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Abstract

Biological sensory systems appear to rely on canonical nonlinear computations
that can be readily adapted to a broad range of representational objectives. Here
we test the hypothesis that one such computation—multiplicative interaction—is
a pervasive nonlinearity that underlies the representational transformations in hu-
man vision. We computed local multiplicative interactions of features in several
classes of convolutional models and used the resulting representations to predict
object-evoked responses in voxelwise models of human fMRI data. We found
that multiplicative interactions predicted widespread representations throughout
the ventral stream and were competitive with state-of-the-art supervised deep nets.
Surprisingly, the performance of multiplicative interactions did not require supervi-
sion and could be achieved even with random or hand-engineered convolutional
filters. These findings suggest that multiplicative interaction may be a canonical
computation for feature transformations in human vision.

1 Introduction

Nonlinear transformations are central to the representational power of visual cortex. Through nonlin-
ear transformations, visual cortex converts low-level sensory inputs into complex representations that
directly support behavior. Researchers have long sought to understand the nature of these nonlinear
transformations (DiCarlo, Zoccolan, & Rust, 2012). Deep learning in artificial neural networks is one
promising approach because any complex nonlinear transformation can be approximated through
multiple stages of elementary nonlinear operations (e.g., rectification) (Hornik, 1991). However,
there is considerable evidence that even the most elementary nonlinear operations of cortical neurons
may be far more complex than those of artificial neurons in conventional neural networks (Silver,
2010). Understanding these cortical nonlinear operations may reveal critical inductive biases and
computational efficiencies of visual cortex that are not accounted for by current computational
theories.

Here we explore the possibility that multiplicative interaction is a canonical nonlinear computation
used in biological vision. In its simplest form, multiplicative interaction is a computation in which a
neuron outputs the product of two or more input neurons. Previous work in machine learning has
shown that multiplicative interaction can improve the expressivity, compactness, and learnability
of multilayer perceptrons (Jayakumar et al., 2020). In neuroscience, it is known that multiplicative
interaction has a specialized function in gain modulation, whereby a neuron’s tuning profile is
multiplicatively modulated by contextual factors, such as attention (Ferguson & Cardin, 2020). What
is not known is whether multiplicative interaction serves a broader role in cortical computation by
functioning as a canonical nonlinear transformation in sensory coding.
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We implemented a multiplicative-interaction layer for convolutional neural networks (CNNs) that
computes second-order interactions between pairs of first-order feature maps output by convolutional
filters. We used this computational architecture in combination with voxelwise encoding models of
fMRI data to examine the power of multiplicative interactions for predicting object-evoked responses
in human visual cortex. We found that the simple addition of a multiplicative-interaction layer to a
CNN produced striking and widespread improvements in encoding-model performance across much
of visual cortex. This was true for multiple classes of CNNs, including hand-engineered models that
required no training as well as supervised models that were pre-trained for image classification. In
fact, our models with multiplicative interaction layers were competitive with supervised conventional
CNNs while using an order of magnitude fewer parameters. These findings suggest that multiplicative
interaction may be a powerful and general-purpose nonlinear transformation that is capable of
supporting diverse representational objectives in visual cortex.

2 Results

The general approach that we take in all of our experiments is shown in Figure 1 and can be
summarized as follows:

1. Define a CNN architecture that takes an image as input and outputs a number of feature
maps. Call this a first-order model.

2. Define a second-order model that computes the multiplicative interactions between each
pair of feature maps from the first-order model.

3. Train a linear encoding model to predict fMRI activity from the output of the first-order
model applied to the same images that subjects saw under the scanner. Do the same using
the second-order model.

