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ABSTRACT

This paper addresses online inventory optimization (OIO), an extension of online
convex optimization. OIO is a sequential decision-making process in inventory
management cycles consisting of order arrival, stock consumption, and new order
placement. One key challenge in OIO is managing demand fluctuations. However,
most existing algorithms still cannot sufficiently handle this because they focus on
a static regret guarantee, comparing their performance to a fixed order-up-to level
strategy. In non-stationary environments, such static comparator is unsuitable due
to demand fluctuations. In this paper, we propose an algorithm with near-optimal
dynamic regret guarantee for OIO. Our algorithm also offers an improvement of
v/ Lmax for the static regret upper bound in existing studies. Here, L, .x refers to
the maximum sell-out period. Our algorithm employs a simple two-stage projec-
tion strategy, through which we prove that the OIO is connected to the smoothed
online convex optimization.

1 INTRODUCTION

Inventory management is crucial in supply chain management, with extensive research focusing
on optimal ordering strategies for various inventory systems. In particular, systems with periodic
reviews and carryover stock are closely related to real-world problems. Numerous approaches have
been proposed for these systems, assuming known demand models (see, e.g., Glock et al. (2014)).
However, it is often challenging to obtain a complete demand model in advance, which highlights
the necessity for online learning techniques to adapt to unknown demands.

Recently, Online Convex Optimization (OCO) (Hazan et al., 2016; Orabona, 2019; Shalev-Shwartz
et al., 2012) has attracted attention in the online inventory management (Huh & Rusmevichientong,
2009; Shi et al., 2016; Zhang et al., 2018a; 2020; Yuan et al., 2021; Agrawal & Jia, 2022; Hihat
et al., 2023). OCO is a sequential learning framework in which for each round ¢ € [T, the decision
maker chooses an N-dimensional vector y; that is in a convex feasible region C C R and then
environment reveals a convex loss function ¢;. The typical aim of the decision maker is to minimize
the static regret, ) _, ¢;(y¢) —miny,ecc Y, ;(u). Here we note that in the inventory system, most loss
functions, such as the Newsvendor loss, are convex.

Online inventory optimization (OIO) is a variant of OCO, formulated by Hihat et al. (2023). In
OIO, a sequential decision-making process involving the inventory cycle of order arrival, stock
consumption, and new order placement is considered. During each round ¢ € [T, the stock is
replenished to the order-up-to level of y; set in the previous round. The environment processes
the subsequent demand and post-processing activities, revealing an [N -dimensional carryover stock
level of ;41 and a subgradient g; € 0¢;(y;) that is associated with the convex loss incurred by the
decision y;. Then, the decision maker determines the next order-up-to level y, that is greater than
x41 and less than the capacity constraint of the warehouse. In the OIO setting, Hihat et al. (2023)
have proposed the MaxCOSD algorithm, which achieves a sublinear static regret.

However, the static regret guarantee is not sufficient for practical applications, especially in environ-
ments with demand fluctuations. Consider a simple example of a single-item inventory system with
a capacity limit of D. Set the fluctuating demand as d; = Dt/T for t € [T and the loss function
as the Newsvendor loss of ¢;(y) = |y — dy|. A straightforward calculation shows that the minimum

total loss of the static comparator is min,co, p) ZtT:l li(u) = O(DT), whereas a time-varying
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Table 1: Regret bounds of [1] Huh & Rusmevichientong (2009); [2] Zhang et al. (2018a); [3] Zhang
et al. (2020); [4] Agrawal & Jia (2022); [5] Yuan et al. (2021); [6] Shi et al. (2016); [7] Hihat et al.
(2023); and our work. In the table, we list the regret bounds for each reference by replacing the
demand characteristic parameters used in each paper with our indicator L,,,x. C' in the fifth row is a
positive constant which depends on other parameters. In the references marked with a dagger, lead
time is taken into account. We show the regret bounds when the lead time is equal to one. S/M in
the Item column represents Single/Multiple item setting. NV, O, and F in the Loss column represent
Newsvendor loss, outdating cost, and fixed cost, respectively.

Regret | Reference | Upper Bound Lower Bound Item Loss Demand
(1] O(LimaxVT) S NV iid.
2] O(LimaxV'T) QWVT) S NV+0O iid
) (31t O(LmaxVT) Q(VT) S NV iid.
S [4]" O(VT + Lina) S NV iid.
(5] O(eClmax/T) S NV+F iid
[6] O(LimaxVT) M NV indep.
[7] (’)(LmaX\/T) M Convex non-i.i.d.
Static . O(VLmaxT) Q(v/LinaxT) ..
W [This work] & (/e (1 + PI)T) M Convex non-i.i.d.

comparator with u; = d; results in ZtT:I li(ug) = 0. Thus, even if we have an algorithm with
O(V/T)-static regret for this example, it may still suffer from (7")-regret when comparing it to u,.

Recent studies on OCO have intensively investigated algorithms for dynamic environment (Hall &
Willett, 2013; Zhang et al., 2018b; Zhao et al., 2020; 2024). The dynamic regret is an indicator
that measures an algorithm’s tolerance against changing environments. In the context of OCO, the
dynamic regret is defined as Ry (uy,...,ur) = 23:1 l(zy) — Zle £4(uy), which is a function
of a time-varying comparator sequence uq,...,ur. A major approach for the dynamic regret is
based on a two-layer structure, where a meta-algorithm adaptively accumulates the decisions of a
set of base leaners (Zhang et al., 2018b; van Erven et al., 2021; Zhang et al., 2022b). Such algorithm
ensures O(+/(D + Pr)T)-dynamic regret, where Pr is the total path-length of the comparator:
Pp = Z;FZQ |lus—1 — wel]1. Therefore, in OIO, a key question is whether we can construct an

algorithm that ensures an O(\/(D + Pr)T')-dynamic regret in the OIO setting. If we have such
an algorithm, we obtain a sublinear dynamic regret for the aforementioned example because Pr =

>, D/T = O(D).

One major difficulty in the dynamic regret minimization for OIO is the carryover stock constraint.
While the order-up-to level y; must be greater than the carryover stock x;, the comparator u, is not
subject to this constraint. Thus, the feasible region of w; is always a superset of that of y;. Most
algorithms for OCO provide regret guarantees only for comparators 4, that are in the same feasible
region as y;. Consequently, this naive application results in O(7T')-regret due to the gap between 4,
and u;. For the static regret minimization, Hihat et al. (2023) overcome this difficulty by cyclical
update approach, where y, is only updated to a candidate ¢; when g is feasible.

When considering the dynamic regret, however, we cannot employ a standard two-layer structure
with an OIO algorithm (such as MaxCOSD) as the base learner to leverage its theoretical guarantees.
A fundamental difficulty is that this architecture contradicts a key assumption for OIO algorithms:
the carryover stock level x;; must be less than the preceding replenished stock level y;. A meta-
algorithm’s decision y; might be larger than the output y¢ of a base learner a. With a small demand,
x41 can exceed y. For the base learners, this carryover stock level violates their assumption
(i < y@ for all ¢). This inconsistency prevents us from obtaining a theoretical guarantee for the
two-layer structure.
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1.1 CONTRIBUTIONS

The main contribution of this paper is to propose OIO algorithms with near-optimal dynamic regret
guarantee, as stated in the following theorem.

Theorem 1 (Informal). Under the constraints of carryover stock and the warehouse capacity, there
exists an algorithm that ensures

Ry(uy,...,up) < O(V/LaxT (1 + Pr)),

for any sequences of the comparator uy, . . . , ur, without knowing Ly,.x and Pr a priori.

Here, O is an order symbol that ignores logarithmic factors. Lpax is the maximum sell-out pe-
riod defined in Definition 1, which, informally speaking, indicates that the total demand over L,
rounds is at least the warehouse capacity. For static regret, the algorithm guarantees (’}(\/LmaXT)-
regret, offering an improvement of v/ L,.x over the existing works. The regret bounds are summa-
rized in Table 1.!

Our algorithm employs a simple two-stage projection strategy consisting of a base learner and its
projection onto a feasible region. In each round ¢, an observed subgradient g; is fed to the base
learner to propose a decision g1, which is then adjusted to y;1 to meet carryover stock constraints.

