
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONLINE INVENTORY OPTIMIZATION
IN NON-STATIONARY ENVIRONMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper addresses online inventory optimization (OIO), an extension of online
convex optimization. OIO is a sequential decision-making process in inventory
management cycles consisting of order arrival, stock consumption, and new order
placement. One key challenge in OIO is managing demand fluctuations. However,
most existing algorithms still cannot sufficiently handle this because they focus on
a static regret guarantee, comparing their performance to a fixed order-up-to level
strategy. In non-stationary environments, such static comparator is unsuitable due
to demand fluctuations. In this paper, we propose an algorithm with near-optimal
dynamic regret guarantee for OIO. Our algorithm also offers an improvement of√
Lmax for the static regret upper bound in existing studies. Here, Lmax refers to

the maximum sell-out period. Our algorithm employs a simple two-stage projec-
tion strategy, through which we prove that the OIO is connected to the smoothed
online convex optimization.

1 INTRODUCTION

Inventory management is crucial in supply chain management, with extensive research focusing
on optimal ordering strategies for various inventory systems. In particular, systems with periodic
reviews and carryover stock are closely related to real-world problems. Numerous approaches have
been proposed for these systems, assuming known demand models (see, e.g., Glock et al. (2014)).
However, it is often challenging to obtain a complete demand model in advance, which highlights
the necessity for online learning techniques to adapt to unknown demands.

Recently, Online Convex Optimization (OCO) (Hazan et al., 2016; Orabona, 2019; Shalev-Shwartz
et al., 2012) has attracted attention in the online inventory management (Huh & Rusmevichientong,
2009; Shi et al., 2016; Zhang et al., 2018a; 2020; Yuan et al., 2021; Agrawal & Jia, 2022; Hihat
et al., 2023). OCO is a sequential learning framework in which for each round t ∈ [T], the decision
maker chooses an N -dimensional vector yt that is in a convex feasible region C ⊂ RN and then
environment reveals a convex loss function ℓt. The typical aim of the decision maker is to minimize
the static regret,

∑
t ℓt(yt)−minu∈C

∑
t ℓt(u). Here we note that in the inventory system, most loss

functions, such as the Newsvendor loss, are convex.

Online inventory optimization (OIO) is a variant of OCO, formulated by Hihat et al. (2023). In
OIO, a sequential decision-making process involving the inventory cycle of order arrival, stock
consumption, and new order placement is considered. During each round t ∈ [T], the stock is
replenished to the order-up-to level of yt set in the previous round. The environment processes
the subsequent demand and post-processing activities, revealing an N -dimensional carryover stock
level of xt+1 and a subgradient gt ∈ ∂ℓt(yt) that is associated with the convex loss incurred by the
decision yt. Then, the decision maker determines the next order-up-to level yt+1 that is greater than
xt+1 and less than the capacity constraint of the warehouse. In the OIO setting, Hihat et al. (2023)
have proposed the MaxCOSD algorithm, which achieves a sublinear static regret.

However, the static regret guarantee is not sufficient for practical applications, especially in environ-
ments with demand fluctuations. Consider a simple example of a single-item inventory system with
a capacity limit of D. Set the fluctuating demand as dt = Dt/T for t ∈ [T] and the loss function
as the Newsvendor loss of ℓt(y) = |y − dt|. A straightforward calculation shows that the minimum
total loss of the static comparator is minu∈[0,D]

∑T
t=1 ℓt(u) = O(DT), whereas a time-varying

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Regret bounds of [1] Huh & Rusmevichientong (2009); [2] Zhang et al. (2018a); [3] Zhang
et al. (2020); [4] Agrawal & Jia (2022); [5] Yuan et al. (2021); [6] Shi et al. (2016); [7] Hihat et al.
(2023); and our work. In the table, we list the regret bounds for each reference by replacing the
demand characteristic parameters used in each paper with our indicator Lmax. C in the fifth row is a
positive constant which depends on other parameters. In the references marked with a dagger, lead
time is taken into account. We show the regret bounds when the lead time is equal to one. S/M in
the Item column represents Single/Multiple item setting. NV, O, and F in the Loss column represent
Newsvendor loss, outdating cost, and fixed cost, respectively.

Regret Reference Upper Bound Lower Bound Item Loss Demand

Static

[1] O(Lmax

√
T) S NV i.i.d.

[2] O(Lmax

√
T) Ω(

√
T) S NV + O i.i.d.

[3]† O(Lmax

√
T) Ω(

√
T) S NV i.i.d.

[4]† Õ(
√
T + Lmax) S NV i.i.d.

[5] Õ(eCLmax
√
T) S NV + F i.i.d.

[6] O(Lmax

√
T) M NV indep.

[7] O(Lmax

√
T) M Convex non-i.i.d.

Static [This work] Õ(
√
LmaxT) Ω(

√
LmaxT) M Convex non-i.i.d.

Dynamic Õ(
√
Lmax(1 + PT)T)

comparator with ut = dt results in
∑T

t=1 ℓt(ut) = 0. Thus, even if we have an algorithm with
O(
√
T)-static regret for this example, it may still suffer from Ω(T)-regret when comparing it to ut.

Recent studies on OCO have intensively investigated algorithms for dynamic environment (Hall &
Willett, 2013; Zhang et al., 2018b; Zhao et al., 2020; 2024). The dynamic regret is an indicator
that measures an algorithm’s tolerance against changing environments. In the context of OCO, the
dynamic regret is defined as RT (u1, . . . , uT) :=

∑T
t=1 ℓt(xt) −

∑T
t=1 ℓt(ut), which is a function

of a time-varying comparator sequence u1, . . . , uT . A major approach for the dynamic regret is
based on a two-layer structure, where a meta-algorithm adaptively accumulates the decisions of a
set of base leaners (Zhang et al., 2018b; van Erven et al., 2021; Zhang et al., 2022b). Such algorithm
ensures O(

√
(D + PT)T)-dynamic regret, where PT is the total path-length of the comparator:

PT :=
∑T

t=2 ∥ut−1 − ut∥1. Therefore, in OIO, a key question is whether we can construct an
algorithm that ensures an O(

√
(D + PT)T)-dynamic regret in the OIO setting. If we have such

an algorithm, we obtain a sublinear dynamic regret for the aforementioned example because PT =∑T
t=2 D/T = O(D).

One major difficulty in the dynamic regret minimization for OIO is the carryover stock constraint.
While the order-up-to level yt must be greater than the carryover stock xt, the comparator ut is not
subject to this constraint. Thus, the feasible region of ut is always a superset of that of yt. Most
algorithms for OCO provide regret guarantees only for comparators ût that are in the same feasible
region as yt. Consequently, this naive application results in O(T)-regret due to the gap between ût

and ut. For the static regret minimization, Hihat et al. (2023) overcome this difficulty by cyclical
update approach, where yt is only updated to a candidate ŷt when ŷt is feasible.

When considering the dynamic regret, however, we cannot employ a standard two-layer structure
with an OIO algorithm (such as MaxCOSD) as the base learner to leverage its theoretical guarantees.
A fundamental difficulty is that this architecture contradicts a key assumption for OIO algorithms:
the carryover stock level xt+1 must be less than the preceding replenished stock level yt. A meta-
algorithm’s decision yt might be larger than the output yat of a base learner a. With a small demand,
xt+1 can exceed yat . For the base learners, this carryover stock level violates their assumption
(xi

t ≤ yait for all i). This inconsistency prevents us from obtaining a theoretical guarantee for the
two-layer structure.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1.1 CONTRIBUTIONS

The main contribution of this paper is to propose OIO algorithms with near-optimal dynamic regret
guarantee, as stated in the following theorem.

Theorem 1 (Informal). Under the constraints of carryover stock and the warehouse capacity, there
exists an algorithm that ensures

RT (u1, . . . , uT) ≤ Õ(
√

LmaxT (1 + PT)) ,

for any sequences of the comparator u1, . . . , uT , without knowing Lmax and PT a priori.

Here, Õ is an order symbol that ignores logarithmic factors. Lmax is the maximum sell-out pe-
riod defined in Definition 1, which, informally speaking, indicates that the total demand over Lmax

rounds is at least the warehouse capacity. For static regret, the algorithm guarantees Õ(
√
LmaxT)-

regret, offering an improvement of
√
Lmax over the existing works. The regret bounds are summa-

rized in Table 1.1

Our algorithm employs a simple two-stage projection strategy consisting of a base learner and its
projection onto a feasible region. In each round t, an observed subgradient gt is fed to the base
learner to propose a decision ŷt+1, which is then adjusted to yt+1 to meet carryover stock constraints.

A distinctive feature of our algorithm is that the base learner’s decision is made independently of the
carryover stock.

We note that our update process differs from MaxCOSD’s in that ours allows the order-up-to level
yt to change, even if the base learner’s decision ŷt is infeasible.

Our primary technical contributions are twofold. First, we demonstrate that, under our two-stage
projection, the dynamic regret can be bounded by the base learner’s regret with switching costs pro-
portional to Lmax, which eliminates the concerns regarding the dynamic carryover stock constraint.
Leveraging this result, we achieve a near-optimal dynamic regret by employing an algorithm for
well-known Smoothed OCO (SOCO) (Lin et al., 2011; Zhang et al., 2021; 2022c;a) as the base
learner, along with the doubling trick for unknown Lmax.

Second, we provide, for the first time, a Ω(
√
LmaxT) lower bound for the OIO setting. Our matching

upper and lower bounds establish that Õ(
√
LmaxT) is nearly optimal, which resolves the open

question raised by Hihat et al. (2023).