4. Compare the predictive accuracies of the two encoding models across a number of brain
regions.

Figure 1: Overview of our modeling approach. A) We fed images through CNN feature extractors to output
a set of first-order feature maps. To compute second-order interactions, we multiplied the flattened feature
maps by their transpose and kept the upper triangular portion of the resulting matrix. B) We trained linear
encoding models to predict fMRI responses in visual cortex from either first-order features or their second-order
interactions and compared their accuracies.
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If multiplicative feature interactions play a central role in neural processing as a canonical computa-
tion, then we should expect them to improve fMRI encoding accuracy over a wide range of feature
sets. For this reason, we compared first- and second-order encoding models over features extracted
from 5 different CNNs. Three of these consisted of 1-layer linear convolutions with hand-engineered
filter banks. Two of the hand-engineered models are based on known representations of visual cortex:
i) simple edge detectors tuned to orientation and ii) curvature detectors tuned to both orientation and
degree of curvature. The third hand-engineered model consisted of random-weight filters, which
can be surprisingly effective in extracting useful features (Cao, Wang, Ming, & Gao, 2018). Our
two other feature extractors were deep CNNs trained on image classification tasks, and we used the
feature maps output by the final convolutional layer to train the encoding models. All of these models
are described in further detail in Appendix A.

There are several ways one could compute second-order multiplicative interactions from the feature
maps output by our CNNs. Here, we took a simple approach by computing the products between
every pair of feature maps then aggregating each of the resulting interaction maps across spatial
dimensions by taking their sum. These two operations correspond to taking the matrix multiplication
of the spatially flattened feature maps and their transpose and then keeping only the upper triangular
section. Mathematically, this operation is given by the Equation 1:

M = triangular(FFT ) (1)

Where F is a (n, hw) matrix of n first-order feature maps flattened across the spatial dimensions,
triangular(·) corresponds to flattening the upper triangular part of a matrix into a vector, and M is
a vector containing all

(
n
2

)
pair-wise multiplicative interactions. This operation is described further in

Appendix B. Since the above operation aggregates second-order feature interactions across spatial
dimensions through summation, we performed a similar aggregation when fitting first-order encoding
models by taking the spatial mean of the feature maps, resulting in a vector of size n.

With our feature extractors and second-order operation in hand, we wished to evaluate the utility of
multiplicative feature interactions in models of human visual cortex. We approached this problem
by fitting linear-regression encoding models that predicted fMRI responses to object images from
the second-order interactions of features output by our CNNs. We then compared the predictive
accuracy of these encoding models to their first-order counterparts, which instead predicted fMRI
responses directly from the CNN features. Further details regarding our fMRI dataset and encoder
training methodology can be found in Appendix 5 and in a preprint for another project using these
data (Bonner & Epstein, 2020).

We found that second-order multiplicative interactions provided a significant improvement in fMRI
voxelwise prediction accuracy, as shown in Figure 2. In support of our hypothesis that multiplicative
interactions are a canonical computation widespread in human vision, the improvements resulting
from multiplicative interactions were observed across all brain regions we tested. These included
both low-level regions in early visual cortex as well as more high-level category-selective regions.
Multiplicative interactions also improved prediction accuracy across all 5 feature extraction models
considered, including both simple hand-engineered models and supervised deep CNN architectures
trained on classification tasks. This suggests that whatever role these specific features might play
in the representations of visual cortex, multiplicative interactions between these features might play
an even more important one. In other words, the consistency with which multiplicative interactions
improved the performance of diverse encoding models suggests that visual representations cannot be
understood in terms of first-order feature sets alone.

Of particular note is the dramatic improvement observed in our ImageNet-trained CNN (bottom
center). Using the first-order features from this CNN, neural activity was actually predicted quite
poorly, achieving a mean Pearson correlation of less than 0.1 on the test set for all brain regions.
This was expected, since the first-order model was intentionally designed to be a highly reduced
version of AlexNet with a similar architecture but an order of magnitude fewer parameters. However,
when using the exact same CNN and simply computing the second-order interactions of the extracted
features, encoder performance improved to near noise ceiling levels for all brain regions considered
(Appendix E). In addition, this model also matched the encoder performance of a conventional
pre-trained AlexNet (Appendix F).
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Figure 2: Voxelwise encoding models of CNN features and their second-order interactions. Second-order
multiplicative interactions between CNN features were highly predictive of fMRI responses to objects in visual
cortex. Their predictive value was significantly greater than that of the original first-order features used to
compute them. This improvement was observed for all feature extraction models across all brain regions
considered, including early visual cortex (EVC) and higher-level regions associated with object, scene, and face
processing. Data are from 4 subjects viewing 810 images of real-world objects from 81 different categories.
We fit predictive linear encoders of fMRI responses, and we measured performance as the mean voxelwise
correlation between predicted and actual fMRI responses in a cross-validation design. Violin plots represent
means and bootstrap distributions for each visual region. **p<0.01, ***p<0.001, ****p<0.0001