A distinctive feature of our algorithm is that the base learner’s decision is made independently of the
carryover stock.

We note that our update process differs from MaxCOSD’s in that ours allows the order-up-to level
y; to change, even if the base learner’s decision ¥, is infeasible.

Our primary technical contributions are twofold. First, we demonstrate that, under our two-stage
projection, the dynamic regret can be bounded by the base learner’s regret with switching costs pro-
portional to L., which eliminates the concerns regarding the dynamic carryover stock constraint.
Leveraging this result, we achieve a near-optimal dynamic regret by employing an algorithm for
well-known Smoothed OCO (SOCO) (Lin et al., 2011; Zhang et al., 2021; 2022c;a) as the base
learner, along with the doubling trick for unknown L.

Second, we provide, for the first time, a Q(1/LaxT) lower bound for the OIO setting. Our matching

upper and lower bounds establish that O(\/LmaxT) is nearly optimal, which resolves the open
question raised by Hihat et al. (2023).

2 RELATED WORKS

Inventory Management Inventory management is a long-standing research topic in the field
of operations research. It addresses various conditions, such as demand model (deterministic or
stochastic), carryover status (stateless or stateful), review frequencies (periodic or continuous), lead
times (constant or probabilistic), item types (single or multiple), stockout types (backorders or lost
opportunities), ordering costs (linear or non-linear, with or without fixed order cost), disposal losses,
multi-echelon systems, and more (see, e.g., Zipkin (2000); Porteus (2002)). In particular, a stateful
inventory system with periodic reviews, i.e., a situation where the remaining stock from the previ-
ous period is carried over, is closely related to real-world problems. Numerous methods have been
proposed for scenarios where the demand model is known in advance (Glock et al., 2014). How-
ever, in many cases, obtaining a complete demand model in advance is challenging. This difficulty
highlights the importance of online learning for inventory optimization. As the objective function
is often convex (e.g., the Newsvendor loss), various studies have explored this online inventory op-
timization problem in relation to online convex optimization problems (Huh & Rusmevichientong,
2009; Shi et al., 2016; Zhang et al., 2018a; 2020; Yuan et al., 2021; Agrawal & Jia, 2022; Hihat
etal., 2023).

!The parameters corresponding to Lmax in each reference are as follows: 1/~ in Huh & Rusmevichientong
(2009); 1/ in Zhang et al. (2018a); 1/c2 in Zhang et al. (2020); D in Agrawal & Jia (2022); pf in Yuan et al.
(2021); 1/1 in Shi et al. (2016); and 1/ in Hihat et al. (2023).
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Algorithm 1 Setting of Online Inventory Optimization

1: Initialize the inventory level z; € C(0), order-up-to level y; € C(z1), where C is defined in
Eq. (4).

2: fort=1,...,7do

3:  Observe an inventory level ;1 that satisfies x;11 ; € [0,y ;] forall i € [N].
4:  Observe a subgradient g; € 04 (y,).

5:  Decide the next order-up-to level y; ;1 that satisfies y;+1 € C(2¢41).

6: end for

Online Convex Optimization Online convex optimization (OCO) (Shalev-Shwartz et al., 2012;
Hazan et al., 2016; Orabona, 2019) is a sequential learning framework that chooses ¥, and mini-
mizes regret >, fi(y:) — >, ft(u) for a convex time-varying function f;. It is shown that Online

Gradient Descent algorithm (OGD) achieves the minimax optimal regret bound of O(v/T) (Zinke-
vich, 2003; Abernethy et al., 2008). For an exp-concave loss function, faster convergence can be
achieved by Online Newton Step algorithm (Hazan et al., 2007), which enjoys a static regret bound

of O(y/Tog T).

In OCO, one of the important topics is developing algorithms that adapt to dynamic environments.
There are two major performance metrics: dynamic regret and (strongly) adaptive regret. Dynamic

regret, also known as switching or tracking regret, is defined as Ry (u1, ..., up) := ZtT=1 C(yr) —

ZtT:I li(ut) (Hall & Willett, 2013; Zhang et al., 2018b; Zhao et al., 2020; 2024). In Zhang et al.
(2018Db), it is shown that a two-layer algorithm called Ader achieves the optimal regret upper bound
of O(/(1+ Pr)T). Adaptive regret (also known as interval regret) is defined as Rr([s,e]) =
2 tefs,e Le(ye) —minuee Yy e (s o €e(u). Here the regret is a function of the interval [s, e] := s, s +
1,...,e—1,e,where 1 <s < e <7T. A weaker definition, considering the maximum regret, has
been first proposed by Hazan & Seshadhri (2007). Later on, Daniely et al. (2015) have extended it to
account for any interval length. Jun et al. (2017) have proposed an algorithm achieving an adaptive
regret of O(v/7log T'), where 7 represents the length of the interval considered.

Smoothed OCO (SOCO) is a variant of OCO that incorporates the switching cost Ally; — y41]|
into the regret. The concept of switching cost is first motivated by data center management (Lin
et al., 2011) and in the standard setting, the cost function ¢; is provided before making the decision
x; (Bansal et al., 2015; Chen et al., 2018; Goel & Wierman, 2018; Goel et al., 2019). In the setting
where the decision is made before observing the loss, OGD can achieve O(y/AT) static regret (see,
for example, Zhang et al. (2022a)). Zhang et al. (2021) have proposed an algorithm for the dynamic
regret minimization based on Ader algorithm (Zhang et al., 2018b). Besides, it is pointed out that
algorithms for OCO with memory guarantees the adaptive regret for SOCO (Zhang et al., 2022c;
Gradu et al., 2023). Recently, Zhang et al. (2022a) have proposed an algorithm that guarantees upper
bounds for both dynamic and adaptive regret by utilizing Discounted-Normal-Predictor (Kapralov
& Panigrahy, 2011).

3 PROBLEM SETTING

We consider the online inventory optimization problem for NV items. The stock levels of each item
are represented by components of a /N-dimensional vector, which is an element of a convex space
C C RY, that defines the capacity constraints of the warehouse. At each round ¢ € [T, the
decision maker receives the order placed in the previous round, resulting in the stock level reaching
the order-up-to level y;. Following this, the environment processes the subsequent demand and
necessary post-processing activities, revealing a carryover stock level of x; 1 to the decision maker.
Concurrently, a subgradient g; € 9¢:(y;) that is associated with the convex loss incurred by the
decision g is observed. Then, the decision maker determines the next order-up-to level y;4; such
that yy+1 € Cand y},; >z}, forall i € [N]. The process is summarized in Alg. 1.

Remark 1. It can sometimes be challenging to observe opportunity loss. For instance, in retail
stores, when an item is out of stock, customers rarely inquire with the store staff about its availabil-
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ity. As a result, retailers have limited knowledge about the actual demand for out-of-stock items.
Recently, Hihat et al. (2023) have addressed this issue in their OIO setting, highlighting that the
subgradient of the loss function can often be derived even without complete demand observations.
This is because the penalty associated with the opportunity loss is typically given by multiplying
the quantity of opportunity loss by a cost coefficient, as is the case with the Newsvendor loss:
pmax(0,d; — y;), where p is a cost coefficient and d; and y; are demand and order-up-to level
of round t, respectively. Since this penalty is linear with y;, we can compute the subgradient without
knowing the demand quantity. Our problem setting also uses this framework.

We consider the following three conditions. First, we consider that the replenished stock up to y; is
always greater than the carryover stock level z,; after subsequent demand and post-processing:

zh,, = max(0,y; — di) < yi, (1)

for all i € [N]. Here we define the demand for item 7 at round ¢ as di € [0, D], noting that it may
also include consumption from some post-processing activities.

Secondly, we define the feasible region for the order-up-to level y, as the intersection of the lower
bounds set by the carryover stocks

vizal vieN], @
and the linear-sum constraints arising from inventory space
> yi<D. 3)
1€E[N]
Specifically, we define the function for the feasible region C : [0, D]N — P([0, D]V) as
Clx):=={ye[0,D]N |y' >a" Vie[N], > y <D} )
1€[N]

Finally, we assume that the subgradients of the losses are bounded:

llgell < G. ®)

In our analysis, we deal with 1-norm of the subgradient, which is bounded as ||g:]|1 < vV N||gtl2 <

VNG.

