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ABSTRACT

Point clouds are fundamental discrete representations used in computer vision,
robotics, etc. Chamfer Distance (CD) is widely adopted as a metric and training
loss to evaluate the similarity between two point clouds. However, the vanilla CD
is sensitive to outliers, which means a few widely distributed points can dispro-
portionately affect the final similarity score. Besides, CD calculates the simple
average of distances of matched point pairs between two sets, which does not
take into account the underlying point-wise distance distribution across two point
clouds (same weights assigned for short- and long-distance pairs by using uniform
distribution). To mitigate these issues, we analyze the effect of prioritizing short-
and long-distance pairs with Gaussian distributions obtained with grid search, and
based on the findings, we take an indirect approach to find Landau distribution, out
of many distributions, fits in the form of bimodal Gaussian mixture model which
balances two types of pairs. Based on this observation, we propose LandauCD, an
innovative loss function grounded in the Landau distribution. We conduct com-
prehensive experiments using LandauCD and observe significant improvements
consistently over all the popular baseline networks trained with CD-based losses,
leading to new state-of-the-art results on several benchmarks (PCN, Shapet-55/34,
ShapeNet-Part). We also delve into the theoretical explanation behind the con-
sistent improvements of LandauCD. Code and weights will be released upon
acceptance.

1 INTRODUCTION

Point Cloud Completion. Point clouds, which are straightforward to be collected using various
sensing technologies, represent a cornerstone data format that has become increasingly important in
the fields of modern robotics and automation. They are widely used in the tasks like object recognition,
mapping, and navigation. (Wang et al., 2022; Ma et al., 2022; Shi et al., 2022). Nonetheless, it’s
important to note that the raw point cloud data collected by current 3D sensing technologies often
suffers from incompleteness and sparsity. These limitations can arise from various factors such as
occlusions, which block parts of the view, constrained sensor resolution, and issues related to light
reflection or absorption. These challenges make the data less than ideal for immediate use in robotics
and automation applications. (Yu et al., 2018; Li et al., 2021b; Luo & Hu, 2021; Li et al., 2021a;
Zhou et al., 2022) and may adversely affect the efficacy of subsequent tasks requiring precise and
high-quality data representations, such as point cloud segmentation and object detection. Point cloud
completion (Alliegro et al., 2021) refers to the task of inferring the complete shape of an object or
scene from incomplete raw point clouds. Recently, many (deep) learning-based approaches have
been introduced to point cloud completion ranging from supervised learning and self-supervised
learning to unsupervised learning (Yuan et al., 2018; Wang et al., 2020a; Mittal et al., 2021; Cai et al.,
2022; Fan et al., 2022; Ren et al., 2022). Among these methods, supervised learning featuring a
standard encoder-decoder architecture has emerged as the predominant choice for many researchers.
This approach has been highly effective, setting new performance standards on almost all widely
recognized benchmarks in the field of point cloud completion. (Yu et al., 2021; Xiang et al., 2021;
Zhou et al., 2022; Wang et al., 2022; Fei et al., 2022).

Learning with Chamfer Distance (CD). CD serves as a popular metric in the field of point cloud
completion network design, such as SnowflakeNet(Xiang et al., 2021), PointAttN(Wang et al., 2022),
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etc.(Guo et al., 2020; Wu et al., 2021). It evaluates the dissimilarities between any two point cloud
sets by calculating the average distance of each point in one set to its nearest matching point in the
other set. While CD can faithfully reflect the global dissimilarity by treating the distances of all
nearest-neighbor pairs between both sets with equal importance. The formation of CD works as
the uniform distribution weight operation for paired distance, and thus it is likely to be negatively
affected by some points. Furthermore, by focusing on minimizing the Euclidean distances between
paired points, it’s commonly recognized that utilizing the CD for learning can be sensitive to outliers.
As a consequence, this sensitivity to outliers often results in a phenomenon known as clumping
behavior. In this scenario, a considerable number of points from one set correspond to a single point
in another set, leading to the visual formation of small, dense clusters. This behavior can readily
disrupt the commonly held assumption of uniform sampling from the underlying geometric surfaces,
an assumption often used in the generation of point clouds, and thus makes the similarity measure of
the underlying surfaces more challenging.