It is also worth noting that in the above results, our supervised models were trained for classification
without the second-order multiplicative interaction layer. The multiplicative interactions were only
computed afterwards, when training the encoding models. If multiplicative interactions are computed
in visual cortex, then a fairer comparison would be to include these computations when training
the supervised models on their classification tasks. When we do this, fMRI encoding accuracy
improves even further, as shown in Figure 3. In addition, we observed a substantial improvement
in accuracy on the classification tasks when using the multiplicative interactions prior to fitting our
fMRI encoders. For instance, our ImageNet-trained model achieved a top-1 classification accuracy of
14% on the test set over 1000 classes when using first-order features, but an accuracy of 27% when
using second-order interactions. This improvement is interesting in and of itself, and more work can
be conducted to see if these kinds of multiplicative interactions have practical use in deep learning
architectures for computer vision.

Controlling for increased dimensionality. An alternative explanation of our results might be that
computing the second-order multiplicative interactions of a set of features results in a substantial
increase in the dimensionality of the input used to train our encoding models and, therefore, an
increase in the number of regression parameters. We addressed this possibility with an experiment
that used only a random subset of the second-order interactions, matching the number of first-order
features that were used to compute the interactions. We performed this analysis for a wide range of
first-order feature sizes, all using the random filter bank feature extractor so as to avoid having to
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Figure 3: Voxelwise encoding models of supervised CNN features and their second-order interactions
applied during classification training. Second-order interactions perform better as models of fMRI activity in
visual cortex when they are used to train the CNN on its classification task (Second-Order [trained]). Violin
plots represent means and bootstrap distributions for each visual region. **p<0.01, ***p<0.001, ****p<0.0001

arbitrarily pick hyperparameters other than the number of filters used. The results for this analysis
are shown in Figure 4. We found that beyond a dimensionality of roughly 10, encoders trained using
a random subset of second-order multiplicative interactions performed significantly better than their
first-order counterparts, despite the dimensionality being matched in the two cases. Furthermore,
we saw that while the encoding accuracy of the first-order models saturated early as the number
of features increased, the second-order models continued to improve. This suggests a possible
explanation for our findings and a computational role for multiplicative interactions, namely that their
representational power might scale better as a function of increased first-order feature dimensionality
than that of the first-order features themselves.

Figure 4: Comparing first- and second-order encoding models with matched dimensionality. We con-
trolled for the increase in dimensionality when taking pair-wise feature interactions by using a random subset
of interactions to fit the encoding model, with the number of interactions matched to the number of first-order
features. Using the random-weight feature extractor and varying the number of filters used, second-order
models consistently outperformed first-order ones in predicting fMRI data from visual cortex, even when their
dimensionality was matched. Lines represent the mean voxelwise correlation between predicted and actual fMRI
responses across EVC, object, scene, and face regions in a cross-validation design. Shaded regions represent the
95% confidence intervals computed from bootstrap distributions.
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3 Discussion

Here we investigated the hypothesis that multiplicative feature interactions serve as an important
canonical computation in human visual cortex. Using a simple, parameter-less operation that
computed second-order multiplicative interactions between CNN feature maps, we found that we
were able to significantly improve the prediction accuracy of fMRI encoding models across visual
cortex. This improvement was consistently observed across all brain regions and CNNs considered,
providing evidence in favour of our hypothesis.