We consider the adversarial environments. After observing y;, the environment can choose the
demand d; and convex loss function adversarially. Aim of this paper is to construct a (near-) optimal
algorithm for OIO under the adversarial environment.

Remark 2. Our study and Hihat et al. (2023) share the same setup except for the warehouse ca-
pacity constraint. While Hihat et al. (2023) assumes a general convex constraint, our work specif-
ically addresses a linear constraint. Although the linear constraint is a special case of the convex
constraint, it is commonly encountered in practical scenarios. Importantly, to our knowledge, no
existing work establishes theoretically guaranteed algorithms for dynamic environment, even under
the linear constraint.

3.1 ENVIRONMENTAL DIFFICULTY INDICATOR

Algorithm’s performance relies on the behavior of x4 ;, which reflects the demand and post process
in round ¢. In our analysis, we focus on the period during which the inventory can meet demand,
which is referred to as sell-out period.

Definition 1 (Sell-out period). We define Ly, as the period during which the sum of the demands
exceeds the inventory capacity:

min(¢t+L—1,T+1)
Limax ;== min{ L € [T] | > di > D, forallt € [T] and i € [N]

s=t

Here, we hypothetically assume that d’. 1 =D.
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Algorithm 2 Online Inventory Optimization Algorithm for Dynamic Environment
1: Set L =1.
2: Initialize 1 = 0 and y; € C(x1).
3: Initialize a base learner £(2L, T') with an initial state §j; = y; and an input parameter L = 1.
4: fort=1,...,7T do

5. Observe gt € 90, (y,) and x, 1 that satisfies 2, € [0,y;] forall i € [N].
6:  Observe L; defined in Eq. (9).

7:  if maxL; > L then

8: Update L < 2L and restart £(2L, T') inputting the updated parameter L.

9: endif
10:  Feed g; to £ and receive a decision ;41 € C(0).

11: Update y; 41 = HC(CEt+1)(Qt+1)'
12: end for

We here note the relationship between the sell-out period and demand. Setting Loy = o(7T') mildly
constrains the duration of periods with small demand; this constraint prevents situations where the
decision maker is forced to incur holding costs over an extended period due to the small demands.
In fact, as we will show in our lower bound analysis, sub-linear regret cannot be achieved when
Liax = Q(T). We also note that L,,,, does not primarily constrain the fluctuations in demand.
The fluctuation is only upper bounded during the period that determines L,,,x, and there is no such
constraint in the other rounds

Remark 3. It is straightforward to extend L, to a high probability upper bound. In this case, we
consider that there exists a parameter 0 < § < 1and P(3, ™2 bwax=LTHD i > Dy > 1§ /NT
holds for any i € [N] and t € [T)|. This extension provides high-probability regret upper bounds.
Furthermore, we note that Ly, is essentially the same as the other parameters defined in Shi et al.
(2016) and Hihat et al. (2023). In fact, the probabilistic extension is a generalization of them. We
give a detailed discussion of this point in the appendix.

3.2 REGRET

We consider the following dynamic regret for OIO:

T
Z Gt Yt — Uz) 6)
=1

agh
:>

T
Rr(uy, ... ,ur) = Z&(yt) -
t=1

Here y; € C(x¢), and u; € C(0). The major difficulty arises from the fact that y; and u; belong to the
different feasible regions. Specifically, the feasible region of w; is always a superset of y,’s feasible
region, meaning that we employ a stronger comparator than that of the standard OCO problem. In
OIO setting, the feasible region of y; is affected by the previous decision; that is, the lower bound
x, is constrained by ¢ € [0,y!_,] forall i € [N].

Meanwhile, when we adopt a feasible comparator that satisfies max (0, u; — d}) < uj_,, the total
path-length Pr becomes bounded. We provide a detailed discussion in the appendix.

4  PROPOSED ALGORITHMS

Our algorithm employs a simple two-stage projection strategy, as described in Alg. 2. In each round
t, the algorithm feeds g¢; into the base learner £ and receives the decision §;1 € C(0), which
only considers the warehouse capacity constraint (line 10). Then the algorithm projects it onto the
feasible region with the carryover constraint: C(z;41) (line 11). 2

We initialize 2 as O and the beginning of the first cycle is t = 1. We note that our algorithm can be applied
for the 1 # O case, incurring an additional regret of at most GD Lmax by adopting the zero-order strategy
until the inventory level reaches 0.
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The organization of this section is as follows: We first discuss the properties of the projection
Il¢(q,.,) in Section 4.1. Our key lemma is Lemma 1. By this lemma, we demonstrate that the
regret upper bound of the decision y; can be reduced to that of the base learner’s decision ;. Fur-
thermore, we show that the carryover stock constraint leads to a switching cost for ¢, in the base
learner’s regret. In Section 4.2, we provide a regret guarantee for a general base learner in Theo-
rems 2. Finally, in Section 4.3, we introduce SOCO algorithms with a dynamic regret guarantee and
present its regret upper bound in Theorem 4. *

4.1 PROJECTION PROPERTY

Our analysis is based on time-periods called cycles. For each item ¢, a cycle is defined by the period
during which §; cannot be realized due to the carryover stock z%, resulting in y{ > §i. This is
formally expressed as follows:

Definition 2 (Cycle). Let S; C [T'] be defined as the set of the rounds that satisfies y{ < g if and
only if t € S;. Suppose the elements ¢t € S; is indexed in strictly increasing order as t; < to <
-+ < tis,|- Werefer to the period tg, ¢ + 1,... g1 — 1 for ¢y € S; as the k-th cycle of item 1,

and define the length of the k-th cycle as L := ;1 — t), where we set ts 41 =T+ 1.

Then, the following key lemma holds in our OIO setting:
Lemma 1. For any base learner &, Alg. 2 ensures
T T
> gy — i) 2G| <,max Lz) 19 = Gesallr (7
t=1 =1 \EV)
where Li is the current cycle length for item 1, that is, Lfc that satisfies t, <t < tpy1 fortg,tpy1 €
Si.
Remark 4. Lemma 1 shows that, under our two-stage projection strategy, OIO is linked to

SOCO (Lin et al., 2011; Zhang et al., 2021; 2022c;a), eliminating the difficulty for the dynamic
carry-over stock constraint in the OIO setting.

In fact, under Alg. 2, the regret is bounded as

T
Ry <Y (g6 — we) + 2GL; | — Geralln) (8)
t=1

where Li = max;¢c|n] L. The right-hand side is interpreted as the dynamic regret for SOCO
problem for the base learner £, where for every t € [T, £ chooses §: € C(0) and suffers loss
(g¢, 9y with switching cost of 2GL}_; ||J:—1 — ¥ ||1. The main difference from the standard SOCO
is the coefficient Ly, which is time-dependent and delayed in observability; it becomes observable
only after the cycle for each item at time ¢ is completed.* We propose an improved algorithm that
works without prior knowledge of the switching cost in the next section.

4.2 DOUBLING TRICK FOR THE UNKNOWN SWITCHING COST

We address the unknown switching cost in Eq. (8) by introducing a doubling trick for L}. In Alg. 2,
as described in lines 7 to 9, our algorithm restarts the base learner £ with a new parameter L by
comparing the current parameter and the maximum observed cycle length max £;. Here, we define
the set of the observed cycle lengths at round ¢ as

L= (JALL,. . iyt —te+1 |t St <tpgr,tpothar €Si}, 9)
i€[N]

where ¢t — t;, + 1 indicates the lower bound of the current cycle length. For the regret upper bound
analysis, we use the following property of the cycle legth:

3 All omitted proofs are given in the appendix.
We also omit the high-probability regrets for the sake of clarity, since extention is rather straightforward. See
Remark 5 in the appendix for details.
4 Another difference is that the switching cost appears as [;-norm instead of the lx-norm. We track this
impact in the regret analyses.
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Algorithm 3 Online Gradient Descent Algorithm 5 Smoothed Online Gradient De-
Require: Learning rate 7. scent (Zhang et al., 2022a)

1: fort=1,...,T do Require: L > 0.

