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ABSTRACT

This paper addresses online inventory optimization (OIO), an extension of online
convex optimization. OIO is a sequential decision-making process in inventory
management cycles consisting of order arrival, stock consumption, and new order
placement. One key challenge in OIO is managing demand fluctuations. However,
most existing algorithms still cannot sufficiently handle this because they focus on
a static regret guarantee, comparing their performance to a fixed order-up-to level
strategy. In non-stationary environments, such static comparator is unsuitable due
to demand fluctuations. In this paper, we propose an algorithm with near-optimal
dynamic regret guarantee for OIO. Our algorithm also offers an improvement of√
Lmax for the static regret upper bound in existing studies. Here, Lmax refers to

the maximum sell-out period. Our algorithm employs a simple two-stage projec-
tion strategy, through which we prove that the OIO is connected to the smoothed
online convex optimization.

1 INTRODUCTION

Inventory management is crucial in supply chain management, with extensive research focusing
on optimal ordering strategies for various inventory systems. In particular, systems with periodic
reviews and carryover stock are closely related to real-world problems. Numerous approaches have
been proposed for these systems, assuming known demand models (see, e.g., Glock et al. (2014)).
However, it is often challenging to obtain a complete demand model in advance, which highlights
the necessity for online learning techniques to adapt to unknown demands.

Recently, Online Convex Optimization (OCO) (Hazan et al., 2016; Orabona, 2019; Shalev-Shwartz
et al., 2012) has attracted attention in the online inventory management (Huh & Rusmevichientong,
2009; Shi et al., 2016; Zhang et al., 2018a; 2020; Yuan et al., 2021; Agrawal & Jia, 2022; Hihat
et al., 2023). OCO is a sequential learning framework in which for each round t ∈ [T ], the decision
maker chooses an N -dimensional vector yt that is in a convex feasible region C ⊂ RN and then
environment reveals a convex loss function ℓt. The typical aim of the decision maker is to minimize
the static regret,

∑
t ℓt(yt)−minu∈C

∑
t ℓt(u). Here we note that in the inventory system, most loss

functions, such as the Newsvendor loss, are convex.

Online inventory optimization (OIO) is a variant of OCO, formulated by Hihat et al. (2023). In
OIO, a sequential decision-making process involving the inventory cycle of order arrival, stock
consumption, and new order placement is considered. During each round t ∈ [T ], the stock is
replenished to the order-up-to level of yt set in the previous round. The environment processes
the subsequent demand and post-processing activities, revealing an N -dimensional carryover stock
level of xt+1 and a subgradient gt ∈ ∂ℓt(yt) that is associated with the convex loss incurred by the
decision yt. Then, the decision maker determines the next order-up-to level yt+1 that is greater than
xt+1 and less than the capacity constraint of the warehouse. In the OIO setting, Hihat et al. (2023)
have proposed the MaxCOSD algorithm, which achieves a sublinear static regret.

However, the static regret guarantee is not sufficient for practical applications, especially in environ-
ments with demand fluctuations. Consider a simple example of a single-item inventory system with
a capacity limit of D. Set the fluctuating demand as dt = Dt/T for t ∈ [T ] and the loss function
as the Newsvendor loss of ℓt(y) = |y − dt|. A straightforward calculation shows that the minimum
total loss of the static comparator is minu∈[0,D]

∑T
t=1 ℓt(u) = O(DT ), whereas a time-varying
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Table 1: Regret bounds of [1] Huh & Rusmevichientong (2009); [2] Zhang et al. (2018a); [3] Zhang
et al. (2020); [4] Agrawal & Jia (2022); [5] Yuan et al. (2021); [6] Shi et al. (2016); [7] Hihat et al.
(2023); and our work. In the table, we list the regret bounds for each reference by replacing the
demand characteristic parameters used in each paper with our indicator Lmax. C in the fifth row is a
positive constant which depends on other parameters. In the references marked with a dagger, lead
time is taken into account. We show the regret bounds when the lead time is equal to one. S/M in
the Item column represents Single/Multiple item setting. NV, O, and F in the Loss column represent
Newsvendor loss, outdating cost, and fixed cost, respectively.

Regret Reference Upper Bound Lower Bound Item Loss Demand

Static

[1] O(Lmax

√
T ) S NV i.i.d.

[2] O(Lmax

√
T ) Ω(

√
T ) S NV + O i.i.d.

[3]† O(Lmax

√
T ) Ω(

√
T ) S NV i.i.d.

[4]† Õ(
√
T + Lmax) S NV i.i.d.

[5] Õ(eCLmax
√
T ) S NV + F i.i.d.

[6] O(Lmax

√
T ) M NV indep.

[7] O(Lmax

√
T ) M Convex non-i.i.d.

Static [This work] Õ(
√
LmaxT ) Ω(

√
LmaxT ) M Convex non-i.i.d.

Dynamic Õ(
√
Lmax(1 + PT )T )

comparator with ut = dt results in
∑T

t=1 ℓt(ut) = 0. Thus, even if we have an algorithm with
O(
√
T )-static regret for this example, it may still suffer from Ω(T )-regret when comparing it to ut.

Recent studies on OCO have intensively investigated algorithms for dynamic environment (Hall &
Willett, 2013; Zhang et al., 2018b; Zhao et al., 2020; 2024). The dynamic regret is an indicator
that measures an algorithm’s tolerance against changing environments. In the context of OCO, the
dynamic regret is defined as RT (u1, . . . , uT ) :=

∑T
t=1 ℓt(xt) −

∑T
t=1 ℓt(ut), which is a function

of a time-varying comparator sequence u1, . . . , uT . A major approach for the dynamic regret is
based on a two-layer structure, where a meta-algorithm adaptively accumulates the decisions of a
set of base leaners (Zhang et al., 2018b; van Erven et al., 2021; Zhang et al., 2022b). Such algorithm
ensures O(

√
(D + PT )T )-dynamic regret, where PT is the total path-length of the comparator:

PT :=
∑T

t=2 ∥ut−1 − ut∥1. Therefore, in OIO, a key question is whether we can construct an
algorithm that ensures an O(

√
(D + PT )T )-dynamic regret in the OIO setting. If we have such

an algorithm, we obtain a sublinear dynamic regret for the aforementioned example because PT =∑T
t=2 D/T = O(D).

One major difficulty in the dynamic regret minimization for OIO is the carryover stock constraint.
While the order-up-to level yt must be greater than the carryover stock xt, the comparator ut is not
subject to this constraint. Thus, the feasible region of ut is always a superset of that of yt. Most
algorithms for OCO provide regret guarantees only for comparators ût that are in the same feasible
region as yt. Consequently, this naive application results in O(T )-regret due to the gap between ût

and ut. For the static regret minimization, Hihat et al. (2023) overcome this difficulty by cyclical
update approach, where yt is only updated to a candidate ŷt when ŷt is feasible.

When considering the dynamic regret, however, we cannot employ a standard two-layer structure
with an OIO algorithm (such as MaxCOSD) as the base learner to leverage its theoretical guarantees.
A fundamental difficulty is that this architecture contradicts a key assumption for OIO algorithms:
the carryover stock level xt+1 must be less than the preceding replenished stock level yt. A meta-
algorithm’s decision yt might be larger than the output yat of a base learner a. With a small demand,
xt+1 can exceed yat . For the base learners, this carryover stock level violates their assumption
(xi

t ≤ yait for all i). This inconsistency prevents us from obtaining a theoretical guarantee for the
two-layer structure.
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1.1 CONTRIBUTIONS

The main contribution of this paper is to propose OIO algorithms with near-optimal dynamic regret
guarantee, as stated in the following theorem.

Theorem 1 (Informal). Under the constraints of carryover stock and the warehouse capacity, there
exists an algorithm that ensures

RT (u1, . . . , uT ) ≤ Õ(
√

LmaxT (1 + PT )) ,

for any sequences of the comparator u1, . . . , uT , without knowing Lmax and PT a priori.

Here, Õ is an order symbol that ignores logarithmic factors. Lmax is the maximum sell-out pe-
riod defined in Definition 1, which, informally speaking, indicates that the total demand over Lmax

rounds is at least the warehouse capacity. For static regret, the algorithm guarantees Õ(
√
LmaxT )-

regret, offering an improvement of
√
Lmax over the existing works. The regret bounds are summa-

rized in Table 1.1

Our algorithm employs a simple two-stage projection strategy consisting of a base learner and its
projection onto a feasible region. In each round t, an observed subgradient gt is fed to the base
learner to propose a decision ŷt+1, which is then adjusted to yt+1 to meet carryover stock constraints.

A distinctive feature of our algorithm is that the base learner’s decision is made independently of the
carryover stock.

We note that our update process differs from MaxCOSD’s in that ours allows the order-up-to level
yt to change, even if the base learner’s decision ŷt is infeasible.

Our primary technical contributions are twofold. First, we demonstrate that, under our two-stage
projection, the dynamic regret can be bounded by the base learner’s regret with switching costs pro-
portional to Lmax, which eliminates the concerns regarding the dynamic carryover stock constraint.
Leveraging this result, we achieve a near-optimal dynamic regret by employing an algorithm for
well-known Smoothed OCO (SOCO) (Lin et al., 2011; Zhang et al., 2021; 2022c;a) as the base
learner, along with the doubling trick for unknown Lmax.

Second, we provide, for the first time, a Ω(
√
LmaxT ) lower bound for the OIO setting. Our matching

upper and lower bounds establish that Õ(
√
LmaxT ) is nearly optimal, which resolves the open

question raised by Hihat et al. (2023).