Several questions remain regarding the nature of multiplicative interactions and the conditions under
which they are effective in explaining neural data. Here, we limited our investigation to one specific
type of multiplicative interaction: pair-wise products aggregated across space. However, higher-
order interactions and operations that preserve spatial information might further improve encoding
performance. Furthermore, additional work is needed to determine the underlying properties of
multiplicative interactions that make them useful and efficient predictors of the representations in
visual cortex. It is possible that similar results could be obtained through other means of nonlin-
ear dimensionality expansion (Babadi & Sompolinsky, 2014; Cayco-Gajic & Silver, 2019). This
would suggest that multiplicative interactions belong to a broader class of dimensionality-expansion
algorithms that are highly effective at predicting representations in high-level visual cortex. We are
currently investigating this possibility.

Recently, the field of computational neuroscience has had tremendous success in using deep learning
to model human cortical representations and cognition (Bashivan, Kar, & DiCarlo, 2019; Khaligh-
Razavi & Kriegeskorte, 2014; Ponce et al., 2019; Richards et al., 2019; Storrs, Kietzmann, Walther,
Mehrer, & Kriegeskorte, 2020; Yamins & DiCarlo, 2016; Yamins et al., 2014). This success, however,
has come at the cost of a diminished interest in other approaches with a potential to make parallel
breakthroughs, such as an investigation into nonlinear canonical neural computations. Indeed, we saw
here that one such class of computations, multiplicative feature interaction, dramatically improved
various existing models of visual cortex. We also observed, however, that multiplicative interactions
were most effective when applied to features extracted by deep CNNs trained with backpropagation.
This serves as a reminder that different, parallel approaches in computational neuroscience can have
synergistic explanatory power, and that important insights can be missed if the field puts too much
emphasis exclusively on deep learning.

In this paper, we presented empirical results on multiplicative interactions, but did not deeply
investigate their computational properties or explore theories pertaining to their purpose in the
brain. These will be topics of future work in our lab, and luckily there are interesting leads in the
existing literature. Jayakumar et al. (2020) discussed multiplicative interactions in the context of
deep learning as an important inductive bias that could improve model expressivity. Our second-
order interaction layer also amounts to a computation of the Gram matrix, which has been used
as a powerful representation of mid-level joint feature statistics in neural style transfer and texture
synthesis (Gatys, Ecker, & Bethge, 2015; Li, Wang, Liu, & Hou, 2017), and it may be possible to
bring the theoretical insights from those works under the larger umbrella of multiplicative interactions.
Similarly, it would be informative to explore the functional similarities and differences between
multiplicative interaction and divisive normalization, which has also been proposed as a canonical
neural computation (Carandini & Heeger, 2012). Finally, multiplicative interactions may have
important theoretical implications for investigators seeking human-interpretable models of feature
tuning in mid- to high-level vision. Namely, if visual representations rely on highly complex
multiplicative interactions, finding compact and intuitive descriptions of feature representations may
be extremely challenging, and perhaps fruitless in many cases (Lillicrap & Körding, 2019).

Broader Impact

We do not believe that considerations of broader impact are applicable to this work.
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Appendix A Feature extraction

All of our feature extraction models were CNNs composed of a sequence of linear convolutions, spatial max-
pooling operations, and rectified linear (ReLU) nonlinearities. We experimented with both hand-engineered
models and supervised ones trained on classification tasks.

Hand-engineered models. We created three sets of hand-engineered convolutional filters. The Edge model
contains oriented edge detectors created from Gabor filters, which were inspired by known tuning properties
of V1 (Olshausen & Field, 1997). The Curvature model contains curved-contour detectors that were created
by combining a rotated and curved complex wave function and a rotated and curved Gaussian function. The
Curvature model was inspired by findings indicating that curvature is an important property of mid-level
representations in primate visual cortex (Long, Yu, & Konkle, 2018; Yue, Pourladian, Tootell, & Ungerleider,
2014; Yue, Robert, & Ungerleider, 2020), and our convolutional filters are similar to those used in previous
neuroscience studies (Yue et al., 2014). The Random model was created by generating random convolutional
filter weights between 0 and 1 and mean-centering each filter. Precise architectural details and filter banks for
each of these models are provided in Appendix G.