2: ReceiveAa subgradient gt 1: Set K = |log, mj + 1

3:  Return gy 1 = Ileo) (9t — nge)- 2: fork=1,...,K do

4: end for 3: Set nk — T21_k

4: Initialize k-th instance .A*, which is
Alg. 3 with the learning rate of n* =

Algorithm 4 k-th Combiner 2D/G\/1/(2V/NL + L)k
Require: Two parameters: n* and L. 5. Initialize k-th combiner BF, which is

1: Initialize z; = 0. Alg. 4 with the input parameters of n* and
2: Set g(z) = \/Eierf(—z )622/16"k. L.

GO T Venk 6: end for
3: Compute U(n") := g~ (1) 7: fort=1,...,T do
4 fort=1,.. ];Tldo 8:  Receive a subgradient g;.
. e oF—1 gk

5: Receive U 1, Uiy, and gq. 9: fork=1,...,Kdo

6:  Compute bf by Eq. (11). 10: if k = 1 then

7. if 2z € [0, U( B or(z <0)n(bF >0) 11: ofq — Al(gr).

or (zx > U(n*)) N (bF < 0) then 12: else
8: Zt+1 = (1 — 1/TL )Zt + b 13: :l)ézrl — Ak(gt>
9: else 14: ok BF(oFT gk
: 1 y Yt+1o gt)

10: Zip1 = (1= 1/nF)z. 15: endt;% e

11 end if 16:  end for

12: pfy = H[o 1] (9(2t41)) 17:  Return ;41 = 0f5;.

13:  Return th = (1 - pt+1)vf+11 + 18: end for

ko k
Pry1Y¢+1-
14: end for

Lemma 2. The cycle length is upper bounded by the sell-out period Ly ,x.

We assume that the base learner is an algorithm £(L,T") with an input parameter L and T that
provides a regret upper bound of

Z 96,9 — ue) + GL|| G — Gt [1) < Ri%’T) (10)
=1

for any series of {g;}7_,.

Then, the following regret upper bounds holds for Alg. 2.

(,)

Theorem 2. Assume that under algorithm E(L,T), the regret upper bound R can be decom-

posed into Rg(L n = LR(T) and the switching cost is bounded by ||§; — G111 < O(L™?) for
B > 0. Then, Alg 2 ensures

Ry < Cla)RE ™) + O(L%0),

max

where C(«) is an a-dependent factor.

4.3 ALGORITHMS FOR THE BASE LEARNER

In this section we introduce algorithms for SOCO that can be used as the base learner in Alg. 2.
First, we introduce the standard Online Gradient Descent algorithm (OGD) described in Alg. 3.
Theorem 3. Assume T > Luyax(3 + Pr/D). In Alg. 2, the base learner Alg. 3 with an L-

parameterized learning rate n = é?gff/;;% ensures Ry < O(\/Lmax(1+ Pr)T + Liax) -
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To obtain the optimal regret order, we must know Pr a priori when setting the learning rate 7).
This parameter depends on the characteristics of the future demands and is sometimes difficult to
determine in advance.

Recently, Zhang et al. (2022a) have proposed the Smoothed Online Gradient Descent algorithm
(SOGD). In the algorithm, the meta-algorithm sequentially aggregates multiple experts’ decision,
where k-th decision in the sequence is obtained by combining k-th expert’s decision g ‘pand k—1-

th combined decision ﬁf:ll via the k-th combiner B*. The combiner combines the two inputs with a
weight p,y that is adaptively computed by Discounted-Normal-Predictor (Kapralov & Panigrahy,
2011) with conservative updating with bit sequences of

Y- N Ak e b ke
(g, 07" = 9F) + GL(|[of ™" — of 5l — 198 — 9F 1 l1h)

br =
K 6GDN/4/T

(1)

a described in line 5 to 11 in Alg. 4. The meta-algorithm use K -th decision as the output.
Theorem 4. Assume T' > \/Lyax(logy T + €). In Alg. 2, the base learner Alg. 5 ensures

Ry < O(\/Lmax(l + PT)T IOgT + Lmax) :

5 LOWER BOUND

In this section, we discuss the optimality of our regret analysis. In OCO, Zhang et al. (2018b) have
established the Q(1/(1 + Pr)T') lower bound. Our regret upper bound matches this lower bound up

to a logarithmic factor. On the other hand, we also have a v/ L2« factor in our bound. The following
theorem ensures this optimality.

Theorem 5. For any algorithm A, there exists some sequence { g, }+ and some u € C(0) such that
T
Z<gta Yt — ’LL> = Q(GD V LmaxT)a

t=1

where {y; }I_, is the sequence of the outputs by A.

As a byproduct, this lower bound provides the optimality of the v/L factor in the OGD and SOGD
algorithms for the SOCO setting. This is because if there were an algorithm that can be improved
upon, it can break the lower bound of OIO by adopting it as the base learner of our algorithm.

Corollary 1. For SOCO with regret of Ry(L), its lower bound is Q(v/LT).

In our study, OIO and SOCO are found to be connected, which provides an intriguing example of
how one lower bound can constrain the other.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we propose an algorithm for OIO with a near-optimal dynamic regret guarantee. We
connect OIO to SOCO through a simple two stage projection and the dynamic regret bound com-
bining an algorithm for SOCO and doubling trick for unknown Ly 4.

There are several interesting prospects for future investigation. First, the problem setting does not
take into account the lead time and fixed-order costs. For i.i.d. demand, there are studies addressing
these settings (Zhang et al., 2020; Agrawal & Jia, 2022; Yuan et al., 2021). The extension to dynamic
environments is an interesting direction for future research. Secondly, we assume a linear capacity
constraint as described in Eq. (3). This assumption is critical to the proof of Lemmas 5 and 6.
Although we believe that it is possible to extend this assumption to a more general convex set, we
leave it for future work.
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A DISCUSSION ON Lyax

Existing works introduce the least amount of demands in each round. Shi et al. (2016) assumes
minimum demand. Hihat et al. (2023) introduces parameters p and p and assumes P [d; > p} > W
holds for all ¢ € [T'] almost surely. We here see the relation between Assumption 10 in Hihat et al.
(2023) and Remark 3 in our paper.

Proposition 1. If Assumption 10 in Hihat et al. (2023) holds, then our assumption in Remark 3
holds. That is, if one have . and p such that P [d;ﬁ/ > p} > w holds for all t € [T] almost surely,

then there exists L. such that P (ZT;?(HL‘““*LTH) di > D) > 1 — 6/NT holds for any
i € [N]andt € [T).

11
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Proof. We denote L,,x by L. Suppose Assumption 10 in Hihat et al. (2023) holds. Then, we have
Pldy>p] > p

for all t € [T'] almost surely. By Markov’s inequality, we obtain

E [d]

Pld,>p] < =

and thus E [d;] > pp holds. Our aim is to obtain the number of rounds necessary for making the
inventory sold out with the probability at least 1 — §/NT for each cycle (by the fact that there exist
at most 7" cycles from ¢ = 1 to ¢t = T for all items and technique of the union bound). Since we
assume ., = 0 for all i € [N], we consider L consecutive rounds only. Hereafter, we consider
on some fixed ¢ € [N]. Let us denote

_ 1 (d;>p)
Xt‘{o (@ < )

and
t

Y= Z(Xs - E[Xs])

s=1

By applying Azuma—-Hoeffding inequality, we obtain

L
P(th <Lﬂ—€> < P(YL — Yy < —¢)
t=1
L L
=P (th <E ZXt] —g>
t=1 t=1

2
< exp <2€L> .

