and columns representing
predicted labels. Cell values indicate instance counts; darker shades correspond to higher counts.
These matrices illustrate model-specific classification accuracy and common error patterns for housing
status identification.
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