Supervised models. In addition to these hand-engineered models, we also considered 2 deep CNNs that
were trained on a supervised classification task. Our first CNN was trained on the CIFAR100 dataset and
consisted of 3 convolution/ReLU/max pool layers that took 32x32 RGB images as input and output 64 1x1
feature maps. Our second CNN was trained on a subset of the ImageNet dataset and had an architecture
that mirrored the feature extraction layers of AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), except all
channel sizes were reduced by a factor of 4, resulting in an output of 64 6x6 feature maps from 224x224 RGB
images. The primary reason for reducing the number of channels across the model was to preserve most of
the architecture, which is commonly used in the cognitive neuroscience literature, while reducing its predictive
power as a computational model of visual cortex. In particular, an encoding model trained using features from
an ordinary AlexNet was already approaching the noise ceiling of our fMRI dataset, making it difficult for us
to assess any potential improvement in performance resulting from using second-order interactions of those
same features. Further details about training methodology and datasets are included in Appendix D, and precise
layer-by-layer descriptions of the above architectures are provided in Appendix G.

Appendix B Second-order feature interactions

The specific multiplicative feature interactions that we considered in this work were pair-wise products between
each of the feature maps output from a CNN. Consider two such feature maps, F i and F j , both matrices of shape
(H,W ). To get the multiplicative interactions between these matrices at each spacial location, we first computed
their element-wise product, also known as the Hadamard product. We then aggregated these multiplicative
interactions by taking their sum across all spatial dimensions. The multiplicative interaction between F i and F j

is therefore given by the equation:

M ij =

H∑
h=1

W∑
w=1

F i
hwF

j
hw

If we flatten the feature maps such that they become vectors of length HxW , then the above equation simply
denotes the inner product between F i and F j . Therefore, if we are interested in the pair-wise multiplicative
interactions between n feature maps, we can compute them all at once by first flattening and concatenating
each feature map to produce a matrix of shape (n,HxW ), then multiplying it by its transpose to produce a
multiplicative interaction matrix M of shape (n, n). Finally, because M is symmetric, we can keep only the
upper triangular section and ignore the diagonal, so that the final result is a vector xO(2) of length

(
n
2

)
containing

the second-order multiplicative interactions between all pairs of feature maps summed across spatial dimensions.

Since the above operation aggregates second-order feature interactions across spatial dimensions, we performed
a similar aggregation of first-order features by taking the spatial mean of the feature maps, resulting in a vector
xO(1) of length n.

Prior to computing the second-order interactions, we also normalized feature map activity across the channel
dimension. In particular, at each spatial location, we computed the mean and standard deviation across features
and then normalized them such that the new mean was 0 and the new standard deviation was 1. We performed
this normalization because we empirically observed that it improved the performance of our encoding models,
but on its own it did not account for the results. In other words, across-channel normalization enhanced the
effectiveness of multiplicative interactions in predicting fMRI data, but was not the driving factor.
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We also note that our lab is currently working on improved operations for computing multiplicative feature
interactions that a) preserve spatial information and b) learn which feature interactions are important so that
dimensionality does not increase quadratically.

Appendix C Encoding model

Our final goal was to compare first-order features xO(1) to their second-order interactions xO(2) with respect
to how well they predict fMRI activity across visual cortex. To this end, we trained encoding models on an
fMRI dataset described in Bonner and Epstein (2020) with data across 4 subjects. The stimulus set consisted
of 810 objects from 81 different categories (10 object tokens per category). Example stimuli are shown in
Appendix H. fMRI responses were measured while subjects viewed these objects, shown alone on meaningless
textured backgrounds, and performed a simple perceptual task of responding by button press whenever they saw
a “warped” object. Warped objects were created through diffeomorphic warping of object stimuli.