2 RELATED WORKS

Inventory Management Inventory management is a long-standing research topic in the field
of operations research. It addresses various conditions, such as demand model (deterministic or
stochastic), carryover status (stateless or stateful), review frequencies (periodic or continuous), lead
times (constant or probabilistic), item types (single or multiple), stockout types (backorders or lost
opportunities), ordering costs (linear or non-linear, with or without fixed order cost), disposal losses,
multi-echelon systems, and more (see, e.g., Zipkin (2000); Porteus (2002)). In particular, a stateful
inventory system with periodic reviews, i.e., a situation where the remaining stock from the previ-
ous period is carried over, is closely related to real-world problems. Numerous methods have been
proposed for scenarios where the demand model is known in advance (Glock et al., 2014). How-
ever, in many cases, obtaining a complete demand model in advance is challenging. This difficulty
highlights the importance of online learning for inventory optimization. As the objective function
is often convex (e.g., the Newsvendor loss), various studies have explored this online inventory op-
timization problem in relation to online convex optimization problems (Huh & Rusmevichientong,
2009; Shi et al., 2016; Zhang et al., 2018a; 2020; Yuan et al., 2021; Agrawal & Jia, 2022; Hihat
et al., 2023).

1The parameters corresponding to Lmax in each reference are as follows: 1/γ in Huh & Rusmevichientong
(2009); 1/µ in Zhang et al. (2018a); 1/c2 in Zhang et al. (2020); D in Agrawal & Jia (2022); ρβ in Yuan et al.
(2021); 1/l in Shi et al. (2016); and 1/µ in Hihat et al. (2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Setting of Online Inventory Optimization
1: Initialize the inventory level x1 ∈ C(0), order-up-to level y1 ∈ C(x1), where C is defined in

Eq. (4).
2: for t = 1, . . . , T do
3: Observe an inventory level xt+1 that satisfies xt+1,i ∈ [0, yt,i] for all i ∈ [N].
4: Observe a subgradient gt ∈ ∂ℓt(yt).
5: Decide the next order-up-to level yt+1 that satisfies yt+1 ∈ C(xt+1).
6: end for

Online Convex Optimization Online convex optimization (OCO) (Shalev-Shwartz et al., 2012;
Hazan et al., 2016; Orabona, 2019) is a sequential learning framework that chooses yt and mini-
mizes regret

∑
t ft(yt) −

∑
t ft(u) for a convex time-varying function ft. It is shown that Online

Gradient Descent algorithm (OGD) achieves the minimax optimal regret bound of O(
√
T) (Zinke-

vich, 2003; Abernethy et al., 2008). For an exp-concave loss function, faster convergence can be
achieved by Online Newton Step algorithm (Hazan et al., 2007), which enjoys a static regret bound
of O(

√
log T).

In OCO, one of the important topics is developing algorithms that adapt to dynamic environments.
There are two major performance metrics: dynamic regret and (strongly) adaptive regret. Dynamic
regret, also known as switching or tracking regret, is defined as RT (u1, . . . , uT) :=

∑T
t=1 ℓt(yt)−∑T

t=1 ℓt(ut) (Hall & Willett, 2013; Zhang et al., 2018b; Zhao et al., 2020; 2024). In Zhang et al.
(2018b), it is shown that a two-layer algorithm called Ader achieves the optimal regret upper bound
of O(

√
(1 + PT)T). Adaptive regret (also known as interval regret) is defined as RT ([s, e]) :=∑

t∈[s,e] ℓt(yt)−minu∈C
∑

t∈[s,e] ℓt(u). Here the regret is a function of the interval [s, e] := s, s+

1, . . . , e − 1, e, where 1 ≤ s ≤ e ≤ T . A weaker definition, considering the maximum regret, has
been first proposed by Hazan & Seshadhri (2007). Later on, Daniely et al. (2015) have extended it to
account for any interval length. Jun et al. (2017) have proposed an algorithm achieving an adaptive
regret of O(

√
τ log T), where τ represents the length of the interval considered.

Smoothed OCO (SOCO) is a variant of OCO that incorporates the switching cost λ∥yt − yt+1∥
into the regret. The concept of switching cost is first motivated by data center management (Lin
et al., 2011) and in the standard setting, the cost function ℓt is provided before making the decision
xt (Bansal et al., 2015; Chen et al., 2018; Goel & Wierman, 2018; Goel et al., 2019). In the setting
where the decision is made before observing the loss, OGD can achieve O(

√
λT) static regret (see,

for example, Zhang et al. (2022a)). Zhang et al. (2021) have proposed an algorithm for the dynamic
regret minimization based on Ader algorithm (Zhang et al., 2018b). Besides, it is pointed out that
algorithms for OCO with memory guarantees the adaptive regret for SOCO (Zhang et al., 2022c;
Gradu et al., 2023). Recently, Zhang et al. (2022a) have proposed an algorithm that guarantees upper
bounds for both dynamic and adaptive regret by utilizing Discounted-Normal-Predictor (Kapralov
& Panigrahy, 2011).

3 PROBLEM SETTING

We consider the online inventory optimization problem for N items. The stock levels of each item
are represented by components of a N -dimensional vector, which is an element of a convex space
C ⊂ RN

≥0 that defines the capacity constraints of the warehouse. At each round t ∈ [T], the
decision maker receives the order placed in the previous round, resulting in the stock level reaching
the order-up-to level yt. Following this, the environment processes the subsequent demand and
necessary post-processing activities, revealing a carryover stock level of xt+1 to the decision maker.
Concurrently, a subgradient gt ∈ ∂ℓt(yt) that is associated with the convex loss incurred by the
decision yt is observed. Then, the decision maker determines the next order-up-to level yt+1 such
that yt+1 ∈ C and yit+1 ≥ xi

t+1 for all i ∈ [N]. The process is summarized in Alg. 1.

Remark 1. It can sometimes be challenging to observe opportunity loss. For instance, in retail
stores, when an item is out of stock, customers rarely inquire with the store staff about its availabil-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ity. As a result, retailers have limited knowledge about the actual demand for out-of-stock items.
Recently, Hihat et al. (2023) have addressed this issue in their OIO setting, highlighting that the
subgradient of the loss function can often be derived even without complete demand observations.
This is because the penalty associated with the opportunity loss is typically given by multiplying
the quantity of opportunity loss by a cost coefficient, as is the case with the Newsvendor loss:
pmax(0, dt − yt), where p is a cost coefficient and dt and yt are demand and order-up-to level
of round t, respectively. Since this penalty is linear with yt, we can compute the subgradient without
knowing the demand quantity. Our problem setting also uses this framework.

We consider the following three conditions. First, we consider that the replenished stock up to yt is
always greater than the carryover stock level xt+1 after subsequent demand and post-processing:

xi
t+1 = max(0, yit − dit) ≤ yit , (1)

for all i ∈ [N]. Here we define the demand for item i at round t as dit ∈ [0, D], noting that it may
also include consumption from some post-processing activities.

Secondly, we define the feasible region for the order-up-to level yt as the intersection of the lower
bounds set by the carryover stocks

yit ≥ xi
t ∀i ∈ [N] , (2)

and the linear-sum constraints arising from inventory space∑
i∈[N]

yit ≤ D . (3)

Specifically, we define the function for the feasible region C : [0, D]N → P([0, D]N) as

C(x) := {y ∈ [0, D]N | yi ≥ xi ∀i ∈ [N],
∑
i∈[N]

yi ≤ D} . (4)

Finally, we assume that the subgradients of the losses are bounded:

∥gt∥2 ≤ G . (5)

In our analysis, we deal with 1-norm of the subgradient, which is bounded as ∥gt∥1 ≤
√
N∥gt∥2 ≤√

NG.

We consider the adversarial environments. After observing yt, the environment can choose the
demand dt and convex loss function adversarially. Aim of this paper is to construct a (near-) optimal
algorithm for OIO under the adversarial environment.
Remark 2. Our study and Hihat et al. (2023) share the same setup except for the warehouse ca-
pacity constraint. While Hihat et al. (2023) assumes a general convex constraint, our work specif-
ically addresses a linear constraint. Although the linear constraint is a special case of the convex
constraint, it is commonly encountered in practical scenarios. Importantly, to our knowledge, no
existing work establishes theoretically guaranteed algorithms for dynamic environment, even under
the linear constraint.

3.1 ENVIRONMENTAL DIFFICULTY INDICATOR

Algorithm’s performance relies on the behavior of xt+1, which reflects the demand and post process
in round t. In our analysis, we focus on the period during which the inventory can meet demand,
which is referred to as sell-out period.
Definition 1 (Sell-out period). We define Lmax as the period during which the sum of the demands
exceeds the inventory capacity:

Lmax := min

L ∈ [T] |
min(t+L−1,T+1)∑

s=t

dis ≥ D, for all t ∈ [T] and i ∈ [N]

 .

Here, we hypothetically assume that diT+1 = D.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Online Inventory Optimization Algorithm for Dynamic Environment
1: Set L = 1.
2: Initialize x1 = 0 and y1 ∈ C(x1).
3: Initialize a base learner E(2L, T) with an initial state ŷ1 = y1 and an input parameter L = 1.
4: for t = 1, . . . , T do
5: Observe gt ∈ ∂ℓt(yt) and xt+1 that satisfies xi

t+1 ∈ [0, yit] for all i ∈ [N].
6: Observe Lt defined in Eq. (9).
7: if maxLt > L then
8: Update L← 2L and restart E(2L, T) inputting the updated parameter L.
9: end if

10: Feed gt to E and receive a decision ŷt+1 ∈ C(0).
11: Update yt+1 = ΠC(xt+1)(ŷt+1).
12: end for

We here note the relationship between the sell-out period and demand. Setting Lmax = o(T) mildly
constrains the duration of periods with small demand; this constraint prevents situations where the
decision maker is forced to incur holding costs over an extended period due to the small demands.
In fact, as we will show in our lower bound analysis, sub-linear regret cannot be achieved when
Lmax = Ω(T). We also note that Lmax does not primarily constrain the fluctuations in demand.
The fluctuation is only upper bounded during the period that determines Lmax, and there is no such
constraint in the other rounds

Remark 3. It is straightforward to extend Lmax to a high probability upper bound. In this case, we
consider that there exists a parameter 0 < δ < 1 and P (

∑min(t+Lmax−1,T+1)
s=t dis ≥ D) ≥ 1−δ/NT

holds for any i ∈ [N] and t ∈ [T]. This extension provides high-probability regret upper bounds.
Furthermore, we note that Lmax is essentially the same as the other parameters defined in Shi et al.
(2016) and Hihat et al. (2023). In fact, the probabilistic extension is a generalization of them. We
give a detailed discussion of this point in the appendix.

