ONLINE INVENTORY OPTIMIZATION IN NON-STATIONARY ENVIRONMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper addresses online inventory optimization (OIO), an extension of online convex optimization. OIO is a sequential decision-making process in inventory management cycles consisting of order arrival, stock consumption, and new order placement. One key challenge in OIO is managing demand fluctuations. However, most existing algorithms still cannot sufficiently handle this because they focus on a static regret guarantee, comparing their performance to a fixed order-up-to level strategy. In non-stationary environments, such static comparator is unsuitable due to demand fluctuations. In this paper, we propose an algorithm with near-optimal dynamic regret guarantee for OIO. Our algorithm also offers an improvement of $\sqrt{L_{\rm max}}$ for the static regret upper bound in existing studies. Here, $L_{\rm max}$ refers to the maximum sell-out period. Our algorithm employs a simple two-stage projection strategy, through which we prove that the OIO is connected to the smoothed online convex optimization.

1 Introduction

Inventory management is crucial in supply chain management, with extensive research focusing on optimal ordering strategies for various inventory systems. In particular, systems with periodic reviews and carryover stock are closely related to real-world problems. Numerous approaches have been proposed for these systems, assuming known demand models (see, e.g., Glock et al. (2014)). However, it is often challenging to obtain a complete demand model in advance, which highlights the necessity for online learning techniques to adapt to unknown demands.

Recently, Online Convex Optimization (OCO) (Hazan et al., 2016; Orabona, 2019; Shalev-Shwartz et al., 2012) has attracted attention in the online inventory management (Huh & Rusmevichientong, 2009; Shi et al., 2016; Zhang et al., 2018a; 2020; Yuan et al., 2021; Agrawal & Jia, 2022; Hihat et al., 2023). OCO is a sequential learning framework in which for each round $t \in [T]$, the decision maker chooses an N-dimensional vector y_t that is in a convex feasible region $\mathcal{C} \subset \mathbb{R}^N$ and then environment reveals a convex loss function ℓ_t . The typical aim of the decision maker is to minimize the static regret, $\sum_t \ell_t(y_t) - \min_{u \in \mathcal{C}} \sum_t \ell_t(u)$. Here we note that in the inventory system, most loss functions, such as the Newsvendor loss, are convex.

Online inventory optimization (OIO) is a variant of OCO, formulated by Hihat et al. (2023). In OIO, a sequential decision-making process involving the inventory cycle of order arrival, stock consumption, and new order placement is considered. During each round $t \in [T]$, the stock is replenished to the order-up-to level of y_t set in the previous round. The environment processes the subsequent demand and post-processing activities, revealing an N-dimensional carryover stock level of x_{t+1} and a subgradient $y_t \in \partial \ell_t(y_t)$ that is associated with the convex loss incurred by the decision y_t . Then, the decision maker determines the next order-up-to level y_{t+1} that is greater than x_{t+1} and less than the capacity constraint of the warehouse. In the OIO setting, Hihat et al. (2023) have proposed the MaxCOSD algorithm, which achieves a sublinear static regret.

However, the static regret guarantee is not sufficient for practical applications, especially in environments with demand fluctuations. Consider a simple example of a single-item inventory system with a capacity limit of D. Set the fluctuating demand as $d_t = Dt/T$ for $t \in [T]$ and the loss function as the Newsvendor loss of $\ell_t(y) = |y - d_t|$. A straightforward calculation shows that the minimum total loss of the static comparator is $\min_{u \in [0,D]} \sum_{t=1}^T \ell_t(u) = \mathcal{O}(DT)$, whereas a time-varying

Table 1: Regret bounds of [1] Huh & Rusmevichientong (2009); [2] Zhang et al. (2018a); [3] Zhang et al. (2020); [4] Agrawal & Jia (2022); [5] Yuan et al. (2021); [6] Shi et al. (2016); [7] Hihat et al. (2023); and our work. In the table, we list the regret bounds for each reference by replacing the demand characteristic parameters used in each paper with our indicator $L_{\rm max}$. C in the fifth row is a positive constant which depends on other parameters. In the references marked with a dagger, lead time is taken into account. We show the regret bounds when the lead time is equal to one. S/M in the Item column represents Single/Multiple item setting. NV, O, and F in the Loss column represent Newsvendor loss, outdating cost, and fixed cost, respectively.

Regret	Reference	Upper Bound	Lower Bound	Item	Loss	Demand
Static	[1]	$\mathcal{O}(L_{\text{max}}\sqrt{T})$		S	NV	i.i.d.
	[2]	$\mathcal{O}(L_{\max}\sqrt{T})$	$\Omega(\sqrt{T})$	S	NV + O	i.i.d.
	[3]†	$\mathcal{O}(L_{\max}\sqrt{T})$	$\Omega(\sqrt{T})$	S	NV	i.i.d.
	[4] [†]	$\tilde{\mathcal{O}}(\sqrt{T} + L_{\max})$		S	NV	i.i.d.
	[5]	$\tilde{\mathcal{O}}(e^{CL_{\max}}\sqrt{T})$		S	NV + F	i.i.d.
	[6]	$\mathcal{O}(L_{\max}\sqrt{T})$		M	NV	indep.
	[7]	$\mathcal{O}(L_{\max}\sqrt{T})$		M	Convex	non-i.i.d.
Static	[This work]	$\tilde{\mathcal{O}}(\sqrt{L_{\max}T})$	$\Omega(\sqrt{L_{\max}T})$	M	Convex	non-i.i.d.
Dynamic		$\tilde{\mathcal{O}}(\sqrt{L_{\max}(1+P_T)T})$		141	Convex	11011 1.1.0.

comparator with $u_t = d_t$ results in $\sum_{t=1}^T \ell_t(u_t) = 0$. Thus, even if we have an algorithm with $\mathcal{O}(\sqrt{T})$ -static regret for this example, it may still suffer from $\Omega(T)$ -regret when comparing it to u_t .

Recent studies on OCO have intensively investigated algorithms for dynamic environment (Hall & Willett, 2013; Zhang et al., 2018b; Zhao et al., 2020; 2024). The dynamic regret is an indicator that measures an algorithm's tolerance against changing environments. In the context of OCO, the dynamic regret is defined as $R_T(u_1,\ldots,u_T):=\sum_{t=1}^T\ell_t(x_t)-\sum_{t=1}^T\ell_t(u_t)$, which is a function of a time-varying comparator sequence u_1,\ldots,u_T . A major approach for the dynamic regret is based on a two-layer structure, where a meta-algorithm adaptively accumulates the decisions of a set of base leaners (Zhang et al., 2018b; van Erven et al., 2021; Zhang et al., 2022b). Such algorithm ensures $\mathcal{O}(\sqrt{(D+P_T)T})$ -dynamic regret, where P_T is the total path-length of the comparator: $P_T:=\sum_{t=2}^T\|u_{t-1}-u_t\|_1$. Therefore, in OIO, a key question is whether we can construct an algorithm that ensures an $\mathcal{O}(\sqrt{(D+P_T)T})$ -dynamic regret in the OIO setting. If we have such an algorithm, we obtain a sublinear dynamic regret for the aforementioned example because $P_T=\sum_{t=2}^T D/T=\mathcal{O}(D)$.

One major difficulty in the dynamic regret minimization for OIO is the carryover stock constraint. While the order-up-to level y_t must be greater than the carryover stock x_t , the comparator u_t is not subject to this constraint. Thus, the feasible region of u_t is always a superset of that of y_t . Most algorithms for OCO provide regret guarantees only for comparators \hat{u}_t that are in the same feasible region as y_t . Consequently, this naive application results in $\mathcal{O}(T)$ -regret due to the gap between \hat{u}_t and u_t . For the static regret minimization, Hihat et al. (2023) overcome this difficulty by cyclical update approach, where y_t is only updated to a candidate \hat{y}_t when \hat{y}_t is feasible.

When considering the dynamic regret, however, we cannot employ a standard two-layer structure with an OIO algorithm (such as MaxCOSD) as the base learner to leverage its theoretical guarantees. A fundamental difficulty is that this architecture contradicts a key assumption for OIO algorithms: the carryover stock level x_{t+1} must be less than the preceding replenished stock level y_t . A meta-algorithm's decision y_t might be larger than the output y_t^a of a base learner a. With a small demand, x_{t+1} can exceed y_t^a . For the base learners, this carryover stock level violates their assumption $(x_t^i \leq y_t^{ai} \text{ for all } i)$. This inconsistency prevents us from obtaining a theoretical guarantee for the two-layer structure.

1.1 CONTRIBUTIONS

The main contribution of this paper is to propose OIO algorithms with near-optimal dynamic regret guarantee, as stated in the following theorem.

Theorem 1 (Informal). Under the constraints of carryover stock and the warehouse capacity, there exists an algorithm that ensures

$$R_T(u_1,\ldots,u_T) \leq \tilde{\mathcal{O}}(\sqrt{L_{\max}T(1+P_T)}),$$

for any sequences of the comparator u_1, \ldots, u_T , without knowing L_{\max} and P_T a priori.

Here, $\tilde{\mathcal{O}}$ is an order symbol that ignores logarithmic factors. L_{\max} is the maximum sell-out period defined in Definition 1, which, informally speaking, indicates that the total demand over L_{\max} rounds is at least the warehouse capacity. For static regret, the algorithm guarantees $\tilde{\mathcal{O}}(\sqrt{L_{\max}T})$ -regret, offering an improvement of $\sqrt{L_{\max}}$ over the existing works. The regret bounds are summarized in Table 1.1

Our algorithm employs a simple two-stage projection strategy consisting of a base learner and its projection onto a feasible region. In each round t, an observed subgradient g_t is fed to the base learner to propose a decision \hat{y}_{t+1} , which is then adjusted to y_{t+1} to meet carryover stock constraints.

A distinctive feature of our algorithm is that the base learner's decision is made independently of the carryover stock.

We note that our update process differs from MaxCOSD's in that ours allows the order-up-to level y_t to change, even if the base learner's decision \hat{y}_t is infeasible.

Our primary technical contributions are twofold. First, we demonstrate that, under our two-stage projection, the dynamic regret can be bounded by the base learner's regret with switching costs proportional to $L_{\rm max}$, which eliminates the concerns regarding the dynamic carryover stock constraint. Leveraging this result, we achieve a near-optimal dynamic regret by employing an algorithm for well-known Smoothed OCO (SOCO) (Lin et al., 2011; Zhang et al., 2021; 2022c;a) as the base learner, along with the doubling trick for unknown $L_{\rm max}$.

Second, we provide, for the first time, a $\Omega(\sqrt{L_{\rm max}T})$ lower bound for the OIO setting. Our matching upper and lower bounds establish that $\tilde{O}(\sqrt{L_{\rm max}T})$ is nearly optimal, which resolves the open question raised by Hihat et al. (2023).

2 RELATED WORKS

Inventory Management Inventory management is a long-standing research topic in the field of operations research. It addresses various conditions, such as demand model (deterministic or stochastic), carryover status (stateless or stateful), review frequencies (periodic or continuous), lead times (constant or probabilistic), item types (single or multiple), stockout types (backorders or lost opportunities), ordering costs (linear or non-linear, with or without fixed order cost), disposal losses, multi-echelon systems, and more (see, e.g., Zipkin (2000); Porteus (2002)). In particular, a stateful inventory system with periodic reviews, i.e., a situation where the remaining stock from the previous period is carried over, is closely related to real-world problems. Numerous methods have been proposed for scenarios where the demand model is known in advance (Glock et al., 2014). However, in many cases, obtaining a complete demand model in advance is challenging. This difficulty highlights the importance of online learning for inventory optimization. As the objective function is often convex (e.g., the Newsvendor loss), various studies have explored this online inventory optimization problem in relation to online convex optimization problems (Huh & Rusmevichientong, 2009; Shi et al., 2016; Zhang et al., 2018a; 2020; Yuan et al., 2021; Agrawal & Jia, 2022; Hihat et al., 2023).

¹The parameters corresponding to $L_{\rm max}$ in each reference are as follows: $1/\gamma$ in Huh & Rusmevichientong (2009); $1/\mu$ in Zhang et al. (2018a); $1/c_2$ in Zhang et al. (2020); D in Agrawal & Jia (2022); $\rho\beta$ in Yuan et al. (2021); 1/l in Shi et al. (2016); and $1/\mu$ in Hihat et al. (2023).

Algorithm 1 Setting of Online Inventory Optimization

```
    Initialize the inventory level x₁ ∈ C(0), order-up-to level y₁ ∈ C(x₁), where C is defined in Eq. (4).
    for t = 1,...,T do
```

- 3: Observe an inventory level x_{t+1} that satisfies $x_{t+1,i} \in [0, y_{t,i}]$ for all $i \in [N]$.
- 4: Observe a subgradient $g_t \in \partial \ell_t(y_t)$.
- 5: Decide the next order-up-to level y_{t+1} that satisfies $y_{t+1} \in \mathcal{C}(x_{t+1})$.
- 6: end for

Online Convex Optimization Online convex optimization (OCO) (Shalev-Shwartz et al., 2012; Hazan et al., 2016; Orabona, 2019) is a sequential learning framework that chooses y_t and minimizes regret $\sum_t f_t(y_t) - \sum_t f_t(u)$ for a convex time-varying function f_t . It is shown that Online Gradient Descent algorithm (OGD) achieves the minimax optimal regret bound of $\mathcal{O}(\sqrt{T})$ (Zinkevich, 2003; Abernethy et al., 2008). For an exp-concave loss function, faster convergence can be achieved by Online Newton Step algorithm (Hazan et al., 2007), which enjoys a static regret bound of $\mathcal{O}(\sqrt{\log T})$.