Improved CD from Distribution View. Intuitively, our view of understanding point clouds is consid-
ering it as the distribution of discrete sets of data points. Furthermore, in our point cloud completion
task, we recognized the calculated CD also as a distribution, which elaborates the questions: How
can we accurately measure the similarity between two point clouds while incorporating their paired
distances distribution data? To answer this, we need to bring a loss function correlated with the
paired distance distributions into discussion. An effective loss function should have two properties:
(1) Capable of (re) weighting the paired distance distribution of the point sets dynamically with
each paired object and (2) Considering information from points at both distant and near. From the
formation of CD (Eq. 3), we know that the vanilla CD uses mean operation to weighted by a uniform
distribution during the measurement of similarities. However, this method has limitations in learning:
uniform distribution does not differentiate different distant data points when training, and there is
no timely response to changes of paired distance distribution during the training process of different
objects.

Our Approach and Contributions. Motivated by the distance distribution mentioned above, we
seek a distribution function that can serve as a plug-in solution to re-weight distance pairs when
used in optimizing as a replacement for the vanilla CD. Unlike the works in (Lin et al., 2023), which
focus on emphasizing the optimization of well-matched point pairs (short-distance point pairs), we
also aim to decrease the number of outliers (distant point pairs) while minimizing the distances
of well-matched point pairs. Our approach is three-fold (Fig. 1) : 1) We explore the effect of the
shape of re-weighting functions on CD loss by comparing loss values under different settings on a
small subset. Two Gaussian distributions are derived, which emphasize short- and long- distance
point pairs, respectively. 2) Considering these two Gaussian distributions as components, we test
common distributions by calculating their dissimilarities (KL-divergence (Lyu et al., 2021)) to the
two components. In this step, each chosen distribution function we used is first approximated as a
weighted sum of two Gaussian distribution functions (Bhattacharya, 1967), which are then compared
with the two components. 3) The distribution function with the lowest dissimilarity is selected as
the target re-weight function. LandauCD is thus proposed as a loss function by integrating Landau
distribution into the vanilla CD. From the perspective of probability distributions, we can view
LandauCD as an extension of vanilla CD. Conversely, the vanilla CD can be treated as a special case
of re-weight loss functions, including LandauCD (when weights follow the uniform distribution).

To summarize, we list our main contributions as follows:

• We propose LandauCD by introducing Landau distribution into the CD loss, leading to a regularized
CD loss which mitigates outliers while preserving the well-matched point pairs.

• We analyze the effect of re-weight function over distance distributions of point pairs and provide a
systematic way of selecting a promising re-weighting function based on the a mechanism discussed
in our work.

• We conduct comprehensive experiments for point cloud completion and achieve state-of-the-art
results on popular benchmark datasets.
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2 RELATED WORK

Point Cloud Completion PCN (Yuan et al., 2018), as the first learning-based point cloud completion
network, extracts global features similarly to PointNet and generates points using FoldingNet’s (Yang
et al., 2018) folding operations. (Zhang et al., 2020) suggests extracting multi-scale features from
different layers to capture local structures and improve performance. Attention mechanisms, notably
the Transformer (Vaswani et al., 2017), excel at capturing long-range interactions, surpassing CNNs’
limited receptive fields. SnowflakeNet (Xiang et al., 2021), PointTr (Yu et al., 2021) and SeedFormer
(Zhou et al., 2022) accentuate the decoder component, incorporating Transformer designs. PointAttN
(Wang et al., 2022), distinctly, is conceived entirely on Transformer foundations. These works have
demonstrated the ability of Transformers in point cloud completion.