3.2 REGRET

We consider the following dynamic regret for OIO:

RT (u1, . . . , uT) =

T∑
t=1

ℓt(yt)−
T∑

t=1

ℓt(ut) ≤
T∑

t=1

⟨gt, yt − ut⟩ . (6)

Here yt ∈ C(xt), and ut ∈ C(0). The major difficulty arises from the fact that yt and ut belong to the
different feasible regions. Specifically, the feasible region of ut is always a superset of yt’s feasible
region, meaning that we employ a stronger comparator than that of the standard OCO problem. In
OIO setting, the feasible region of yt is affected by the previous decision; that is, the lower bound
xt is constrained by xi

t ∈ [0, yit−1] for all i ∈ [N].

Meanwhile, when we adopt a feasible comparator that satisfies max(0, ui
t − dit) ≤ ui

t+1, the total
path-length PT becomes bounded. We provide a detailed discussion in the appendix.

4 PROPOSED ALGORITHMS

Our algorithm employs a simple two-stage projection strategy, as described in Alg. 2. In each round
t, the algorithm feeds gt into the base learner E and receives the decision ŷt+1 ∈ C(0), which
only considers the warehouse capacity constraint (line 10). Then the algorithm projects it onto the
feasible region with the carryover constraint: C(xt+1) (line 11). 2

2We initialize x1 as 0 and the beginning of the first cycle is t = 1. We note that our algorithm can be applied
for the x1 ̸= 0 case, incurring an additional regret of at most GDLmax by adopting the zero-order strategy
until the inventory level reaches 0.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The organization of this section is as follows: We first discuss the properties of the projection
ΠC(xt+1) in Section 4.1. Our key lemma is Lemma 1. By this lemma, we demonstrate that the
regret upper bound of the decision yt can be reduced to that of the base learner’s decision ŷt. Fur-
thermore, we show that the carryover stock constraint leads to a switching cost for ŷt in the base
learner’s regret. In Section 4.2, we provide a regret guarantee for a general base learner in Theo-
rems 2. Finally, in Section 4.3, we introduce SOCO algorithms with a dynamic regret guarantee and
present its regret upper bound in Theorem 4. 3

4.1 PROJECTION PROPERTY

Our analysis is based on time-periods called cycles. For each item i, a cycle is defined by the period
during which ŷit cannot be realized due to the carryover stock xi

t, resulting in yit > ŷit. This is
formally expressed as follows:
Definition 2 (Cycle). Let Si ⊂ [T] be defined as the set of the rounds that satisfies yit ≤ ŷit if and
only if t ∈ Si. Suppose the elements t ∈ Si is indexed in strictly increasing order as t1 < t2 <
· · · < t|Si|. We refer to the period tk, tk + 1, . . . , tk+1 − 1 for tk ∈ Si as the k-th cycle of item i,
and define the length of the k-th cycle as Li

k := tk+1 − tk, where we set t|Si|+1 = T + 1.

Then, the following key lemma holds in our OIO setting:
Lemma 1. For any base learner E , Alg. 2 ensures

T∑
t=1

⟨gt, yt − ŷt⟩ ≤ 2G

T∑
t=1

(
max
i∈[N]

Li
t

)
∥ŷt − ŷt+1∥1 , (7)

where Li
t is the current cycle length for item i, that is, Li

k that satisfies tk ≤ t < tk+1 for tk, tk+1 ∈
Si.
Remark 4. Lemma 1 shows that, under our two-stage projection strategy, OIO is linked to
SOCO (Lin et al., 2011; Zhang et al., 2021; 2022c;a), eliminating the difficulty for the dynamic
carry-over stock constraint in the OIO setting.

In fact, under Alg. 2, the regret is bounded as

RT ≤
T∑

t=1

(⟨gt, ŷt − ut⟩+ 2GL∗
t ∥ŷt − ŷt+1∥1) , (8)

where L∗
t = maxi∈[N] L

i
t. The right-hand side is interpreted as the dynamic regret for SOCO

problem for the base learner E , where for every t ∈ [T], E chooses ŷt ∈ C(0) and suffers loss
⟨gt, ŷt⟩ with switching cost of 2GL∗

t−1∥ŷt−1 − ŷt∥1. The main difference from the standard SOCO
is the coefficient L∗

t , which is time-dependent and delayed in observability; it becomes observable
only after the cycle for each item at time t is completed.4 We propose an improved algorithm that
works without prior knowledge of the switching cost in the next section.

4.2 DOUBLING TRICK FOR THE UNKNOWN SWITCHING COST

We address the unknown switching cost in Eq. (8) by introducing a doubling trick for L∗
t . In Alg. 2,

as described in lines 7 to 9, our algorithm restarts the base learner E with a new parameter L by
comparing the current parameter and the maximum observed cycle length maxLt. Here, we define
the set of the observed cycle lengths at round t as

Lt :=
⋃

i∈[N]

{Li
1, . . . , L

i
k−1, t− tk + 1 | tk ≤ t < tk+1, tk, tk+1 ∈ Si} , (9)

where t − tk + 1 indicates the lower bound of the current cycle length. For the regret upper bound
analysis, we use the following property of the cycle legth:

3All omitted proofs are given in the appendix.
We also omit the high-probability regrets for the sake of clarity, since extention is rather straightforward. See

Remark 5 in the appendix for details.
4Another difference is that the switching cost appears as l1-norm instead of the l2-norm. We track this

impact in the regret analyses.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 3 Online Gradient Descent
Require: Learning rate η.

1: for t = 1, . . . , T do
2: Receive a subgradient gt.
3: Return ŷt+1 = ΠC(0)(ŷt − ηgt).
4: end for

Algorithm 4 k-th Combiner
Require: Two parameters: nk and L.

1: Initialize z1 = 0.

2: Set g̃(z) :=
√

nk

8
1
T erf(z√

8nk
)ez

2/16nk

.
3: Compute U(nk) := g̃−1(1)
4: for t = 1, . . . T do
5: Receive v̂k−1

t+1 , ŷkt+1, and gt.
6: Compute bkt by Eq. (11).
7: if zt ∈ [0, U(nk)] or (zt < 0) ∩ (bkt > 0)

or (zt > U(nk)) ∩ (bkt < 0) then
8: zt+1 = (1− 1/nk)zt + bkt .
9: else

10: zt+1 = (1− 1/nk)zt.
11: end if
12: pkt+1 = Π[0,1] (g̃(zt+1))

13: Return v̂kt+1 = (1 − pkt+1)v̂
k−1
t+1 +

pkt+1ŷ
k
t+1.

14: end for

Algorithm 5 Smoothed Online Gradient De-
scent (Zhang et al., 2022a)
Require: L > 0.

1: Set K = ⌊log2 T
32max(L,1) log T ⌋+ 1.

2: for k = 1, . . . ,K do
3: Set nk = T21−k

4: Initialize k-th instance Ak, which is
Alg. 3 with the learning rate of ηk =

2D/G
√
1/(2
√
NL+ 1)nk.

5: Initialize k-th combiner Bk, which is
Alg. 4 with the input parameters of nk and
L.

6: end for
7: for t = 1, . . . , T do
8: Receive a subgradient gt.
9: for k = 1, . . . ,K do

10: if k = 1 then
11: v̂1t+1 ← A1(gt).
12: else
13: ŷkt+1 ← Ak(gt).
14: v̂kt+1 ← Bk(v̂k−1

t+1 , ŷ
k
t+1, gt).

15: end if
16: end for
17: Return ŷt+1 = v̂Kt+1.
18: end for

Lemma 2. The cycle length is upper bounded by the sell-out period Lmax.

We assume that the base learner is an algorithm E(L, T) with an input parameter L and T that
provides a regret upper bound of

T∑
t=1

(⟨gt, ŷt − ut⟩+GL∥ŷt − ŷt+1∥1) ≤ RE(L,T)
L,T (10)

for any series of {gt}Tt=1.

Then, the following regret upper bounds holds for Alg. 2.

Theorem 2. Assume that under algorithm E(L, T), the regret upper boundRE(L,T)
L,T can be decom-

posed into RE(L,T)
L,T = LαR(T) and the switching cost is bounded by ∥ŷt − ŷt+1∥1 ≤ O(L−β) for

β ≥ 0. Then, Alg. 2 ensures

RT ≤ C(α)RE(2Lmax,T)
2Lmax,T

+O(L2−β
max) ,

where C(α) is an α-dependent factor.

4.3 ALGORITHMS FOR THE BASE LEARNER

In this section we introduce algorithms for SOCO that can be used as the base learner in Alg. 2.
First, we introduce the standard Online Gradient Descent algorithm (OGD) described in Alg. 3.

Theorem 3. Assume T ≥ Lmax(3 + PT /D). In Alg. 2, the base learner Alg. 3 with an L-

parameterized learning rate η =
√

2D(3D+PT)
G2(L+1/2)T ensures RT ≤ O(

√
Lmax(1 + PT)T + Lmax) .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To obtain the optimal regret order, we must know PT a priori when setting the learning rate η.
This parameter depends on the characteristics of the future demands and is sometimes difficult to
determine in advance.

Recently, Zhang et al. (2022a) have proposed the Smoothed Online Gradient Descent algorithm
(SOGD). In the algorithm, the meta-algorithm sequentially aggregates multiple experts’ decision,
where k-th decision in the sequence is obtained by combining k-th expert’s decision ŷkt+1 and k−1-
th combined decision v̂k−1

t+1 via the k-th combiner Bk. The combiner combines the two inputs with a
weight pt+1 that is adaptively computed by Discounted-Normal-Predictor (Kapralov & Panigrahy,
2011) with conservative updating with bit sequences of

bkt :=
⟨gt, v̂k−1

t − ŷkt ⟩+GL(∥v̂k−1
t − v̂k−1

t+1 ∥1 − ∥ŷkt − ŷkt+1∥1)
6GDN1/4

√
L

(11)

a described in line 5 to 11 in Alg. 4. The meta-algorithm use K-th decision as the output.