In OCO, one of the important topics is developing algorithms that adapt to dynamic environments. There are two major performance metrics: dynamic regret and (strongly) adaptive regret. Dynamic regret, also known as switching or tracking regret, is defined as $R_T(u_1,\ldots,u_T):=\sum_{t=1}^T\ell_t(y_t)-\sum_{t=1}^T\ell_t(u_t)$ (Hall & Willett, 2013; Zhang et al., 2018b; Zhao et al., 2020; 2024). In Zhang et al. (2018b), it is shown that a two-layer algorithm called Ader achieves the optimal regret upper bound of $\mathcal{O}(\sqrt{(1+P_T)T})$. Adaptive regret (also known as interval regret) is defined as $R_T([s,e]):=\sum_{t\in[s,e]}\ell_t(y_t)-\min_{u\in\mathcal{C}}\sum_{t\in[s,e]}\ell_t(u)$. Here the regret is a function of the interval $[s,e]:=s,s+1,\ldots,e-1,e$, where $1\leq s\leq e\leq T$. A weaker definition, considering the maximum regret, has been first proposed by Hazan & Seshadhri (2007). Later on, Daniely et al. (2015) have extended it to account for any interval length. Jun et al. (2017) have proposed an algorithm achieving an adaptive regret of $\mathcal{O}(\sqrt{\tau \log T})$, where τ represents the length of the interval considered.

Smoothed OCO (SOCO) is a variant of OCO that incorporates the switching cost $\lambda \|y_t - y_{t+1}\|$ into the regret. The concept of switching cost is first motivated by data center management (Lin et al., 2011) and in the standard setting, the cost function ℓ_t is provided before making the decision x_t (Bansal et al., 2015; Chen et al., 2018; Goel & Wierman, 2018; Goel et al., 2019). In the setting where the decision is made before observing the loss, OGD can achieve $\mathcal{O}(\sqrt{\lambda T})$ static regret (see, for example, Zhang et al. (2022a)). Zhang et al. (2021) have proposed an algorithm for the dynamic regret minimization based on Ader algorithm (Zhang et al., 2018b). Besides, it is pointed out that algorithms for OCO with memory guarantees the adaptive regret for SOCO (Zhang et al., 2022c; Gradu et al., 2023). Recently, Zhang et al. (2022a) have proposed an algorithm that guarantees upper bounds for both dynamic and adaptive regret by utilizing Discounted-Normal-Predictor (Kapralov & Panigrahy, 2011).

3 PROBLEM SETTING

We consider the online inventory optimization problem for N items. The stock levels of each item are represented by components of a N-dimensional vector, which is an element of a convex space $\mathcal{C} \subset R^N_{\geq 0}$ that defines the capacity constraints of the warehouse. At each round $t \in [T]$, the decision maker receives the order placed in the previous round, resulting in the stock level reaching the order-up-to level y_t . Following this, the environment processes the subsequent demand and necessary post-processing activities, revealing a carryover stock level of x_{t+1} to the decision maker. Concurrently, a subgradient $g_t \in \partial \ell_t(y_t)$ that is associated with the convex loss incurred by the decision y_t is observed. Then, the decision maker determines the next order-up-to level y_{t+1} such that $y_{t+1} \in \mathcal{C}$ and $y_{t+1}^i \geq x_{t+1}^i$ for all $i \in [N]$. The process is summarized in Alg. 1.

Remark 1. It can sometimes be challenging to observe opportunity loss. For instance, in retail stores, when an item is out of stock, customers rarely inquire with the store staff about its availabil-

ity. As a result, retailers have limited knowledge about the actual demand for out-of-stock items. Recently, Hihat et al. (2023) have addressed this issue in their OIO setting, highlighting that the subgradient of the loss function can often be derived even without complete demand observations. This is because the penalty associated with the opportunity loss is typically given by multiplying the quantity of opportunity loss by a cost coefficient, as is the case with the Newsvendor loss: $p \max(0, d_t - y_t)$, where p is a cost coefficient and d_t and y_t are demand and order-up-to level of round t, respectively. Since this penalty is linear with y_t , we can compute the subgradient without

knowing the demand quantity. Our problem setting also uses this framework.

We consider the following three conditions. First, we consider that the replenished stock up to y_t is always greater than the carryover stock level x_{t+1} after subsequent demand and post-processing:

$$x_{t+1}^i = \max(0, y_t^i - d_t^i) \le y_t^i, \tag{1}$$

for all $i \in [N]$. Here we define the demand for item i at round t as $d_t^i \in [0, D]$, noting that it may also include consumption from some post-processing activities.

Secondly, we define the feasible region for the order-up-to level y_t as the intersection of the lower bounds set by the carryover stocks

$$y_t^i \ge x_t^i \quad \forall i \in [N] \,, \tag{2}$$

and the linear-sum constraints arising from inventory space

$$\sum_{i \in [N]} y_t^i \le D. \tag{3}$$

Specifically, we define the function for the feasible region $\mathcal{C}:[0,D]^N\to\mathcal{P}([0,D]^N)$ as

$$C(x) := \{ y \in [0, D]^N \mid y^i \ge x^i \quad \forall i \in [N], \sum_{i \in [N]} y^i \le D \}.$$
 (4)

Finally, we assume that the subgradients of the losses are bounded:

$$||g_t||_2 \le G. \tag{5}$$

In our analysis, we deal with 1-norm of the subgradient, which is bounded as $||g_t||_1 \le \sqrt{N} ||g_t||_2 \le \sqrt{N}G$.

We consider the adversarial environments. After observing y_t , the environment can choose the demand d_t and convex loss function adversarially. Aim of this paper is to construct a (near-) optimal algorithm for OIO under the adversarial environment.

Remark 2. Our study and Hihat et al. (2023) share the same setup except for the warehouse capacity constraint. While Hihat et al. (2023) assumes a general convex constraint, our work specifically addresses a linear constraint. Although the linear constraint is a special case of the convex constraint, it is commonly encountered in practical scenarios. Importantly, to our knowledge, no existing work establishes theoretically guaranteed algorithms for dynamic environment, even under the linear constraint.

3.1 Environmental Difficulty Indicator

Algorithm's performance relies on the behavior of x_{t+1} , which reflects the demand and post process in round t. In our analysis, we focus on the period during which the inventory can meet demand, which is referred to as *sell-out period*.

Definition 1 (Sell-out period). We define L_{max} as the period during which the sum of the demands exceeds the inventory capacity:

$$L_{\max} := \min \left\{ L \in [T] \mid \sum_{s=t}^{\min(t+L-1,T+1)} d_s^i \geq D, \text{ for all } t \in [T] \text{ and } i \in [N] \right\}.$$

Here, we hypothetically assume that $d_{T+1}^i = D$.

Algorithm 2 Online Inventory Optimization Algorithm for Dynamic Environment

```
1: Set L = 1.
273
             2: Initialize x_1 = \mathbf{0} and y_1 \in \mathcal{C}(x_1).
274
             3: Initialize a base learner \mathcal{E}(2L,T) with an initial state \hat{y}_1=y_1 and an input parameter L=1.
275
             4: for t = 1, ..., T do
276
                     Observe g_t \in \partial \ell_t(y_t) and x_{t+1} that satisfies x_{t+1}^i \in [0, y_t^i] for all i \in [N].
277
                     Observe \mathcal{L}_t defined in Eq. (9).
             7:
                     if \max \mathcal{L}_t > L then
278
                        Update L \leftarrow 2L and restart \mathcal{E}(2L, T) inputting the updated parameter L.
             8:
279
             9:
            10:
                     Feed g_t to \mathcal{E} and receive a decision \hat{y}_{t+1} \in \mathcal{C}(\mathbf{0}).
281
                     Update y_{t+1} = \Pi_{\mathcal{C}(x_{t+1})}(\hat{y}_{t+1}).
283
```

We here note the relationship between the sell-out period and demand. Setting $L_{\rm max}=o(T)$ mildly constrains the duration of periods with small demand; this constraint prevents situations where the decision maker is forced to incur holding costs over an extended period due to the small demands. In fact, as we will show in our lower bound analysis, sub-linear regret cannot be achieved when $L_{\rm max}=\Omega(T)$. We also note that $L_{\rm max}$ does not primarily constrain the fluctuations in demand. The fluctuation is only upper bounded during the period that determines $L_{\rm max}$, and there is no such constraint in the other rounds

Remark 3. It is straightforward to extend L_{\max} to a high probability upper bound. In this case, we consider that there exists a parameter $0 < \delta < 1$ and $P(\sum_{s=t}^{\min(t+L_{\max}-1,T+1)} d_s^i \geq D) \geq 1-\delta/NT$ holds for any $i \in [N]$ and $t \in [T]$. This extension provides high-probability regret upper bounds. Furthermore, we note that L_{\max} is essentially the same as the other parameters defined in Shi et al. (2016) and Hihat et al. (2023). In fact, the probabilistic extension is a generalization of them. We give a detailed discussion of this point in the appendix.

3.2 REGRET

We consider the following dynamic regret for OIO:

$$R_T(u_1, \dots, u_T) = \sum_{t=1}^T \ell_t(y_t) - \sum_{t=1}^T \ell_t(u_t) \le \sum_{t=1}^T \langle g_t, y_t - u_t \rangle.$$
 (6)

Here $y_t \in \mathcal{C}(x_t)$, and $u_t \in \mathcal{C}(\mathbf{0})$. The major difficulty arises from the fact that y_t and u_t belong to the different feasible regions. Specifically, the feasible region of u_t is always a superset of y_t 's feasible region, meaning that we employ a stronger comparator than that of the standard OCO problem. In OIO setting, the feasible region of y_t is affected by the previous decision; that is, the lower bound x_t is constrained by $x_t^i \in [0, y_{t-1}^i]$ for all $i \in [N]$.

Meanwhile, when we adopt a feasible comparator that satisfies $\max(0, u_t^i - d_t^i) \le u_{t+1}^i$, the total path-length P_T becomes bounded. We provide a detailed discussion in the appendix.

4 PROPOSED ALGORITHMS

Our algorithm employs a simple two-stage projection strategy, as described in Alg. 2. In each round t, the algorithm feeds g_t into the base learner \mathcal{E} and receives the decision $\hat{y}_{t+1} \in \mathcal{C}(\mathbf{0})$, which only considers the warehouse capacity constraint (line 10). Then the algorithm projects it onto the feasible region with the carryover constraint: $\mathcal{C}(x_{t+1})$ (line 11).

²We initialize x_1 as $\mathbf{0}$ and the beginning of the first cycle is t=1. We note that our algorithm can be applied for the $x_1 \neq \mathbf{0}$ case, incurring an additional regret of at most GDL_{\max} by adopting the zero-order strategy until the inventory level reaches $\mathbf{0}$.

The organization of this section is as follows: We first discuss the properties of the projection $\Pi_{\mathcal{C}(x_{t+1})}$ in Section 4.1. Our key lemma is Lemma 1. By this lemma, we demonstrate that the regret upper bound of the decision y_t can be reduced to that of the base learner's decision \hat{y}_t . Furthermore, we show that the carryover stock constraint leads to a switching cost for \hat{y}_t in the base learner's regret. In Section 4.2, we provide a regret guarantee for a general base learner in Theorems 2. Finally, in Section 4.3, we introduce SOCO algorithms with a dynamic regret guarantee and present its regret upper bound in Theorem 4.

4.1 PROJECTION PROPERTY

Our analysis is based on time-periods called *cycles*. For each item i, a cycle is defined by the period during which \hat{y}_t^i cannot be realized due to the carryover stock x_t^i , resulting in $y_t^i > \hat{y}_t^i$. This is formally expressed as follows:

Definition 2 (Cycle). Let $\mathcal{S}_i \subset [T]$ be defined as the set of the rounds that satisfies $y_t^i \leq \hat{y}_t^i$ if and only if $t \in \mathcal{S}_i$. Suppose the elements $t \in \mathcal{S}_i$ is indexed in strictly increasing order as $t_1 < t_2 < \cdots < t_{|\mathcal{S}_i|}$. We refer to the period $t_k, t_k + 1, \ldots, t_{k+1} - 1$ for $t_k \in \mathcal{S}_i$ as the k-th cycle of item i, and define the length of the k-th cycle as $L_k^i := t_{k+1} - t_k$, where we set $t_{|\mathcal{S}_i|+1} = T + 1$.

Then, the following key lemma holds in our OIO setting:

Lemma 1. For any base learner \mathcal{E} , Alg. 2 ensures

$$\sum_{t=1}^{T} \langle g_t, y_t - \hat{y}_t \rangle \le 2G \sum_{t=1}^{T} \left(\max_{i \in [N]} L_t^i \right) \|\hat{y}_t - \hat{y}_{t+1}\|_1, \tag{7}$$

where L_t^i is the current cycle length for item i, that is, L_k^i that satisfies $t_k \leq t < t_{k+1}$ for $t_k, t_{k+1} \in S_i$.

Remark 4. Lemma 1 shows that, under our two-stage projection strategy, OIO is linked to SOCO (Lin et al., 2011; Zhang et al., 2021; 2022c;a), eliminating the difficulty for the dynamic carry-over stock constraint in the OIO setting.

In fact, under Alg. 2, the regret is bounded as

$$R_T \le \sum_{t=1}^{T} \left(\langle g_t, \hat{y}_t - u_t \rangle + 2GL_t^* || \hat{y}_t - \hat{y}_{t+1} ||_1 \right), \tag{8}$$

where $L_t^* = \max_{i \in [N]} L_t^i$. The right-hand side is interpreted as the dynamic regret for SOCO problem for the base learner \mathcal{E} , where for every $t \in [T]$, \mathcal{E} chooses $\hat{y}_t \in \mathcal{C}(\mathbf{0})$ and suffers loss $\langle g_t, \hat{y}_t \rangle$ with switching cost of $2GL_{t-1}^* \|\hat{y}_{t-1} - \hat{y}_t\|_1$. The main difference from the standard SOCO is the coefficient L_t^* , which is time-dependent and delayed in observability; it becomes observable only after the cycle for each item at time t is completed. We propose an improved algorithm that works without prior knowledge of the switching cost in the next section.