Distance Metrics for Point Clouds. Distance in point clouds is a non-negative function that measures
the dissimilarity between them. With relatively low computational cost fair design, CD and its variants
are extensively used in learning-based methods for point cloud completion tasks (Deng et al., 2019;
Lyu et al., 2021; Zhang et al., 2022; Tang et al., 2022). Earth Mover’s Distance (EMD), which is
another widely used metric, relies on finding the optimal mapping function from one set to the other
by solving an optimization problem. In some cases, it is considered to be more reliable than CD,
but it suffers from high computational overhead and is only suitable for sets with exact numbers of
points (Liu et al., 2020; Achlioptas et al., 2018). Recently, (Wu et al., 2021) propose a Density-aware
Chamfer Distance (DCD) as a new metric for point cloud completion which can balance the behavior
of CD and computational cost in EMD to a certain level.

Landau Distribution. In physics, ionization loss represents the energy loss in collision with target
electrons when charged particles traverses matter (Fermi, 1940). To better simulate the fluctuation of
the ionization energy loss, L.D. Landau employed the Laplace-Carson integral transform (Baerwald,
1936) and introduced dimensionless variable & parameters (Landau, 1944; Wilkinson, 1996; Grupen,
2000) on Bethe-Bloch formula (Bethe, 1933) to derive the Landau distribution as shown in Eq.1
under some ideal assumptions (Landau, 1944).

fL(x) =
1

2πi

∫ a+i∞

a−i∞
es log s+xsds (1)

where log(·) represent the natural logarithm, a ∈ R+, x is the dimensionless Landau’s universal
variable in (Wilkinson, 1996; Grupen, 2000; Bulyak & Shul’ga, 2022).

According to the approximation in Moyal et al. (Moyal, 1955), we can simplify Eq.1 to the following
stable distribution:

pL(x) =
1√
2π

exp

(
−x+ e−x

2

)
. (2)

Landau distribution has been widely implemented on ionization loss calculation (Palmatier et al.,
1955; Allison & Cobb, 1980; Nelson et al., 1985; Baró et al., 1995; Marucho et al., 2006) and random
number generation (Schorr, 1973; Kölbig & Schorr, 1983). In our work, Landau distribution shown
in Eq. 2 is utilized to constitute our novel loss function LandauCD.

3 METHODOLOGY

3.1 PRELIMINARIES

Chamfer Distance Loss. We denote (xi, yi) as the i-th point cloud pair, with xi = {xij} and
yi = {yik} as two sets of 3D points, and d(·, ·) as a certain distance metric. Then the CD loss for
point clouds can be defined as follows:

LCD(xi, yi) = ℓCD(xi, yi) + ℓCD(yi, xi) =
1

|yi|
∑
k

min
j

d(xij , yik) +
1

|xi|
∑
j

min
k

d(xij , yik),

(3)
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Figure 1: Flowchart of Optimal Distribution-Based Loss Function Searching Mechanism

For point cloud completion, function d usually refers to Euclidean ℓ1 or ℓ2 norm of a vector.

Challenges and Motivations. CD (Eq. 3) calculates the averaged value of matched point pair
distances, which is equivalent to uniformly re-weighting all the distances of matched point pairs.
As a classic issue of averaging, the value of CD can be disproportionally impacted by outliers
(matched point pairs with high distances). The vulnerability of CD to outliers is also discussed
in (Wu et al., 2021; Lin et al., 2023), which can lead to the drift towards suboptimal models. To
address this issue, different re-weighting mechanisms have been applied in the above-mentioned
works. However, most of the re-weighting mechanisms treat distances of point pairs as a whole
without considering characteristics (the distribution of distances) of point pairs. Furthermore, these
re-weighting mechanisms tend to de-prioritize the outliers while over-weighting short-distance pairs,
which does not limit the number of outliers. In the light of the previous works, we hope to find a
re-weighting mechanism which is capable of balancing the short- and long-distance point pairs. More
specifically, an ideal weighting mechanism in our perspectives should be able to preserve/improve
the quality of short-distance point pairs while limiting the number of long-distance point pairs (as a
way to reduce outliers).