Theorem 4. Assume T ≥
√
Lmax(log2 T + e). In Alg. 2, the base learner Alg. 5 ensures

RT ≤ O(
√
Lmax(1 + PT)T log T + Lmax) .

5 LOWER BOUND

In this section, we discuss the optimality of our regret analysis. In OCO, Zhang et al. (2018b) have
established the Ω(

√
(1 + PT)T) lower bound. Our regret upper bound matches this lower bound up

to a logarithmic factor. On the other hand, we also have a
√
Lmax factor in our bound. The following

theorem ensures this optimality.

Theorem 5. For any algorithm A, there exists some sequence {gt}t and some u ∈ C(0) such that

T∑
t=1

⟨gt, yt − u⟩ = Ω(GD
√
LmaxT),

where {yt}Tt=1 is the sequence of the outputs by A.

As a byproduct, this lower bound provides the optimality of the
√
L factor in the OGD and SOGD

algorithms for the SOCO setting. This is because if there were an algorithm that can be improved
upon, it can break the lower bound of OIO by adopting it as the base learner of our algorithm.

Corollary 1. For SOCO with regret of R̃T (L), its lower bound is Ω(
√
LT).

In our study, OIO and SOCO are found to be connected, which provides an intriguing example of
how one lower bound can constrain the other.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we propose an algorithm for OIO with a near-optimal dynamic regret guarantee. We
connect OIO to SOCO through a simple two stage projection and the dynamic regret bound com-
bining an algorithm for SOCO and doubling trick for unknown Lmax.

There are several interesting prospects for future investigation. First, the problem setting does not
take into account the lead time and fixed-order costs. For i.i.d. demand, there are studies addressing
these settings (Zhang et al., 2020; Agrawal & Jia, 2022; Yuan et al., 2021). The extension to dynamic
environments is an interesting direction for future research. Secondly, we assume a linear capacity
constraint as described in Eq. (3). This assumption is critical to the proof of Lemmas 5 and 6.
Although we believe that it is possible to extend this assumption to a more general convex set, we
leave it for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and
minimax lower bounds for online convex games. In Annual Conference on Learning Theory, pp.
414–424, 2008.

Shipra Agrawal and Randy Jia. Learning in structured mdps with convex cost functions: Improved
regret bounds for inventory management. Oper. Res., 70(3):1646–1664, 2022.

Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin Schewior, and Clif-
ford Stein. A 2-competitive algorithm for online convex optimization with switching costs. In
International Workshop on Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, 2015.

Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex optimization in high
dimensions via online balanced descent. In Annual Conference on Learning Theory, 2018.

Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In Inter-
national Conference on Machine Learning, pp. 1405–1411. PMLR, 2015.

Christoph H. Glock, Eric H. Grosse, and Jörg M. Ries. The lot sizing problem: A tertiary study.
International Journal of Production Economics, 155:39–51, 2014.

Gautam Goel and Adam Wierman. An online algorithm for smoothed regression and lqr control. In
International Conference on Artificial Intelligence and Statistics, 2018.

Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent:
An optimal algorithm for smoothed online optimization. In Advances in Neural Information
Processing Systems, 2019.

Paula Gradu, Elad Hazan, and Edgar Minasyan. Adaptive regret for control of time-varying dynam-
ics. In Learning for Dynamics and Control Conference, pp. 560–572. PMLR, 2023.

Eric Hall and Rebecca Willett. Dynamical models and tracking regret in online convex program-
ming. In International Conference on Machine Learning, pp. 579–587. PMLR, 2013.

Elad Hazan and Comandur Seshadhri. Adaptive algorithms for online decision problems. In Elec-
tronic colloquium on computational complexity (ECCC), volume 14, 2007.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Mach. Learn., 69(2-3):169–192, 2007.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Massil Hihat, Stéphane Gaı̈ffas, Guillaume Garrigos, and Simon Bussy. Online inventory prob-
lems: beyond the iid setting with online convex optimization. Advances in Neural Information
Processing Systems, 36, 2023.

Woonghee Tim Huh and Paat Rusmevichientong. A nonparametric asymptotic analysis of inventory
planning with censored demand. Math. Oper. Res., 34:103–123, 2009.

Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Improved strongly
adaptive online learning using coin betting. In International Conference on Artificial Intelligence
and Statistics, pp. 943–951. PMLR, 2017.

Michael Kapralov and Rina Panigrahy. Prediction strategies without loss. Advances in Neural
Information Processing Systems, 24, 2011.

Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dynamic right-sizing for
power-proportional data centers. IEEE/ACM Transactions on Networking, 21:1378–1391, 2011.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Evan L. Porteus. Foundations of Stochastic Inventory Theory. Stanford University Press, 2002.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107–194, 2012.

Cong Shi, Weidong Chen, and Izak Duenyas. Nonparametric data-driven algorithms for multiprod-
uct inventory systems with censored demand. Operations Research, 64(2):362–370, 2016.

Tim van Erven, Wouter M. Koolen, and Dirk van der Hoeven. Metagrad: Adaptation using multiple
learning rates in online learning. Journal of Machine Learning Research, 22:161:1–161:61, 2021.

Hao Yuan, Qi Luo, and Cong Shi. Marrying stochastic gradient descent with bandits: Learning
algorithms for inventory systems with fixed costs. Manag. Sci., 67(10):6089–6115, 2021.

Huanan Zhang, Xiuli Chao, and Cong Shi. Technical note - perishable inventory systems: Convexity
results for base-stock policies and learning algorithms under censored demand. Oper. Res., 66:
1276–1286, 2018a.

Huanan Zhang, Xiuli Chao, and Cong Shi. Closing the gap: A learning algorithm for lost-sales
inventory systems with lead times. Manag. Sci., 66:1962–1980, 2020.

Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments.
Advances in Neural Information Processing Systems, 31, 2018b.

Lijun Zhang, Wei Jiang, Shiyin Lu, and Tianbao Yang. Revisiting smoothed online learning. Ad-
vances in Neural Information Processing Systems, 34:13599–13612, 2021.

Lijun Zhang, Wei Jiang, Jinfeng Yi, and Tianbao Yang. Smoothed online convex optimization based
on discounted-normal-predictor. Advances in Neural Information Processing Systems, 35:4928–
4942, 2022a.

Lijun Zhang, Guanghui Wang, Jinfeng Yi, and Tianbao Yang. A simple yet universal strategy for
online convex optimization. In International Conference on Machine Learning, pp. 26605–26623.
PMLR, 2022b.

Zhiyu Zhang, Ashok Cutkosky, and Ioannis Paschalidis. Adversarial tracking control via strongly
adaptive online learning with memory. In International Conference on Artificial Intelligence and
Statistics, pp. 8458–8492. PMLR, 2022c.

Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Dynamic regret of convex and smooth
functions. Advances in Neural Information Processing Systems, 33:12510–12520, 2020.

Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-stationarity:
Problem-dependent dynamic regret for online convex optimization. Journal of Machine Learning
Research, 25(98):1–52, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
International Conference on Machine Learning, pp. 928–936, 2003.

Paul H. Zipkin. Foundations of inventory management. McGraw-Hill, 2000.

A DISCUSSION ON Lmax

Existing works introduce the least amount of demands in each round. Shi et al. (2016) assumes
minimum demand. Hihat et al. (2023) introduces parameters ρ and µ and assumes P

[
dit ≥ ρ

]
≥ µ

holds for all t ∈ [T] almost surely. We here see the relation between Assumption 10 in Hihat et al.
(2023) and Remark 3 in our paper.
Proposition 1. If Assumption 10 in Hihat et al. (2023) holds, then our assumption in Remark 3
holds. That is, if one have µ and ρ such that P

[
dit ≥ ρ

]
≥ µ holds for all t ∈ [T] almost surely,

then there exists Lmax such that P
(∑min(t+Lmax−1,T+1)

s=t dis ≥ D
)
≥ 1 − δ/NT holds for any

i ∈ [N] and t ∈ [T].

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Proof. We denote Lmax by L. Suppose Assumption 10 in Hihat et al. (2023) holds. Then, we have

P
[
dit ≥ ρ

]
≥ µ

for all t ∈ [T] almost surely. By Markov’s inequality, we obtain

P
[
dit ≥ ρ

]
≤

E
[
dit
]

ρ
,

and thus E
[
dit
]
≥ ρµ holds. Our aim is to obtain the number of rounds necessary for making the

inventory sold out with the probability at least 1− δ/NT for each cycle (by the fact that there exist
at most T cycles from t = 1 to t = T for all items and technique of the union bound). Since we
assume xi

T+1 = 0 for all i ∈ [N], we consider L consecutive rounds only. Hereafter, we consider
on some fixed i ∈ [N]. Let us denote

Xt =

{
1 (dit ≥ ρ)

0 (dit < ρ)

and

Yt =

t∑
s=1

(Xs − E[Xs]).

By applying Azuma–Hoeffding inequality, we obtain

P

(
L∑

t=1

Xt ≤ Lµ− ε

)
≤ P (YL − Y0 ≤ −ε)

= P

(
L∑

t=1

Xt ≤ E

[
L∑

t=1

Xt

]
− ε

)

≤ exp

(
− ε2

2L

)
.

From

exp

(
− ε2

2L

)
≤ δ

NT
,

we obtain

ε ≥
√

2L log
NT

δ
.

Therefore,
∑L

t=1 Xt ≤ Lµ −
√
2L log NT

δ holds with probability at least 1 − δ/NT . If demand
larger than or equal to ρ occur at least D/ρ times, then the inventory becomes sold out. Thus, the
condition for L is

D

ρ
≤ Lµ−

√
2L log

NT

δ
.