From

we obtain

/ NT

Therefore, Zthl Xy < Lp— +/2L1log % holds with probability at least 1 — 6/NT. If demand
larger than or equal to p occur at least D/p times, then the inventory becomes sold out. Thus, the

condition for L is
D NT
— < Lp—1/2Llog —.
P §

NT
Let us denote w = +/Lu, a = 4/ QIOi 3 and b = D/p, then we obtain

D T
— < Lp— 2LlogT — w?—aw>b

p
a2 _ a2 b
= -] > —
(w 2) =77
—u- /%1y
w— 2 @
2~ 4
CL2
<— w> -+ Z—H)

12
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Then,

log &L log¥L D
— Lu> \/g5 +\/g5 + =
2p % p

log XL 2log XL 9p
g% | 2log75 2D
p 0 p

holds, where the last part utilizes (o + 8)? < 2(a? + 3?), Va, 3 € R. Therefore, if one adopts L
satisfying

<~ Lp>

3log XL 2p 2D  3log ML
Lp>2288 22 Lz—+%,
p Pl 0

the inventory becomes sold out in at most L rounds with the probability at least 1 — §/NT. O

B EXTENTION TO THE HIGH-PROBABILITY REGRET

Remark 5. The probabilistic definition for L.« in Remark 3 ensures that L?c satisfies L?c < Linax
with probability of 1 — §/NT. Given this definition, our regret upper bounds hold when all L},
satisfy L}'f < Lax int € [T). Applying the union bound over all cycles and products, we bound
its probability at least 1 — §. Therefore, using the probabilistic expression for L.y, our results
naturally extend to high-probability regrets, maintaining the same order of bounds with a probability
of 1 —0.

C ORDER ESTIMATION OF Pr

Proposition 2. Under the feasible comparator that satisfies max (0, ul — dt) < ul 11, Pr is upper
bounded by ND + 25" ST d.

Proof. For clarity, we first consider the single-item scenario. Consider a set A = {t € 2,...,T |
us—1 > ut}, and write Pr as
T
Pr :Z|Ut—1 —w| = Z(Ut—l —u) + Z (ur —up—1). (12)
t=2 teA te{2,...,TH\A

The first term is upper bounded by the demand series {d;} as
ug—1 —up < diq, (13)

because the feasible space of u;, is constrained by the carryover stock as u; > max(u;—1 —d;—1,0).
On the other hand, the second term can be bounded by the first term as follows:

T
—D <wuy —ur = Z(uH — ) = Z(utq —uy) — Z (ug —ug—1). (14
t=2 teA te{2,...TH\A
Combining these inequalities, we have

T
PTSQZ(ut_l—ut)+D§2Zdt_1+D§22dt+D. (15)

teA teA t=1
The bound in the multi-item case can be obtained straightforwardly as the sum of the bounds for
each item, which concludes the proof. O

We also note that the ideal feasible comparator typically yields Pr = Zthz |ldi—1 — dy||1- This is
because, in most inventory system without lead-time, the ideal order-up-to decision {u;} matches
the demand {d; }, which incurs neither lost-sales loss nor holding costs.

13
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D PROOFS OF THE LEMMAS IN SECTIONS 4.1 AND 4.2

D.1 LEMMAS ON THE PROJECTION OPERATOR Il¢ ()

In this section, we provide lemmas regarding the relationships that hold between § € C(0) and
y = Il¢(z)(9) where 2 € C(0). We note that , ¢, and 2 do not necessarily depend on ; in other
words, we do not assume that they are elements of a ¢-dependent series resulting from a particular
algorithm or environment.

For the subsequent proofs, we define the set of the item index Z and its complement as Z := {i €
[N] | ¥* <9'},and Z := [N]/Z = {i € [N] | y* > '}, respectively. Recall that C(z) C C(0) and
the projection y = Il¢(,)(¢) is equal to y = argmin,cc ) [y — 713

Lemma3. Fori €T, y' = 2' > 0.

Proof. We divide the proof in three cases regardlng U; (1) For y € C(xz), it is obvious that y = ¢
holds. (ii) For § ¢ C(z) and §* < ', we observe y* = x* > ¢". This is because if we have some
e > 0and y* = 2’ + ¢, decreasing € to zero decreases the objective function without violating the
constraint, which contradicts the minimality of y. We also note that 2% > 0 in this case because
§* > 0. (iii) Finally, for § ¢ C(x) and §* > %, we observe y* < §'. This is because if we have
some € > 0 and y° = 9 + €, decreasing € to zero decreases the objective function without violating
the constraint, which contradicts the minimality of y. In summary, 4° > 7 only occurs in the case
of (ii), which leads to 3* = z* > 0. O

Lemma 4. [f there exist an i* € [N| that satisfies y* < §* , then YicT y'=D — Zjef 2.

Proof. From Lemma 3, it is obvious 4/ = 27 for j € Z. Therefore, y = Ilc(,)(§) implies that
y minimizes >, 7 (y* — §°)? satisfying y* < ¢' and 3", ;4" < D — 37, 77, Assume that
Yier¥' < D =372’ Then, we can increase y" to " without violating the constraint, which
decreases the objective function and contradicts the minimality of y. O

D.2 PROOF OF LEMMA 1

To prove Lemma 1, we use the following two lemmas for the cycle property. Let Z; be the set
of items such that ¢ is the initial part of the cycle, i.e., Z; := {i € [N] | yi < §i}. Note that
T, := [N]/Z; = {i € [N] | y{ > 9i} is the set of items in the later part of the cycle. Then, the
following lemmas hold.

Lemma 5. Foranyt € [T], 3, 7, 98—yt < > ieT, Yl — gt

. , , B e .
Lemma 6. Forany k € [K']and s € [Lj, = 1], y}, s = Uf, 16 < 2oweo Utiss — Uty 441 -

Proof of Lemma 1. We divide the left-hand side of Eq. (7) into the initial and later parts of the cycle:

T T
Z<gt,yt—@t>zzzgi( +th yi — 91 (16)
=1

t=11€1; zEIt

For the first term, from Lemma 5, the following inequality holds:

T T
>0 3 st i) < 3l 306 SZHgtuooz fegh.an

t=1icZ; i€y i€Ts

where we use y! < ¢¢ for i € Z, in the first inequality. This inequality suggests the following
statement: the contributions from the initial part of the cycles in all items are bounded by the contri-
butions from the later parts of the cycles in all items. Therefore, the proof is completed by evaluating
the contributions from the later parts of the cycles, i.e., the second term in Eq. (16).

14
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For the second term in Eq. (16), using Lemma 6, we have
N Kt Li-1
Z Z 9:(yt — 9t) Z Z Z giﬁs(yi;ﬁs - Qz;ﬁs)
t=1;c7T, i=1 k=1 s=1
N Kt Li—1
ZZ ‘gt};Jrs”OO Z (y;‘;d_s - gz;.q-s)
i=1 k=1 s=1
L‘—l s—1
Lemma() .
ZZ Hgt’ +5||00 Z Z yf;'c+3/ *yzi+s/+1)v (18)
i=1 k=1 s=1 s'=0

where we refer to the definition of the summation of the later parts of the cycle for the first equality.
Combining Eq. (16), Eq. (17), and Eq. (18), we finally have

T g an N KLl
RURETIRERE) 30 Db IR MU
t=1 i=1 k=1 s=1 )
N K Lj-1
£ (19 . p
233> guersllo szws, — i i)
i=1 k=1 s=1 s'=0
N K' Lip—1s-1
<26y D> D Wi~ Giyr)
i=1 k=1 s=1 s'=0
N T
- QGZZ ( wi(e) — (= it )) - 1) (9t yt+1)
i=1 t=1
T
<2G max L’ 0y — 0
<26Y (max m) I = e
T
< QGZL:H@& = Gl -
t=1
In the fourth line, we apply Lemma 7 given in the appendix. This concludes the proof. O

D.3 PROOF OF LEMMA 5

Proof. First, we consider the case Z = [N]. In this case, we observe §° — y' = 0foralli € [N].
This can be proved as follows: If we have non-empty set Z' := {i € [N] | y* < §'}, we can write
y' =4’ —¢ where e/ > 0forj € Z'. Then, Y-, n ¥’ = Dien §' = 2ojer € S D= jer €.
Therefore, decreasing €’s to zero decreases the objective function without violating the constraint,
which contradicts the minimality of y.

Then, we consider the case Z # [N]. If all i € Z satisfies y* = ¢, then Y, 7(9* — y*) = 0 and the
inequality holds. Otherwise, from Lemma 4, we have ZiEI yi =D-> jeT 27 and

=y =Y 7 -D+Y &

i€ i€T jeT

S ey
i€[N] jeT

<D (@ -9
JjET

Lemma 3 P

S ).