2 RELATED WORKS

Inventory Management Inventory management is a long-standing research topic in the field
of operations research. It addresses various conditions, such as demand model (deterministic or
stochastic), carryover status (stateless or stateful), review frequencies (periodic or continuous), lead
times (constant or probabilistic), item types (single or multiple), stockout types (backorders or lost
opportunities), ordering costs (linear or non-linear, with or without fixed order cost), disposal losses,
multi-echelon systems, and more (see, e.g., Zipkin (2000); Porteus (2002)). In particular, a stateful
inventory system with periodic reviews, i.e., a situation where the remaining stock from the previ-
ous period is carried over, is closely related to real-world problems. Numerous methods have been
proposed for scenarios where the demand model is known in advance (Glock et al., 2014). How-
ever, in many cases, obtaining a complete demand model in advance is challenging. This difficulty
highlights the importance of online learning for inventory optimization. As the objective function
is often convex (e.g., the Newsvendor loss), various studies have explored this online inventory op-
timization problem in relation to online convex optimization problems (Huh & Rusmevichientong,
2009; Shi et al., 2016; Zhang et al., 2018a; 2020; Yuan et al., 2021; Agrawal & Jia, 2022; Hihat
et al., 2023).

1The parameters corresponding to Lmax in each reference are as follows: 1/γ in Huh & Rusmevichientong
(2009); 1/µ in Zhang et al. (2018a); 1/c2 in Zhang et al. (2020); D in Agrawal & Jia (2022); ρβ in Yuan et al.
(2021); 1/l in Shi et al. (2016); and 1/µ in Hihat et al. (2023).
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Algorithm 1 Setting of Online Inventory Optimization
1: Initialize the inventory level x1 ∈ C(0), order-up-to level y1 ∈ C(x1), where C is defined in

Eq. (4).
2: for t = 1, . . . , T do
3: Observe an inventory level xt+1 that satisfies xt+1,i ∈ [0, yt,i] for all i ∈ [N ].
4: Observe a subgradient gt ∈ ∂ℓt(yt).
5: Decide the next order-up-to level yt+1 that satisfies yt+1 ∈ C(xt+1).
6: end for

Online Convex Optimization Online convex optimization (OCO) (Shalev-Shwartz et al., 2012;
Hazan et al., 2016; Orabona, 2019) is a sequential learning framework that chooses yt and mini-
mizes regret

∑
t ft(yt) −

∑
t ft(u) for a convex time-varying function ft. It is shown that Online

Gradient Descent algorithm (OGD) achieves the minimax optimal regret bound of O(
√
T ) (Zinke-

vich, 2003; Abernethy et al., 2008). For an exp-concave loss function, faster convergence can be
achieved by Online Newton Step algorithm (Hazan et al., 2007), which enjoys a static regret bound
of O(

√
log T ).

In OCO, one of the important topics is developing algorithms that adapt to dynamic environments.
There are two major performance metrics: dynamic regret and (strongly) adaptive regret. Dynamic
regret, also known as switching or tracking regret, is defined as RT (u1, . . . , uT ) :=

∑T
t=1 ℓt(yt)−∑T

t=1 ℓt(ut) (Hall & Willett, 2013; Zhang et al., 2018b; Zhao et al., 2020; 2024). In Zhang et al.
(2018b), it is shown that a two-layer algorithm called Ader achieves the optimal regret upper bound
of O(

√
(1 + PT )T ). Adaptive regret (also known as interval regret) is defined as RT ([s, e]) :=∑

t∈[s,e] ℓt(yt)−minu∈C
∑

t∈[s,e] ℓt(u). Here the regret is a function of the interval [s, e] := s, s+

1, . . . , e − 1, e, where 1 ≤ s ≤ e ≤ T . A weaker definition, considering the maximum regret, has
been first proposed by Hazan & Seshadhri (2007). Later on, Daniely et al. (2015) have extended it to
account for any interval length. Jun et al. (2017) have proposed an algorithm achieving an adaptive
regret of O(

√
τ log T ), where τ represents the length of the interval considered.

Smoothed OCO (SOCO) is a variant of OCO that incorporates the switching cost λ∥yt − yt+1∥
into the regret. The concept of switching cost is first motivated by data center management (Lin
et al., 2011) and in the standard setting, the cost function ℓt is provided before making the decision
xt (Bansal et al., 2015; Chen et al., 2018; Goel & Wierman, 2018; Goel et al., 2019). In the setting
where the decision is made before observing the loss, OGD can achieve O(

√
λT ) static regret (see,

for example, Zhang et al. (2022a)). Zhang et al. (2021) have proposed an algorithm for the dynamic
regret minimization based on Ader algorithm (Zhang et al., 2018b). Besides, it is pointed out that
algorithms for OCO with memory guarantees the adaptive regret for SOCO (Zhang et al., 2022c;
Gradu et al., 2023). Recently, Zhang et al. (2022a) have proposed an algorithm that guarantees upper
bounds for both dynamic and adaptive regret by utilizing Discounted-Normal-Predictor (Kapralov
& Panigrahy, 2011).

3 PROBLEM SETTING

We consider the online inventory optimization problem for N items. The stock levels of each item
are represented by components of a N -dimensional vector, which is an element of a convex space
C ⊂ RN

≥0 that defines the capacity constraints of the warehouse. At each round t ∈ [T ], the
decision maker receives the order placed in the previous round, resulting in the stock level reaching
the order-up-to level yt. Following this, the environment processes the subsequent demand and
necessary post-processing activities, revealing a carryover stock level of xt+1 to the decision maker.
Concurrently, a subgradient gt ∈ ∂ℓt(yt) that is associated with the convex loss incurred by the
decision yt is observed. Then, the decision maker determines the next order-up-to level yt+1 such
that yt+1 ∈ C and yit+1 ≥ xi

t+1 for all i ∈ [N ]. The process is summarized in Alg. 1.

Remark 1. It can sometimes be challenging to observe opportunity loss. For instance, in retail
stores, when an item is out of stock, customers rarely inquire with the store staff about its availabil-
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ity. As a result, retailers have limited knowledge about the actual demand for out-of-stock items.
Recently, Hihat et al. (2023) have addressed this issue in their OIO setting, highlighting that the
subgradient of the loss function can often be derived even without complete demand observations.
This is because the penalty associated with the opportunity loss is typically given by multiplying
the quantity of opportunity loss by a cost coefficient, as is the case with the Newsvendor loss:
pmax(0, dt − yt), where p is a cost coefficient and dt and yt are demand and order-up-to level
of round t, respectively. Since this penalty is linear with yt, we can compute the subgradient without
knowing the demand quantity. Our problem setting also uses this framework.

We consider the following three conditions. First, we consider that the replenished stock up to yt is
always greater than the carryover stock level xt+1 after subsequent demand and post-processing:

xi
t+1 = max(0, yit − dit) ≤ yit , (1)

for all i ∈ [N ]. Here we define the demand for item i at round t as dit ∈ [0, D], noting that it may
also include consumption from some post-processing activities.

Secondly, we define the feasible region for the order-up-to level yt as the intersection of the lower
bounds set by the carryover stocks

yit ≥ xi
t ∀i ∈ [N ] , (2)

and the linear-sum constraints arising from inventory space∑
i∈[N ]

yit ≤ D . (3)

Specifically, we define the function for the feasible region C : [0, D]N → P([0, D]N ) as

C(x) := {y ∈ [0, D]N | yi ≥ xi ∀i ∈ [N ],
∑
i∈[N ]

yi ≤ D} . (4)

Finally, we assume that the subgradients of the losses are bounded:

∥gt∥2 ≤ G . (5)

In our analysis, we deal with 1-norm of the subgradient, which is bounded as ∥gt∥1 ≤
√
N∥gt∥2 ≤√

NG.

We consider the adversarial environments. After observing yt, the environment can choose the
demand dt and convex loss function adversarially. Aim of this paper is to construct a (near-) optimal
algorithm for OIO under the adversarial environment.
Remark 2. Our study and Hihat et al. (2023) share the same setup except for the warehouse ca-
pacity constraint. While Hihat et al. (2023) assumes a general convex constraint, our work specif-
ically addresses a linear constraint. Although the linear constraint is a special case of the convex
constraint, it is commonly encountered in practical scenarios. Importantly, to our knowledge, no
existing work establishes theoretically guaranteed algorithms for dynamic environment, even under
the linear constraint.

3.1 ENVIRONMENTAL DIFFICULTY INDICATOR

Algorithm’s performance relies on the behavior of xt+1, which reflects the demand and post process
in round t. In our analysis, we focus on the period during which the inventory can meet demand,
which is referred to as sell-out period.
Definition 1 (Sell-out period). We define Lmax as the period during which the sum of the demands
exceeds the inventory capacity:

Lmax := min

L ∈ [T ] |
min(t+L−1,T+1)∑

s=t

dis ≥ D, for all t ∈ [T ] and i ∈ [N ]

 .

Here, we hypothetically assume that diT+1 = D.
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Algorithm 2 Online Inventory Optimization Algorithm for Dynamic Environment
1: Set L = 1.
2: Initialize x1 = 0 and y1 ∈ C(x1).
3: Initialize a base learner E(2L, T ) with an initial state ŷ1 = y1 and an input parameter L = 1.
4: for t = 1, . . . , T do
5: Observe gt ∈ ∂ℓt(yt) and xt+1 that satisfies xi

t+1 ∈ [0, yit] for all i ∈ [N ].
6: Observe Lt defined in Eq. (9).
7: if maxLt > L then
8: Update L← 2L and restart E(2L, T ) inputting the updated parameter L.
9: end if

10: Feed gt to E and receive a decision ŷt+1 ∈ C(0).
11: Update yt+1 = ΠC(xt+1)(ŷt+1).
12: end for

We here note the relationship between the sell-out period and demand. Setting Lmax = o(T ) mildly
constrains the duration of periods with small demand; this constraint prevents situations where the
decision maker is forced to incur holding costs over an extended period due to the small demands.
In fact, as we will show in our lower bound analysis, sub-linear regret cannot be achieved when
Lmax = Ω(T ). We also note that Lmax does not primarily constrain the fluctuations in demand.
The fluctuation is only upper bounded during the period that determines Lmax, and there is no such
constraint in the other rounds

Remark 3. It is straightforward to extend Lmax to a high probability upper bound. In this case, we
consider that there exists a parameter 0 < δ < 1 and P (

∑min(t+Lmax−1,T+1)
s=t dis ≥ D) ≥ 1−δ/NT

holds for any i ∈ [N ] and t ∈ [T ]. This extension provides high-probability regret upper bounds.
Furthermore, we note that Lmax is essentially the same as the other parameters defined in Shi et al.
(2016) and Hihat et al. (2023). In fact, the probabilistic extension is a generalization of them. We
give a detailed discussion of this point in the appendix.