3.2 ANALYSIS

Prioritizing Point Pairs with Different Distances. Previous study(Lin et al., 2023) indicates that
prioritizing short-distance point pairs benefits the completion task. This naturally led us to ponder:
would prioritizing long-distance point pairs also help the training process? To answer this question,
we first use grid search and find two Gaussian distributions. Gaussian is chosen because of its
relatively small search space (it can fully characterized with only two parameters). After conducting a
grid search, two representative Gaussian distribution (N (µ1, σ

2
1) and N (µ2, σ

2
2)) are selected (these

two distributions are shown in Fig. 3 (b) as GC 1 and GC 2). These two distributions are then used
independently as re-weight functions in training. The experiment results align with our hypothesis.
Both Gaussian distributions yield promising results, which implies prioritizing long-distance point
pairs can also lead to performance similar to prioritizing short-distance point pairs.

Albeit the similarity in performances, the difference in using two components independently can
be easily seen in the comparison of both distributions of distances in matched point pairs (Fig. 2).
By prioritizing the short-distance point pairs (GC 1), we observe more point pairs with very small
distances (0.5× 10−3). On the other hand, by prioritizing the long-distance pairs (GC 2), the portion
of pairs with longer distances (4× 10−3) is reduced. The same pattern is found in different epochs of
training. These observations also prove prioritizing long-distance point pairs is a valid way to reduce
outliers.

Combining Distributions. To leverage the optimization effects of both Gaussian components, a
natural and simple way of thinking is to combine these two components into one function with a
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Figure 2: Comparisons of Distributions of Distances in Matched Point Pairs (Distances (x axis) are
multiplied by 103 in visualization). The three plots corresponds to distance distribution sampled
at different training epochs. The representative Short-Distance GC 1 and Long-Distance GC 2
components are used independently as re-weight function in training.

weighted summation. The combination of both components can have some characteristics from both
sides, as mentioned in the previous section. Expressed in mathematical form, the re-weight function
should take the following form.

W (x) = λφ(x|µ1, σ
2
1) + (1− λ)φ(x|µ2, σ

2
2), 0 < λ < 1 (4)

We use λ as the factor to balance the two Gaussian components (denoted as φ(x|., .)) and µi, σ
2
i are

the mean and variance of a given component. It is easy to tell the re-weight function takes the form
of a bimodal Gaussian mixture model (Reynolds et al., 2009).

Thus, the CD loss function with the re-weight function should take the following form.

CDW (S1, S2) =
∑
x∈S1

ŷW (ŷ) +
∑
y∈S2

x̂W (x̂), (5)

where ŷ = miny∈S2
||x− y||2, x̂ = minx∈S1

||y − x||2.

Smooth Curve Constraint. The re-weight function adopts the form of Gaussian mixture model,
however, the choice of λ is not arbitrary. As a bimodal Gaussian mixture model, most of selections
of λ will result in two visible peaks in the visualization of function, creating troughs of valleys
between them. These configurations lead to sudden changes or unnecessary sinuous fluctuations in
the shape of the re-weight function, which might cause point pairs with similar distances receiving
disproportionate weights when used in training.

The issue of configurations in bimodal Gaussian mixture model becomes more evident in our setting.
The two Gaussian components characterized by µ1, σ1 and µ2, σ2 are not located near each other (in
other words, the absolute value of µ1 − µ2 is usually not negligible), since these two components are
prioritizing different parts in the spectrum of distance distribution of point pairs. As a result, there is
not a straightforward way of choosing a λ with the constraint satisfied.

Indirect Solution to the Constrained Problem. While the choice of λ is difficult, we opt to take an
indirect approach to solve a similar question which is more manageable: which common distribution
function can be approximated as a bimodal Gaussian mixture model while both split-ted distributions
are close to the Gaussian components mentioned above?

The intuition behind this approach is straightforward: most of the common distribution functions are
smooth in nature. To avoid excessively large search space introduced by additional parameters in
common distributions, we limit values parameters in each test distributions to take its most simplistic
form. The common distributions and the parameter configurations are listed in Table 4.