4.2 Doubling trick for the unknown switching cost

We address the unknown switching cost in Eq. (8) by introducing a doubling trick for L_t^* . In Alg. 2, as described in lines 7 to 9, our algorithm restarts the base learner \mathcal{E} with a new parameter L by comparing the current parameter and the maximum observed cycle length $\max \mathcal{L}_t$. Here, we define the set of the observed cycle lengths at round t as

$$\mathcal{L}_{t} := \bigcup_{i \in [N]} \left\{ L_{1}^{i}, \dots, L_{k-1}^{i}, t - t_{k} + 1 \mid t_{k} \le t < t_{k+1}, t_{k}, t_{k+1} \in \mathcal{S}_{i} \right\}, \tag{9}$$

where $t - t_k + 1$ indicates the lower bound of the current cycle length. For the regret upper bound analysis, we use the following property of the cycle legth:

³All omitted proofs are given in the appendix.

We also omit the high-probability regrets for the sake of clarity, since extention is rather straightforward. See Remark 5 in the appendix for details.

⁴Another difference is that the switching cost appears as l_1 -norm instead of the l_2 -norm. We track this impact in the regret analyses.

```
378379380
```

384

386

387

389

390

391

392

393

394

397

398

399

400

401

402

403 404

405 406 407

408 409

410

411 412

413 414 415

416

417

418 419

420

421 422

423

```
Algorithm 3 Online Gradient Descent
```

```
Require: Learning rate \eta.

1: for t=1,\ldots,T do

2: Receive a subgradient g_t.

3: Return \hat{y}_{t+1} = \Pi_{\mathcal{C}(\mathbf{0})}(\hat{y}_t - \eta g_t).

4: end for
```

Algorithm 4 k-th Combiner

```
Require: Two parameters: n^k and L.
  1: Initialize z_1 = 0.
 2: Set \tilde{g}(z) := \sqrt{\frac{n^k}{8}} \frac{1}{T} \mathrm{erf}(\frac{z}{\sqrt{8n^k}}) e^{z^2/16n^k}.

3: Compute U(n^k) := \tilde{g}^{-1}(1)
 4: for t = 1, ..., T do
5: Receive \hat{v}_{t+1}^{k-1}, \hat{y}_{t+1}^{k}, and g_t.
             Compute b_t^k by Eq. (11).
 6:
             if z_t \in [0, U(n^k)] or (z_t < 0) \cap (b_t^k > 0) or (z_t > U(n^k)) \cap (b_t^k < 0) then
                  z_{t+1} = (1 - 1/n^k)z_t + b_t^k.
 8:
 9:
                  z_{t+1} = (1 - 1/n^k)z_t.
10:
11:
             \begin{array}{ll} p_{t+1}^k = \Pi_{[0,1]}\left(\tilde{g}(z_{t+1})\right) \\ \text{Return} & \hat{v}_{t+1}^k = (1 - p_{t+1}^k)\hat{v}_{t+1}^{k-1} \ + \end{array}
12:
13:
```

Algorithm 5 Smoothed Online Gradient Descent (Zhang et al., 2022a)

Require: L > 0.

```
1: Set K = \lfloor \log_2 \frac{T}{32 \max(L, 1) \log T} \rfloor + 1.
 2: for k = 1, ..., K do
          Set n^k = T2^{1-k}
 3:
          Initialize k-th instance A^k, which is
 4:
          Alg. 3 with the learning rate of \eta^k =
          2D/G\sqrt{1/(2\sqrt{N}L+1)n^k}.
         Initialize k-th combiner \mathcal{B}^k, which is
 5:
          Alg. 4 with the input parameters of n^k and
          L.
 6: end for
 7: for t = 1, ..., T do
          Receive a subgradient g_t.
 8:
 9:
          for k = 1, \ldots, K do
             if k = 1 then
10:
                 \hat{v}_{t+1}^1 \leftarrow \mathcal{A}^1(g_t).
11:
12:
             \begin{split} &\hat{y}_{t+1}^k \leftarrow \mathcal{A}^k(g_t).\\ &\hat{v}_{t+1}^k \leftarrow \mathcal{B}^k(\hat{v}_{t+1}^{k-1}, \hat{y}_{t+1}^k, g_t).\\ &\textbf{end if} \end{split}
13:
14:
15:
          end for
16:
         Return \hat{y}_{t+1} = \hat{v}_{t+1}^K.
17:
18: end for
```

Lemma 2. The cycle length is upper bounded by the sell-out period $L_{\rm max}$.

We assume that the base learner is an algorithm $\mathcal{E}(L,T)$ with an input parameter L and T that provides a regret upper bound of

$$\sum_{t=1}^{T} (\langle g_t, \hat{y}_t - u_t \rangle + GL \|\hat{y}_t - \hat{y}_{t+1}\|_1) \le \mathcal{R}_{L,T}^{\mathcal{E}(L,T)}$$
(10)

for any series of $\{g_t\}_{t=1}^T$.

14: **end for**

Then, the following regret upper bounds holds for Alg. 2.

Theorem 2. Assume that under algorithm $\mathcal{E}(L,T)$, the regret upper bound $\mathcal{R}_{L,T}^{\mathcal{E}(L,T)}$ can be decomposed into $\mathcal{R}_{L,T}^{\mathcal{E}(L,T)} = L^{\alpha}\mathcal{R}(T)$ and the switching cost is bounded by $\|\hat{y}_t - \hat{y}_{t+1}\|_1 \leq \mathcal{O}(L^{-\beta})$ for $\beta \geq 0$. Then, Alg. 2 ensures

$$R_T \le C(\alpha) \mathcal{R}_{2L_{\max},T}^{\mathcal{E}(2L_{\max},T)} + \mathcal{O}(L_{\max}^{2-\beta}),$$

where $C(\alpha)$ is an α -dependent factor.

424 425 426

427 428

429 430

431

4.3 ALGORITHMS FOR THE BASE LEARNER

In this section we introduce algorithms for SOCO that can be used as the base learner in Alg. 2. First, we introduce the standard Online Gradient Descent algorithm (OGD) described in Alg. 3.

Theorem 3. Assume $T \geq L_{\max}(3 + P_T/D)$. In Alg. 2, the base learner Alg. 3 with an L-parameterized learning rate $\eta = \sqrt{\frac{2D(3D+P_T)}{G^2(L+1/2)T}}$ ensures $R_T \leq \mathcal{O}(\sqrt{L_{\max}(1+P_T)T} + L_{\max})$.

To obtain the optimal regret order, we must know P_T a priori when setting the learning rate η . This parameter depends on the characteristics of the future demands and is sometimes difficult to determine in advance.

Recently, Zhang et al. (2022a) have proposed the Smoothed Online Gradient Descent algorithm (SOGD). In the algorithm, the meta-algorithm sequentially aggregates multiple experts' decision, where k-th decision in the sequence is obtained by combining k-th expert's decision \hat{y}_{t+1}^k and k-1-th combined decision \hat{v}_{t+1}^{k-1} via the k-th combiner \mathcal{B}^k . The combiner combines the two inputs with a weight p_{t+1} that is adaptively computed by Discounted-Normal-Predictor (Kapralov & Panigrahy, 2011) with conservative updating with bit sequences of

$$b_t^k := \frac{\langle g_t, \hat{v}_t^{k-1} - \hat{y}_t^k \rangle + GL(\|\hat{v}_t^{k-1} - \hat{v}_{t+1}^{k-1}\|_1 - \|\hat{y}_t^k - \hat{y}_{t+1}^k\|_1)}{6GDN^{1/4}\sqrt{L}}$$
(11)

a described in line 5 to 11 in Alg. 4. The meta-algorithm use K-th decision as the output.

Theorem 4. Assume $T \ge \sqrt{L_{\text{max}}}(\log_2 T + e)$. In Alg. 2, the base learner Alg. 5 ensures

$$R_T \leq \mathcal{O}(\sqrt{L_{\max}(1+P_T)T\log T} + L_{\max})$$
.

5 Lower Bound

In this section, we discuss the optimality of our regret analysis. In OCO, Zhang et al. (2018b) have established the $\Omega(\sqrt{(1+P_T)T})$ lower bound. Our regret upper bound matches this lower bound up to a logarithmic factor. On the other hand, we also have a $\sqrt{L_{\rm max}}$ factor in our bound. The following theorem ensures this optimality.

Theorem 5. For any algorithm A, there exists some sequence $\{g_t\}_t$ and some $u \in C(\mathbf{0})$ such that

$$\sum_{t=1}^{T} \langle g_t, y_t - u \rangle = \Omega(GD\sqrt{L_{\max}T}),$$

where $\{y_t\}_{t=1}^T$ is the sequence of the outputs by A.

As a byproduct, this lower bound provides the optimality of the \sqrt{L} factor in the OGD and SOGD algorithms for the SOCO setting. This is because if there were an algorithm that can be improved upon, it can break the lower bound of OIO by adopting it as the base learner of our algorithm.

Corollary 1. For SOCO with regret of $\tilde{R}_T(L)$, its lower bound is $\Omega(\sqrt{LT})$.

In our study, OIO and SOCO are found to be connected, which provides an intriguing example of how one lower bound can constrain the other.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we propose an algorithm for OIO with a near-optimal dynamic regret guarantee. We connect OIO to SOCO through a simple two stage projection and the dynamic regret bound combining an algorithm for SOCO and doubling trick for unknown $L_{\rm max}$.

There are several interesting prospects for future investigation. First, the problem setting does not take into account the lead time and fixed-order costs. For i.i.d. demand, there are studies addressing these settings (Zhang et al., 2020; Agrawal & Jia, 2022; Yuan et al., 2021). The extension to dynamic environments is an interesting direction for future research. Secondly, we assume a linear capacity constraint as described in Eq. (3). This assumption is critical to the proof of Lemmas 5 and 6. Although we believe that it is possible to extend this assumption to a more general convex set, we leave it for future work.

REFERENCES

- Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and minimax lower bounds for online convex games. In *Annual Conference on Learning Theory*, pp. 414–424, 2008.
- Shipra Agrawal and Randy Jia. Learning in structured mdps with convex cost functions: Improved regret bounds for inventory management. *Oper. Res.*, 70(3):1646–1664, 2022.
- Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin Schewior, and Clifford Stein. A 2-competitive algorithm for online convex optimization with switching costs. In *International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, 2015.
- Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex optimization in high dimensions via online balanced descent. In *Annual Conference on Learning Theory*, 2018.
- Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In *International Conference on Machine Learning*, pp. 1405–1411. PMLR, 2015.
- Christoph H. Glock, Eric H. Grosse, and Jörg M. Ries. The lot sizing problem: A tertiary study. *International Journal of Production Economics*, 155:39–51, 2014.
- Gautam Goel and Adam Wierman. An online algorithm for smoothed regression and lqr control. In *International Conference on Artificial Intelligence and Statistics*, 2018.
- Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: An optimal algorithm for smoothed online optimization. In *Advances in Neural Information Processing Systems*, 2019.
- Paula Gradu, Elad Hazan, and Edgar Minasyan. Adaptive regret for control of time-varying dynamics. In *Learning for Dynamics and Control Conference*, pp. 560–572. PMLR, 2023.
- Eric Hall and Rebecca Willett. Dynamical models and tracking regret in online convex programming. In *International Conference on Machine Learning*, pp. 579–587. PMLR, 2013.
- Elad Hazan and Comandur Seshadhri. Adaptive algorithms for online decision problems. In *Electronic colloquium on computational complexity (ECCC)*, volume 14, 2007.
- Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. *Mach. Learn.*, 69(2-3):169–192, 2007.
- Elad Hazan et al. Introduction to online convex optimization. *Foundations and Trends® in Optimization*, 2(3-4):157–325, 2016.
- Massil Hihat, Stéphane Gaïffas, Guillaume Garrigos, and Simon Bussy. Online inventory problems: beyond the iid setting with online convex optimization. *Advances in Neural Information Processing Systems*, 36, 2023.
- Woonghee Tim Huh and Paat Rusmevichientong. A nonparametric asymptotic analysis of inventory planning with censored demand. *Math. Oper. Res.*, 34:103–123, 2009.
- Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Improved strongly adaptive online learning using coin betting. In *International Conference on Artificial Intelligence and Statistics*, pp. 943–951. PMLR, 2017.
- Michael Kapralov and Rina Panigrahy. Prediction strategies without loss. *Advances in Neural Information Processing Systems*, 24, 2011.
- Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dynamic right-sizing for power-proportional data centers. *IEEE/ACM Transactions on Networking*, 21:1378–1391, 2011.
- Francesco Orabona. A modern introduction to online learning. *arXiv preprint arXiv:1912.13213*, 2019.