3.2 REGRET

We consider the following dynamic regret for OIO:

RT (u1, . . . , uT ) =

T∑
t=1

ℓt(yt)−
T∑

t=1

ℓt(ut) ≤
T∑

t=1

⟨gt, yt − ut⟩ . (6)

Here yt ∈ C(xt), and ut ∈ C(0). The major difficulty arises from the fact that yt and ut belong to the
different feasible regions. Specifically, the feasible region of ut is always a superset of yt’s feasible
region, meaning that we employ a stronger comparator than that of the standard OCO problem. In
OIO setting, the feasible region of yt is affected by the previous decision; that is, the lower bound
xt is constrained by xi

t ∈ [0, yit−1] for all i ∈ [N ].

Meanwhile, when we adopt a feasible comparator that satisfies max(0, ui
t − dit) ≤ ui

t+1, the total
path-length PT becomes bounded. We provide a detailed discussion in the appendix.

4 PROPOSED ALGORITHMS

Our algorithm employs a simple two-stage projection strategy, as described in Alg. 2. In each round
t, the algorithm feeds gt into the base learner E and receives the decision ŷt+1 ∈ C(0), which
only considers the warehouse capacity constraint (line 10). Then the algorithm projects it onto the
feasible region with the carryover constraint: C(xt+1) (line 11). 2

2We initialize x1 as 0 and the beginning of the first cycle is t = 1. We note that our algorithm can be applied
for the x1 ̸= 0 case, incurring an additional regret of at most GDLmax by adopting the zero-order strategy
until the inventory level reaches 0.

6
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The organization of this section is as follows: We first discuss the properties of the projection
ΠC(xt+1) in Section 4.1. Our key lemma is Lemma 1. By this lemma, we demonstrate that the
regret upper bound of the decision yt can be reduced to that of the base learner’s decision ŷt. Fur-
thermore, we show that the carryover stock constraint leads to a switching cost for ŷt in the base
learner’s regret. In Section 4.2, we provide a regret guarantee for a general base learner in Theo-
rems 2. Finally, in Section 4.3, we introduce SOCO algorithms with a dynamic regret guarantee and
present its regret upper bound in Theorem 4. 3

4.1 PROJECTION PROPERTY

Our analysis is based on time-periods called cycles. For each item i, a cycle is defined by the period
during which ŷit cannot be realized due to the carryover stock xi

t, resulting in yit > ŷit. This is
formally expressed as follows:
Definition 2 (Cycle). Let Si ⊂ [T ] be defined as the set of the rounds that satisfies yit ≤ ŷit if and
only if t ∈ Si. Suppose the elements t ∈ Si is indexed in strictly increasing order as t1 < t2 <
· · · < t|Si|. We refer to the period tk, tk + 1, . . . , tk+1 − 1 for tk ∈ Si as the k-th cycle of item i,
and define the length of the k-th cycle as Li

k := tk+1 − tk, where we set t|Si|+1 = T + 1.

Then, the following key lemma holds in our OIO setting:
Lemma 1. For any base learner E , Alg. 2 ensures

T∑
t=1

⟨gt, yt − ŷt⟩ ≤ 2G

T∑
t=1

(
max
i∈[N ]

Li
t

)
∥ŷt − ŷt+1∥1 , (7)

where Li
t is the current cycle length for item i, that is, Li

k that satisfies tk ≤ t < tk+1 for tk, tk+1 ∈
Si.
Remark 4. Lemma 1 shows that, under our two-stage projection strategy, OIO is linked to
SOCO (Lin et al., 2011; Zhang et al., 2021; 2022c;a), eliminating the difficulty for the dynamic
carry-over stock constraint in the OIO setting.

In fact, under Alg. 2, the regret is bounded as

RT ≤
T∑

t=1

(⟨gt, ŷt − ut⟩+ 2GL∗
t ∥ŷt − ŷt+1∥1) , (8)

where L∗
t = maxi∈[N ] L

i
t. The right-hand side is interpreted as the dynamic regret for SOCO

problem for the base learner E , where for every t ∈ [T ], E chooses ŷt ∈ C(0) and suffers loss
⟨gt, ŷt⟩ with switching cost of 2GL∗

t−1∥ŷt−1 − ŷt∥1. The main difference from the standard SOCO
is the coefficient L∗

t , which is time-dependent and delayed in observability; it becomes observable
only after the cycle for each item at time t is completed.4 We propose an improved algorithm that
works without prior knowledge of the switching cost in the next section.

4.2 DOUBLING TRICK FOR THE UNKNOWN SWITCHING COST

We address the unknown switching cost in Eq. (8) by introducing a doubling trick for L∗
t . In Alg. 2,

as described in lines 7 to 9, our algorithm restarts the base learner E with a new parameter L by
comparing the current parameter and the maximum observed cycle length maxLt. Here, we define
the set of the observed cycle lengths at round t as

Lt :=
⋃

i∈[N ]

{Li
1, . . . , L

i
k−1, t− tk + 1 | tk ≤ t < tk+1, tk, tk+1 ∈ Si} , (9)

where t − tk + 1 indicates the lower bound of the current cycle length. For the regret upper bound
analysis, we use the following property of the cycle legth:

3All omitted proofs are given in the appendix.
We also omit the high-probability regrets for the sake of clarity, since extention is rather straightforward. See

Remark 5 in the appendix for details.
4Another difference is that the switching cost appears as l1-norm instead of the l2-norm. We track this

impact in the regret analyses.
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Algorithm 3 Online Gradient Descent
Require: Learning rate η.

1: for t = 1, . . . , T do
2: Receive a subgradient gt.
3: Return ŷt+1 = ΠC(0)(ŷt − ηgt).
4: end for

Algorithm 4 k-th Combiner
Require: Two parameters: nk and L.

1: Initialize z1 = 0.

2: Set g̃(z) :=
√

nk

8
1
T erf( z√

8nk
)ez

2/16nk

.
3: Compute U(nk) := g̃−1(1)
4: for t = 1, . . . T do
5: Receive v̂k−1

t+1 , ŷkt+1, and gt.
6: Compute bkt by Eq. (11).
7: if zt ∈ [0, U(nk)] or (zt < 0) ∩ (bkt > 0)

or (zt > U(nk)) ∩ (bkt < 0) then
8: zt+1 = (1− 1/nk)zt + bkt .
9: else

10: zt+1 = (1− 1/nk)zt.
11: end if
12: pkt+1 = Π[0,1] (g̃(zt+1))

13: Return v̂kt+1 = (1 − pkt+1)v̂
k−1
t+1 +

pkt+1ŷ
k
t+1.

14: end for

Algorithm 5 Smoothed Online Gradient De-
scent (Zhang et al., 2022a)
Require: L > 0.

1: Set K = ⌊log2 T
32max(L,1) log T ⌋+ 1.

2: for k = 1, . . . ,K do
3: Set nk = T21−k

4: Initialize k-th instance Ak, which is
Alg. 3 with the learning rate of ηk =

2D/G
√
1/(2
√
NL+ 1)nk.

5: Initialize k-th combiner Bk, which is
Alg. 4 with the input parameters of nk and
L.

6: end for
7: for t = 1, . . . , T do
8: Receive a subgradient gt.
9: for k = 1, . . . ,K do

10: if k = 1 then
11: v̂1t+1 ← A1(gt).
12: else
13: ŷkt+1 ← Ak(gt).
14: v̂kt+1 ← Bk(v̂k−1

t+1 , ŷ
k
t+1, gt).

15: end if
16: end for
17: Return ŷt+1 = v̂Kt+1.
18: end for

Lemma 2. The cycle length is upper bounded by the sell-out period Lmax.

We assume that the base learner is an algorithm E(L, T ) with an input parameter L and T that
provides a regret upper bound of

T∑
t=1

(⟨gt, ŷt − ut⟩+GL∥ŷt − ŷt+1∥1) ≤ RE(L,T )
L,T (10)

for any series of {gt}Tt=1.

Then, the following regret upper bounds holds for Alg. 2.

Theorem 2. Assume that under algorithm E(L, T ), the regret upper boundRE(L,T )
L,T can be decom-

posed into RE(L,T )
L,T = LαR(T ) and the switching cost is bounded by ∥ŷt − ŷt+1∥1 ≤ O(L−β) for

β ≥ 0. Then, Alg. 2 ensures

RT ≤ C(α)RE(2Lmax,T )
2Lmax,T

+O(L2−β
max) ,

where C(α) is an α-dependent factor.

4.3 ALGORITHMS FOR THE BASE LEARNER

In this section we introduce algorithms for SOCO that can be used as the base learner in Alg. 2.
First, we introduce the standard Online Gradient Descent algorithm (OGD) described in Alg. 3.

Theorem 3. Assume T ≥ Lmax(3 + PT /D). In Alg. 2, the base learner Alg. 3 with an L-

parameterized learning rate η =
√

2D(3D+PT )
G2(L+1/2)T ensures RT ≤ O(

√
Lmax(1 + PT )T + Lmax) .