JET
In the last inequality, we use } -, x) 9 < D because j € C(0). O
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D.4 PROOF OF LEMMA 6

Proof. For the sake of brevity, we omit index 4 of ¢}, L%, and K when it is clear from the context.
Consider the summation in the k-th cycle for item i:
9t W, — U6) + 91 W1 — Utr1) o+ Gt ne—1 Wt -1 = JtptL—1) -
From the definition of the k-th cycle, we have
i, < Ui, - (19
Moreover, for s = 1,..., L, — 1, because y;, ,, > @i, 4, we have y; , = x} ., > 0 from
Lemma 3. Thus, the following order property holds:

. Eq.(1) . Lemma3 v
y;kﬂ—s—l Z x;k-ﬁ—s = yzk-&-s > y;k—i-s Z O’ (20)

fors =1,..., Ly — 1. Using the above properties, for cycles of L;, > 2, the following upper bound
holds:

i e} i e} i e}
Yiuts ~ Ytrts = Ttpts — Ytpts < Yipts—1 — Ytuts
_ (i < o v
= (ytk+sfl - ythrsfl) + (ythrsfl - ytk+s)

s—1
= Wh = 0) + D Wi = Bipyrsn)
s'=0
Eq. (19) y
Z yfk+s/ - ytk+s/+1) )
which concludes the proof. O

D.5 THE OTHER TECHNICAL LEMMA FOR LEMMA 1

Lemma 7. Suppose round 1,...,T is divided into K segment of lengths L1, ..., Lk that satisfies
1< Ly <TVEk € [K]and Zszl Ly, = T. Let us define a function k : [T| — [K] which maps each
round t € [T to the segmentk € [K] that t belongs to, i.e., k(t) := minge[x k 5., Z:,:l Ly >t.
Then, for any series a1, ...,ar and by, .. bK, the following equality holds:

K Li—1s—1

Z Z Z g, 4srb = Zatbm(t) w(t) — (t —tu)) — 1+

klsls’O

where ty, = k’:l Ly + 1 is the initial round of k-th segment and [x)+ = xI[x > 0].
Proof.
K Lip—1s—1 T K Lj—
S S =Y S S ate=n
k=1 s=1 s'=0 t=1 k=1 s=1
T K Ly—1s—1
=330 abid [k = w()[s =t — te)
t=1k=1 s=1 s'=0
T Lewy—1 s—1
= Z atbn(t)l[s =t— tn(t)]
t=1 s=1 /=0
T Lﬁ(t)—l
= Z atbn(t)f[s —1>t—t (t)]
t=1 s=1

= by (L) = 1= 1= (6 = tu(y) + 1) I[Lyy = 1 > = tgy)]
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D.6 PROOF OF LEMMA 2

Proof. Consider k-th cycle for item ¢ with cycle length of L . By definition, we have §; |, < yi, |
fors=1,...,L; —1. By Lemma3, y; ,, = 2} ,, > 0. Therefore, we have

/yzsz > $£k+1 + dftk = y;k+1 + dék

v

Li—2
tk+L7 1t Z dtk+9

. . Li— _
If L}, > Luax, then y;, > D because xt Lio1 > 0 and ZS;O e > Zsmgx 1 di ,, > D.
This contradicts y; < D. O

E PROOF OF THEOREM 2

Proof. We start by defining a set of the restart rounds as ¢y,...,%,,t,4+1, Where the i-th restart
occurs at t; and ¢, 1 = T+ 1. We assign labels to the parameter used in each restartas Ly, ..., L,,
where L; = 2¢~1. In our algorithm, the base learner in ¢;, . .. t; 11 is £(2L;, T). Note that since L,
is at most 2Ly ax, we have n < logy Liax + 2. The regret can be divided into:

T n tiy1—1
> (ges B = ue) + 2GLi |G = Geralln) =D D (g6 9 — we) + 2GL7 |9 — Geiall)
t=1 =1 t=t;
n tig1—1 n tig1—1
=3 > (g di —w) +2GLillge — G ll) + Y D> 2G(L; = L)l — el -
P — F—

21

For the first term, using the assumptions for Ri(;’n, we have

n tig1—1 n

E(2L;,T
Z Z (96, Gt — we) + 2G LG — Gesall1) SZ 2L T :
=1 t=t; i=1

||M:

o
(e

C a Lmax ( )

/_\A

where C'(«) is an a-dependent constant. For the first inequality, we use the fact that when an
algorithm guarantees an upper bound Ri(;T) for regret Ry (L), it also ensures that Ry (L) <

Ri%’ﬂ for 7" < T. This can be observed by setting g; = 0 for t € {T” + 1,...,T}, which

extends the series {g;}/=7 in Ry (L) to {g;}!=T. This allows us to apply the same bound R (L n

to Ry (L).
In the second term of Eq. (21), positive contribution comes from the rounds where the parameter L;
underestimates Ly: L; > L;. Suppose the parameter is set to L; and the algorithm observes that

a cycle starts at round ¢. The algorithm can detect that the cycle length is longer than L; if it has
not finished at ¢ + L; — 1. Therefore, the underestimated period is at most L;. The second term is
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bounded as
n tiy1—1 n tigi—1
Z Z Li)||ge — 9e41]1 < C2G Linaﬁz Z I[L} > L]
i=1 t=t; i=1 t=t;

< CLGLLP ZLi

max

= CGLLY Z 2t~

max

- O(L 12na£) ’
where Cs is a constant. Combining these two inequalities concludes the proof. O
F PROOF OF THEOREM 3
Below, in order to match the standard expression, we introduce D’ := 2D which indicates the upper

bound of the diameter of C(0):
lz = yll2 < llz =yl < [zl + llylh < 2D =: D’
for any z,y € C(0).

Proof. We first bound Ry (L). The first term of Ry (L) is bounded by Lemma 8. For the second
term, we have

T T
GLY i — Gl = GL Y lli — Meqo) (G — ng))la
t=1 t=1
T
< GL\/NZ 19¢ — (Hegoy (9 — nge))ll2
=1

T
<nGLv NZ gl
t=1

<nVNG?LT.
Combining the first and second upper bounds, we have

D’ 1
R(L) < o (3D +2Pr) + G <\/NL + 2) T.
1

Then, by setting 1 to

D’ (3+2Pr/D")
2(VNL +1/2)T

we have

Rr(L) < G\/ 2D'(3D' + 2Pr)(VNL + 1/2)T
<2GD'NY*\/(3+2Pr/D')LT
= O(/L(1 + Pr)T).

Specifically, for (3 + 2Pr/D’)L < gt — Jea1ln < VNG < O(L™1). This corresponds to
a =1/2and 8 = 1 in Theorem 2, which leads to

RT S O( Lmax(]- + PT)T + Lmax) .

18
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Lemma 8. Alg. 3 ensures

T

D/2 D/ 2T
Z (9t U¢ — ug) < 3 +—Pr+ nc .
P 2n n 2

Proof. Let us define §j; | := ¢; — ng;. For any t € [T, setting ur,; = 0, we have

. 1. .
<9t7yt - Ut> = *<yt - y115+17yt - Ut>

n
= % (1 = el + 19541 — el = 19541 — wel3)
< o (I =l + Pl — s — )
=%wm—wﬁﬂmﬂ—mﬂﬁﬂmﬂ—mﬂﬁqmﬂ_mﬁ+ﬁm@)
= % (19 — uell3 = 1Ges1 — wesall3 + (20e41 — wegr — e, we — wegr) +0°|gel|3)
< % (19¢ — well3 = N1 — wesall3 + 2D [ue — weslls + 07l ge113)
< QL (I9e = well3 = NGe1 — wesal3) + lz/Hut — gy |1 + 772£2

In the third line, we use the inequality ||TI¢(o) () — (o) (y)||2 < || — yl|2 for any z,y € [0, DN
The summation over ¢ € [T leads to

T

. G?T
> (o =) < gl =l + ;Znut i+
t=1 t=1
3D’2 D’ G? T
< §jwu1—um1+” (22)
In the final line, we use ||ur — ur41]1 < D'. O

G PROOF OF THEOREM 4

In this section, we abuse a notation, eliminating hats in the main paper: v} "1 and yr 1 are output of

AF and B* in round ¢, respectively. y;41 = v/%; describes the final output of Alg. 5. For the sake
of brevity, we also define

Ue(y®) == (g, uF) + GLIlyf — yfiall
G (%) = (ge,vf) + GLIJof = vf 4|1 -
Then, the bit for the combiner k is defined as

(M) — u(y)
k.t t
= T 23)

Recall that vf = (1 — pf)v ) L4 pkyk, where pF is the weight computed by the k-th combiner B¥.