- Evan L. Porteus. *Foundations of Stochastic Inventory Theory*. Stanford University Press, 2002.
- Shai Shalev-Shwartz et al. Online learning and online convex optimization. *Foundations and Trends*® *in Machine Learning*, 4(2):107–194, 2012.
 - Cong Shi, Weidong Chen, and Izak Duenyas. Nonparametric data-driven algorithms for multiproduct inventory systems with censored demand. *Operations Research*, 64(2):362–370, 2016.
 - Tim van Erven, Wouter M. Koolen, and Dirk van der Hoeven. Metagrad: Adaptation using multiple learning rates in online learning. *Journal of Machine Learning Research*, 22:161:1–161:61, 2021.
 - Hao Yuan, Qi Luo, and Cong Shi. Marrying stochastic gradient descent with bandits: Learning algorithms for inventory systems with fixed costs. *Manag. Sci.*, 67(10):6089–6115, 2021.
 - Huanan Zhang, Xiuli Chao, and Cong Shi. Technical note perishable inventory systems: Convexity results for base-stock policies and learning algorithms under censored demand. *Oper. Res.*, 66: 1276–1286, 2018a.
 - Huanan Zhang, Xiuli Chao, and Cong Shi. Closing the gap: A learning algorithm for lost-sales inventory systems with lead times. *Manag. Sci.*, 66:1962–1980, 2020.
 - Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments. *Advances in Neural Information Processing Systems*, 31, 2018b.
 - Lijun Zhang, Wei Jiang, Shiyin Lu, and Tianbao Yang. Revisiting smoothed online learning. *Advances in Neural Information Processing Systems*, 34:13599–13612, 2021.
 - Lijun Zhang, Wei Jiang, Jinfeng Yi, and Tianbao Yang. Smoothed online convex optimization based on discounted-normal-predictor. *Advances in Neural Information Processing Systems*, 35:4928–4942, 2022a.
 - Lijun Zhang, Guanghui Wang, Jinfeng Yi, and Tianbao Yang. A simple yet universal strategy for online convex optimization. In *International Conference on Machine Learning*, pp. 26605–26623. PMLR, 2022b.
 - Zhiyu Zhang, Ashok Cutkosky, and Ioannis Paschalidis. Adversarial tracking control via strongly adaptive online learning with memory. In *International Conference on Artificial Intelligence and Statistics*, pp. 8458–8492. PMLR, 2022c.
 - Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Dynamic regret of convex and smooth functions. *Advances in Neural Information Processing Systems*, 33:12510–12520, 2020.
 - Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-stationarity: Problem-dependent dynamic regret for online convex optimization. *Journal of Machine Learning Research*, 25(98):1–52, 2024.
 - Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *International Conference on Machine Learning*, pp. 928–936, 2003.
 - Paul H. Zipkin. Foundations of inventory management. McGraw-Hill, 2000.

A DISCUSSION ON $L_{\rm max}$

- Existing works introduce the least amount of demands in each round. Shi et al. (2016) assumes minimum demand. Hihat et al. (2023) introduces parameters ρ and μ and assumes $P\left[d_t^i \geq \rho\right] \geq \mu$ holds for all $t \in [T]$ almost surely. We here see the relation between Assumption 10 in Hihat et al. (2023) and Remark 3 in our paper.
- **Proposition 1.** If Assumption 10 in Hihat et al. (2023) holds, then our assumption in Remark 3 holds. That is, if one have μ and ρ such that $P\left[d_t^i \geq \rho\right] \geq \mu$ holds for all $t \in [T]$ almost surely, then there exists L_{\max} such that $P\left(\sum_{s=t}^{\min(t+L_{\max}-1,T+1)} d_s^i \geq D\right) \geq 1 \delta/NT$ holds for any $i \in [N]$ and $t \in [T]$.

Proof. We denote L_{max} by L. Suppose Assumption 10 in Hihat et al. (2023) holds. Then, we have

$$P\left[d_t^i \ge \rho\right] \ge \mu$$

for all $t \in [T]$ almost surely. By Markov's inequality, we obtain

$$P\left[d_t^i \ge \rho\right] \le \frac{E\left[d_t^i\right]}{\rho},$$

and thus $E\left[d_t^i\right] \geq \rho \mu$ holds. Our aim is to obtain the number of rounds necessary for making the inventory sold out with the probability at least $1-\delta/NT$ for each cycle (by the fact that there exist at most T cycles from t=1 to t=T for all items and technique of the union bound). Since we assume $x_{T+1}^i=0$ for all $i\in[N]$, we consider L consecutive rounds only. Hereafter, we consider on some fixed $i\in[N]$. Let us denote

$$X_t = \begin{cases} 1 & (d_t^i \ge \rho) \\ 0 & (d_t^i < \rho) \end{cases}$$

and

$$Y_t = \sum_{s=1}^{t} (X_s - E[X_s]).$$

By applying Azuma-Hoeffding inequality, we obtain

$$P\left(\sum_{t=1}^{L} X_{t} \leq L\mu - \varepsilon\right) \leq P(Y_{L} - Y_{0} \leq -\varepsilon)$$

$$= P\left(\sum_{t=1}^{L} X_{t} \leq E\left[\sum_{t=1}^{L} X_{t}\right] - \varepsilon\right)$$

$$\leq \exp\left(-\frac{\varepsilon^{2}}{2L}\right).$$

From

$$\exp\left(-\frac{\varepsilon^2}{2L}\right) \leq \frac{\delta}{NT},$$

we obtain

$$\varepsilon \ge \sqrt{2L\log\frac{NT}{\delta}}.$$

Therefore, $\sum_{t=1}^{L} X_t \leq L\mu - \sqrt{2L\log\frac{NT}{\delta}}$ holds with probability at least $1 - \delta/NT$. If demand larger than or equal to ρ occur at least D/ρ times, then the inventory becomes sold out. Thus, the condition for L is

$$\frac{D}{\rho} \le L\mu - \sqrt{2L\log\frac{NT}{\delta}}.$$

Let us denote $w=\sqrt{L\mu}, \, a=\sqrt{\frac{2\log\frac{NT}{\delta}}{\mu}}, \, \text{and} \, b=D/\rho,$ then we obtain

$$\frac{D}{\rho} \le L\mu - \sqrt{2L\log\frac{NT}{\delta}} \iff w^2 - aw \ge b$$

$$\iff \left(w - \frac{a}{2}\right)^2 \ge \frac{a^2}{4} + b$$

$$\iff w - \frac{a}{2} \ge \sqrt{\frac{a^2}{4} + b}$$

$$\iff w \ge \frac{a}{2} + \sqrt{\frac{a^2}{4} + b}.$$

Then,

$$w \ge \frac{a}{2} + \sqrt{\frac{a^2}{4} + b} \iff \sqrt{L\mu} \ge \sqrt{\frac{\log \frac{NT}{\delta}}{2\mu}} + \sqrt{\frac{\log \frac{NT}{\delta}}{\mu} + \frac{D}{\rho}}$$
$$\iff L\mu \ge \left(\sqrt{\frac{\log \frac{NT}{\delta}}{2\mu}} + \sqrt{\frac{\log \frac{NT}{\delta}}{\mu} + \frac{D}{\rho}}\right)^2$$
$$\iff L\mu \ge \frac{\log \frac{NT}{\delta}}{\mu} + \frac{2\log \frac{NT}{\delta}}{\mu} + \frac{2D}{\rho}$$

holds, where the last part utilizes $(\alpha + \beta)^2 \le 2(\alpha^2 + \beta^2)$, $\forall \alpha, \beta \in R$. Therefore, if one adopts L satisfying

$$L\mu \geq \frac{3\log\frac{NT}{\delta}}{\mu} + \frac{2D}{\rho} \iff L \geq \frac{2D}{\rho\mu} + \frac{3\log\frac{NT}{\delta}}{\mu^2},$$

the inventory becomes sold out in at most L rounds with the probability at least $1 - \delta/NT$.

B EXTENTION TO THE HIGH-PROBABILITY REGRET

Remark 5. The probabilistic definition for L_{\max} in Remark 3 ensures that L_k^i satisfies $L_k^i \leq L_{\max}$ with probability of $1 - \delta/NT$. Given this definition, our regret upper bounds hold when all L_k^i satisfy $L_k^i \leq L_{\max}$ in $t \in [T]$. Applying the union bound over all cycles and products, we bound its probability at least $1 - \delta$. Therefore, using the probabilistic expression for L_{\max} , our results naturally extend to high-probability regrets, maintaining the same order of bounds with a probability of $1 - \delta$.

C Order estimation of P_T

Proposition 2. Under the feasible comparator that satisfies $\max(0, u_t^i - d_t^i) \le u_{t+1}^i$, P_T is upper bounded by $ND + 2\sum_{i=1}^{N} \sum_{t=1}^{T} d_t^i$.

Proof. For clarity, we first consider the single-item scenario. Consider a set $A = \{t \in 2, ..., T \mid u_{t-1} \geq u_t\}$, and write P_T as

$$P_T = \sum_{t=2}^{T} |u_{t-1} - u_t| = \sum_{t \in \mathcal{A}} (u_{t-1} - u_t) + \sum_{t \in \{2, \dots, T\} \setminus \mathcal{A}} (u_t - u_{t-1}).$$
 (12)

The first term is upper bounded by the demand series $\{d_t\}$ as

$$u_{t-1} - u_t \le d_{t-1},\tag{13}$$

because the feasible space of u_t is constrained by the carryover stock as $u_t \ge \max(u_{t-1} - d_{t-1}, 0)$. On the other hand, the second term can be bounded by the first term as follows:

$$-D \le u_1 - u_T = \sum_{t=2}^{T} (u_{t-1} - u_t) = \sum_{t \in \mathcal{A}} (u_{t-1} - u_t) - \sum_{t \in \{2, \dots, T\} \setminus \mathcal{A}} (u_t - u_{t-1}).$$
 (14)

Combining these inequalities, we have

$$P_T \le 2\sum_{t \in \mathcal{A}} (u_{t-1} - u_t) + D \le 2\sum_{t \in \mathcal{A}} d_{t-1} + D \le 2\sum_{t=1}^T d_t + D.$$
 (15)

The bound in the multi-item case can be obtained straightforwardly as the sum of the bounds for each item, which concludes the proof. \Box

We also note that the ideal feasible comparator typically yields $P_T = \sum_{t=2}^T \|d_{t-1} - d_t\|_1$. This is because, in most inventory system without lead-time, the ideal order-up-to decision $\{u_t\}$ matches the demand $\{d_t\}$, which incurs neither lost-sales loss nor holding costs.

D Proofs of the Lemmas in Sections 4.1 and 4.2

D.1 Lemmas on the Projection Operator $\Pi_{\mathcal{C}(x)}$

In this section, we provide lemmas regarding the relationships that hold between $\hat{y} \in \mathcal{C}(\mathbf{0})$ and $y = \Pi_{\mathcal{C}(x)}(\hat{y})$ where $x \in \mathcal{C}(\mathbf{0})$. We note that y, \hat{y} , and x do not necessarily depend on t; in other words, we do not assume that they are elements of a t-dependent series resulting from a particular algorithm or environment.

For the subsequent proofs, we define the set of the item index $\mathcal I$ and its complement as $\mathcal I:=\{i\in[N]\mid y^i\leq \hat y^i\}$, and $\overline{\mathcal I}:=[N]/\mathcal I=\{i\in[N]\mid y^i>\hat y^i\}$, respectively. Recall that $\mathcal C(x)\subset\mathcal C(\mathbf 0)$ and the projection $y=\Pi_{\mathcal C(x)}(\hat y)$ is equal to $y=\mathop{\rm argmin}_{y'\in\mathcal C(x)}\|y'-\hat y\|_2^2$.

Lemma 3. For $i \in \overline{\mathcal{I}}$, $y^i = x^i > 0$.

Proof. We divide the proof in three cases regarding \hat{y} ; (i) For $\hat{y} \in \mathcal{C}(x)$, it is obvious that $y = \hat{y}$ holds. (ii) For $\hat{y} \notin \mathcal{C}(x)$ and $\hat{y}^i < x^i$, we observe $y^i = x^i > \hat{y}^i$. This is because if we have some $\epsilon > 0$ and $y^i = x^i + \epsilon$, decreasing ϵ to zero decreases the objective function without violating the constraint, which contradicts the minimality of y. We also note that $x^i > 0$ in this case because $\hat{y}^i \geq 0$. (iii) Finally, for $\hat{y} \notin \mathcal{C}(x)$ and $\hat{y}^i \geq x^i$, we observe $y^i \leq \hat{y}^i$. This is because if we have some $\epsilon > 0$ and $y^i = \hat{y}^i + \epsilon$, decreasing ϵ to zero decreases the objective function without violating the constraint, which contradicts the minimality of y. In summary, $y^i > \hat{y}^i$ only occurs in the case of (ii), which leads to $y^i = x^i > 0$.

Lemma 4. If there exist an $i^* \in [N]$ that satisfies $y^{i^*} < \hat{y}^{i^*}$, then $\sum_{i \in \mathcal{T}} y^i = D - \sum_{i \in \mathcal{T}} x^i$.

Proof. From Lemma 3, it is obvious $y^j = x^j$ for $j \in \overline{\mathcal{I}}$. Therefore, $y = \Pi_{\mathcal{C}(x)}(\hat{y})$ implies that y minimizes $\sum_{i \in \mathcal{I}} (y^i - \hat{y}^i)^2$ satisfying $y^i \leq \hat{y}^i$ and $\sum_{i \in \mathcal{I}} y^i \leq D - \sum_{j \in \overline{\mathcal{I}}} x^j$. Assume that $\sum_{i \in \mathcal{I}} y^i < D - \sum_{j \in \overline{\mathcal{I}}} x^j$. Then, we can increase y^{i^*} to \hat{y}^{i^*} without violating the constraint, which decreases the objective function and contradicts the minimality of y.

D.2 PROOF OF LEMMA 1

To prove Lemma 1, we use the following two lemmas for the cycle property. Let \mathcal{I}_t be the set of items such that t is the initial part of the cycle, i.e., $\mathcal{I}_t := \{i \in [N] \mid y_t^i \leq \hat{y}_t^i\}$. Note that $\overline{\mathcal{I}}_t := [N]/\mathcal{I}_t = \{i \in [N] \mid y_t^i > \hat{y}_t^i\}$ is the set of items in the later part of the cycle. Then, the following lemmas hold.