Let us denote w =
√
Lµ, a =

√
2 log NT

δ

µ , and b = D/ρ, then we obtain

D

ρ
≤ Lµ−

√
2L log

NT

δ
⇐⇒ w2 − aw ≥ b

⇐⇒
(
w − a

2

)2
≥ a2

4
+ b

⇐= w − a

2
≥
√

a2

4
+ b

⇐⇒ w ≥ a

2
+

√
a2

4
+ b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Then,

w ≥ a

2
+

√
a2

4
+ b ⇐⇒

√
Lµ ≥

√
log NT

δ

2µ
+

√
log NT

δ

µ
+

D

ρ

⇐⇒ Lµ ≥

√ log NT
δ

2µ
+

√
log NT

δ

µ
+

D

ρ

2

⇐= Lµ ≥
log NT

δ

µ
+

2 log NT
δ

µ
+

2D

ρ

holds, where the last part utilizes (α + β)2 ≤ 2(α2 + β2), ∀α, β ∈ R. Therefore, if one adopts L
satisfying

Lµ ≥
3 log NT

δ

µ
+

2D

ρ
⇐⇒ L ≥ 2D

ρµ
+

3 log NT
δ

µ2
,

the inventory becomes sold out in at most L rounds with the probability at least 1− δ/NT .

B EXTENTION TO THE HIGH-PROBABILITY REGRET

Remark 5. The probabilistic definition for Lmax in Remark 3 ensures that Li
k satisfies Li

k ≤ Lmax

with probability of 1 − δ/NT . Given this definition, our regret upper bounds hold when all Li
k

satisfy Li
k ≤ Lmax in t ∈ [T]. Applying the union bound over all cycles and products, we bound

its probability at least 1 − δ. Therefore, using the probabilistic expression for Lmax, our results
naturally extend to high-probability regrets, maintaining the same order of bounds with a probability
of 1− δ.

C ORDER ESTIMATION OF PT

Proposition 2. Under the feasible comparator that satisfies max(0, ui
t − dit) ≤ ui

t+1, PT is upper
bounded by ND + 2

∑N
i=1

∑T
t=1 d

i
t.

Proof. For clarity, we first consider the single-item scenario. Consider a set A = {t ∈ 2, . . . , T |
ut−1 ≥ ut}, and write PT as

PT =

T∑
t=2

|ut−1 − ut| =
∑
t∈A

(ut−1 − ut) +
∑

t∈{2,...,T}\A

(ut − ut−1) . (12)

The first term is upper bounded by the demand series {dt} as
ut−1 − ut ≤ dt−1, (13)

because the feasible space of ut is constrained by the carryover stock as ut ≥ max(ut−1−dt−1, 0).
On the other hand, the second term can be bounded by the first term as follows:

−D ≤ u1 − uT =

T∑
t=2

(ut−1 − ut) =
∑
t∈A

(ut−1 − ut)−
∑

t∈{2,...,T}\A

(ut − ut−1). (14)

Combining these inequalities, we have

PT ≤ 2
∑
t∈A

(ut−1 − ut) +D ≤ 2
∑
t∈A

dt−1 +D ≤ 2

T∑
t=1

dt +D. (15)

The bound in the multi-item case can be obtained straightforwardly as the sum of the bounds for
each item, which concludes the proof.

We also note that the ideal feasible comparator typically yields PT =
∑T

t=2 ∥dt−1 − dt∥1. This is
because, in most inventory system without lead-time, the ideal order-up-to decision {ut} matches
the demand {dt}, which incurs neither lost-sales loss nor holding costs.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D PROOFS OF THE LEMMAS IN SECTIONS 4.1 AND 4.2

D.1 LEMMAS ON THE PROJECTION OPERATOR ΠC(x)

In this section, we provide lemmas regarding the relationships that hold between ŷ ∈ C(0) and
y = ΠC(x)(ŷ) where x ∈ C(0). We note that y, ŷ, and x do not necessarily depend on t; in other
words, we do not assume that they are elements of a t-dependent series resulting from a particular
algorithm or environment.

For the subsequent proofs, we define the set of the item index I and its complement as I := {i ∈
[N] | yi ≤ ŷi}, and I := [N]/I = {i ∈ [N] | yi > ŷi}, respectively. Recall that C(x) ⊂ C(0) and
the projection y = ΠC(x)(ŷ) is equal to y = argminy′∈C(x)∥y′ − ŷ∥22.

Lemma 3. For i ∈ I, yi = xi > 0.

Proof. We divide the proof in three cases regarding ŷ; (i) For ŷ ∈ C(x), it is obvious that y = ŷ
holds. (ii) For ŷ /∈ C(x) and ŷi < xi, we observe yi = xi > ŷi. This is because if we have some
ϵ > 0 and yi = xi + ϵ, decreasing ϵ to zero decreases the objective function without violating the
constraint, which contradicts the minimality of y. We also note that xi > 0 in this case because
ŷi ≥ 0. (iii) Finally, for ŷ /∈ C(x) and ŷi ≥ xi, we observe yi ≤ ŷi. This is because if we have
some ϵ > 0 and yi = ŷi + ϵ, decreasing ϵ to zero decreases the objective function without violating
the constraint, which contradicts the minimality of y. In summary, yi > ŷi only occurs in the case
of (ii), which leads to yi = xi > 0.

Lemma 4. If there exist an i∗ ∈ [N] that satisfies yi
∗
< ŷi

∗
, then

∑
i∈I yi = D −

∑
j∈I xj .

Proof. From Lemma 3, it is obvious yj = xj for j ∈ I. Therefore, y = ΠC(x)(ŷ) implies that
y minimizes

∑
i∈I(y

i − ŷi)2 satisfying yi ≤ ŷi and
∑

i∈I yi ≤ D −
∑

j∈I xj . Assume that∑
i∈I yi < D −

∑
j∈I xj . Then, we can increase yi

∗
to ŷi

∗
without violating the constraint, which

decreases the objective function and contradicts the minimality of y.

D.2 PROOF OF LEMMA 1

To prove Lemma 1, we use the following two lemmas for the cycle property. Let It be the set
of items such that t is the initial part of the cycle, i.e., It := {i ∈ [N] | yit ≤ ŷit}. Note that
It := [N]/It = {i ∈ [N] | yit > ŷit} is the set of items in the later part of the cycle. Then, the
following lemmas hold.

Lemma 5. For any t ∈ [T],
∑

i∈It
ŷit − yit ≤

∑
i∈It

yit − ŷit .

Lemma 6. For any k ∈ [Ki] and s ∈ [Li
k − 1], yitk+s − ŷitk+s ≤

∑s−1
s′=0 ŷ

i
tk+s′ − ŷitk+s′+1 .

Proof of Lemma 1. We divide the left-hand side of Eq. (7) into the initial and later parts of the cycle:

T∑
t=1

⟨gt, yt − ŷt⟩ =
T∑

t=1

∑
i∈It

git(y
i
t − ŷit) +

∑
i∈It

git(y
i
t − ŷit) . (16)

For the first term, from Lemma 5, the following inequality holds:

T∑
t=1

∑
i∈It

git(y
i
t − ŷit) ≤

T∑
t=1

∥gt∥∞
∑
i∈It

(ŷit − yit)
Lemma 5
≤

T∑
t=1

∥gt∥∞
∑
i∈It

(yit − ŷit) , (17)

where we use yit ≤ ŷit for i ∈ It in the first inequality. This inequality suggests the following
statement: the contributions from the initial part of the cycles in all items are bounded by the contri-
butions from the later parts of the cycles in all items. Therefore, the proof is completed by evaluating
the contributions from the later parts of the cycles, i.e., the second term in Eq. (16).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For the second term in Eq. (16), using Lemma 6, we have

T∑
t=1

∑
i∈It

git(y
i
t − ŷit) =

N∑
i=1

Ki∑
k=1

Li
k−1∑
s=1

gitik+s(y
i
tik+s − ŷitik+s)

≤
N∑
i=1

Ki∑
k=1

∥gtik+s∥∞
Li

k−1∑
s=1

(yitik+s − ŷitik+s)

Lemma 6
≤

N∑
i=1

Ki∑
k=1

∥gtik+s∥∞
Li

k−1∑
s=1

s−1∑
s′=0

(ŷitik+s′ − ŷitik+s′+1) , (18)

where we refer to the definition of the summation of the later parts of the cycle for the first equality.
Combining Eq. (16), Eq. (17), and Eq. (18), we finally have

T∑
t=1

⟨gt, yt − ŷt⟩
Eq. (17)
≤ 2

N∑
i=1

Ki∑
k=1

Li
k−1∑
s=1

∥gtik+s∥∞(yitik+s − ŷitik+s)

Eq. (18)
≤ 2

N∑
i=1

Ki∑
k=1

Li
k−1∑
s=1

∥gtk+s∥∞
s−1∑
s′=0

(ŷitik+s′ − ŷitik+s′+1)

≤ 2G

N∑
i=1

Ki∑
k=1

Li
k−1∑
s=1

s−1∑
s′=0

(ŷitik+s′ − ŷitik+s′+1)

= 2G

N∑
i=1

T∑
t=1

(
Li
κi(t) − (t− tκi(t))− 1

)
(ŷit − ŷit+1)

≤ 2G

T∑
t=1

(
max
i∈[N]

Li
κi(t)

)
∥ŷt − ŷt+1∥1

≤ 2G

T∑
t=1

L∗
t ∥ŷt − ŷt+1∥1 .

In the fourth line, we apply Lemma 7 given in the appendix. This concludes the proof.

D.3 PROOF OF LEMMA 5

Proof. First, we consider the case I = [N]. In this case, we observe ŷi − yi = 0 for all i ∈ [N].
This can be proved as follows: If we have non-empty set I ′ := {i ∈ [N] | yi < ŷi}, we can write
yj = ŷj − ϵj where ϵj > 0 for j ∈ I ′. Then,

∑
i∈[N] y

i =
∑

i∈[N] ŷ
i−
∑

j∈I′ ϵj ≤ D−
∑

j∈I′ ϵj .
Therefore, decreasing ϵjs to zero decreases the objective function without violating the constraint,
which contradicts the minimality of y.