Proof of Theorem 4. From Lemma 9 and 16, we have R%L = O(\/L(1+ Pr)TlogT)and 3 = 1.
Therefore, by Theorem 2, we obtain

Ry < O(\/Limax(1 + Pr)T10og T + Linax) -
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Lemma 9. For T > max(\/Llog, T,e), Alg. 5 ensures

Rr(L) < O(/L(1 + Pr)TlogT).

Proof. We first consider a large Pr case, where the following inequality holds:

2Pp T
D’ 32LlogT "

3+

Then the regret is bounded as

T T
Z (96,98 — we) + GL|ye — yesall = Z<gtvvtK —ug) + GL|[vf — vk
t=1

t=1
< 3GD'NY*T = 3GD'NY*T -NT
< 3GD'NY*\/32L(3 + 2Pr/D')Tlog T
< 24V2GDNY*\/L(3 + 2Pr/D)T log T
= O(V/L(1+ Pr)TlogT).

In the first inequality, we use Lemma 16 to bound the switching cost. Below, we consider the case
of small Pr, where 3 + 2Pp/D’ < T'/(32L1ogT). Theorem 3 shows that the optimal 7 for OGD

is given by * = a+/3 + 2Pr/D’, where o := D'/(G1/(2V/NL + 1)T). On the other hand, we
define the learning rates of A* as n* = av/2i=1, fork = 1,..., K, where K = |log, ﬁj +1.
Because K satisfies 3 + 2Pr/D’ < T/(32LlogT) < 2K, there exists an a € [K] that satisfies

2Pr
2(1.—1 < 3 -+ < 2(L
<3+ g

which implies n% < n* < /2n®. Under 1%, the regret upper bound of OGD is given by

T
D”? 2P 1
> (g, yf —w) + GLIlyf — iyl < 5 (3+ D,T> +1°G? (\/NL+ ) T
t=1 n 2
\/§D/2 2Pr 9 1
* NL+=\|T
S o <3+ D,>+?7G <\F +2>
V241
< G\/D'(3D' 4+ 2Pr)(VNL + 1/2)T
< ey ) /2)

<3GD'NY*\/(3+2Pr/D')LT

< 6GDNY*\/(3+2Pr/D)LT

=O/L(1+ Pp)T). (24)
Using such a, the dynamic regret with switching cost can be decomposed of

T

T
Rp(L) = (g, — we) + GLllye — grall = Y (g0, 0 — w) + GLIPvf —vf1 ]
1 t=1

T
t thvut
t=1
K T
(zt A )+ 30 D+ 3t v+ Gl ~ )
t=1

k=a+1 t=1

~~
Il

[
Mq

o~
I
-

I
B

~
I
—
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For the first term, we have
Lemma 10

T K T K
SN A bt M e N VIS S (mbh - VEIp— pen)

t=1 k=a+1 t=1 k=a+1

Lemmas§12 and 14 GD/N1/4f Z ( + L n 1)
k=a+1 \/z

, K
e s G NYAYVE 3 (4\/71’“ 1ogT+2)

k=a-+1

K
< 6GD'NY*VL <2N/na logT» V2h 4+ (K — a)>
k=1

< 6GD'NY4VL (2(\/5 +1)y/nelog T + 4log T)
< 60GDNY*\/LTlogT + 60GDN*\/LlogT .

In the last line, we use n® = T21-¢ < T Similarly, for the second term, we have

T
Z _ft y )Lem;lal() 3GD/N1/4\/>Z( a_ 1 ba \/Z|p?_p?+1|>

Lemmas 12 and 14 2 1
< 3GD'NY*VL ( (U n®) + ) +UMn") + —=+ 1)
ne (%) VL (%) VL

T 2T
< 3GD'NY*V/L <naU(na) UM + =+ 2)
27
3GD'NY*/L (4«/T2 log T/n® + 4/nelog T + — + 2)
na
< 3GD/N'VL (4/(3+2Pr /DT log T + 4/Tlog T + 2(3 + 2Pr/D') +2)

< 3GD'NY4V/L (4\/(3 +2Pr /D" Tlog T + 4\/Tlog T + 2+/6(3 + 2Py /DT + 2)
<3GD'NYAVL (9\/(3 ¥ 2P; /DT log T + 61/T log T)
< 54GDNY*\/(3+ 2Py /D)LT log T 4+ 36GDNY*\/LT1ogT .

Lemma 11

For the fifth line, recall that n®/2 = T27% < T/(3 + 2Pr/D’) < 217% = n% < T For the sixth
line, because Pr < T'D’, weuse 3+ 2Pr/D' =3 + 2\/PT/D’ . \/PT/D’ <342y /TPr/D' <
V2(9+4Pr /DT < \/6(3+2Pr/D)T

Finally, the third term is bounded by Eq. (24), that is,

T
> (g yf — ue) + GLIy¢ — il < 6GDNY/(1+ Pr/D)LT
t=1

Combining them, we have

Rr(L) < 60GDNY*\/L(3 + 2Pr/D)Tlog T + 96GDN/*\/LTlog T + 60GDN'*V/Llog T
= O(VL(1 + Pr)TlogT 4+ \/LT1log T +VLlogT),

which finishes the proof. O
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Lemma 10.

T T
> (")~ 4w ) < 36D NYAVL Db = VI = plal).

~
I
—

T
Z (&(Uk) —Et(yk)) < 3GD/N1/4\/>Z -1 bt \FL|I%]5C —pf+1|)~

Proof. By using vF = (1 — pF)vF~! + pFyF, we have
ét(v )= <gtavt> + GLHUt - Ut+1||1
= (L= ){ge: o5 ™) +0i (9o, y) + GL|[(1 — pf)og +pt i — (L= pia)viy — piavialh
= (L= )ge: o5 ™) +0i 9o,y + (L= pF)GLI(of ™ — o)l +f GLI(yf — yiea) Il
+ GL”(pt - pt+1)(yt+1 - 05;11)”1
< (1=pHh* ) +pfl(y") + GD'Lipf — |
Therefore, we have

5 (Geh) = fu(o* ) < 5 (—PHE") = bF ) + GD'LIpE = bl

t=1 t=1

T
= > (-3GO NYAVIpSH + GD'Lipf ~ i)

T
< —3GD'NY*VL (pfbf — VLIpf — pFyal),

t=1
and

i(mvk) W) < i(l—pt (%) = b(y* ) + GD'LIpf = bl

t=1 t=1
< 3GD’N1/4fZ F = Db = VLIpE = pial)-

O

Lemma 11 (Eq. (11) in Zhang et al. (2022a)). U(n) < 4y/nlogT.

Lemma 12 (The former part of Theorem 1 in Zhang et al. (2022a)). Suppose T > e and nk >
max(8e, 16log T). For any bit sequence b¥, ... bk such that |bF| < 1/v/L < 1, the following
inequation holds under Alg.4:

T
T 2 1
—E (pfbf — VLIpf — pfya]) < —max [ 0, bk—<Unk +) +UM") + —=+1
p |pt pt+1|)— po t ’I’Lk ( ) \/Z ( ) \/Z

Note that for n* = T2'=* in our algorithm, n* > max(8e, 16logT) is satisfied because n* >
K —7ol-K > 39T, logT' > 32L. In the last inequality, we use T > e.

Lemma 13 (The latter part of Theorem 1 in Zhang et al. (2022a)). Under the setting in Lemma 12,

1 1
k k
Py — Pl < ﬁ <\/ logT + 4T>

Lemma 14. Assume T > max(v/Llog, T, e). Then, |bf| < 1/V/L, for any k € [K].
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Proof.
1
b t|77 ﬁ(vk 1)76,5( )
1
- 3GD'NVAVL K g, 08 —yf) + GL|jof 1}t+11||1 GL|yF - yf+1H1\
1 / k—1 -1 k
< 3G NUAVE (GD" 4+ GL max(||v; ’Ut+1 s gk =gk )
<1
S UL
In the last line, we use Lemmas 15 and 16. 0

Lemma 15. |jy; ' — yF !y < D'NY4/L for any k € [K].