Lemma 5. For any $t \in [T]$, $\sum_{i \in \mathcal{I}_t} \hat{y}^i_t - y^i_t \le \sum_{i \in \overline{\mathcal{I}}_t} y^i_t - \hat{y}^i_t$.

Lemma 6. For any $k \in [K^i]$ and $s \in [L^i_k - 1]$, $y^i_{t_k + s} - \hat{y}^i_{t_k + s} \leq \sum_{s' = 0}^{s - 1} \hat{y}^i_{t_k + s'} - \hat{y}^i_{t_k + s' + 1}$.

Proof of Lemma 1. We divide the left-hand side of Eq. (7) into the initial and later parts of the cycle:

$$\sum_{t=1}^{T} \langle g_t, y_t - \hat{y}_t \rangle = \sum_{t=1}^{T} \sum_{i \in \mathcal{I}_t} g_t^i (y_t^i - \hat{y}_t^i) + \sum_{i \in \overline{\mathcal{I}}_t} g_t^i (y_t^i - \hat{y}_t^i).$$
 (16)

For the first term, from Lemma 5, the following inequality holds:

$$\sum_{t=1}^{T} \sum_{i \in \mathcal{I}_{t}} g_{t}^{i}(y_{t}^{i} - \hat{y}_{t}^{i}) \leq \sum_{t=1}^{T} \|g_{t}\|_{\infty} \sum_{i \in \mathcal{I}_{t}} (\hat{y}_{t}^{i} - y_{t}^{i}) \stackrel{\text{Lemma 5}}{\leq} \sum_{t=1}^{T} \|g_{t}\|_{\infty} \sum_{i \in \overline{\mathcal{I}}_{t}} (y_{t}^{i} - \hat{y}_{t}^{i}), \quad (17)$$

where we use $y_t^i \leq \hat{y}_t^i$ for $i \in \mathcal{I}_t$ in the first inequality. This inequality suggests the following statement: the contributions from the initial part of the cycles in all items are bounded by the contributions from the later parts of the cycles in all items. Therefore, the proof is completed by evaluating the contributions from the later parts of the cycles, i.e., the second term in Eq. (16).

 For the second term in Eq. (16), using Lemma 6, we have

$$\sum_{t=1}^{T} \sum_{i \in \overline{\mathcal{I}}_{t}} g_{t}^{i}(y_{t}^{i} - \hat{y}_{t}^{i}) = \sum_{i=1}^{N} \sum_{k=1}^{K^{i}} \sum_{s=1}^{L_{k}^{i} - 1} g_{t_{k}^{i} + s}^{i}(y_{t_{k}^{i} + s}^{i} - \hat{y}_{t_{k}^{i} + s}^{i})$$

$$\leq \sum_{i=1}^{N} \sum_{k=1}^{K^{i}} \|g_{t_{k}^{i} + s}\|_{\infty} \sum_{s=1}^{L_{k}^{i} - 1} (y_{t_{k}^{i} + s}^{i} - \hat{y}_{t_{k}^{i} + s}^{i})$$

$$\stackrel{\text{Lemma 6}}{\leq} \sum_{i=1}^{N} \sum_{k=1}^{K^{i}} \|g_{t_{k}^{i} + s}\|_{\infty} \sum_{s=1}^{L_{k}^{i} - 1} \sum_{s' = 0}^{s - 1} (\hat{y}_{t_{k}^{i} + s'}^{i} - \hat{y}_{t_{k}^{i} + s' + 1}^{i}), \tag{18}$$

where we refer to the definition of the summation of the later parts of the cycle for the first equality. Combining Eq. (16), Eq. (17), and Eq. (18), we finally have

$$\begin{split} \sum_{t=1}^{T} \langle g_t, y_t - \hat{y}_t \rangle &\overset{\text{Eq. (17)}}{\leq} 2 \sum_{i=1}^{N} \sum_{k=1}^{K^i} \sum_{s=1}^{L_k^i - 1} \|g_{t_k^i + s}\|_{\infty} (y_{t_k^i + s}^i - \hat{y}_{t_k^i + s}^i) \\ &\overset{\text{Eq. (18)}}{\leq} 2 \sum_{i=1}^{N} \sum_{k=1}^{K^i} \sum_{s=1}^{L_k^i - 1} \|g_{t_k + s}\|_{\infty} \sum_{s' = 0}^{s-1} (\hat{y}_{t_k^i + s'}^i - \hat{y}_{t_k^i + s' + 1}^i) \\ &\leq 2G \sum_{i=1}^{N} \sum_{k=1}^{K^i} \sum_{s=1}^{L_k^i - 1} \sum_{s' = 0}^{s-1} (\hat{y}_{t_k^i + s'}^i - \hat{y}_{t_k^i + s' + 1}^i) \\ &= 2G \sum_{i=1}^{N} \sum_{t=1}^{T} \left(L_{\kappa^i(t)}^i - (t - t_{\kappa^i(t)}) - 1 \right) (\hat{y}_t^i - \hat{y}_{t+1}^i) \\ &\leq 2G \sum_{t=1}^{T} \left(\max_{i \in [N]} L_{\kappa^i(t)}^i \right) \|\hat{y}_t - \hat{y}_{t+1}\|_1 \\ &\leq 2G \sum_{t=1}^{T} L_t^* \|\hat{y}_t - \hat{y}_{t+1}\|_1 \,. \end{split}$$

In the fourth line, we apply Lemma 7 given in the appendix. This concludes the proof. \Box

D.3 Proof of Lemma 5

Proof. First, we consider the case $\mathcal{I}=[N]$. In this case, we observe $\hat{y}^i-y^i=0$ for all $i\in[N]$. This can be proved as follows: If we have non-empty set $\mathcal{I}':=\{i\in[N]\mid y^i<\hat{y}^i\}$, we can write $y^j=\hat{y}^j-\epsilon^j$ where $\epsilon^j>0$ for $j\in\mathcal{I}'$. Then, $\sum_{i\in[N]}y^i=\sum_{i\in[N]}\hat{y}^i-\sum_{j\in\mathcal{I}'}\epsilon^j\leq D-\sum_{j\in\mathcal{I}'}\epsilon^j$. Therefore, decreasing ϵ^j s to zero decreases the objective function without violating the constraint, which contradicts the minimality of y.

Then, we consider the case $\mathcal{I} \neq [N]$. If all $i \in \mathcal{I}$ satisfies $y^i = \hat{y}^i$, then $\sum_{i \in \mathcal{I}} (\hat{y}^i - y^i) = 0$ and the inequality holds. Otherwise, from Lemma 4, we have $\sum_{i \in \mathcal{I}} y^i = D - \sum_{j \in \overline{\mathcal{I}}} x^j$ and

$$\begin{split} \sum_{i \in \mathcal{I}} \hat{y}^i - y^i &= \sum_{i \in \mathcal{I}} \hat{y}^i - D + \sum_{j \in \overline{\mathcal{I}}} x^j \\ &= \sum_{i \in [N]} \hat{y}^i - D + \sum_{j \in \overline{\mathcal{I}}} (x^j - \hat{y}^j) \\ &\leq \sum_{j \in \overline{\mathcal{I}}} (x^j - \hat{y}^j) \\ &\stackrel{\text{Lemma } 3}{=} \sum_{j \in \overline{\mathcal{I}}} (y^j - \hat{y}^j) \,. \end{split}$$

In the last inequality, we use $\sum_{i \in [N]} \hat{y}^i \leq D$ because $\hat{y} \in \mathcal{C}(\mathbf{0})$.

PROOF OF LEMMA 6

Proof. For the sake of brevity, we omit index i of t_k^i , L_k^i , and K^i when it is clear from the context. Consider the summation in the k-th cycle for item i:

$$g_{t_k}^i(y_{t_k}^i - \hat{y}_{t_k}^i) + g_{t_k+1}^i(y_{t_k+1}^i - \hat{y}_{t_k+1}^i) + \dots + g_{t_k+L_k-1}^i(y_{t_k+L_k-1}^i - \hat{y}_{t_k+L_k-1}^i).$$

From the definition of the k-th cycle, we have

$$y_{t_h}^i \le \hat{y}_{t_h}^i \ . \tag{19}$$

Moreover, for $s=1,\ldots,L_k-1$, because $y^i_{t_k+s}>\hat{y}^i_{t_k+s}$, we have $y^i_{t_k+s}=x^i_{t_k+s}>0$ from Lemma 3. Thus, the following order property holds:

$$y_{t_k+s-1}^i \overset{\text{Eq. (1)}}{\geq} x_{t_k+s}^i \overset{\text{Lemma 3}}{=} y_{t_k+s}^i > \hat{y}_{t_k+s}^i \geq 0\,, \tag{20}$$
 for $s=1,\ldots,L_k-1$. Using the above properties, for cycles of $L_k \geq 2$, the following upper bound

$$\begin{split} y^i_{t_k+s} - \hat{y}^i_{t_k+s} &= x^i_{t_k+s} - \hat{y}^i_{t_k+s} \leq y^i_{t_k+s-1} - \hat{y}^i_{t_k+s} \\ &= (y^i_{t_k+s-1} - \hat{y}^i_{t_k+s-1}) + (\hat{y}^i_{t_k+s-1} - \hat{y}^i_{t_k+s}) \\ &= \dots \\ &= (y^i_{t_k} - \hat{y}^i_{t_k}) + \sum_{s'=0}^{s-1} (\hat{y}^i_{t_k+s'} - \hat{y}^i_{t_k+s'+1}) \\ &\stackrel{\text{Eq. (19)}}{\leq} \sum_{s'=0}^{s-1} (\hat{y}^i_{t_k+s'} - \hat{y}^i_{t_k+s'+1}) \,, \end{split}$$

which concludes the proof.

THE OTHER TECHNICAL LEMMA FOR LEMMA 1

Lemma 7. Suppose round $1, \ldots, T$ is divided into K segment of lengths L_1, \ldots, L_K that satisfies $1 \le L_k \le T \ \forall k \in [K]$ and $\sum_{k=1}^K L_k = T$. Let us define a function $\kappa : [T] \to [K]$ which maps each round $t \in [T]$ to the segment $k \in [K]$ that t belongs to, i.e., $\kappa(t) := \min_{k \in [K]} k$ s.t., $\sum_{k'=1}^k L_{k'} \ge t$. Then, for any series a_1, \ldots, a_T and b_1, \ldots, b_K , the following equality holds:

$$\sum_{k=1}^K \sum_{s=1}^{L_k-1} \sum_{s'=0}^{s-1} a_{t_k+s'} b_k = \sum_{t=1}^T a_t b_{\kappa(t)} [L_{\kappa(t)} - (t - t_{\kappa(t)}) - 1]_+,$$

where $t_k := \sum_{k'=1}^{k-1} L_{k'} + 1$ is the initial round of k-th segment and $[x]_+ := xI[x \ge 0]$.

Proof.

$$\begin{split} \sum_{k=1}^{K} \sum_{s=1}^{L_{k}-1} \sum_{s'=0}^{s-1} a_{t_{k}+s'} b_{k} &= \sum_{t=1}^{T} \sum_{k=1}^{K} \sum_{s=1}^{L_{k}-1} \sum_{s'=0}^{s-1} a_{t} b_{k} I[t=t_{k}+s'] \\ &= \sum_{t=1}^{T} \sum_{k=1}^{K} \sum_{s=1}^{K} \sum_{s'=0}^{L_{k}-1} a_{t} b_{k} I[k=\kappa(t)] I[s'=t-t_{\kappa(t)}] \\ &= \sum_{t=1}^{T} \sum_{s=1}^{L_{\kappa(t)}-1} \sum_{s'=0}^{s-1} a_{t} b_{\kappa(t)} I[s'=t-t_{\kappa(t)}] \\ &= \sum_{t=1}^{T} \sum_{s=1}^{L_{\kappa(t)}-1} a_{t} b_{\kappa(t)} I[s-1 \geq t-t_{\kappa(t)}] \\ &= \sum_{t=1}^{T} a_{t} b_{\kappa(t)} \left(L_{\kappa(t)}-1-1-(t-t_{\kappa(t)})+1\right) I[L_{\kappa(t)}-1 \geq t-t_{\kappa(t)}] \\ &= \sum_{t=1}^{T} a_{t} b_{\kappa(t)} \left[L_{\kappa(t)}-(t-t_{\kappa(t)})-1\right]_{+}. \end{split}$$

Proof. Consider k-th cycle for item i with cycle length of L_k^i . By definition, we have $\hat{y}_{t_k+s}^i < y_{t_k+s}^i$ for $s=1,\ldots,L_k^i-1$. By Lemma 3, $y_{t_k+s}^i=x_{t_k+s}^i>0$. Therefore, we have

$$y_{t_k}^i \ge x_{t_k+1}^i + d_{t_k}^i = y_{t_k+1}^i + d_{t_k}^i$$
 $\ge \dots$

$$\geq x_{t_k+L_k^i-1}^i + \sum_{s=0}^{L_k^i-2} d_{t_k+s}^i$$

If $L_k^i > L_{\max}$, then $y_{t_k}^i > D$ because $x_{t_k + L_k^i - 1}^i > 0$ and $\sum_{s = 0}^{L_k^i - 2} d_{t_k + s}^i \ge \sum_{s = 0}^{L_{\max} - 1} d_{t_k + s}^i \ge D$. This contradicts $y_{t_k}^i \le D$.