To approximate each of the tested distribution p as a bimodal Gaussian mixture model, we apply
Markov Chain Monte Carlo (MCMC) method(Brooks, 1998) to firstly sample from each distribution.
We keep 106 sample size for each of the test distribution. The sample is then fed into a Gaussian
Mixture Model to generate two components. The two components (f1 and f2) take the following
form, which is similar to Eq. 4. Note λ

′
is automatically determined in this process. For example,

Fig. 3 (a) shows the two Gaussian components generated by applying Gaussian Mixture Model
decomposition on Landau distribution.

5



Under review as a conference paper at ICLR 2024

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.00

0.05

0.10

0.15

0.20

0.25
Origin
Component 1 N(0.37, 1.44), W= 0.727
Component 2 N(3.65, 6.04), W= 0.273

(a) Decomposition of Landau Distribution
(MCMC +GMM )

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
GC 1 (SD)
GC 2 (LD)
Landau Component 1
Landau Component 2

(b) Representative Gaussian Components and Landau
Decomposition Results

Figure 3: (a) Decomposition of Landau Distribution. Landau distribution is approximated with the
weighted summation of two Gaussian components. (b) The comparison between the representative
Gaussian components (GC 1 and GC 2) and the components obtained by GMM decomposition.

p(x|...) = λ
′
φ(x|µ

′

1, σ
′2
1 ) + (1− λ

′
)φ(x|µ

′

2, σ
′2
2 ), 0 < λ

′
< 1 (6)

Evaluating the Two Components. We compare the two components with the components obtained
from grid search using KL divergence. This operation is done for all the test distributions. The test
distribution with the smallest KL divergence is selected as the re-weight function. This operation can
be expressed as:

W ≈ W̃ = argmin
p∈P

KL
(
N (µ

′

1, σ
′2
1 ),N (µ1, σ

2
1)
)
+ KL

(
N (µ

′

2, σ
′2
2 ),N (µ2, σ

2
2)
)

(7)

where p is a single test distribution of all the test distributions P we experiment with. The values
of two split-ted components (µ

′

1, σ
′

1, µ
′

2 and σ
′

2) are obtained from decomposition results with the
Gaussian Mixture Model. We assume µ1 < µ2 and µ

′

1 < µ
′

2 for all the comparisons. The KL
divergence values for all the test distributions we choose are tabulated in Table 4. We can see
among all the test distributions, the Landau distribution has the minimal KL divergence score, which
indicates it is the most similar approximation to Eq. 4. In other words, Landau is selected as W̃ as an
approximation of W . We can also view Landau as one of the smooth functions that are capable of
balancing the priorities of short-distance and long-distance during training. In Fig. 3 (b), we can see
the decomposition results of Landau distribution and two representative components are also visually
close.

Evaluating using W (the value of λ is set to λ
′
) and W̃ yields similar results (CD on W : 4.03; CD on

W̃ : 4.00), which both outperform models trained with a single Gaussian component alone by a large
margin (CD on GC1: 4.08; CD on GC2: 4.07). W̃ (Landau) gives a slightly better result compared
with W , which can be explained by the higher smoothing nature in Landau.

3.3 LANDAUCD LOSS

Based on the analysis, we propose LandauCD as a loss function by integrating probability distribution
of Landau pLandau(x) into vanilla CD (we substitute W with pLandau(x) in Eq. 5), and the loss
function is shown as follows.

CDLandau(S1, S2) =
∑
x∈S1

ŷ
1√
2π

exp

(
− ŷ + e−ŷ

2

)
+

∑
y∈S2

x̂
1√
2π

exp

(
− x̂+ e−x̂

2

)
, (8)

where ŷ = miny∈S2 ||x− y||2, x̂ = minx∈S1 ||y − x||2.
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4 EXPERIMENTS

Datasets. We conduct experiments for point cloud completion on the following benchmark datasets:

• PCN (Yuan et al., 2018): This dataset is a subset of ShapeNet (Chang et al., 2015), encompassing
shapes from eight categories. The incomplete point clouds are derived by back-projecting 2.5D
depth images from eight viewpoints, mimicking real-world sensor data. Each shape has 16,384
points uniformly sampled from mesh surfaces as complete ground truth, with 2,048 points sampled
as partial input (Tchapmi et al., 2019; Zhou et al., 2022).