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To obtain the optimal regret order, we must know PT a priori when setting the learning rate η.
This parameter depends on the characteristics of the future demands and is sometimes difficult to
determine in advance.

Recently, Zhang et al. (2022a) have proposed the Smoothed Online Gradient Descent algorithm
(SOGD). In the algorithm, the meta-algorithm sequentially aggregates multiple experts’ decision,
where k-th decision in the sequence is obtained by combining k-th expert’s decision ŷkt+1 and k−1-
th combined decision v̂k−1

t+1 via the k-th combiner Bk. The combiner combines the two inputs with a
weight pt+1 that is adaptively computed by Discounted-Normal-Predictor (Kapralov & Panigrahy,
2011) with conservative updating with bit sequences of

bkt :=
⟨gt, v̂k−1

t − ŷkt ⟩+GL(∥v̂k−1
t − v̂k−1

t+1 ∥1 − ∥ŷkt − ŷkt+1∥1)
6GDN1/4

√
L

(11)

a described in line 5 to 11 in Alg. 4. The meta-algorithm use K-th decision as the output.

Theorem 4. Assume T ≥
√
Lmax(log2 T + e). In Alg. 2, the base learner Alg. 5 ensures

RT ≤ O(
√
Lmax(1 + PT )T log T + Lmax) .

5 LOWER BOUND

In this section, we discuss the optimality of our regret analysis. In OCO, Zhang et al. (2018b) have
established the Ω(

√
(1 + PT )T ) lower bound. Our regret upper bound matches this lower bound up

to a logarithmic factor. On the other hand, we also have a
√
Lmax factor in our bound. The following

theorem ensures this optimality.

Theorem 5. For any algorithm A, there exists some sequence {gt}t and some u ∈ C(0) such that

T∑
t=1

⟨gt, yt − u⟩ = Ω(GD
√
LmaxT ),

where {yt}Tt=1 is the sequence of the outputs by A.

As a byproduct, this lower bound provides the optimality of the
√
L factor in the OGD and SOGD

algorithms for the SOCO setting. This is because if there were an algorithm that can be improved
upon, it can break the lower bound of OIO by adopting it as the base learner of our algorithm.

Corollary 1. For SOCO with regret of R̃T (L), its lower bound is Ω(
√
LT ).

In our study, OIO and SOCO are found to be connected, which provides an intriguing example of
how one lower bound can constrain the other.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we propose an algorithm for OIO with a near-optimal dynamic regret guarantee. We
connect OIO to SOCO through a simple two stage projection and the dynamic regret bound com-
bining an algorithm for SOCO and doubling trick for unknown Lmax.

There are several interesting prospects for future investigation. First, the problem setting does not
take into account the lead time and fixed-order costs. For i.i.d. demand, there are studies addressing
these settings (Zhang et al., 2020; Agrawal & Jia, 2022; Yuan et al., 2021). The extension to dynamic
environments is an interesting direction for future research. Secondly, we assume a linear capacity
constraint as described in Eq. (3). This assumption is critical to the proof of Lemmas 5 and 6.
Although we believe that it is possible to extend this assumption to a more general convex set, we
leave it for future work.

9
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A DISCUSSION ON Lmax

Existing works introduce the least amount of demands in each round. Shi et al. (2016) assumes
minimum demand. Hihat et al. (2023) introduces parameters ρ and µ and assumes P

[
dit ≥ ρ

]
≥ µ

holds for all t ∈ [T ] almost surely. We here see the relation between Assumption 10 in Hihat et al.
(2023) and Remark 3 in our paper.
Proposition 1. If Assumption 10 in Hihat et al. (2023) holds, then our assumption in Remark 3
holds. That is, if one have µ and ρ such that P

[
dit ≥ ρ

]
≥ µ holds for all t ∈ [T ] almost surely,

then there exists Lmax such that P
(∑min(t+Lmax−1,T+1)

s=t dis ≥ D
)
≥ 1 − δ/NT holds for any

i ∈ [N ] and t ∈ [T ].
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Proof. We denote Lmax by L. Suppose Assumption 10 in Hihat et al. (2023) holds. Then, we have

P
[
dit ≥ ρ

]
≥ µ

for all t ∈ [T ] almost surely. By Markov’s inequality, we obtain

P
[
dit ≥ ρ

]
≤

E
[
dit
]

ρ
,

and thus E
[
dit
]
≥ ρµ holds. Our aim is to obtain the number of rounds necessary for making the

inventory sold out with the probability at least 1− δ/NT for each cycle (by the fact that there exist
at most T cycles from t = 1 to t = T for all items and technique of the union bound). Since we
assume xi

T+1 = 0 for all i ∈ [N ], we consider L consecutive rounds only. Hereafter, we consider
on some fixed i ∈ [N ]. Let us denote

Xt =

{
1 (dit ≥ ρ)

0 (dit < ρ)

and

Yt =

t∑
s=1

(Xs − E[Xs]).

By applying Azuma–Hoeffding inequality, we obtain

P

(
L∑

t=1

Xt ≤ Lµ− ε

)
≤ P (YL − Y0 ≤ −ε)

= P

(
L∑

t=1

Xt ≤ E

[
L∑

t=1

Xt

]
− ε

)

≤ exp

(
− ε2

2L

)
.

From

exp

(
− ε2

2L

)
≤ δ

NT
,

we obtain

ε ≥
√

2L log
NT

δ
.

Therefore,
∑L

t=1 Xt ≤ Lµ −
√
2L log NT

δ holds with probability at least 1 − δ/NT . If demand
larger than or equal to ρ occur at least D/ρ times, then the inventory becomes sold out. Thus, the
condition for L is

D

ρ
≤ Lµ−

√
2L log

NT

δ
.

Let us denote w =
√
Lµ, a =

√
2 log NT

δ

µ , and b = D/ρ, then we obtain

D

ρ
≤ Lµ−

√
2L log

NT

δ
⇐⇒ w2 − aw ≥ b

⇐⇒
(
w − a

2

)2
≥ a2

4
+ b

⇐= w − a

2
≥
√

a2

4
+ b

⇐⇒ w ≥ a

2
+

√
a2

4
+ b.
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Then,

w ≥ a

2
+

√
a2

4
+ b ⇐⇒

√
Lµ ≥

√
log NT

δ

2µ
+

√
log NT

δ

µ
+

D

ρ

⇐⇒ Lµ ≥

√ log NT
δ

2µ
+

√
log NT

δ

µ
+

D

ρ

2

⇐= Lµ ≥
log NT

δ

µ
+

2 log NT
δ

µ
+

2D

ρ

holds, where the last part utilizes (α + β)2 ≤ 2(α2 + β2), ∀α, β ∈ R. Therefore, if one adopts L
satisfying

Lµ ≥
3 log NT

δ

µ
+

2D

ρ
⇐⇒ L ≥ 2D

ρµ
+

3 log NT
δ

µ2
,

the inventory becomes sold out in at most L rounds with the probability at least 1− δ/NT .

B EXTENTION TO THE HIGH-PROBABILITY REGRET

Remark 5. The probabilistic definition for Lmax in Remark 3 ensures that Li
k satisfies Li

k ≤ Lmax

with probability of 1 − δ/NT . Given this definition, our regret upper bounds hold when all Li
k

satisfy Li
k ≤ Lmax in t ∈ [T ]. Applying the union bound over all cycles and products, we bound

its probability at least 1 − δ. Therefore, using the probabilistic expression for Lmax, our results
naturally extend to high-probability regrets, maintaining the same order of bounds with a probability
of 1− δ.

C ORDER ESTIMATION OF PT

Proposition 2. Under the feasible comparator that satisfies max(0, ui
t − dit) ≤ ui

t+1, PT is upper
bounded by ND + 2

∑N
i=1

∑T
t=1 d

i
t.

Proof. For clarity, we first consider the single-item scenario. Consider a set A = {t ∈ 2, . . . , T |
ut−1 ≥ ut}, and write PT as

PT =

T∑
t=2

|ut−1 − ut| =
∑
t∈A

(ut−1 − ut) +
∑

t∈{2,...,T}\A

(ut − ut−1) . (12)

The first term is upper bounded by the demand series {dt} as
ut−1 − ut ≤ dt−1, (13)

because the feasible space of ut is constrained by the carryover stock as ut ≥ max(ut−1−dt−1, 0).
On the other hand, the second term can be bounded by the first term as follows:

−D ≤ u1 − uT =

T∑
t=2

(ut−1 − ut) =
∑
t∈A

(ut−1 − ut)−
∑

t∈{2,...,T}\A

(ut − ut−1). (14)

Combining these inequalities, we have

PT ≤ 2
∑
t∈A

(ut−1 − ut) +D ≤ 2
∑
t∈A

dt−1 +D ≤ 2

T∑
t=1

dt +D. (15)

The bound in the multi-item case can be obtained straightforwardly as the sum of the bounds for
each item, which concludes the proof.

We also note that the ideal feasible comparator typically yields PT =
∑T

t=2 ∥dt−1 − dt∥1. This is
because, in most inventory system without lead-time, the ideal order-up-to decision {ut} matches
the demand {dt}, which incurs neither lost-sales loss nor holding costs.
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D PROOFS OF THE LEMMAS IN SECTIONS 4.1 AND 4.2

D.1 LEMMAS ON THE PROJECTION OPERATOR ΠC(x)

In this section, we provide lemmas regarding the relationships that hold between ŷ ∈ C(0) and
y = ΠC(x)(ŷ) where x ∈ C(0). We note that y, ŷ, and x do not necessarily depend on t; in other
words, we do not assume that they are elements of a t-dependent series resulting from a particular
algorithm or environment.

For the subsequent proofs, we define the set of the item index I and its complement as I := {i ∈
[N ] | yi ≤ ŷi}, and I := [N ]/I = {i ∈ [N ] | yi > ŷi}, respectively. Recall that C(x) ⊂ C(0) and
the projection y = ΠC(x)(ŷ) is equal to y = argminy′∈C(x)∥y′ − ŷ∥22.