Then, we consider the case I ̸= [N]. If all i ∈ I satisfies yi = ŷi, then
∑

i∈I(ŷ
i − yi) = 0 and the

inequality holds. Otherwise, from Lemma 4, we have
∑

i∈I yi = D −
∑

j∈I xj and∑
i∈I

ŷi − yi =
∑
i∈I

ŷi −D +
∑
j∈I

xj

=
∑
i∈[N]

ŷi −D +
∑
j∈I

(xj − ŷj)

≤
∑
j∈I

(xj − ŷj)

Lemma 3
=

∑
j∈I

(yj − ŷj) .

In the last inequality, we use
∑

i∈[N] ŷ
i ≤ D because ŷ ∈ C(0).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.4 PROOF OF LEMMA 6

Proof. For the sake of brevity, we omit index i of tik, Li
k, and Ki when it is clear from the context.

Consider the summation in the k-th cycle for item i:
gitk(y

i
tk
− ŷitk) + gitk+1(y

i
tk+1 − ŷitk+1) + · · ·+ gitk+Lk−1(y

i
tk+Lk−1 − ŷitk+Lk−1) .

From the definition of the k-th cycle, we have
yitk ≤ ŷitk . (19)

Moreover, for s = 1, . . . , Lk − 1, because yitk+s > ŷitk+s, we have yitk+s = xi
tk+s > 0 from

Lemma 3. Thus, the following order property holds:

yitk+s−1

Eq. (1)
≥ xi

tk+s
Lemma 3
= yitk+s > ŷitk+s ≥ 0 , (20)

for s = 1, . . . , Lk − 1. Using the above properties, for cycles of Lk ≥ 2, the following upper bound
holds:

yitk+s − ŷitk+s = xi
tk+s − ŷitk+s ≤ yitk+s−1 − ŷitk+s

= (yitk+s−1 − ŷitk+s−1) + (ŷitk+s−1 − ŷitk+s)

= . . .

= (yitk − ŷitk) +

s−1∑
s′=0

(ŷitk+s′ − ŷitk+s′+1)

Eq. (19)
≤

s−1∑
s′=0

(ŷitk+s′ − ŷitk+s′+1) ,

which concludes the proof.

D.5 THE OTHER TECHNICAL LEMMA FOR LEMMA 1

Lemma 7. Suppose round 1, . . . , T is divided into K segment of lengths L1, . . . , LK that satisfies
1 ≤ Lk ≤ T ∀k ∈ [K] and

∑K
k=1 Lk = T . Let us define a function κ : [T]→ [K] which maps each

round t ∈ [T] to the segment k ∈ [K] that t belongs to, i.e., κ(t) := mink∈[K] k s.t.,
∑k

k′=1 Lk′ ≥ t.
Then, for any series a1, . . . , aT and b1, . . . , bK , the following equality holds:

K∑
k=1

Lk−1∑
s=1

s−1∑
s′=0

atk+s′bk =

T∑
t=1

atbκ(t)[Lκ(t) − (t− tκ(t))− 1]+ ,

where tk :=
∑k−1

k′=1 Lk′ + 1 is the initial round of k-th segment and [x]+ := xI[x ≥ 0].

Proof.
K∑

k=1

Lk−1∑
s=1

s−1∑
s′=0

atk+s′bk =

T∑
t=1

K∑
k=1

Lk−1∑
s=1

s−1∑
s′=0

atbkI[t = tk + s′]

=

T∑
t=1

K∑
k=1

Lk−1∑
s=1

s−1∑
s′=0

atbkI[k = κ(t)]I[s′ = t− tκ(t)]

=

T∑
t=1

Lκ(t)−1∑
s=1

s−1∑
s′=0

atbκ(t)I[s
′ = t− tκ(t)]

=

T∑
t=1

Lκ(t)−1∑
s=1

atbκ(t)I[s− 1 ≥ t− tκ(t)]

=

T∑
t=1

atbκ(t)
(
Lκ(t) − 1− 1− (t− tκ(t)) + 1

)
I[Lκ(t) − 1 ≥ t− tκ(t)]

=

T∑
t=1

atbκ(t)
[
Lκ(t) − (t− tκ(t))− 1

]
+
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.6 PROOF OF LEMMA 2

Proof. Consider k-th cycle for item i with cycle length of Li
k. By definition, we have ŷitk+s < yitk+s

for s = 1, . . . , Li
k − 1. By Lemma 3, yitk+s = xi

tk+s > 0. Therefore, we have

yitk ≥ xi
tk+1 + ditk = yitk+1 + ditk

≥ . . .

≥ xi
tk+Li

k−1 +

Li
k−2∑
s=0

ditk+s

If Li
k > Lmax, then yitk > D because xi

tk+Li
k−1

> 0 and
∑Li

k−2
s=0 ditk+s ≥

∑Lmax−1
s=0 ditk+s ≥ D.

This contradicts yitk ≤ D.

E PROOF OF THEOREM 2

Proof. We start by defining a set of the restart rounds as t1, . . . , tn, tn+1, where the i-th restart
occurs at ti and tn+1 = T +1. We assign labels to the parameter used in each restart as L1, . . . , Ln,
where Li = 2i−1. In our algorithm, the base learner in ti, . . . ti+1 is E(2Li, T). Note that since Ln

is at most 2Lmax, we have n ≤ log2 Lmax + 2. The regret can be divided into:

T∑
t=1

(⟨gt, ŷt − ut⟩+ 2GL∗
t ∥ŷt − ŷt+1∥1) =

n∑
i=1

ti+1−1∑
t=ti

(⟨gt, ŷt − ut⟩+ 2GL∗
t ∥ŷt − ŷt+1∥1)

=

n∑
i=1

ti+1−1∑
t=ti

(⟨gt, ŷt − ut⟩+ 2GLi∥ŷt − ŷt+1∥1) +
n∑

i=1

ti+1−1∑
t=ti

2G(L∗
t − Li))∥ŷt − ŷt+1∥1 .

(21)

For the first term, using the assumptions forRE(L,T)
L,T , we have

n∑
i=1

ti+1−1∑
t=ti

(⟨gt, ŷt − ut⟩+ 2GLi∥ŷt − ŷt+1∥1) ≤
n∑

i=1

RE(2Li,T)
2Li,T

≤

(
n∑

i=1

2αLα
i

)
R(T)

≤

(
n∑

i=1

2αi

)
R(T)

≤ C(α)Lα
maxR(T) ,

where C(α) is an α-dependent constant. For the first inequality, we use the fact that when an
algorithm guarantees an upper bound RE(L,T)

L,T for regret R̃T (L), it also ensures that R̃T ′(L) ≤
RE(L,T)

L,T for T ′ ≤ T . This can be observed by setting gt = 0 for t ∈ {T ′ + 1, . . . , T}, which

extends the series {gt}t=T ′

t=1 in R̃T ′(L) to {gt}t=T
t=1 . This allows us to apply the same boundRE(L,T)

L,T

to R̃T ′(L).

In the second term of Eq. (21), positive contribution comes from the rounds where the parameter Li

underestimates L∗
t : L∗

t > Li. Suppose the parameter is set to Li and the algorithm observes that
a cycle starts at round t. The algorithm can detect that the cycle length is longer than Li if it has
not finished at t + Li − 1. Therefore, the underestimated period is at most Li. The second term is

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

bounded as
n∑

i=1

ti+1−1∑
t=ti

2G(L∗
t − Li)∥ŷt − ŷt+1∥1 ≤ C2GL1−β

max

n∑
i=1

ti+1−1∑
t=ti

I[L∗
t > Li]

≤ C2GL1−β
max

n∑
i=1

Li

= C2GL1−β
max

n∑
i=1

2i−1

= O(L2−β
max) ,

where C2 is a constant. Combining these two inequalities concludes the proof.

F PROOF OF THEOREM 3

Below, in order to match the standard expression, we introduce D′ := 2D which indicates the upper
bound of the diameter of C(0):

∥x− y∥2 ≤ ∥x− y∥1 ≤ ∥x∥1 + ∥y∥1 ≤ 2D =: D′

for any x, y ∈ C(0).

Proof. We first bound R̃T (L). The first term of R̃T (L) is bounded by Lemma 8. For the second
term, we have

GL

T∑
t=1

∥ŷt − ŷt+1∥1 = GL

T∑
t=1

∥ŷt − (ΠC(0)(ŷt − ηgt))∥1

≤ GL
√
N

T∑
t=1

∥ŷt − (ΠC(0)(ŷt − ηgt))∥2

≤ ηGL
√
N

T∑
t=1

∥gt∥2

≤ η
√
NG2LT .

Combining the first and second upper bounds, we have

R̃T (L) ≤
D′

2η
(3D′ + 2PT) + ηG2

(√
NL+

1

2

)
T .

Then, by setting η to

η =
D′

G

√
(3 + 2PT /D′)

2(
√
NL+ 1/2)T

,

we have

R̃T (L) ≤ G

√
2D′(3D′ + 2PT)(

√
NL+ 1/2)T

≤ 2GD′N1/4
√
(3 + 2PT /D′)LT

= O(
√
L(1 + PT)T) .

Specifically, for (3 + 2PT /D
′)L ≤ T , ∥ŷt − ŷt+1∥1 ≤ η

√
NG ≤ O(L−1). This corresponds to

α = 1/2 and β = 1 in Theorem 2, which leads to

RT ≤ O(
√
Lmax(1 + PT)T + Lmax) .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 8. Alg. 3 ensures

T∑
t=1

⟨gt, ŷt − ut⟩ ≤
3D′2

2η
+

D′

η
PT +

ηG2T

2
.