• ShapeNet-55/34 (Yu et al., 2021): ShapeNet-55 contains 55 categories in ShapeNet, with 41,952
shapes for training and 10,518 shapes for testing. ShapeNet-34 uses a subset of 34 categories
for training and leaves 21 unseen categories for testing, where 46,765 object shapes are used for
training, 3,400 for testing on seen categories, and 2,305 for testing on novel (unseen) categories. In
both datasets, 2,048 points are sampled as input and 8,192 points as ground truth. Following the
same evaluation strategy with (Yu et al., 2021), 8 fixed viewpoints are selected and the number of
points in the partial point cloud is set to 2,048, 4,096 or 6,144 (25%, 50% or 75% of a complete
point cloud) which corresponds to three difficulty levels of simple, moderate and hard in the test
stage.

• ShapeNet-Part (Yi et al., 2016): This dataset is a subset of ShapeNetCore 3D meshes, encompassing
17,775 distinct 3D meshes across 16 categories. The ground-truth point clouds are obtained by
uniformly sampling 2,048 points on each mesh. The partial point clouds are generated by randomly
selecting a viewpoint from multiple viewpoints as a center and eliminating points within a specified
radius from the complete data, with a total of 512 points being removed from each point cloud.

Figure 4: Visual Comparison on PCN. Row-1: Inputs of Incomplete Point Clouds. Row-2: Outputs
of Seedformer with CD. Row-3: Outputs of Seedformer with LandauCD. Row-4: Ground truth.

Implementation. We first take three state-of-the-art networks, CP-Net (Lin et al., 2022), PointAttN
(Wang et al., 2022) and SeedFormer (Zhou et al., 2022), as our backbone networks for comparison
and analysis. We also apply LandauCD to almost all the popular completion networks in recent years,
FoldingNet (Yang et al., 2018), PMP-Net (Wen et al., 2021), PoinTr (Yu et al., 2021), SnowflakeNet
(Xiang et al., 2021), to verify its performance by replacing the original CD loss wherever it occurs.
We do the same replacement for all the other comparative losses in our experiments. We train all these
networks from scratch using PyTorch, optimized by either Adam (Kingma & Ba, 2014) or AdamW
(Loshchilov & Hutter, 2017). To ensure fairness in comparison, we replace the loss functions from
all the stages with LandauCD so it can participate in the whole training process. Hyperparameters
such as learning rates, batch sizes and balance factors in the original losses for training baseline
networks are kept consistent with the baseline settings. We conduct our experiments on a server with
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4 NVIDIA A100 80G GPUs and one with 10 NVIDIA Quadro RTX 6000 24G GPUs due to the large
model sizes of some baseline networks.

Evaluation. Following the literature, we evaluate the best performance of all the methods using CD
(lower is better). We also use F1-Score@1% (Tatarchenko et al., 2019) (higher is better) to evaluate
the performance on ShapeNet-55/34. For better comparison, we cite the original results of some other
methods on PCN and ShapeNet-55/34.

4.1 STATE-OF-THE-ART COMPARISON

Table 1: Comparison on PCN in terms of per-point L1-CD ×1000.
Methods Plane Cabinet Car Chair Lamp Couch Table Boat Avg.

TopNet (Tchapmi et al., 2019) 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15
AtlasNet (Groueix et al., 2018) 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61 10.85

GRNet (Xie et al., 2020) 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83
CRN (Wang et al., 2020b) 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51
NSFA (Zhang et al., 2020) 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48 8.06
FBNet (Yan et al., 2022) 3.99 9.05 7.90 7.38 5.82 8.85 6.35 6.18 6.94
PCN (Yuan et al., 2018) 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 11.27

FoldingNet (Yang et al., 2018) 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31
LandauCD+FoldingNet 7.30 12.69 10.46 13.00 11.92 13.39 10.86 10.59 11.27