Lemma 3. For i ∈ I, yi = xi > 0.

Proof. We divide the proof in three cases regarding ŷ; (i) For ŷ ∈ C(x), it is obvious that y = ŷ
holds. (ii) For ŷ /∈ C(x) and ŷi < xi, we observe yi = xi > ŷi. This is because if we have some
ϵ > 0 and yi = xi + ϵ, decreasing ϵ to zero decreases the objective function without violating the
constraint, which contradicts the minimality of y. We also note that xi > 0 in this case because
ŷi ≥ 0. (iii) Finally, for ŷ /∈ C(x) and ŷi ≥ xi, we observe yi ≤ ŷi. This is because if we have
some ϵ > 0 and yi = ŷi + ϵ, decreasing ϵ to zero decreases the objective function without violating
the constraint, which contradicts the minimality of y. In summary, yi > ŷi only occurs in the case
of (ii), which leads to yi = xi > 0.

Lemma 4. If there exist an i∗ ∈ [N ] that satisfies yi
∗
< ŷi

∗
, then

∑
i∈I yi = D −

∑
j∈I xj .

Proof. From Lemma 3, it is obvious yj = xj for j ∈ I. Therefore, y = ΠC(x)(ŷ) implies that
y minimizes

∑
i∈I(y

i − ŷi)2 satisfying yi ≤ ŷi and
∑

i∈I yi ≤ D −
∑

j∈I xj . Assume that∑
i∈I yi < D −

∑
j∈I xj . Then, we can increase yi

∗
to ŷi

∗
without violating the constraint, which

decreases the objective function and contradicts the minimality of y.

D.2 PROOF OF LEMMA 1

To prove Lemma 1, we use the following two lemmas for the cycle property. Let It be the set
of items such that t is the initial part of the cycle, i.e., It := {i ∈ [N ] | yit ≤ ŷit}. Note that
It := [N ]/It = {i ∈ [N ] | yit > ŷit} is the set of items in the later part of the cycle. Then, the
following lemmas hold.

Lemma 5. For any t ∈ [T ],
∑

i∈It
ŷit − yit ≤

∑
i∈It

yit − ŷit .

Lemma 6. For any k ∈ [Ki] and s ∈ [Li
k − 1], yitk+s − ŷitk+s ≤

∑s−1
s′=0 ŷ

i
tk+s′ − ŷitk+s′+1 .

Proof of Lemma 1. We divide the left-hand side of Eq. (7) into the initial and later parts of the cycle:

T∑
t=1

⟨gt, yt − ŷt⟩ =
T∑

t=1

∑
i∈It

git(y
i
t − ŷit) +

∑
i∈It

git(y
i
t − ŷit) . (16)

For the first term, from Lemma 5, the following inequality holds:

T∑
t=1

∑
i∈It

git(y
i
t − ŷit) ≤

T∑
t=1

∥gt∥∞
∑
i∈It

(ŷit − yit)
Lemma 5
≤

T∑
t=1

∥gt∥∞
∑
i∈It

(yit − ŷit) , (17)

where we use yit ≤ ŷit for i ∈ It in the first inequality. This inequality suggests the following
statement: the contributions from the initial part of the cycles in all items are bounded by the contri-
butions from the later parts of the cycles in all items. Therefore, the proof is completed by evaluating
the contributions from the later parts of the cycles, i.e., the second term in Eq. (16).
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For the second term in Eq. (16), using Lemma 6, we have

T∑
t=1

∑
i∈It

git(y
i
t − ŷit) =

N∑
i=1

Ki∑
k=1

Li
k−1∑
s=1

gitik+s(y
i
tik+s − ŷitik+s)

≤
N∑
i=1

Ki∑
k=1

∥gtik+s∥∞
Li

k−1∑
s=1

(yitik+s − ŷitik+s)

Lemma 6
≤

N∑
i=1

Ki∑
k=1

∥gtik+s∥∞
Li

k−1∑
s=1

s−1∑
s′=0

(ŷitik+s′ − ŷitik+s′+1) , (18)

where we refer to the definition of the summation of the later parts of the cycle for the first equality.
Combining Eq. (16), Eq. (17), and Eq. (18), we finally have

T∑
t=1

⟨gt, yt − ŷt⟩
Eq. (17)
≤ 2

N∑
i=1

Ki∑
k=1

Li
k−1∑
s=1

∥gtik+s∥∞(yitik+s − ŷitik+s)

Eq. (18)
≤ 2

N∑
i=1

Ki∑
k=1

Li
k−1∑
s=1

∥gtk+s∥∞
s−1∑
s′=0

(ŷitik+s′ − ŷitik+s′+1)

≤ 2G

N∑
i=1

Ki∑
k=1

Li
k−1∑
s=1

s−1∑
s′=0

(ŷitik+s′ − ŷitik+s′+1)

= 2G

N∑
i=1

T∑
t=1

(
Li
κi(t) − (t− tκi(t))− 1

)
(ŷit − ŷit+1)

≤ 2G

T∑
t=1

(
max
i∈[N ]

Li
κi(t)

)
∥ŷt − ŷt+1∥1

≤ 2G

T∑
t=1

L∗
t ∥ŷt − ŷt+1∥1 .

In the fourth line, we apply Lemma 7 given in the appendix. This concludes the proof.

D.3 PROOF OF LEMMA 5

Proof. First, we consider the case I = [N ]. In this case, we observe ŷi − yi = 0 for all i ∈ [N ].
This can be proved as follows: If we have non-empty set I ′ := {i ∈ [N ] | yi < ŷi}, we can write
yj = ŷj − ϵj where ϵj > 0 for j ∈ I ′. Then,

∑
i∈[N ] y

i =
∑

i∈[N ] ŷ
i−
∑

j∈I′ ϵj ≤ D−
∑

j∈I′ ϵj .
Therefore, decreasing ϵjs to zero decreases the objective function without violating the constraint,
which contradicts the minimality of y.

Then, we consider the case I ̸= [N ]. If all i ∈ I satisfies yi = ŷi, then
∑

i∈I(ŷ
i − yi) = 0 and the

inequality holds. Otherwise, from Lemma 4, we have
∑

i∈I yi = D −
∑

j∈I xj and∑
i∈I

ŷi − yi =
∑
i∈I

ŷi −D +
∑
j∈I

xj

=
∑
i∈[N ]

ŷi −D +
∑
j∈I

(xj − ŷj)

≤
∑
j∈I

(xj − ŷj)

Lemma 3
=

∑
j∈I

(yj − ŷj) .

In the last inequality, we use
∑

i∈[N ] ŷ
i ≤ D because ŷ ∈ C(0).
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D.4 PROOF OF LEMMA 6

Proof. For the sake of brevity, we omit index i of tik, Li
k, and Ki when it is clear from the context.

Consider the summation in the k-th cycle for item i:
gitk(y

i
tk
− ŷitk) + gitk+1(y

i
tk+1 − ŷitk+1) + · · ·+ gitk+Lk−1(y

i
tk+Lk−1 − ŷitk+Lk−1) .

From the definition of the k-th cycle, we have
yitk ≤ ŷitk . (19)

Moreover, for s = 1, . . . , Lk − 1, because yitk+s > ŷitk+s, we have yitk+s = xi
tk+s > 0 from

Lemma 3. Thus, the following order property holds:

yitk+s−1

Eq. (1)
≥ xi

tk+s
Lemma 3
= yitk+s > ŷitk+s ≥ 0 , (20)

for s = 1, . . . , Lk − 1. Using the above properties, for cycles of Lk ≥ 2, the following upper bound
holds:

yitk+s − ŷitk+s = xi
tk+s − ŷitk+s ≤ yitk+s−1 − ŷitk+s

= (yitk+s−1 − ŷitk+s−1) + (ŷitk+s−1 − ŷitk+s)

= . . .

= (yitk − ŷitk) +

s−1∑
s′=0

(ŷitk+s′ − ŷitk+s′+1)

Eq. (19)
≤

s−1∑
s′=0

(ŷitk+s′ − ŷitk+s′+1) ,

which concludes the proof.

D.5 THE OTHER TECHNICAL LEMMA FOR LEMMA 1

Lemma 7. Suppose round 1, . . . , T is divided into K segment of lengths L1, . . . , LK that satisfies
1 ≤ Lk ≤ T ∀k ∈ [K] and

∑K
k=1 Lk = T . Let us define a function κ : [T ]→ [K] which maps each

round t ∈ [T ] to the segment k ∈ [K] that t belongs to, i.e., κ(t) := mink∈[K] k s.t.,
∑k

k′=1 Lk′ ≥ t.
Then, for any series a1, . . . , aT and b1, . . . , bK , the following equality holds:

K∑
k=1

Lk−1∑
s=1

s−1∑
s′=0

atk+s′bk =

T∑
t=1

atbκ(t)[Lκ(t) − (t− tκ(t))− 1]+ ,

where tk :=
∑k−1

k′=1 Lk′ + 1 is the initial round of k-th segment and [x]+ := xI[x ≥ 0].