Proof. Let us define ŷ′t+1 := ŷt − ηgt. For any t ∈ [T], setting uT+1 = 0, we have

⟨gt, ŷt − ut⟩ =
1

η
⟨ŷt − ŷ′t+1, ŷt − ut⟩

=
1

2η

(
∥ŷt − ut∥22 + ∥ŷ′t+1 − ŷt∥22 − ∥ŷ′t+1 − ut∥22

)
≤ 1

2η

(
∥ŷt − ut∥22 + η2∥gt∥22 − ∥ŷt+1 − ut∥22

)
=

1

2η

(
∥ŷt − ut∥22 − ∥ŷt+1 − ut+1∥22 + ∥ŷt+1 − ut+1∥22 − ∥ŷt+1 − ut∥22 + η2∥gt∥22

)
=

1

2η

(
∥ŷt − ut∥22 − ∥ŷt+1 − ut+1∥22 + ⟨2ŷt+1 − ut+1 − ut, ut − ut+1⟩+ η2∥gt∥22

)
≤ 1

2η

(
∥ŷt − ut∥22 − ∥ŷt+1 − ut+1∥22 + 2D′∥ut − ut+1∥1 + η2∥gt∥22

)
≤ 1

2η

(
∥ŷt − ut∥22 − ∥ŷt+1 − ut+1∥22

)
+

D′

η
∥ut − ut+1∥1 +

ηG2

2
.

In the third line, we use the inequality ∥ΠC(0)(x)−ΠC(0)(y)∥2 ≤ ∥x− y∥2 for any x, y ∈ [0, D]N .
The summation over t ∈ [T] leads to

T∑
t=1

⟨gt, ŷt − ut⟩ ≤
1

2η
∥ŷ1 − u1∥22 +

D′

η

T∑
t=1

∥ut − ut+1∥1 +
ηG2T

2

≤ 3D′2

2η
+

D′

η

T∑
t=2

∥ut−1 − ut∥1 +
ηG2T

2
. (22)

In the final line, we use ∥uT − uT+1∥1 ≤ D′.

G PROOF OF THEOREM 4

In this section, we abuse a notation, eliminating hats in the main paper: vkt+1 and ykt+1 are output of
Ak and Bk in round t, respectively. yt+1 = vKt+1 describes the final output of Alg. 5. For the sake
of brevity, we also define

ℓ̂t(y
k) := ⟨gt, ykt ⟩+GL∥ykt − ykt+1∥1 ,

ℓ̂t(v
k) := ⟨gt, vkt ⟩+GL∥vkt − vkt+1∥1 .

Then, the bit for the combiner k is defined as

bkt :=
ℓ̂t(v

k−1)− ℓ̂t(y
k)

3GD′N1/4
√
L

. (23)

Recall that vkt = (1− pkt)v
k−1
t + pkt y

k
t , where pkt is the weight computed by the k-th combiner Bk.

Proof of Theorem 4. From Lemma 9 and 16, we haveRE
T,L = O(

√
L(1 + PT)T log T) and β = 1.

Therefore, by Theorem 2, we obtain

RT ≤ O(
√
Lmax(1 + PT)T log T + Lmax) .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma 9. For T ≥ max(
√
L log2 T, e), Alg. 5 ensures

R̃T (L) ≤ O(
√
L(1 + PT)T log T) .

Proof. We first consider a large PT case, where the following inequality holds:

3 +
2PT

D′ >
T

32L log T
.

Then the regret is bounded as

T∑
t=1

⟨gt, yt − ut⟩+GL∥yt − yt+1∥1 =

T∑
t=1

⟨gt, vKt − ut⟩+GL∥vKt − vKt+1∥1

≤ 3GD′N1/4T = 3GD′N1/4
√
T ·
√
T

≤ 3GD′N1/4
√
32L(3 + 2PT /D′)T log T

≤ 24
√
2GDN1/4

√
L(3 + 2PT /D)T log T

= O(
√

L(1 + PT)T log T) .

In the first inequality, we use Lemma 16 to bound the switching cost. Below, we consider the case
of small PT , where 3 + 2PT /D

′ ≤ T/(32L log T). Theorem 3 shows that the optimal η for OGD

is given by η∗ = α
√
3 + 2PT /D′, where α := D′/(G

√
(2
√
NL+ 1)T). On the other hand, we

define the learning rates ofAk as ηk = α
√
2i−1, for k = 1, . . . ,K, where K = ⌊log2 T

32L log T ⌋+1.
Because K satisfies 3 + 2PT /D

′ ≤ T/(32L log T) ≤ 2K , there exists an a ∈ [K] that satisfies

2a−1 ≤ 3 +
2PT

D′ ≤ 2a ,

which implies ηa ≤ η∗ ≤
√
2ηa. Under ηa, the regret upper bound of OGD is given by

T∑
t=1

⟨gt, yat − ut⟩+GL∥yat − yat+1∥1 ≤
D′2

2ηa

(
3 +

2PT

D′

)
+ ηaG2

(√
NL+

1

2

)
T

≤
√
2D′2

2η∗

(
3 +

2PT

D′

)
+ η∗G2

(√
NL+

1

2

)
T

≤
√
2 + 1√
2

G

√
D′(3D′ + 2PT)(

√
NL+ 1/2)T

≤ 3GD′N1/4
√
(3 + 2PT /D′)LT

≤ 6GDN1/4
√
(3 + 2PT /D)LT

= O(
√
L(1 + PT)T) . (24)

Using such a, the dynamic regret with switching cost can be decomposed of

R̃T (L) =

T∑
t=1

⟨gt, yt − ut⟩+GL∥yt − yt+1∥1 =

T∑
t=1

⟨gt, vKt − ut⟩+GL∥vKt − vKt+1∥1

=

T∑
t=1

ℓ̂t(v
K)−

T∑
t=1

⟨gt, ut⟩

=

T∑
t=1

(
K∑

k=a+1

ℓ̂t(v
k)− ℓ̂t(v

k−1)

)
+

T∑
t=1

(ℓ̂t(v
a)− ℓ̂t(y

a)) +

T∑
t=1

(⟨gt, yat − ut⟩+GL∥yat − yat+1∥1) .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For the first term, we have

T∑
t=1

K∑
k=a+1

ℓ̂t(v
k)− ℓ̂t(v

k−1)
Lemma 10
≤ −3GD′N1/4

√
L

T∑
t=1

K∑
k=a+1

(
ptb

k
t −
√
L|pt − pt+1|

)
Lemmas 12 and 14

≤ 3GD′N1/4
√
L

K∑
k=a+1

(
U(nk) +

1√
L

+ 1

)
Lemma 11
≤ 3GD′N1/4

√
L

K∑
k=a+1

(
4
√

nk log T + 2
)

≤ 6GD′N1/4
√
L

(
2
√

na log T

K∑
k=1

√
2−k + (K − a)

)
≤ 6GD′N1/4

√
L
(
2(
√
2 + 1)

√
na log T + 4 log T

)
≤ 60GDN1/4

√
LT log T + 60GDN1/4

√
L log T .

In the last line, we use na = T21−a ≤ T . Similarly, for the second term, we have

T∑
t=1

ℓ̂t(v
a)− ℓ̂t(y

a)
Lemma 10
≤ −3GD′N1/4

√
L

T∑
t=1

(
(pat − 1)bat −

√
L|pat − pat+1|

)
Lemmas 12 and 14

≤ 3GD′N1/4
√
L

(
T

na

(
U(na) +

2√
L

)
+ U(na) +

1√
L

+ 1

)
≤ 3GD′N1/4

√
L

(
T

na
U(na) + U(na) +

2T

na
+ 2

)
Lemma 11
≤ 3GD′N1/4

√
L

(
4
√
T 2 log T/na + 4

√
na log T +

2T

na
+ 2

)
≤ 3GD′N1/4

√
L
(
4
√

(3 + 2PT /D′)T log T + 4
√
T log T + 2(3 + 2PT /D

′) + 2
)

≤ 3GD′N1/4
√
L
(
4
√

(3 + 2PT /D′)T log T + 4
√
T log T + 2

√
6(3 + 2PT /D′)T + 2

)
≤ 3GD′N1/4

√
L
(
9
√

(3 + 2PT /D′)T log T + 6
√
T log T

)
≤ 54GDN1/4

√
(3 + 2PT /D)LT log T + 36GDN1/4

√
LT log T .

For the fifth line, recall that na/2 = T2−a ≤ T/(3 + 2PT /D
′) ≤ 21−a = na ≤ T . For the sixth

line, because PT ≤ TD′, we use 3 + 2PT /D
′ = 3+ 2

√
PT /D′ ·

√
PT /D′ ≤ 3 + 2

√
TPT /D′ ≤√

2(9 + 4PT /D′)T ≤
√
6(3 + 2PT /D′)T .

Finally, the third term is bounded by Eq. (24), that is,

T∑
t=1

⟨gt, yat − ut⟩+GL∥yat − yat+1∥1 ≤ 6GDN1/4
√
(1 + PT /D)LT .

Combining them, we have

R̃T (L) ≤ 60GDN1/4
√
L(3 + 2PT /D)T log T + 96GDN1/4

√
LT log T + 60GDN1/4

√
L log T

= O(
√

L(1 + PT)T log T +
√
LT log T +

√
L log T) ,

which finishes the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Lemma 10.
T∑

t=1

(
ℓ̂t(v

k)− ℓ̂t(v
k−1)

)
≤ −3GD′N1/4

√
L

T∑
t=1

(pkt b
k
t −
√
L|pkt − pkt+1|) ,

T∑
t=1

(
ℓ̂t(v

k)− ℓ̂t(y
k)
)
≤ −3GD′N1/4

√
L

T∑
t=1

((pkt − 1)bkt −
√
L|pkt − pkt+1|) .