Using a voxelwise modeling procedure, we examined to what extent fMRI responses to these object stimuli could
be predicted from the features extracted by the CNNs described in Appendix A or their second-order interactions
described in Appendix B. We first estimated the fMRI responses to each object category. We then fit voxelwise
encoding models with the goal of predicting the fMRI responses to all object categories through a weighted
linear sum of the first- or second-order features. Specifically, a set of linear regression models were estimated
using the first- or second-order features as regressors and the voxelwise fMRI responses as predictands, as shown
in Figure 5. Through cross-validation, we assessed how well the estimated encoding models could predict fMRI
responses to out-of-sample stimuli. The cross-validation procedure was designed so that the training and test
sets always contained objects from different categories, which allowed for a strong test of generalization to new
semantic categories, rather than new stimuli from the same categories.

Finally, we performed a series of region of interest (ROI) analyses so that we could assess the predictive value
of second-order feature interactions in multiple brain areas associated with different visual functions. These
included early visual cortex (EVC) as well as higher-level regions associated with object, (LOC and PFS), scene,
(PPA and OPA), and face (FFA and OFA) processing. Each ROI consisted of roughly 100 voxels per subject.

Appendix D Supervised model training

We performed our experiments on two models trained to perform image classification tasks. Here, we first
describe aspects of the training pipeline that were common to both models, and then discuss each model’s
architecture and dataset individually.

Training pipeline. We trained our models using backpropagation with the Adam optimizer (Kingma & Ba,
2014) to minimize the cross-entropy loss over predicted image classes. We used a constant learning rate of
1× 10−4 and a batch size of 64. All training was done using PyTorch (Paszke et al., 2019). Following the feature
extraction backbones of our networks, we computed either the first-order feature vector xO(1) or the vector
of second-order feature interactions xO(2). These vectors were then followed by a number of fully-connected
layers with ReLU nonlinearities before finally being mapped to a vector of class predictions. For all models, we
saved only the set of parameters that resulted in the lowest cross-entropy loss on the test set.

CIFAR100 CNN. Our first supervised model was trained on the CIFAR100 dataset, which consists of 100
classes each containing 600 32x32 RGB images (Krizhevsky, 2009). The dataset was split into a training set of
500 images per class and a test set of 100 images per class. We trained the model for a total of 5× 104 iterations.

ImageNet CNN. Our second supervised model was trained on a truncated version of the ImageNet dataset
(Deng et al., 2009), which we constructed by randomly sampling 1000 categories with 1000 224x224 RGB
images per category. The dataset was split into a training set of 900 images per class and a test set of 100 images
per class. We trained the model for a total of 5× 105 iterations.

Appendix E Second-order encoder and noise ceiling

We observed that our best second-order encoding model, derived from a supervised CNN pre-trained on
ImageNet, approached the noise ceiling of our fMRI dataset, as shown in Figure 6.

Appendix F Comparisons to a conventional AlexNet

Currently, deep neural networks trained on object classification tasks are the leading models of high-level
visual areas (Storrs et al., 2020). We therefore compared the performance of our second-order models to
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Figure 5: Encoding model training. Voxelwise encoding models were used to assess to what extent our first-
and second-order feature sets could reliably explain variance in the fMRI responses to the experimental object
categories from the original dataset. Linear regression was used to map the first- and second-order representations
onto fMRI responses. We assessed the out-of-sample prediction accuracy of these regression models through a
9-fold cross-validation procedure. Each fold of the cross-validation design contained a set of object categories
that did not appear in any other fold. These folds were shown in separate fMRI runs. Parameters for the
voxelwise linear regression models were estimated using the fMRI data for 8 folds of the object categories
and the learned regression weights were then applied to the held-out object categories in the remaining fold to
generate a set of predicted fMRI responses. This procedure was repeated for each fold of the cross-validation
design, and the predicted fMRI responses from each fold were concatenated together. Prediction accuracy was
assessed by calculating the voxelwise correlations of the predicted and actual fMRI responses across all object
categories.