E Proof of Theorem 2

PROOF OF LEMMA 2

Proof. We start by defining a set of the restart rounds as t_1,\ldots,t_n,t_{n+1} , where the i-th restart occurs at t_i and $t_{n+1}=T+1$. We assign labels to the parameter used in each restart as L_1,\ldots,L_n , where $L_i=2^{i-1}$. In our algorithm, the base learner in $t_i,\ldots t_{i+1}$ is $\mathcal{E}(2L_i,T)$. Note that since L_n is at most $2L_{\max}$, we have $n\leq \log_2 L_{\max}+2$. The regret can be divided into:

$$\sum_{t=1}^{T} (\langle g_t, \hat{y}_t - u_t \rangle + 2GL_t^* \| \hat{y}_t - \hat{y}_{t+1} \|_1) = \sum_{i=1}^{n} \sum_{t=t_i}^{t_{i+1}-1} (\langle g_t, \hat{y}_t - u_t \rangle + 2GL_t^* \| \hat{y}_t - \hat{y}_{t+1} \|_1)
= \sum_{i=1}^{n} \sum_{t=t_i}^{t_{i+1}-1} (\langle g_t, \hat{y}_t - u_t \rangle + 2GL_i \| \hat{y}_t - \hat{y}_{t+1} \|_1) + \sum_{i=1}^{n} \sum_{t=t_i}^{t_{i+1}-1} 2G(L_t^* - L_i)) \| \hat{y}_t - \hat{y}_{t+1} \|_1.$$
(21)

For the first term, using the assumptions for $\mathcal{R}_{L,T}^{\mathcal{E}(L,T)}$, we have

$$\sum_{i=1}^{n} \sum_{t=t_{i}}^{t_{i+1}-1} (\langle g_{t}, \hat{y}_{t} - u_{t} \rangle + 2GL_{i} \| \hat{y}_{t} - \hat{y}_{t+1} \|_{1}) \leq \sum_{i=1}^{n} \mathcal{R}_{2L_{i}, T}^{\mathcal{E}(2L_{i}, T)}$$

$$\leq \left(\sum_{i=1}^{n} 2^{\alpha} L_{i}^{\alpha} \right) \mathcal{R}(T)$$

$$\leq \left(\sum_{i=1}^{n} 2^{\alpha i} \right) \mathcal{R}(T)$$

$$\leq C(\alpha) L_{\max}^{\alpha} \mathcal{R}(T),$$

where $C(\alpha)$ is an α -dependent constant. For the first inequality, we use the fact that when an algorithm guarantees an upper bound $\mathcal{R}_{L,T}^{\mathcal{E}(L,T)}$ for regret $\tilde{R}_T(L)$, it also ensures that $\tilde{R}_{T'}(L) \leq \mathcal{R}_{L,T}^{\mathcal{E}(L,T)}$ for $T' \leq T$. This can be observed by setting $g_t = \mathbf{0}$ for $t \in \{T'+1,\ldots,T\}$, which extends the series $\{g_t\}_{t=1}^{t=T'}$ in $\tilde{R}_{T'}(L)$ to $\{g_t\}_{t=1}^{t=T}$. This allows us to apply the same bound $\mathcal{R}_{L,T}^{\mathcal{E}(L,T)}$ to $\tilde{R}_{T'}(L)$.

In the second term of Eq. (21), positive contribution comes from the rounds where the parameter L_i underestimates L_t^* : $L_t^* > L_i$. Suppose the parameter is set to L_i and the algorithm observes that a cycle starts at round t. The algorithm can detect that the cycle length is longer than L_i if it has not finished at $t + L_i - 1$. Therefore, the underestimated period is at most L_i . The second term is

bounded as

$$\sum_{i=1}^{n} \sum_{t=t_{i}}^{t_{i+1}-1} 2G(L_{t}^{*} - L_{i}) \|\hat{y}_{t} - \hat{y}_{t+1}\|_{1} \leq C_{2}GL_{\max}^{1-\beta} \sum_{i=1}^{n} \sum_{t=t_{i}}^{t_{i+1}-1} I[L_{t}^{*} > L_{i}]$$

$$\leq C_{2}GL_{\max}^{1-\beta} \sum_{i=1}^{n} L_{i}$$

$$= C_{2}GL_{\max}^{1-\beta} \sum_{i=1}^{n} 2^{i-1}$$

$$= \mathcal{O}(L_{\max}^{2-\beta}),$$

where C_2 is a constant. Combining these two inequalities concludes the proof.

F PROOF OF THEOREM 3

Below, in order to match the standard expression, we introduce D' := 2D which indicates the upper bound of the diameter of $\mathcal{C}(\mathbf{0})$:

$$||x - y||_2 \le ||x - y||_1 \le ||x||_1 + ||y||_1 \le 2D =: D'$$

for any $x, y \in \mathcal{C}(\mathbf{0})$.

Proof. We first bound $\tilde{R}_T(L)$. The first term of $\tilde{R}_T(L)$ is bounded by Lemma 8. For the second term, we have

$$GL \sum_{t=1}^{T} \|\hat{y}_{t} - \hat{y}_{t+1}\|_{1} = GL \sum_{t=1}^{T} \|\hat{y}_{t} - (\Pi_{\mathcal{C}(\mathbf{0})}(\hat{y}_{t} - \eta g_{t}))\|_{1}$$

$$\leq GL \sqrt{N} \sum_{t=1}^{T} \|\hat{y}_{t} - (\Pi_{\mathcal{C}(\mathbf{0})}(\hat{y}_{t} - \eta g_{t}))\|_{2}$$

$$\leq \eta GL \sqrt{N} \sum_{t=1}^{T} \|g_{t}\|_{2}$$

$$\leq \eta \sqrt{N} G^{2} LT.$$

Combining the first and second upper bounds, we have

$$\tilde{R}_T(L) \le \frac{D'}{2\eta} \left(3D' + 2P_T \right) + \eta G^2 \left(\sqrt{N}L + \frac{1}{2} \right) T.$$

Then, by setting η to

$$\eta = \frac{D'}{G} \sqrt{\frac{(3 + 2P_T/D')}{2(\sqrt{N}L + 1/2)T}},$$

we have

$$\tilde{R}_T(L) \le G\sqrt{2D'(3D' + 2P_T)(\sqrt{N}L + 1/2)T}$$

$$\le 2GD'N^{1/4}\sqrt{(3 + 2P_T/D')LT}$$

$$= \mathcal{O}(\sqrt{L(1 + P_T)T}).$$

Specifically, for $(3 + 2P_T/D')L \le T$, $\|\hat{y}_t - \hat{y}_{t+1}\|_1 \le \eta \sqrt{N}G \le \mathcal{O}(L^{-1})$. This corresponds to $\alpha = 1/2$ and $\beta = 1$ in Theorem 2, which leads to

$$R_T \le \mathcal{O}(\sqrt{L_{\max}(1+P_T)T} + L_{\max})$$
.

Lemma 8. Alg. 3 ensures

$$\sum_{t=1}^{T} \langle g_t, \hat{y}_t - u_t \rangle \le \frac{3D'^2}{2\eta} + \frac{D'}{\eta} P_T + \frac{\eta G^2 T}{2}.$$

Proof. Let us define $\hat{y}'_{t+1} := \hat{y}_t - \eta g_t$. For any $t \in [T]$, setting $u_{T+1} = 0$, we have

$$\begin{split} \langle g_{t}, \hat{y}_{t} - u_{t} \rangle &= \frac{1}{\eta} \langle \hat{y}_{t} - \hat{y}'_{t+1}, \hat{y}_{t} - u_{t} \rangle \\ &= \frac{1}{2\eta} \left(\| \hat{y}_{t} - u_{t} \|_{2}^{2} + \| \hat{y}'_{t+1} - \hat{y}_{t} \|_{2}^{2} - \| \hat{y}'_{t+1} - u_{t} \|_{2}^{2} \right) \\ &\leq \frac{1}{2\eta} \left(\| \hat{y}_{t} - u_{t} \|_{2}^{2} + \eta^{2} \| g_{t} \|_{2}^{2} - \| \hat{y}_{t+1} - u_{t} \|_{2}^{2} \right) \\ &= \frac{1}{2\eta} \left(\| \hat{y}_{t} - u_{t} \|_{2}^{2} - \| \hat{y}_{t+1} - u_{t+1} \|_{2}^{2} + \| \hat{y}_{t+1} - u_{t+1} \|_{2}^{2} - \| \hat{y}_{t+1} - u_{t} \|_{2}^{2} + \eta^{2} \| g_{t} \|_{2}^{2} \right) \\ &= \frac{1}{2\eta} \left(\| \hat{y}_{t} - u_{t} \|_{2}^{2} - \| \hat{y}_{t+1} - u_{t+1} \|_{2}^{2} + \langle 2\hat{y}_{t+1} - u_{t+1} - u_{t}, u_{t} - u_{t+1} \rangle + \eta^{2} \| g_{t} \|_{2}^{2} \right) \\ &\leq \frac{1}{2\eta} \left(\| \hat{y}_{t} - u_{t} \|_{2}^{2} - \| \hat{y}_{t+1} - u_{t+1} \|_{2}^{2} + 2D' \| u_{t} - u_{t+1} \|_{1} + \eta^{2} \| g_{t} \|_{2}^{2} \right) \\ &\leq \frac{1}{2\eta} \left(\| \hat{y}_{t} - u_{t} \|_{2}^{2} - \| \hat{y}_{t+1} - u_{t+1} \|_{2}^{2} \right) + \frac{D'}{\eta} \| u_{t} - u_{t+1} \|_{1} + \frac{\eta G^{2}}{2} \, . \end{split}$$

In the third line, we use the inequality $\|\Pi_{\mathcal{C}(\mathbf{0})}(x) - \Pi_{\mathcal{C}(\mathbf{0})}(y)\|_2 \le \|x - y\|_2$ for any $x, y \in [0, D]^N$. The summation over $t \in [T]$ leads to

$$\sum_{t=1}^{T} \langle g_t, \hat{y}_t - u_t \rangle \leq \frac{1}{2\eta} \|\hat{y}_1 - u_1\|_2^2 + \frac{D'}{\eta} \sum_{t=1}^{T} \|u_t - u_{t+1}\|_1 + \frac{\eta G^2 T}{2}$$

$$\leq \frac{3D'^2}{2\eta} + \frac{D'}{\eta} \sum_{t=2}^{T} \|u_{t-1} - u_t\|_1 + \frac{\eta G^2 T}{2}.$$
(22)

In the final line, we use $||u_T - u_{T+1}||_1 \leq D'$.

G Proof of Theorem 4

In this section, we abuse a notation, eliminating hats in the main paper: v_{t+1}^k and y_{t+1}^k are output of \mathcal{A}^k and \mathcal{B}^k in round t, respectively. $y_{t+1} = v_{t+1}^K$ describes the final output of Alg. 5. For the sake of brevity, we also define

$$\hat{\ell}_t(y^k) := \langle g_t, y_t^k \rangle + GL \| y_t^k - y_{t+1}^k \|_1,
\hat{\ell}_t(v^k) := \langle g_t, v_t^k \rangle + GL \| v_t^k - v_{t+1}^k \|_1.$$

Then, the bit for the combiner k is defined as

$$b_t^k := \frac{\hat{\ell}_t(v^{k-1}) - \hat{\ell}_t(y^k)}{3GD'N^{1/4}\sqrt{L}}.$$
 (23)

Recall that $v_t^k = (1 - p_t^k)v_t^{k-1} + p_t^ky_t^k$, where p_t^k is the weight computed by the k-th combiner \mathcal{B}^k .

Proof of Theorem 4. From Lemma 9 and 16, we have $\mathcal{R}_{T,L}^{\mathcal{E}} = \mathcal{O}(\sqrt{L(1+P_T)T\log T})$ and $\beta = 1$. Therefore, by Theorem 2, we obtain

$$R_T < \mathcal{O}(\sqrt{L_{\max}(1+P_T)T\log T} + L_{\max})$$
.

Lemma 9. For $T \ge \max(\sqrt{L} \log_2 T, e)$, Alg. 5 ensures

$$\tilde{R}_T(L) \leq \mathcal{O}(\sqrt{L(1+P_T)T\log T})$$
.