Proof.
K∑

k=1

Lk−1∑
s=1

s−1∑
s′=0

atk+s′bk =

T∑
t=1

K∑
k=1

Lk−1∑
s=1

s−1∑
s′=0

atbkI[t = tk + s′]

=

T∑
t=1

K∑
k=1

Lk−1∑
s=1

s−1∑
s′=0

atbkI[k = κ(t)]I[s′ = t− tκ(t)]

=

T∑
t=1

Lκ(t)−1∑
s=1

s−1∑
s′=0

atbκ(t)I[s
′ = t− tκ(t)]

=

T∑
t=1

Lκ(t)−1∑
s=1

atbκ(t)I[s− 1 ≥ t− tκ(t)]

=

T∑
t=1

atbκ(t)
(
Lκ(t) − 1− 1− (t− tκ(t)) + 1

)
I[Lκ(t) − 1 ≥ t− tκ(t)]

=

T∑
t=1

atbκ(t)
[
Lκ(t) − (t− tκ(t))− 1

]
+
.
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D.6 PROOF OF LEMMA 2

Proof. Consider k-th cycle for item i with cycle length of Li
k. By definition, we have ŷitk+s < yitk+s

for s = 1, . . . , Li
k − 1. By Lemma 3, yitk+s = xi

tk+s > 0. Therefore, we have

yitk ≥ xi
tk+1 + ditk = yitk+1 + ditk

≥ . . .

≥ xi
tk+Li

k−1 +

Li
k−2∑
s=0

ditk+s

If Li
k > Lmax, then yitk > D because xi

tk+Li
k−1

> 0 and
∑Li

k−2
s=0 ditk+s ≥

∑Lmax−1
s=0 ditk+s ≥ D.

This contradicts yitk ≤ D.

E PROOF OF THEOREM 2

Proof. We start by defining a set of the restart rounds as t1, . . . , tn, tn+1, where the i-th restart
occurs at ti and tn+1 = T +1. We assign labels to the parameter used in each restart as L1, . . . , Ln,
where Li = 2i−1. In our algorithm, the base learner in ti, . . . ti+1 is E(2Li, T ). Note that since Ln

is at most 2Lmax, we have n ≤ log2 Lmax + 2. The regret can be divided into:

T∑
t=1

(⟨gt, ŷt − ut⟩+ 2GL∗
t ∥ŷt − ŷt+1∥1) =

n∑
i=1

ti+1−1∑
t=ti

(⟨gt, ŷt − ut⟩+ 2GL∗
t ∥ŷt − ŷt+1∥1)

=

n∑
i=1

ti+1−1∑
t=ti

(⟨gt, ŷt − ut⟩+ 2GLi∥ŷt − ŷt+1∥1) +
n∑

i=1

ti+1−1∑
t=ti

2G(L∗
t − Li))∥ŷt − ŷt+1∥1 .

(21)

For the first term, using the assumptions forRE(L,T )
L,T , we have

n∑
i=1

ti+1−1∑
t=ti

(⟨gt, ŷt − ut⟩+ 2GLi∥ŷt − ŷt+1∥1) ≤
n∑

i=1

RE(2Li,T )
2Li,T

≤

(
n∑

i=1

2αLα
i

)
R(T )

≤

(
n∑

i=1

2αi

)
R(T )

≤ C(α)Lα
maxR(T ) ,

where C(α) is an α-dependent constant. For the first inequality, we use the fact that when an
algorithm guarantees an upper bound RE(L,T )

L,T for regret R̃T (L), it also ensures that R̃T ′(L) ≤
RE(L,T )

L,T for T ′ ≤ T . This can be observed by setting gt = 0 for t ∈ {T ′ + 1, . . . , T}, which

extends the series {gt}t=T ′

t=1 in R̃T ′(L) to {gt}t=T
t=1 . This allows us to apply the same boundRE(L,T )

L,T

to R̃T ′(L).

In the second term of Eq. (21), positive contribution comes from the rounds where the parameter Li

underestimates L∗
t : L∗

t > Li. Suppose the parameter is set to Li and the algorithm observes that
a cycle starts at round t. The algorithm can detect that the cycle length is longer than Li if it has
not finished at t + Li − 1. Therefore, the underestimated period is at most Li. The second term is

17
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bounded as
n∑

i=1

ti+1−1∑
t=ti

2G(L∗
t − Li)∥ŷt − ŷt+1∥1 ≤ C2GL1−β

max

n∑
i=1

ti+1−1∑
t=ti

I[L∗
t > Li]

≤ C2GL1−β
max

n∑
i=1

Li

= C2GL1−β
max

n∑
i=1

2i−1

= O(L2−β
max) ,

where C2 is a constant. Combining these two inequalities concludes the proof.

F PROOF OF THEOREM 3

Below, in order to match the standard expression, we introduce D′ := 2D which indicates the upper
bound of the diameter of C(0):

∥x− y∥2 ≤ ∥x− y∥1 ≤ ∥x∥1 + ∥y∥1 ≤ 2D =: D′

for any x, y ∈ C(0).

Proof. We first bound R̃T (L). The first term of R̃T (L) is bounded by Lemma 8. For the second
term, we have

GL

T∑
t=1

∥ŷt − ŷt+1∥1 = GL

T∑
t=1

∥ŷt − (ΠC(0)(ŷt − ηgt))∥1

≤ GL
√
N

T∑
t=1

∥ŷt − (ΠC(0)(ŷt − ηgt))∥2

≤ ηGL
√
N

T∑
t=1

∥gt∥2

≤ η
√
NG2LT .

Combining the first and second upper bounds, we have

R̃T (L) ≤
D′

2η
(3D′ + 2PT ) + ηG2

(√
NL+

1

2

)
T .

Then, by setting η to

η =
D′

G

√
(3 + 2PT /D′)

2(
√
NL+ 1/2)T

,

we have

R̃T (L) ≤ G

√
2D′(3D′ + 2PT )(

√
NL+ 1/2)T

≤ 2GD′N1/4
√
(3 + 2PT /D′)LT

= O(
√
L(1 + PT )T ) .

Specifically, for (3 + 2PT /D
′)L ≤ T , ∥ŷt − ŷt+1∥1 ≤ η

√
NG ≤ O(L−1). This corresponds to

α = 1/2 and β = 1 in Theorem 2, which leads to

RT ≤ O(
√
Lmax(1 + PT )T + Lmax) .
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Lemma 8. Alg. 3 ensures

T∑
t=1

⟨gt, ŷt − ut⟩ ≤
3D′2

2η
+

D′

η
PT +

ηG2T

2
.

Proof. Let us define ŷ′t+1 := ŷt − ηgt. For any t ∈ [T ], setting uT+1 = 0, we have

⟨gt, ŷt − ut⟩ =
1

η
⟨ŷt − ŷ′t+1, ŷt − ut⟩

=
1

2η

(
∥ŷt − ut∥22 + ∥ŷ′t+1 − ŷt∥22 − ∥ŷ′t+1 − ut∥22

)
≤ 1

2η

(
∥ŷt − ut∥22 + η2∥gt∥22 − ∥ŷt+1 − ut∥22

)
=

1

2η

(
∥ŷt − ut∥22 − ∥ŷt+1 − ut+1∥22 + ∥ŷt+1 − ut+1∥22 − ∥ŷt+1 − ut∥22 + η2∥gt∥22

)
=

1

2η

(
∥ŷt − ut∥22 − ∥ŷt+1 − ut+1∥22 + ⟨2ŷt+1 − ut+1 − ut, ut − ut+1⟩+ η2∥gt∥22

)
≤ 1

2η

(
∥ŷt − ut∥22 − ∥ŷt+1 − ut+1∥22 + 2D′∥ut − ut+1∥1 + η2∥gt∥22

)
≤ 1

2η

(
∥ŷt − ut∥22 − ∥ŷt+1 − ut+1∥22

)
+

D′

η
∥ut − ut+1∥1 +

ηG2

2
.

In the third line, we use the inequality ∥ΠC(0)(x)−ΠC(0)(y)∥2 ≤ ∥x− y∥2 for any x, y ∈ [0, D]N .
The summation over t ∈ [T ] leads to

T∑
t=1

⟨gt, ŷt − ut⟩ ≤
1

2η
∥ŷ1 − u1∥22 +

D′

η

T∑
t=1

∥ut − ut+1∥1 +
ηG2T

2

≤ 3D′2

2η
+

D′

η

T∑
t=2

∥ut−1 − ut∥1 +
ηG2T

2
. (22)

In the final line, we use ∥uT − uT+1∥1 ≤ D′.

G PROOF OF THEOREM 4

In this section, we abuse a notation, eliminating hats in the main paper: vkt+1 and ykt+1 are output of
Ak and Bk in round t, respectively. yt+1 = vKt+1 describes the final output of Alg. 5. For the sake
of brevity, we also define

ℓ̂t(y
k) := ⟨gt, ykt ⟩+GL∥ykt − ykt+1∥1 ,

ℓ̂t(v
k) := ⟨gt, vkt ⟩+GL∥vkt − vkt+1∥1 .

Then, the bit for the combiner k is defined as

bkt :=
ℓ̂t(v

k−1)− ℓ̂t(y
k)

3GD′N1/4
√
L

. (23)

Recall that vkt = (1− pkt )v
k−1
t + pkt y

k
t , where pkt is the weight computed by the k-th combiner Bk.

Proof of Theorem 4. From Lemma 9 and 16, we haveRE
T,L = O(

√
L(1 + PT )T log T ) and β = 1.

Therefore, by Theorem 2, we obtain

RT ≤ O(
√
Lmax(1 + PT )T log T + Lmax) .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma 9. For T ≥ max(
√
L log2 T, e), Alg. 5 ensures

R̃T (L) ≤ O(
√
L(1 + PT )T log T ) .

Proof. We first consider a large PT case, where the following inequality holds:

3 +
2PT

D′ >
T

32L log T
.

Then the regret is bounded as

T∑
t=1

⟨gt, yt − ut⟩+GL∥yt − yt+1∥1 =

T∑
t=1

⟨gt, vKt − ut⟩+GL∥vKt − vKt+1∥1

≤ 3GD′N1/4T = 3GD′N1/4
√
T ·
√
T

≤ 3GD′N1/4
√
32L(3 + 2PT /D′)T log T

≤ 24
√
2GDN1/4

√
L(3 + 2PT /D)T log T

= O(
√

L(1 + PT )T log T ) .