PMP-Net (Wen et al., 2021) 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73
LandauCD+PMP-Net 4.59 10.10 8.90 8.57 6.38 10.47 7.49 6.75 7.92

PoinTr (Yu et al., 2021) 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38
LandauCD+PoinTr 4.12 9.49 8.07 7.82 6.30 9.28 6.76 6.41 7.28

SnowflakeNet (Xiang et al., 2021) 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40 7.21
LandauCD+SnowflakeNet 3.98 8.97 7.78 7.40 5.76 8.86 6.16 6.14 6.88

PointAttN (Wang et al., 2022) 3.87 9.00 7.63 7.43 5.90 8.68 6.32 6.09 6.86
LandauCD+PointAttN 3.72 8.88 7.46 7.04 5.60 8.47 6.24 5.93 6.66

SeedFormer (Zhou et al., 2022) 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74
LandauCD+SeedFormer 3.65 8.68 7.64 6.80 5.04 8.57 5.79 5.71 6.49

PCN. In accordance with the
literature, we report the CD
with L1-distance in Table 1.
As we can see, LandauCD
significantly enhances the per-
formance across all baselines
consistently, achieving new
state-of-the-art results. As
previously mentioned, numer-
ical metrics like CD may
not accurately encapsulate the
visual quality; hence, we
also furnish qualitative eval-
uation results in Fig. 4, jux-
taposed with outcomes gener-
ated from Seedformer trained
with CD loss. It is discernible
that both models can approx-
imate point clouds in general
outlines to a certain degree,
yet the completion results em-
ploying CD are prone to distortion in several regions with high surface noise levels. Conversely,
LandauCD significantly aids the baseline network in better reconstructing point clouds within general
outlines while preserving the realistic details of the original ground truth and effecting a notable
reduction in noise.

Table 2: Results on ShapeNet-55 using L2-CD×1000 and F1 score.
Methods Table Chair Plane Car Sofa CD-S CD-M CD-H Avg. F1

PFNet 3.95 4.24 1.81 2.53 3.34 3.83 3.87 7.97 5.22 0.339
TopNet 2.21 2.53 1.14 2.18 2.36 2.26 2.16 4.3 2.91 0.126

PCN 2.13 2.29 1.02 1.85 2.06 1.94 1.96 4.08 2.66 0.133
GRNet 1.63 1.88 1.02 1.64 1.72 1.35 1.71 2.85 1.97 0.238

FoldingNet 2.53 2.81 1.43 1.98 2.48 2.67 2.66 4.05 3.12 0.082
LandauCD+F. 2.09 2.32 1.01 1.50 2.01 2.15 2.46 3.39 2.66 0.141

PoinTr 0.81 0.95 0.44 0.91 0.79 0.58 0.88 1.79 1.09 0.464
LandauCD+P. 0.69 0.83 0.33 0.80 0.67 0.43 0.70 1.47 0.88 0.527

SeedFormer 0.72 0.81 0.40 0.89 0.71 0.50 0.77 1.49 0.92 0.472
LandauCD+S. 0.67 0.73 0.34 0.82 0.62 0.45 0.73 1.39 0.86 0.489

ShapeNet-55/34. We assess
the adaptability of LandauCD
across both datasets for tasks
with higher diversities. Ta-
ble 2 enumerates the L2-CD
across three levels of diffi-
culty, alongside the average.
In accordance with the litera-
ture, we delineate the results
across five categories (Table,
Chair, Plane, Car, and Sofa)
which have training sample
counts exceeding 2,500, as
presented in the table. Addi-
tionally, we furnish the results utilizing the F1 metric. Yet again, LandauCD has markedly enhanced
the baseline models, particularly in instances where networks are simpler, such as FoldingNet.

Figure 5: Detailed Visual on Seedformer. Green with LandauCD. Yellow with CD.
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Table 3: Results on ShapeNet-34 using L2-CD×1000 and F1 score.