Proof. We first consider a large P_T case, where the following inequality holds:

$$3 + \frac{2P_T}{D'} > \frac{T}{32L\log T} \,.$$

Then the regret is bounded as

$$\begin{split} \sum_{t=1}^{T} \langle g_t, y_t - u_t \rangle + GL \| y_t - y_{t+1} \|_1 &= \sum_{t=1}^{T} \langle g_t, v_t^K - u_t \rangle + GL \| v_t^K - v_{t+1}^K \|_1 \\ &\leq 3GD' N^{1/4} T = 3GD' N^{1/4} \sqrt{T} \cdot \sqrt{T} \\ &\leq 3GD' N^{1/4} \sqrt{32L(3 + 2P_T/D')T \log T} \\ &\leq 24\sqrt{2}GDN^{1/4} \sqrt{L(3 + 2P_T/D)T \log T} \\ &= \mathcal{O}(\sqrt{L(1 + P_T)T \log T}) \,. \end{split}$$

In the first inequality, we use Lemma 16 to bound the switching cost. Below, we consider the case of small P_T , where $3 + 2P_T/D' \le T/(32L\log T)$. Theorem 3 shows that the optimal η for OGD is given by $\eta^* = \alpha\sqrt{3 + 2P_T/D'}$, where $\alpha := D'/(G\sqrt{(2\sqrt{N}L + 1)T})$. On the other hand, we define the learning rates of \mathcal{A}^k as $\eta^k = \alpha\sqrt{2^{i-1}}$, for $k = 1, \ldots, K$, where $K = \lfloor \log_2 \frac{T}{32L\log T} \rfloor + 1$. Because K satisfies $3 + 2P_T/D' \le T/(32L\log T) \le 2^K$, there exists an $a \in [K]$ that satisfies

$$2^{a-1} \le 3 + \frac{2P_T}{D'} \le 2^a$$
,

which implies $\eta^a \leq \eta^* \leq \sqrt{2}\eta^a$. Under η^a , the regret upper bound of OGD is given by

$$\sum_{t=1}^{T} \langle g_{t}, y_{t}^{a} - u_{t} \rangle + GL \| y_{t}^{a} - y_{t+1}^{a} \|_{1} \leq \frac{D'^{2}}{2\eta^{a}} \left(3 + \frac{2P_{T}}{D'} \right) + \eta^{a} G^{2} \left(\sqrt{N}L + \frac{1}{2} \right) T$$

$$\leq \frac{\sqrt{2}D'^{2}}{2\eta^{*}} \left(3 + \frac{2P_{T}}{D'} \right) + \eta^{*} G^{2} \left(\sqrt{N}L + \frac{1}{2} \right) T$$

$$\leq \frac{\sqrt{2} + 1}{\sqrt{2}} G \sqrt{D'(3D' + 2P_{T})(\sqrt{N}L + 1/2)T}$$

$$\leq 3GD' N^{1/4} \sqrt{(3 + 2P_{T}/D')LT}$$

$$\leq 6GDN^{1/4} \sqrt{(3 + 2P_{T}/D)LT}$$

$$= \mathcal{O}(\sqrt{L(1 + P_{T})T}). \tag{24}$$

Using such a, the dynamic regret with switching cost can be decomposed of

$$\begin{split} \tilde{R}_T(L) &= \sum_{t=1}^T \langle g_t, y_t - u_t \rangle + GL \| y_t - y_{t+1} \|_1 = \sum_{t=1}^T \langle g_t, v_t^K - u_t \rangle + GL \| v_t^K - v_{t+1}^K \|_1 \\ &= \sum_{t=1}^T \hat{\ell}_t(v^K) - \sum_{t=1}^T \langle g_t, u_t \rangle \\ &= \sum_{t=1}^T \left(\sum_{k=a+1}^K \hat{\ell}_t(v^k) - \hat{\ell}_t(v^{k-1}) \right) + \sum_{t=1}^T (\hat{\ell}_t(v^a) - \hat{\ell}_t(y^a)) + \sum_{t=1}^T (\langle g_t, y_t^a - u_t \rangle + GL \| y_t^a - y_{t+1}^a \|_1) \,. \end{split}$$

For the first term, we have

$$\begin{split} \sum_{t=1}^{T} \sum_{k=a+1}^{K} \hat{\ell}_{t}(v^{k}) - \hat{\ell}_{t}(v^{k-1}) & \stackrel{\text{Lemma 10}}{\leq} -3GD'N^{1/4}\sqrt{L} \sum_{t=1}^{T} \sum_{k=a+1}^{K} \left(p_{t}b_{t}^{k} - \sqrt{L}|p_{t} - p_{t+1}| \right) \\ & \stackrel{\text{Lemmas 12 and 14}}{\leq} 3GD'N^{1/4}\sqrt{L} \sum_{k=a+1}^{K} \left(U(n^{k}) + \frac{1}{\sqrt{L}} + 1 \right) \\ & \stackrel{\text{Lemma 11}}{\leq} 3GD'N^{1/4}\sqrt{L} \sum_{k=a+1}^{K} \left(4\sqrt{n^{k}\log T} + 2 \right) \\ & \stackrel{\leq}{\leq} 6GD'N^{1/4}\sqrt{L} \left(2\sqrt{n^{a}\log T} \sum_{k=1}^{K} \sqrt{2^{-k}} + (K-a) \right) \\ & \stackrel{\leq}{\leq} 6GD'N^{1/4}\sqrt{L} \left(2(\sqrt{2}+1)\sqrt{n^{a}\log T} + 4\log T \right) \\ & \stackrel{\leq}{\leq} 60GDN^{1/4}\sqrt{LT\log T} + 60GDN^{1/4}\sqrt{L}\log T \,. \end{split}$$

In the last line, we use $n^a = T2^{1-a} \le T$. Similarly, for the second term, we have

$$\begin{split} \sum_{t=1}^{T} \hat{\ell}_t(v^a) - \hat{\ell}_t(y^a) &\overset{\text{Lemma 10}}{\leq} -3GD'N^{1/4}\sqrt{L} \sum_{t=1}^{T} \left((p_t^a - 1)b_t^a - \sqrt{L}|p_t^a - p_{t+1}^a| \right) \\ &\overset{\text{Lemmas 12 and 14}}{\leq} 3GD'N^{1/4}\sqrt{L} \left(\frac{T}{n^a} \left(U(n^a) + \frac{2}{\sqrt{L}} \right) + U(n^a) + \frac{1}{\sqrt{L}} + 1 \right) \\ &\leq 3GD'N^{1/4}\sqrt{L} \left(\frac{T}{n^a}U(n^a) + U(n^a) + \frac{2T}{n^a} + 2 \right) \\ &\overset{\text{Lemma 11}}{\leq} 3GD'N^{1/4}\sqrt{L} \left(4\sqrt{T^2\log T/n^a} + 4\sqrt{n^a\log T} + \frac{2T}{n^a} + 2 \right) \\ &\leq 3GD'N^{1/4}\sqrt{L} \left(4\sqrt{(3 + 2P_T/D')T\log T} + 4\sqrt{T\log T} + 2(3 + 2P_T/D') + 2 \right) \\ &\leq 3GD'N^{1/4}\sqrt{L} \left(4\sqrt{(3 + 2P_T/D')T\log T} + 4\sqrt{T\log T} + 2\sqrt{6(3 + 2P_T/D')T} + 2 \right) \\ &\leq 3GD'N^{1/4}\sqrt{L} \left(9\sqrt{(3 + 2P_T/D')T\log T} + 6\sqrt{T\log T} \right) \\ &\leq 54GDN^{1/4}\sqrt{(3 + 2P_T/D)LT\log T} + 36GDN^{1/4}\sqrt{LT\log T} \,. \end{split}$$

For the fifth line, recall that $n^a/2 = T2^{-a} \le T/(3 + 2P_T/D') \le 2^{1-a} = n^a \le T$. For the sixth line, because $P_T \le TD'$, we use $3 + 2P_T/D' = 3 + 2\sqrt{P_T/D'} \cdot \sqrt{P_T/D'} \le 3 + 2\sqrt{TP_T/D'} \le \sqrt{2(9 + 4P_T/D')T} \le \sqrt{6(3 + 2P_T/D')T}$.

Finally, the third term is bounded by Eq. (24), that is,

$$\sum_{t=1}^{T} \langle g_t, y_t^a - u_t \rangle + GL \|y_t^a - y_{t+1}^a\|_1 \le 6GDN^{1/4} \sqrt{(1 + P_T/D)LT}.$$

Combining them, we have

$$\tilde{R}_T(L) \le 60GDN^{1/4} \sqrt{L(3 + 2P_T/D)T \log T} + 96GDN^{1/4} \sqrt{LT \log T} + 60GDN^{1/4} \sqrt{L} \log T = \mathcal{O}(\sqrt{L(1 + P_T)T \log T} + \sqrt{LT \log T} + \sqrt{L} \log T),$$

which finishes the proof.

Lemma 10.

$$\sum_{t=1}^{T} \left(\hat{\ell}_{t}(v^{k}) - \hat{\ell}_{t}(v^{k-1}) \right) \leq -3GD'N^{1/4}\sqrt{L} \sum_{t=1}^{T} \left(p_{t}^{k}b_{t}^{k} - \sqrt{L}|p_{t}^{k} - p_{t+1}^{k}| \right),$$

$$\sum_{t=1}^{T} \left(\hat{\ell}_{t}(v^{k}) - \hat{\ell}_{t}(y^{k}) \right) \leq -3GD'N^{1/4}\sqrt{L} \sum_{t=1}^{T} \left((p_{t}^{k} - 1)b_{t}^{k} - \sqrt{L}|p_{t}^{k} - p_{t+1}^{k}| \right).$$

Proof. By using $v_t^k = (1 - p_t^k)v_t^{k-1} + p_t^k y_t^k$, we have

$$\begin{split} \hat{\ell}_t(v^k) &= \langle g_t, v_t^k \rangle + GL \| v_t^k - v_{t+1}^k \|_1 \\ &= (1 - p_t^k) \langle g_t, v_t^{k-1} \rangle + p_t^k \langle g_t, y_t^k \rangle + GL \| (1 - p_t^k) v_t^{k-1} + p_t^k y_t^k - (1 - p_{t+1}^k) v_{t+1}^{k-1} - p_{t+1}^k y_{t+1}^k \|_1 \\ &= (1 - p_t^k) \langle g_t, v_t^{k-1} \rangle + p_t^k \langle g_t, y_t^k \rangle + (1 - p_t^k) GL \| (v_t^{k-1} - v_{t+1}^{k-1}) \|_1 + p_t^k GL \| (y_t^k - y_{t+1}^k) \|_1 \\ &\qquad \qquad + GL \| (p_t^k - p_{t+1}^k) (y_{t+1}^k - v_{t+1}^{k-1}) \|_1 \\ &< (1 - p_t^k) \hat{l}_t(v^{k-1}) + p_t^k \hat{\ell}_t(y^k) + GD'L | p_t^k - p_{t+1}^k | \end{split}$$

Therefore, we have

$$\begin{split} \sum_{t=1}^T \left(\hat{\ell}_t(v^k) - \hat{\ell}_t(v^{k-1}) \right) &\leq \sum_{t=1}^T \left(-p_t^k (\hat{\ell}_t(v^k) - \hat{\ell}_t(y^{k-1})) + GD'L|p_t^k - p_{t+1}^k| \right) \\ &= \sum_{t=1}^T \left(-3GD'N^{1/4}\sqrt{L}p_t^k b_t^k + GD'L|p_t^k - p_{t+1}^k| \right) \\ &\leq -3GD'N^{1/4}\sqrt{L}\sum_{t=1}^T (p_t^k b_t^k - \sqrt{L}|p_t^k - p_{t+1}^k|) \,, \end{split}$$

and

$$\begin{split} \sum_{t=1}^{T} \left(\hat{\ell}_{t}(v^{k}) - \hat{\ell}_{t}(y^{k}) \right) & \leq \sum_{t=1}^{T} \left((1 - p_{t}^{k})(\hat{\ell}_{t}(v^{k}) - \hat{\ell}_{t}(y^{k-1})) + GD'L|p_{t}^{k} - p_{t+1}^{k}| \right) \\ & \leq -3GD'N^{1/4}\sqrt{L} \sum_{t=1}^{T} \left((p_{t}^{k} - 1)b_{t}^{k} - \sqrt{L}|p_{t}^{k} - p_{t+1}^{k}| \right). \end{split}$$

Lemma 11 (Eq. (11) in Zhang et al. (2022a)). $U(n) \le 4\sqrt{n \log T}$.

Lemma 12 (The former part of Theorem 1 in Zhang et al. (2022a)). Suppose $T \ge e$ and $n^k \ge \max(8e, 16 \log T)$. For any bit sequence b_1^k, \ldots, b_T^k such that $|b_t^k| \le 1/\sqrt{L} \le 1$, the following inequation holds under Alg.4:

$$-\sum_{t=1}^{T}(p_t^kb_t^k - \sqrt{L}|p_t^k - p_{t+1}^k|) \le -\max\left(0, \sum_{t=1}^{T}b_t^k - \frac{T}{n^k}\left(U(n^k) + \frac{2}{\sqrt{L}}\right)\right) + U(n^k) + \frac{1}{\sqrt{L}} + 1$$

Note that for $n^k = T2^{1-k}$ in our algorithm, $n^k \ge \max(8e, 16 \log T)$ is satisfied because $n^k \ge n^K = T2^{1-K} \ge 32L \log T \ge 32L$. In the last inequality, we use $T \ge e$.

Lemma 13 (The latter part of Theorem 1 in Zhang et al. (2022a)). Under the setting in Lemma 12,

$$|p_t^k - p_{t+1}^k| \leq \frac{1}{\sqrt{L}} \left(\sqrt{\frac{1}{n^k} \log T} + \frac{1}{4T} \right) \,.$$

Lemma 14. Assume $T \ge \max(\sqrt{L}\log_2 T, e)$. Then, $|b_t^k| \le 1/\sqrt{L}$, for any $k \in [K]$.

Proof.

$$\begin{split} |b_t^k| &= \frac{1}{3GD'N^{1/4}\sqrt{L}} \left| \hat{\ell}_t(v^{k-1}) - \hat{\ell}_t(y^k) \right| \\ &= \frac{1}{3GD'N^{1/4}\sqrt{L}} \left| \langle g_t, v_t^{k-1} - y_t^k \rangle + GL \|v_t^{k-1} - v_{t+1}^{k-1}\|_1 - GL \|y_t^k - y_{t+1}^k\|_1 \right| \\ &\leq \frac{1}{3GD'N^{1/4}\sqrt{L}} \left(GD' + GL \max(\|v_t^{k-1} - v_{t+1}^{k-1}\|_1, \|y_t^k - y_{t+1}^k\|_1) \right) \\ &\leq \frac{1}{\sqrt{L}} \,. \end{split}$$

In the last line, we use Lemmas 15 and 16.

Lemma 15. $||y_t^{k-1} - y_{t+1}^{k-1}||_1 \le D'N^{1/4}/L$ for any $k \in [K]$.

Proof. Since y_{t+1}^k is updated by OGD with the learning rate of η^k , we have

$$||y_t^k - y_{t+1}^k||_1 \le \eta^k \sqrt{N} ||g_t||_2 \le \sqrt{N} G \cdot \frac{D'}{G} \sqrt{\frac{2^{k-1}}{(2N^{1/4}L + 1)T}}$$

$$\le \frac{D'N^{1/4}}{\sqrt{L}} \sqrt{\frac{2^{K-1}}{2T}} \le \frac{D'N^{1/4}}{\sqrt{L}} \sqrt{\frac{1}{32L \log T}} \le \frac{D'N^{1/4}}{L} ,$$

which concludes the proof.