In the first inequality, we use Lemma 16 to bound the switching cost. Below, we consider the case
of small PT , where 3 + 2PT /D

′ ≤ T/(32L log T ). Theorem 3 shows that the optimal η for OGD

is given by η∗ = α
√
3 + 2PT /D′, where α := D′/(G

√
(2
√
NL+ 1)T ). On the other hand, we

define the learning rates ofAk as ηk = α
√
2i−1, for k = 1, . . . ,K, where K = ⌊log2 T

32L log T ⌋+1.
Because K satisfies 3 + 2PT /D

′ ≤ T/(32L log T ) ≤ 2K , there exists an a ∈ [K] that satisfies

2a−1 ≤ 3 +
2PT

D′ ≤ 2a ,

which implies ηa ≤ η∗ ≤
√
2ηa. Under ηa, the regret upper bound of OGD is given by

T∑
t=1

⟨gt, yat − ut⟩+GL∥yat − yat+1∥1 ≤
D′2

2ηa

(
3 +

2PT

D′

)
+ ηaG2

(√
NL+

1

2

)
T

≤
√
2D′2

2η∗

(
3 +

2PT

D′

)
+ η∗G2

(√
NL+

1

2

)
T

≤
√
2 + 1√
2

G

√
D′(3D′ + 2PT )(

√
NL+ 1/2)T

≤ 3GD′N1/4
√
(3 + 2PT /D′)LT

≤ 6GDN1/4
√
(3 + 2PT /D)LT

= O(
√
L(1 + PT )T ) . (24)

Using such a, the dynamic regret with switching cost can be decomposed of

R̃T (L) =

T∑
t=1

⟨gt, yt − ut⟩+GL∥yt − yt+1∥1 =

T∑
t=1

⟨gt, vKt − ut⟩+GL∥vKt − vKt+1∥1

=

T∑
t=1

ℓ̂t(v
K)−

T∑
t=1

⟨gt, ut⟩

=

T∑
t=1

(
K∑

k=a+1

ℓ̂t(v
k)− ℓ̂t(v

k−1)

)
+

T∑
t=1

(ℓ̂t(v
a)− ℓ̂t(y

a)) +

T∑
t=1

(⟨gt, yat − ut⟩+GL∥yat − yat+1∥1) .
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For the first term, we have

T∑
t=1

K∑
k=a+1

ℓ̂t(v
k)− ℓ̂t(v

k−1)
Lemma 10
≤ −3GD′N1/4

√
L

T∑
t=1

K∑
k=a+1

(
ptb

k
t −
√
L|pt − pt+1|

)
Lemmas 12 and 14

≤ 3GD′N1/4
√
L

K∑
k=a+1

(
U(nk) +

1√
L

+ 1

)
Lemma 11
≤ 3GD′N1/4

√
L

K∑
k=a+1

(
4
√

nk log T + 2
)

≤ 6GD′N1/4
√
L

(
2
√

na log T

K∑
k=1

√
2−k + (K − a)

)
≤ 6GD′N1/4

√
L
(
2(
√
2 + 1)

√
na log T + 4 log T

)
≤ 60GDN1/4

√
LT log T + 60GDN1/4

√
L log T .

In the last line, we use na = T21−a ≤ T . Similarly, for the second term, we have

T∑
t=1

ℓ̂t(v
a)− ℓ̂t(y

a)
Lemma 10
≤ −3GD′N1/4

√
L

T∑
t=1

(
(pat − 1)bat −

√
L|pat − pat+1|

)
Lemmas 12 and 14

≤ 3GD′N1/4
√
L

(
T

na

(
U(na) +

2√
L

)
+ U(na) +

1√
L

+ 1

)
≤ 3GD′N1/4

√
L

(
T

na
U(na) + U(na) +

2T

na
+ 2

)
Lemma 11
≤ 3GD′N1/4

√
L

(
4
√
T 2 log T/na + 4

√
na log T +

2T

na
+ 2

)
≤ 3GD′N1/4

√
L
(
4
√

(3 + 2PT /D′)T log T + 4
√
T log T + 2(3 + 2PT /D

′) + 2
)

≤ 3GD′N1/4
√
L
(
4
√

(3 + 2PT /D′)T log T + 4
√
T log T + 2

√
6(3 + 2PT /D′)T + 2

)
≤ 3GD′N1/4

√
L
(
9
√

(3 + 2PT /D′)T log T + 6
√
T log T

)
≤ 54GDN1/4

√
(3 + 2PT /D)LT log T + 36GDN1/4

√
LT log T .

For the fifth line, recall that na/2 = T2−a ≤ T/(3 + 2PT /D
′) ≤ 21−a = na ≤ T . For the sixth

line, because PT ≤ TD′, we use 3 + 2PT /D
′ = 3+ 2

√
PT /D′ ·

√
PT /D′ ≤ 3 + 2

√
TPT /D′ ≤√

2(9 + 4PT /D′)T ≤
√
6(3 + 2PT /D′)T .

Finally, the third term is bounded by Eq. (24), that is,

T∑
t=1

⟨gt, yat − ut⟩+GL∥yat − yat+1∥1 ≤ 6GDN1/4
√
(1 + PT /D)LT .

Combining them, we have

R̃T (L) ≤ 60GDN1/4
√
L(3 + 2PT /D)T log T + 96GDN1/4

√
LT log T + 60GDN1/4

√
L log T

= O(
√

L(1 + PT )T log T +
√
LT log T +

√
L log T ) ,

which finishes the proof.
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Lemma 10.
T∑

t=1

(
ℓ̂t(v

k)− ℓ̂t(v
k−1)

)
≤ −3GD′N1/4

√
L

T∑
t=1

(pkt b
k
t −
√
L|pkt − pkt+1|) ,

T∑
t=1

(
ℓ̂t(v

k)− ℓ̂t(y
k)
)
≤ −3GD′N1/4

√
L

T∑
t=1

((pkt − 1)bkt −
√
L|pkt − pkt+1|) .

Proof. By using vkt = (1− pkt )v
k−1
t + pkt y

k
t , we have

ℓ̂t(v
k) = ⟨gt, vkt ⟩+GL∥vkt − vkt+1∥1

= (1− pkt )⟨gt, vk−1
t ⟩+ pkt ⟨gt, ykt ⟩+GL∥(1− pkt )v

k−1
t + pkt y

k
t − (1− pkt+1)v

k−1
t+1 − pkt+1y

k
t+1∥1

= (1− pkt )⟨gt, vk−1
t ⟩+ pkt ⟨gt, ykt ⟩+ (1− pkt )GL∥(vk−1

t − vk−1
t+1 )∥1 + pktGL∥(ykt − ykt+1)∥1
+GL∥(pkt − pkt+1)(y

k
t+1 − vk−1

t+1 )∥1
≤ (1− pkt )l̂t(v

k−1) + pkt ℓ̂t(y
k) +GD′L|pkt − pkt+1|

Therefore, we have

T∑
t=1

(
ℓ̂t(v

k)− ℓ̂t(v
k−1)

)
≤

T∑
t=1

(
−pkt (ℓ̂t(vk)− ℓ̂t(y

k−1)) +GD′L|pkt − pkt+1|
)

=

T∑
t=1

(
−3GD′N1/4

√
Lpkt b

k
t +GD′L|pkt − pkt+1|

)
≤ −3GD′N1/4

√
L

T∑
t=1

(pkt b
k
t −
√
L|pkt − pkt+1|) ,

and
T∑

t=1

(
ℓ̂t(v

k)− ℓ̂t(y
k)
)
) ≤

T∑
t=1

(
(1− pkt )(ℓ̂t(v

k)− ℓ̂t(y
k−1)) +GD′L|pkt − pkt+1|

)
≤ −3GD′N1/4

√
L

T∑
t=1

((pkt − 1)bkt −
√
L|pkt − pkt+1|) .

Lemma 11 (Eq. (11) in Zhang et al. (2022a)). U(n) ≤ 4
√
n log T .

Lemma 12 (The former part of Theorem 1 in Zhang et al. (2022a)). Suppose T ≥ e and nk ≥
max(8e, 16 log T ). For any bit sequence bk1 , . . . , b

k
T such that |bkt | ≤ 1/

√
L ≤ 1, the following

inequation holds under Alg.4:

−
T∑

t=1

(pkt b
k
t −
√
L|pkt − pkt+1|) ≤ −max

(
0,

T∑
t=1

bkt −
T

nk

(
U(nk) +

2√
L

))
+ U(nk) +

1√
L

+ 1

Note that for nk = T21−k in our algorithm, nk ≥ max(8e, 16 log T ) is satisfied because nk ≥
nK = T21−K ≥ 32L log T ≥ 32L. In the last inequality, we use T ≥ e.
Lemma 13 (The latter part of Theorem 1 in Zhang et al. (2022a)). Under the setting in Lemma 12,

|pkt − pkt+1| ≤
1√
L

(√
1

nk
log T +

1

4T

)
.

Lemma 14. Assume T ≥ max(
√
L log2 T, e). Then, |bkt | ≤ 1/

√
L, for any k ∈ [K].
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Proof.

|bkt | =
1

3GD′N1/4
√
L

∣∣∣ℓ̂t(vk−1)− ℓ̂t(y
k)
∣∣∣

=
1

3GD′N1/4
√
L

∣∣⟨gt, vk−1
t − ykt ⟩+GL∥vk−1

t − vk−1
t+1 ∥1 −GL∥ykt − ykt+1∥1

∣∣
≤ 1

3GD′N1/4
√
L

(
GD′ +GLmax(∥vk−1

t − vk−1
t+1 ∥1, ∥ykt − ykt+1∥1)

)
≤ 1√

L
.

In the last line, we use Lemmas 15 and 16.

Lemma 15. ∥yk−1
t − yk−1

t+1 ∥1 ≤ D′N1/4/L for any k ∈ [K].