Methods 34 seen categories 21 unseen categories
CD-S CD-M CD-H Avg. F1 CD-S CD-M CD-H Avg. F1

PFNet 3.16 3.19 7.71 4.68 0.347 5.29 5.87 13.33 8.16 0.322
TopNet 1.77 1.61 3.54 2.31 0.171 2.62 2.43 5.44 3.50 0.121

PCN 1.87 1.81 2.97 2.22 0.154 3.17 3.08 5.29 3.85 0.101
GRNet 1.26 1.39 2.57 1.74 0.251 1.85 2.25 4.87 2.99 0.216

FoldingNet 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
LandauCD+F. 1.50 1.57 3.04 2.03 0.174 2.40 2.45 5.02 3.29 0.154

PoinTr 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384
LandauCD+P. 0.44 0.65 1.29 0.79 0.525 0.63 1.07 2.54 1.41 0.492

SeedFormer 0.48 0.70 1.30 0.83 0.452 0.61 1.08 2.37 1.35 0.402
LandauCD+S. 0.42 0.64 1.23 0.76 0.580 0.56 1.03 2.17 1.25 0.447

On ShapeNet-34, we as-
sess performances within
34 seen categories (iden-
tical to training) as well
as 21 unseen categories
(not utilized in training),
and enumerate our results
in Table 3. It is observ-
able that, once again, Lan-
dauCD enhances the per-
formance of baseline mod-
els, suggesting that Lan-
dauCD is highly generaliz-
able for point cloud com-
pletion tasks. We also pro-
vide some details results
in Fig. 5.

Table 4: CP-Net Avg. Results on ShapeNet-Part.

Distribution Parameters Bimodal N∼(µ, σ2) KL-Divergence L2-CD×103

Levy µ=0.0, β=0.5 (4.670, 12.242), (0.494, 0.189) 15.68 4.83
Hyper secant µ=0.0, β=0.0 (0.037, 0.934), (-0.344, 0.79) 1.11 4.74

Laplace µ=0.0, β=1.0 (-0.035, 0.771), (0.254, 4.078) 0.41 4.55
Cauchy µ=0.0, β=0.5 (-0.062, 1.849), (5.329, 12.955) 0.26 4.15
Gumbel µ=0.5, β=2.0 (0.578, 2.388), (4.003, 7.134) 0.09 4.19

Landau µ=0.0, β=1.0 (0.375, 1.437), (3.613, 6.069) 0.03 4.00

Analysis.

Table 5: CP-Net Results on ShapeNet-Part.

Loss L2-CD×103

L1-CD 4.16
L2-CD 4.82

DCD (Wu et al., 2021) 5.74

LandauCD 4.00

We have chosen the ShapeNet-Part dataset for analy-
sis, in comparison with various distribution-based loss
functions. As previously introduced, ShapeNet-Part is
a relatively compact dataset encompassing 16 categor-
ical objects, which suffices for the analysis in our case.
Regarding the model architecture, we have selected
a lightweight network, denoted as CP-Net(Lin et al.,
2022). With CP-Net on ShapeNet-Part dataset, we con-
duct intensive experiments for verifying our hypothesis
and analyzing our results, Table 4 provides the common
distribution behavior and its related hyper-parameters.
We also summarize our result in Table 5 and compare with the results of CP-Net trained with some
popular loss functions.

5 CONCLUSION

We propose a new loss function for point cloud completion, namely LandauCD, which re-weights the
CD loss and prioritizes alignment the paired distance distributions between prediction and ground
truth from both short- and long-distance point pairs. In particular, we discuss and analyze common
probabilistic distributions and select Landau as our optimal solution. Comprehensive experiments
have been conducted to demonstrate its effectiveness and efficiency using 7 networks on 4 datasets,
leading to new state-of-the-art results.

Limitations. While we observe prioritizing point pairs with single Gaussian distribution can lead
to expected behaviors (distance distribution changes), the optimization behavior of combining two
distributions with weighted summation still needs more rigorous investigation. Besides, the use of
grid search in our analysis limits the granularity of parameters when searching for representative
distributions for short- and long-distance point pairs.
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