Proof. Since yF ', 1 is updated by OGD with the learning rate of n*, we have

ok—1
QNAL+ )T

/N1/4 -1 /N1/4 1 D/N1/4
V 32LlogT

Lemma 16. Assume T > max(v/Llog, T e). Then, |[vf —vf, |1 < 2D'NY*/L forany k € [K].

Iyt = vialle < 0" VN|lgell2 < VNG -

which concludes the proof.

Proof. We show it by induction. For k = 1, since v} = y}, the inequality holds by Lemma 15.
Suppose the inequality

D/N1/4 / 1
ko k /1
_ < il
[y — vl < 7 \F Z ( — logT + 1T (25)

holds for k > 1. We note that this inequality satisfies LG||vf — v}, |1 < 2GD’ because

D'NVA  pr & 1
k k
HUt _'Ut+1||1 < T +\ﬁ; logT—&—E
D'N1/4 N D /logT 1og2
L VL \V2-1 32L logT

D’N1/4+D’<(\/§+1 \Flog2 )
L

IA
S
==
=
gz
=
VN
TN
&
S
+
g
S
N———

IN

IN

L 4

D'NY* D' [(V2+1)
< - = =7 -
- L + L ( 4 +4
2D/N1/4
< ——.
- L

In the fifth line, we use v/L log, T' < T. We also note that the assumption T’ > max(v/L log, T’ €)
and Lemma 15 leads to |b¥ ™| < 1/+/L and Lemma 13 holds for k 4 1. Therefore, for k + 1, we
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have
HU}HI — Ugy +1||1 =(1- k+1)vt +pk+1 A -1 _pfill)vtﬂ pfillyfiflll
k k k k k k k
<[(1- H)(Uf _Ut+1) + Dr +1(yt i yt-:-rll) (pt+1 _ptill)(vf+1 yt-fﬁl )
k
< (L=pfOIvf —ofall + ey = w4 I = e lF — v

DN1/4 1 1 D/Nl/
§(1pf+l)< T \FZ<\/TgT+ 4T>>+pf+1L +p kaptHID’

D'N'/* D' \/7 1
< 1 T - k+1 k41 D/
<= fz < ogT+ 7 | +Ipi™" = pifi]
Lemma 13 D/N1/4 D’ ktl 1
< 1 T4+ —
VT2 Ve T ap

In the forth line, we use Eq. (25) and Lemma 15. Here we observe that Eq. (25) holds for k£ + 1.
Hence, by induction, we conclude the proof. O

H PROOF OF THEOREM 5

Proof. Let D, be a distribution of loss sequences, and G be the support of D,. Then, we have

Ep, | > {gnye—u)| < sup > {gr,y — u).
te[T) {ge}e€g te[T)

Thus, we will obtain our lower bound by showing a lower bound of the expected regret. Moreover,
we will construct a common distribution of instances for all algorithms. Hence, we can assume that
the given algorithm is deterministic without loss of generality.

We can assume that L,,x = 2L+ 1and T = L, K for some L, K > 0 without loss of generality.
Note that L = ©(Lyyax). We divide T rounds into K cycles, where a cycle has Ly, rounds. Let ¢
be the first round in the k-th cycle.

We fix k € [K] arbitrarily. We consider the following distribution of instances.

; yi t € [tg,ty +2L—1]
= d
Titq {O t =t +2L an
-< ifi =1andt € [tg,tx + L — 1]
gi =1 Gt gy — tandt € [ty + L, by + 2L — 1],
0 otherwise
where € is a Rademacher random variable, i.e., P(ey, = 1) = P(e = —1) = % Note that the

demands of items in these instances do not rely on given algorithm. Indeed, we hav

(¢)

7D t=t+2L

and i, = max(0,y; — d}) for all i € [N] and t € [T]. Note also that Ly, is an upper bound of
the sell-out period since z becomes zero at the end of each cycle for all i € [N].
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Then, we discuss the cumulative loss by an algorithm. We have

tr+2L tr+L—1 tp+2L—1
S lgnud = > lgnud+ > lgnue)
t=tg t=ty t=tr+L
tp+L—1 G tp+2L— 1 €k+1 1
SRR JRLLLY
t=ty, t=tp+L
tr+2L— 1
GL €k+1
z- 5 Ytar—1 Z Yis
t=tr+L

where the inequality holds due to the definition of z¢ in the instances. Now, we focus on the second
term on the right-hand side. Since y; > ytlk+L_1 forallt € [ty + L, tx, + 2L — 1], if e = 1, we
have

tp+2L—1
Gep +1
Z Glen 1) 5 )ytl > GLyty+1-1-
t=tp+L
On the other hand, if ¢, = —1, we have
tp+2L—1 G(€k+1) )
t=tp+L
Therefore, we obtain
te+2L te+2L— 1
GL Ek + 1
E| Y Agnw)| 2B | = tiarat ) Lyl >0 (26)
t=ty t=tp+L

Next, we consider the cumulative loss by the comparator. Let 77 = LK, e; € RY be the i-th
canonical vector, and U/ = {0, De; }. Then, we have

tp+2L
min g¢, w) = min E E (9¢,u
u€C(0) g0, w) uec(0) ’
te([T] t=ty
thrQL

IN
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ke t=ty t=tr+L
. GDLEk 1
= min
uel 2
ke[K]
DL
= OPL i 3 @7)
weldll K
Combining (26) and (27), we obtain
tr+2L tr+2L
B> Agny) = min > (gnu)| =E | > Y (goy)— min > > (g,u
te[T) ueCl® o) ke[K] t=tk ueC(0) ik =t
GDL .
27T Pl 2 e
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—&— MaxCOSD (Hihat+, 2023) === with Lmax
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Figure 1: Experimental Results

where the last equality is derived from the fact that —ej is a Rademacher random variable. Finally,
we obtain

GDL GDL
——F| max Z eu | = TE Z €k
k€[K] ke[K]

GDL % > Q(GD/LiaxT),

where we used max(a,b) = “+b + ‘ag % in the equality, Khintchine inequality in the second in-
equality, and K = ©(T'/L) in the last inequality. O

I EXPERIMENTS

We present the results of numerical experiments using synthetic demand data. We conduct experi-
ments varying the value of 7' € [2000, 5000, 10000, 20000, 50000] and measure the regret for each
algorithm. We consider an inventory system for a single item with a warehouse capacity of D = 1,
and a newsvendor loss of ¢;(y) = 5 max(d;—y, 0)+max(y—dy,0), where d; is the demand of round
t. The demands are artificially generated as d; = D/2(1 + (1 — €(T")) sin(w(T)t), where w(T') =
2mlogT/T and €(T) = 1/logT. This parameterization ensures Lyax ~ O(logT) and demand
fluctuation ZtT:I |d: — di—1] ~ O(log T'), which are dominated by €(T"), and w(T'), respectively.
We adopt the ideal comparator u; = d;, that incurs zero loss and gives Pr = Ethl |de — di—q].
Initial inventory level and initial order is set to zero and 1/2, respectively. We set the parameter -y
for MaxCOSD as v = 0.5p/D where p represents the minimum of the demand series (note that we

consider a deterministic demand in this experiment). We note that OGD requires Pr as an input,
whereas SOGD does not.

The results are shown in Fig. 1. In the experiment, our algorithms significantly outperform the base-
line (MaxCOSD). We observe that the algorithms using the doubling trick (solid lines) sometimes
achieve lower regret than those with Ly, information (dashed lines). This is because when using
L., the learning rate is set smaller than that used in the doubling trick case. As a result, it requires
longer time to shift from the initial value to an appropriate order level, which can deteriorate the
performance.
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J THE USE OF LARGE LANGUAGE MODELS

In this paper, we used large language models to refine and check our writing; we did not use them
for any other significant tasks.
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