Lemma 16. Assume $T \ge \max(\sqrt{L} \log_2 T, e)$. Then, $\|v_t^k - v_{t+1}^k\|_1 \le 2D' N^{1/4} / L$ for any $k \in [K]$.

Proof. We show it by induction. For k=1, since $v_t^1=y_t^1$, the inequality holds by Lemma 15. Suppose the inequality

$$||v_t^k - v_{t+1}^k||_1 \le \frac{D'N^{1/4}}{L} + \frac{D'}{\sqrt{L}} \sum_{i=2}^k \left(\sqrt{\frac{1}{n^i} \log T} + \frac{1}{4T}\right), \tag{25}$$

holds for $k \geq 1$. We note that this inequality satisfies $LG\|v_t^k - v_{t+1}^k\|_1 \leq 2GD'$ because

$$\begin{split} \|v_t^k - v_{t+1}^k\|_1 &\leq \frac{D'N^{1/4}}{L} + \frac{D'}{\sqrt{L}} \sum_{i=2}^k \left(\sqrt{\frac{1}{n^i} \log T} + \frac{1}{4T} \right) \\ &\leq \frac{D'N^{1/4}}{L} + \frac{D'}{\sqrt{L}} \sum_{i=2}^K \left(\sqrt{\frac{2^i}{2T} \log T} + \frac{1}{4T} \right) \\ &\leq \frac{D'N^{1/4}}{L} + \frac{D'}{\sqrt{L}} \left(\frac{2}{\sqrt{2} - 1} \sqrt{\frac{\log T}{2T}} \sqrt{\frac{T}{32L \log T}} + \frac{\log_2 T}{4T} \right) \\ &\leq \frac{D'N^{1/4}}{L} + \frac{D'}{L} \left(\frac{(\sqrt{2} + 1)}{4} + \frac{\sqrt{L} \log_2 T}{4T} \right) \\ &\leq \frac{D'N^{1/4}}{L} + \frac{D'}{L} \left(\frac{(\sqrt{2} + 1)}{4} + \frac{1}{4} \right) \\ &\leq \frac{2D'N^{1/4}}{L} \,. \end{split}$$

In the fifth line, we use $\sqrt{L}\log_2 T \le T$. We also note that the assumption $T \ge \max(\sqrt{L}\log_2 T, e)$ and Lemma 15 leads to $|b_t^{k+1}| \le 1/\sqrt{L}$ and Lemma 13 holds for k+1. Therefore, for k+1, we

have

$$\begin{split} \|v_t^{k+1} - v_{t+1}^{k+1}\|_1 &= \|(1 - p_t^{k+1})v_t^k + p_t^{k+1}y_t^{k+1} - (1 - p_{t+1}^{k+1})v_{t+1}^k - p_{t+1}^{k+1}y_{t+1}^{k+1}\|_1 \\ &\leq \|(1 - p_t^{k+1})(v_t^k - v_{t+1}^k) + p_t^{k+1}(y_t^{k+1} - y_{t+1}^{k+1}) - (p_t^{k+1} - p_{t+1}^{k+1})(v_{t+1}^k - y_{t+1}^{k+1})\|_1 \\ &\leq (1 - p_t^{k+1})\|v_t^k - v_{t+1}^k\|_1 + p_t^{k+1}\|y_t^{k+1} - y_{t+1}^{k+1}\|_1 + |p_t^{k+1} - p_{t+1}^{k+1}|\|v_{t+1}^k - y_{t+1}^{k+1}\|_1 \\ &\leq (1 - p_t^{k+1})\left(\frac{D'N^{1/4}}{L} + \frac{D'}{\sqrt{L}}\sum_{i=2}^k\left(\sqrt{\frac{1}{n^i}\log T} + \frac{1}{4T}\right)\right) + p_t^{k+1}\frac{D'N^{1/4}}{L} + |p_t^{k+1} - p_{t+1}^{k+1}|D'| \\ &\leq \frac{D'N^{1/4}}{L} + \frac{D'}{\sqrt{L}}\sum_{i=2}^k\left(\sqrt{\frac{1}{n^i}\log T} + \frac{1}{4T}\right) + |p_t^{k+1} - p_{t+1}^{k+1}|D'|. \end{split}$$

In the forth line, we use Eq. (25) and Lemma 15. Here we observe that Eq. (25) holds for k + 1. Hence, by induction, we conclude the proof.

H Proof of Theorem 5

Proof. Let D_g be a distribution of loss sequences, and \mathcal{G} be the support of D_g . Then, we have

$$E_{D_g}\left[\sum_{t\in[T]}\langle g_t, y_t - u\rangle\right] \le \sup_{\{g_t\}_t\in\mathcal{G}}\sum_{t\in[T]}\langle g_t, y_t - u\rangle.$$

Thus, we will obtain our lower bound by showing a lower bound of the expected regret. Moreover, we will construct a common distribution of instances for all algorithms. Hence, we can assume that the given algorithm is deterministic without loss of generality.

We can assume that $L_{\max}=2L+1$ and $T=L_{\max}K$ for some L,K>0 without loss of generality. Note that $L=\Theta(L_{\max})$. We divide T rounds into K cycles, where a cycle has L_{\max} rounds. Let t_k be the first round in the k-th cycle.

We fix $k \in [K]$ arbitrarily. We consider the following distribution of instances.

$$\begin{split} x_{t+1}^i &= \begin{cases} y_t^i & t \in [t_k, t_k + 2L - 1] \\ 0 & t = t_k + 2L \end{cases} \quad \text{and} \\ g_t^i &= \begin{cases} -\frac{G}{2} & \text{if } i = 1 \text{ and } t \in [t_k, t_k + L - 1] \\ \frac{G(\epsilon_k + 1)}{2} & \text{if } i = 1 \text{ and } t \in [t_k + L, t_k + 2L - 1] \\ 0 & \text{otherwise} \end{cases}, \end{split}$$

where ϵ_k is a Rademacher random variable, i.e., $P(\epsilon_k = 1) = P(\epsilon_k = -1) = \frac{1}{2}$. Note that the demands of items in these instances do not rely on given algorithm. Indeed, we have

$$\tilde{d}_t^i = \begin{cases} 0 & t \in [t_k, t_k + 2L - 1] \\ D & t = t_k + 2L \end{cases}$$

and $x_{t+1}^i = \max(0, y_t^i - \tilde{d}_t^i)$ for all $i \in [N]$ and $t \in [T]$. Note also that L_{\max} is an upper bound of the sell-out period since x_t^i becomes zero at the end of each cycle for all $i \in [N]$.

Then, we discuss the cumulative loss by an algorithm. We have

$$\begin{split} \sum_{t=t_k}^{t_k+2L} \langle g_t, y_t \rangle &= \sum_{t=t_k}^{t_k+L-1} \langle g_t, y_t \rangle + \sum_{t=t_k+L}^{t_k+2L-1} \langle g_t, y_t \rangle \\ &= \sum_{t=t_k}^{t_k+L-1} - \frac{G}{2} y_t^1 + \sum_{t=t_k+L}^{t_k+2L-1} \frac{G(\epsilon_k+1)}{2} y_t^1 \\ &\geq - \frac{GL}{2} y_{t_k+L-1}^1 + \sum_{t=t_k+L}^{t_k+2L-1} \frac{G(\epsilon_k+1)}{2} y_t^1, \end{split}$$

where the inequality holds due to the definition of x_t^i in the instances. Now, we focus on the second term on the right-hand side. Since $y_t^1 \geq y_{t_k+L-1}^1$ for all $t \in [t_k+L,t_k+2L-1]$, if $\epsilon_k=1$, we have

$$\sum_{t=t_{k}+L}^{t_{k}+2L-1} \frac{G(\epsilon_{k}+1)}{2} y_{t}^{1} \ge GL y_{t_{k}+L-1}.$$

On the other hand, if $\epsilon_k = -1$, we have

$$\sum_{t=t_{k}+L}^{t_{k}+2L-1} \frac{G(\epsilon_{k}+1)}{2} y_{t}^{1} = 0.$$

Therefore, we obtain

$$E\left[\sum_{t=t_{k}}^{t_{k}+2L} \langle g_{t}, y_{t} \rangle\right] \ge E\left[-\frac{GL}{2} y_{t_{k}+L-1}^{1} + \sum_{t=t_{k}+L}^{t_{k}+2L-1} \frac{G(\epsilon_{k}+1)}{2} y_{t}^{1}\right] \ge 0.$$
 (26)

Next, we consider the cumulative loss by the comparator. Let T' = LK, $e_i \in R^N$ be the *i*-th canonical vector, and $\mathcal{U} = \{0, De_1\}$. Then, we have

$$\min_{u \in \mathcal{C}(\mathbf{0})} \sum_{t \in [T]} \langle g_t, u \rangle = \min_{u \in \mathcal{C}(\mathbf{0})} \sum_{k \in [K]} \sum_{t=t_k}^{t_k + 2L} \langle g_t, u \rangle$$

$$\leq \min_{u \in \mathcal{U}} \sum_{k \in [K]} \sum_{t=t_k}^{t_k + 2L} \langle g_t, u \rangle$$

$$= \min_{u \in \mathcal{U}} \sum_{k \in [K]} \left(\sum_{t=t_k}^{t_k + L - 1} - \frac{G}{2} u^1 + \sum_{t=t_k + L}^{t_k + 2L - 1} \frac{G(\epsilon_k + 1)}{2} u^1 \right)$$

$$= \min_{u \in \mathcal{U}} \sum_{k \in [K]} \frac{GDL\epsilon_k}{2} u^1$$

$$= \frac{GDL}{2} \min_{u' \in \{0,1\}} \sum_{k \in [K]} \epsilon_k u'. \tag{27}$$

Combining (26) and (27), we obtain

$$E\left[\sum_{t\in[T]}\langle g_t, y_t\rangle - \min_{u\in\mathcal{C}(\mathbf{0})} \sum_{t\in[T]}\langle g_t, u\rangle\right] = E\left[\sum_{k\in[K]} \sum_{t=t_k}^{t_k+2L} \langle g_t, y_t\rangle - \min_{u\in\mathcal{C}(\mathbf{0})} \sum_{k\in[K]} \sum_{t=t_k}^{t_k+2L} \langle g_t, u\rangle\right]$$

$$\geq -\frac{GDL}{2} E\left[\min_{u'\in\{0,1\}} \sum_{k\in[K]} \epsilon_k u'\right]$$

$$= \frac{GDL}{2} E\left[\max_{u'\in\{0,1\}} \sum_{k\in[K]} \epsilon_k u'\right],$$

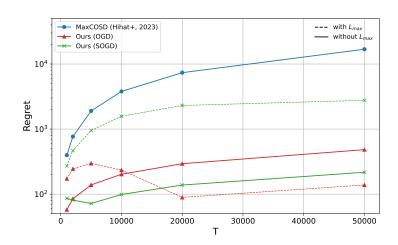


Figure 1: Experimental Results

where the last equality is derived from the fact that $-\epsilon_k$ is a Rademacher random variable. Finally, we obtain

$$\frac{GDL}{2}E\left[\max_{u'\in\{0,1\}}\sum_{k\in[K]}\epsilon_k u'\right] = \frac{GDL}{4}E\left[\left|\sum_{k\in[K]}\epsilon_k\right|\right]$$
$$\geq \frac{GDL}{4}\sqrt{K} \geq \Omega(GD\sqrt{L_{\max}T}),$$

where we used $\max(a,b)=\frac{a+b}{2}+\frac{|a-b|}{2}$ in the equality, Khintchine inequality in the second inequality, and $K=\Theta(T/L)$ in the last inequality.

I EXPERIMENTS

We present the results of numerical experiments using synthetic demand data. We conduct experiments varying the value of $T \in [2000, 5000, 10000, 20000, 50000]$ and measure the regret for each algorithm. We consider an inventory system for a single item with a warehouse capacity of D=1, and a newsvendor loss of $\ell_t(y)=5\max(d_t-y,0)+\max(y-d_t,0)$, where d_t is the demand of round t. The demands are artificially generated as $d_t=D/2(1+(1-\epsilon(T))\sin(w(T)t))$, where $w(T)=2\pi\log T/T$ and $\epsilon(T)=1/\log T$. This parameterization ensures $L_{\max} \sim \mathcal{O}(\log T)$ and demand fluctuation $\sum_{t=1}^T |d_t-d_{t-1}| \sim \mathcal{O}(\log T)$, which are dominated by $\epsilon(T)$, and $\epsilon(T)$, respectively. We adopt the ideal comparator $u_t=d_t$, that incurs zero loss and gives $P_T=\sum_{t=1}^T |d_t-d_{t-1}|$. Initial inventory level and initial order is set to zero and 1/2, respectively. We set the parameter $\epsilon(T)$ for MaxCOSD as $\epsilon(T)$ 0 where $\epsilon(T)$ 1 where $\epsilon(T)$ 2 represents the minimum of the demand series (note that we consider a deterministic demand in this experiment). We note that OGD requires $\epsilon(T)$ 2 as an input, whereas SOGD does not.

The results are shown in Fig. 1. In the experiment, our algorithms significantly outperform the baseline (MaxCOSD). We observe that the algorithms using the doubling trick (solid lines) sometimes achieve lower regret than those with $L_{\rm max}$ information (dashed lines). This is because when using $L_{\rm max}$, the learning rate is set smaller than that used in the doubling trick case. As a result, it requires longer time to shift from the initial value to an appropriate order level, which can deteriorate the performance.

J THE USE OF LARGE LANGUAGE MODELS

In this paper, we used large language models to refine and check our writing; we did not use them for any other significant tasks.