Proof. Since ykt+1 is updated by OGD with the learning rate of ηk, we have

∥ykt − ykt+1∥1 ≤ ηk
√
N∥gt∥2 ≤

√
NG · D

′

G

√
2k−1

(2N1/4L+ 1)T

≤ D′N1/4

√
L

√
2K−1

2T
≤ D′N1/4

√
L

√
1

32L log T
≤ D′N1/4

L
,

which concludes the proof.

Lemma 16. Assume T ≥ max(
√
L log2 T, e). Then, ∥vkt −vkt+1∥1 ≤ 2D′N1/4/L for any k ∈ [K].

Proof. We show it by induction. For k = 1, since v1t = y1t , the inequality holds by Lemma 15.
Suppose the inequality

∥vkt − vkt+1∥1 ≤
D′N1/4

L
+

D′
√
L

k∑
i=2

(√
1

ni
log T +

1

4T

)
, (25)

holds for k ≥ 1. We note that this inequality satisfies LG∥vkt − vkt+1∥1 ≤ 2GD′ because

∥vkt − vkt+1∥1 ≤
D′N1/4

L
+

D′
√
L

k∑
i=2

(√
1

ni
log T +

1

4T

)

≤ D′N1/4

L
+

D′
√
L

K∑
i=2

(√
2i

2T
log T +

1

4T

)

≤ D′N1/4

L
+

D′
√
L

(
2√
2− 1

√
log T

2T

√
T

32L log T
+

log2 T

4T

)

≤ D′N1/4

L
+

D′

L

(
(
√
2 + 1)

4
+

√
L log2 T

4T

)

≤ D′N1/4

L
+

D′

L

(
(
√
2 + 1)

4
+

1

4

)

≤ 2D′N1/4

L
.

In the fifth line, we use
√
L log2 T ≤ T . We also note that the assumption T ≥ max(

√
L log2 T, e)

and Lemma 15 leads to |bk+1
t | ≤ 1/

√
L and Lemma 13 holds for k + 1. Therefore, for k + 1, we
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have

∥vk+1
t − vk+1

t+1 ∥1 = ∥(1− pk+1
t )vkt + pk+1

t yk+1
t − (1− pk+1

t+1 )v
k
t+1 − pk+1

t+1 y
k+1
t+1 ∥1

≤ ∥(1− pk+1
t )(vkt − vkt+1) + pk+1

t (yk+1
t − yk+1

t+1 )− (pk+1
t − pk+1

t+1 )(v
k
t+1 − yk+1

t+1 )∥1
≤ (1− pk+1

t )∥vkt − vkt+1∥1 + pk+1
t ∥yk+1

t − yk+1
t+1 ∥1 + |p

k+1
t − pk+1

t+1 |∥vkt+1 − yk+1
t+1 ∥1

≤ (1− pk+1
t )

(
D′N1/4

L
+

D′
√
L

k∑
i=2

(√
1

ni
log T +

1

4T

))
+ pk+1

t

D′N1/4

L
+ |pk+1

t − pk+1
t+1 |D′

≤ D′N1/4

L
+

D′
√
L

k∑
i=2

(√
1

ni
log T +

1

4T

)
+ |pk+1

t − pk+1
t+1 |D′ .

Lemma 13
≤ D′N1/4

L
+

D′
√
L

k+1∑
i=2

(√
1

ni
log T +

1

4T

)
.

In the forth line, we use Eq. (25) and Lemma 15. Here we observe that Eq. (25) holds for k + 1.
Hence, by induction, we conclude the proof.

H PROOF OF THEOREM 5

Proof. Let Dg be a distribution of loss sequences, and G be the support of Dg . Then, we have

EDg

∑
t∈[T ]

⟨gt, yt − u⟩

 ≤ sup
{gt}t∈G

∑
t∈[T ]

⟨gt, yt − u⟩.

Thus, we will obtain our lower bound by showing a lower bound of the expected regret. Moreover,
we will construct a common distribution of instances for all algorithms. Hence, we can assume that
the given algorithm is deterministic without loss of generality.

We can assume that Lmax = 2L+1 and T = LmaxK for some L,K > 0 without loss of generality.
Note that L = Θ(Lmax). We divide T rounds into K cycles, where a cycle has Lmax rounds. Let tk
be the first round in the k-th cycle.

We fix k ∈ [K] arbitrarily. We consider the following distribution of instances.

xi
t+1 =

{
yit t ∈ [tk, tk + 2L− 1]

0 t = tk + 2L
and

git =


−G

2 if i = 1 and t ∈ [tk, tk + L− 1]
G(ϵk+1)

2 if i = 1 and t ∈ [tk + L, tk + 2L− 1]

0 otherwise
,

where ϵk is a Rademacher random variable, i.e., P (ϵk = 1) = P (ϵk = −1) = 1
2 . Note that the

demands of items in these instances do not rely on given algorithm. Indeed, we have

d̃it =

{
0 t ∈ [tk, tk + 2L− 1]

D t = tk + 2L

and xi
t+1 = max(0, yit − d̃it) for all i ∈ [N ] and t ∈ [T ]. Note also that Lmax is an upper bound of

the sell-out period since xi
t becomes zero at the end of each cycle for all i ∈ [N ].
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Then, we discuss the cumulative loss by an algorithm. We have
tk+2L∑
t=tk

⟨gt, yt⟩ =
tk+L−1∑
t=tk

⟨gt, yt⟩+
tk+2L−1∑
t=tk+L

⟨gt, yt⟩

=

tk+L−1∑
t=tk

−G

2
y1t +

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t

≥ −GL

2
y1tk+L−1 +

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t ,

where the inequality holds due to the definition of xi
t in the instances. Now, we focus on the second

term on the right-hand side. Since y1t ≥ y1tk+L−1 for all t ∈ [tk + L, tk + 2L − 1], if ϵk = 1, we
have

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t ≥ GLytk+L−1.

On the other hand, if ϵk = −1, we have
tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t = 0.

Therefore, we obtain

E

[
tk+2L∑
t=tk

⟨gt, yt⟩

]
≥ E

[
−GL

2
y1tk+L−1 +

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t

]
≥ 0. (26)

Next, we consider the cumulative loss by the comparator. Let T ′ = LK, ei ∈ RN be the i-th
canonical vector, and U = {0, De1}. Then, we have

min
u∈C(0)

∑
t∈[T ]

⟨gt, u⟩ = min
u∈C(0)

∑
k∈[K]

tk+2L∑
t=tk

⟨gt, u⟩

≤ min
u∈U

∑
k∈[K]

tk+2L∑
t=tk

⟨gt, u⟩

= min
u∈U

∑
k∈[K]

(
tk+L−1∑
t=tk

−G

2
u1 +

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
u1

)

= min
u∈U

∑
k∈[K]

GDLϵk
2

u1

=
GDL

2
min

u′∈{0,1}

∑
k∈[K]

ϵku
′. (27)

Combining (26) and (27), we obtain

E

∑
t∈[T ]

⟨gt, yt⟩ − min
u∈C(0)

∑
t∈[T ]

⟨gt, u⟩

 = E

 ∑
k∈[K]

tk+2L∑
t=tk

⟨gt, yt⟩ − min
u∈C(0)

∑
k∈[K]

tk+2L∑
t=tk

⟨gt, u⟩


≥ −GDL

2
E

 min
u′∈{0,1}

∑
k∈[K]

ϵku
′


=

GDL

2
E

 max
u′∈{0,1}

∑
k∈[K]

ϵku
′

 ,
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Figure 1: Experimental Results

where the last equality is derived from the fact that −ϵk is a Rademacher random variable. Finally,
we obtain

GDL

2
E

 max
u′∈{0,1}

∑
k∈[K]

ϵku
′

 =
GDL

4
E

∣∣∣∣∣∣
∑

k∈[K]

ϵk

∣∣∣∣∣∣


≥ GDL

4

√
K ≥ Ω(GD

√
LmaxT ),

where we used max(a, b) = a+b
2 + |a−b|

2 in the equality, Khintchine inequality in the second in-
equality, and K = Θ(T/L) in the last inequality.

I EXPERIMENTS

We present the results of numerical experiments using synthetic demand data. We conduct experi-
ments varying the value of T ∈ [2000, 5000, 10000, 20000, 50000] and measure the regret for each
algorithm. We consider an inventory system for a single item with a warehouse capacity of D = 1,
and a newsvendor loss of ℓt(y) = 5max(dt−y, 0)+max(y−dt, 0), where dt is the demand of round
t. The demands are artificially generated as dt = D/2(1 + (1 − ϵ(T )) sin(w(T )t), where w(T ) =
2π log T/T and ϵ(T ) = 1/ log T . This parameterization ensures Lmax ∼ O(log T ) and demand
fluctuation

∑T
t=1 |dt − dt−1| ∼ O(log T ), which are dominated by ϵ(T ), and w(T ), respectively.

We adopt the ideal comparator ut = dt, that incurs zero loss and gives PT =
∑T

t=1 |dt − dt−1|.
Initial inventory level and initial order is set to zero and 1/2, respectively. We set the parameter γ
for MaxCOSD as γ = 0.5ρ/D where ρ represents the minimum of the demand series (note that we
consider a deterministic demand in this experiment). We note that OGD requires PT as an input,
whereas SOGD does not.

The results are shown in Fig. 1. In the experiment, our algorithms significantly outperform the base-
line (MaxCOSD). We observe that the algorithms using the doubling trick (solid lines) sometimes
achieve lower regret than those with Lmax information (dashed lines). This is because when using
Lmax, the learning rate is set smaller than that used in the doubling trick case. As a result, it requires
longer time to shift from the initial value to an appropriate order level, which can deteriorate the
performance.
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J THE USE OF LARGE LANGUAGE MODELS

In this paper, we used large language models to refine and check our writing; we did not use them
for any other significant tasks.
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