that of a pre-trained AlexNet, which is a state-of-the-art deep CNN and a popular model of visual cortex in
the computational neuroscience literature. In Figure 7, we see that several of our second-order models were
competitive with AlexNet, while our first-order models comparatively under-performed. Moreover, our second-
order ImageNet-trained CNN achieved the same predictive accuracy as AlexNet, but with an order of magnitude
fewer parameters and significantly lower classification accuracy on ImageNet.
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Figure 6: Voxelwise encoding model of ImageNet-trained CNN second-order feature interactions com-
pared to noise ceiling. Second-order multiplicative interactions between ImageNet-trained CNN features were
highly predictive of fMRI responses to objects in visual cortex, approaching the noise ceiling of the dataset
(horizontal bars). The noise ceiling was computed as the average voxelwise split-half reliability of the fMRI
responses in each visual region. Violin plots represent means and bootstrap distributions for each visual region.

Figure 7: Second-order models achieved similar encoding accuracy to a conventional pre-trained
AlexNet. Top) Second-order feature interaction models were competitive with AlexNet, a state-of-the-art
deep CNN, in predicting fMRI responses across visual cortex. Our ImageNet-trained CNN, which was a reduced
version of AlexNet with an order of magnitude fewer parameters, achieved the same encoding accuracy when
second-order multiplicative feature interactions were used. Bottom) All of our first-order models performed
significantly worse than AlexNet across all brain regions considered. Violin plots represent means and bootstrap
distributions for each visual region. The output of AlexNet’s first fully-connected layer was used to train the
encoding model.
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Appendix G Feature extraction layer-by-layer architectures

Table 1: Hand-engineered CNN architectures

Input shape Layers Output shape

(H=96,W=96,C=1) Conv(N=320,K=9,S=1,P=4), Abs (H=96,W=96,C=320)

(a) Edge filter bank. (b) Curvature filter bank. (c) Random filter bank.

Figure 8: Filter banks for each hand-engineered CNN architecture.

Table 2: CIFAR100 CNN architecture

Input shape Layers Output shape

(H=32,W=32,C=3) Conv(N=16,K=7,S=1,P=0), ReLU, MaxPool(K=2,S=2) (H=13,W=13,C=16)
(H=13,W=13,C=16) Conv(N=32,K=5,S=1,P=0), ReLU, MaxPool(K=2,S=2) (H=4,W=4,C=32)
(H=4,W=4,C=32) Conv(N=64,K=3,S=1,P=0), ReLU, MaxPool(K=2,S=2) (H=1,W=1,C=64)

Table 3: ImageNet CNN architecture

Input shape Layers Output shape

(H=224,W=224,C=3) Conv(N=16,K=11,S=4,P=2), ReLU, MaxPool(K=3,S=2) (H=27,W=27,C=16)
(H=27,W=27,C=16) Conv(N=48,K=5,S=1,P=2), ReLU, MaxPool(K=3,S=2) (H=13,W=13,C=48)
(H=13,W=13,C=48) Conv(N=96,K=3,S=1,P=1), ReLU (H=13,W=13,C=96)
(H=13,W=13,C=96) Conv(N=64,K=3,S=1,P=1), ReLU (H=13,W=13,C=64)
(H=13,W=13,C=64) Conv(N=64,K=3,S=1,P=1), ReLU, MaxPool(K=3,S=2) (H=6,W=6,C=64)
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Appendix H Sample stimuli for fMRI study

Two example category sets

Example backgrounds

A

B

C

Example image from each category

Figure 9: Experimental stimuli used to train encoding models. A) In an fMRI experiment, subjects viewed
isolated images of objects from 81 different categories. This panel shows one example image from each category.
B) There were 10 unique tokens for each category (for a total of 810 unique stimuli). This panel shows all 10
stimuli for two categories. C) In the fMRI scanner, images were presented on complex, textured backgrounds to
reduce the saliency of low-level features related to object shape and size. This panel shows four example stimuli
on textured backgrounds.
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