Proof. By using vkt = (1− pkt)v
k−1
t + pkt y

k
t , we have

ℓ̂t(v
k) = ⟨gt, vkt ⟩+GL∥vkt − vkt+1∥1

= (1− pkt)⟨gt, vk−1
t ⟩+ pkt ⟨gt, ykt ⟩+GL∥(1− pkt)v

k−1
t + pkt y

k
t − (1− pkt+1)v

k−1
t+1 − pkt+1y

k
t+1∥1

= (1− pkt)⟨gt, vk−1
t ⟩+ pkt ⟨gt, ykt ⟩+ (1− pkt)GL∥(vk−1

t − vk−1
t+1)∥1 + pktGL∥(ykt − ykt+1)∥1
+GL∥(pkt − pkt+1)(y

k
t+1 − vk−1

t+1)∥1
≤ (1− pkt)l̂t(v

k−1) + pkt ℓ̂t(y
k) +GD′L|pkt − pkt+1|

Therefore, we have

T∑
t=1

(
ℓ̂t(v

k)− ℓ̂t(v
k−1)

)
≤

T∑
t=1

(
−pkt (ℓ̂t(vk)− ℓ̂t(y

k−1)) +GD′L|pkt − pkt+1|
)

=

T∑
t=1

(
−3GD′N1/4

√
Lpkt b

k
t +GD′L|pkt − pkt+1|

)
≤ −3GD′N1/4

√
L

T∑
t=1

(pkt b
k
t −
√
L|pkt − pkt+1|) ,

and
T∑

t=1

(
ℓ̂t(v

k)− ℓ̂t(y
k)
)
) ≤

T∑
t=1

(
(1− pkt)(ℓ̂t(v

k)− ℓ̂t(y
k−1)) +GD′L|pkt − pkt+1|

)
≤ −3GD′N1/4

√
L

T∑
t=1

((pkt − 1)bkt −
√
L|pkt − pkt+1|) .

Lemma 11 (Eq. (11) in Zhang et al. (2022a)). U(n) ≤ 4
√
n log T .

Lemma 12 (The former part of Theorem 1 in Zhang et al. (2022a)). Suppose T ≥ e and nk ≥
max(8e, 16 log T). For any bit sequence bk1 , . . . , b

k
T such that |bkt | ≤ 1/

√
L ≤ 1, the following

inequation holds under Alg.4:

−
T∑

t=1

(pkt b
k
t −
√
L|pkt − pkt+1|) ≤ −max

(
0,

T∑
t=1

bkt −
T

nk

(
U(nk) +

2√
L

))
+ U(nk) +

1√
L

+ 1

Note that for nk = T21−k in our algorithm, nk ≥ max(8e, 16 log T) is satisfied because nk ≥
nK = T21−K ≥ 32L log T ≥ 32L. In the last inequality, we use T ≥ e.
Lemma 13 (The latter part of Theorem 1 in Zhang et al. (2022a)). Under the setting in Lemma 12,

|pkt − pkt+1| ≤
1√
L

(√
1

nk
log T +

1

4T

)
.

Lemma 14. Assume T ≥ max(
√
L log2 T, e). Then, |bkt | ≤ 1/

√
L, for any k ∈ [K].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof.

|bkt | =
1

3GD′N1/4
√
L

∣∣∣ℓ̂t(vk−1)− ℓ̂t(y
k)
∣∣∣

=
1

3GD′N1/4
√
L

∣∣⟨gt, vk−1
t − ykt ⟩+GL∥vk−1

t − vk−1
t+1 ∥1 −GL∥ykt − ykt+1∥1

∣∣
≤ 1

3GD′N1/4
√
L

(
GD′ +GLmax(∥vk−1

t − vk−1
t+1 ∥1, ∥ykt − ykt+1∥1)

)
≤ 1√

L
.

In the last line, we use Lemmas 15 and 16.

Lemma 15. ∥yk−1
t − yk−1

t+1 ∥1 ≤ D′N1/4/L for any k ∈ [K].

Proof. Since ykt+1 is updated by OGD with the learning rate of ηk, we have

∥ykt − ykt+1∥1 ≤ ηk
√
N∥gt∥2 ≤

√
NG · D

′

G

√
2k−1

(2N1/4L+ 1)T

≤ D′N1/4

√
L

√
2K−1

2T
≤ D′N1/4

√
L

√
1

32L log T
≤ D′N1/4

L
,

which concludes the proof.

Lemma 16. Assume T ≥ max(
√
L log2 T, e). Then, ∥vkt −vkt+1∥1 ≤ 2D′N1/4/L for any k ∈ [K].

Proof. We show it by induction. For k = 1, since v1t = y1t , the inequality holds by Lemma 15.
Suppose the inequality

∥vkt − vkt+1∥1 ≤
D′N1/4

L
+

D′
√
L

k∑
i=2

(√
1

ni
log T +

1

4T

)
, (25)

holds for k ≥ 1. We note that this inequality satisfies LG∥vkt − vkt+1∥1 ≤ 2GD′ because

∥vkt − vkt+1∥1 ≤
D′N1/4

L
+

D′
√
L

k∑
i=2

(√
1

ni
log T +

1

4T

)

≤ D′N1/4

L
+

D′
√
L

K∑
i=2

(√
2i

2T
log T +

1

4T

)

≤ D′N1/4

L
+

D′
√
L

(
2√
2− 1

√
log T

2T

√
T

32L log T
+

log2 T

4T

)

≤ D′N1/4

L
+

D′

L

(
(
√
2 + 1)

4
+

√
L log2 T

4T

)

≤ D′N1/4

L
+

D′

L

(
(
√
2 + 1)

4
+

1

4

)

≤ 2D′N1/4

L
.

In the fifth line, we use
√
L log2 T ≤ T . We also note that the assumption T ≥ max(

√
L log2 T, e)

and Lemma 15 leads to |bk+1
t | ≤ 1/

√
L and Lemma 13 holds for k + 1. Therefore, for k + 1, we

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

have

∥vk+1
t − vk+1

t+1 ∥1 = ∥(1− pk+1
t)vkt + pk+1

t yk+1
t − (1− pk+1

t+1)v
k
t+1 − pk+1

t+1 y
k+1
t+1 ∥1

≤ ∥(1− pk+1
t)(vkt − vkt+1) + pk+1

t (yk+1
t − yk+1

t+1)− (pk+1
t − pk+1

t+1)(v
k
t+1 − yk+1

t+1)∥1
≤ (1− pk+1

t)∥vkt − vkt+1∥1 + pk+1
t ∥yk+1

t − yk+1
t+1 ∥1 + |p

k+1
t − pk+1

t+1 |∥vkt+1 − yk+1
t+1 ∥1

≤ (1− pk+1
t)

(
D′N1/4

L
+

D′
√
L

k∑
i=2

(√
1

ni
log T +

1

4T

))
+ pk+1

t

D′N1/4

L
+ |pk+1

t − pk+1
t+1 |D′

≤ D′N1/4

L
+

D′
√
L

k∑
i=2

(√
1

ni
log T +

1

4T

)
+ |pk+1

t − pk+1
t+1 |D′ .

Lemma 13
≤ D′N1/4

L
+

D′
√
L

k+1∑
i=2

(√
1

ni
log T +

1

4T

)
.

In the forth line, we use Eq. (25) and Lemma 15. Here we observe that Eq. (25) holds for k + 1.
Hence, by induction, we conclude the proof.

H PROOF OF THEOREM 5

Proof. Let Dg be a distribution of loss sequences, and G be the support of Dg . Then, we have

EDg

∑
t∈[T]

⟨gt, yt − u⟩

 ≤ sup
{gt}t∈G

∑
t∈[T]

⟨gt, yt − u⟩.

Thus, we will obtain our lower bound by showing a lower bound of the expected regret. Moreover,
we will construct a common distribution of instances for all algorithms. Hence, we can assume that
the given algorithm is deterministic without loss of generality.

We can assume that Lmax = 2L+1 and T = LmaxK for some L,K > 0 without loss of generality.
Note that L = Θ(Lmax). We divide T rounds into K cycles, where a cycle has Lmax rounds. Let tk
be the first round in the k-th cycle.

We fix k ∈ [K] arbitrarily. We consider the following distribution of instances.

xi
t+1 =

{
yit t ∈ [tk, tk + 2L− 1]

0 t = tk + 2L
and

git =


−G

2 if i = 1 and t ∈ [tk, tk + L− 1]
G(ϵk+1)

2 if i = 1 and t ∈ [tk + L, tk + 2L− 1]

0 otherwise
,

where ϵk is a Rademacher random variable, i.e., P (ϵk = 1) = P (ϵk = −1) = 1
2 . Note that the

demands of items in these instances do not rely on given algorithm. Indeed, we have

d̃it =

{
0 t ∈ [tk, tk + 2L− 1]

D t = tk + 2L

and xi
t+1 = max(0, yit − d̃it) for all i ∈ [N] and t ∈ [T]. Note also that Lmax is an upper bound of

the sell-out period since xi
t becomes zero at the end of each cycle for all i ∈ [N].

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Then, we discuss the cumulative loss by an algorithm. We have
tk+2L∑
t=tk

⟨gt, yt⟩ =
tk+L−1∑
t=tk

⟨gt, yt⟩+
tk+2L−1∑
t=tk+L

⟨gt, yt⟩

=

tk+L−1∑
t=tk

−G

2
y1t +

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t

≥ −GL

2
y1tk+L−1 +

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t ,

where the inequality holds due to the definition of xi
t in the instances. Now, we focus on the second

term on the right-hand side. Since y1t ≥ y1tk+L−1 for all t ∈ [tk + L, tk + 2L − 1], if ϵk = 1, we
have

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t ≥ GLytk+L−1.

On the other hand, if ϵk = −1, we have
tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t = 0.

Therefore, we obtain

E

[
tk+2L∑
t=tk

⟨gt, yt⟩

]
≥ E

[
−GL

2
y1tk+L−1 +

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
y1t

]
≥ 0. (26)

Next, we consider the cumulative loss by the comparator. Let T ′ = LK, ei ∈ RN be the i-th
canonical vector, and U = {0, De1}. Then, we have

min
u∈C(0)

∑
t∈[T]

⟨gt, u⟩ = min
u∈C(0)

∑
k∈[K]

tk+2L∑
t=tk

⟨gt, u⟩

≤ min
u∈U

∑
k∈[K]

tk+2L∑
t=tk

⟨gt, u⟩

= min
u∈U

∑
k∈[K]

(
tk+L−1∑
t=tk

−G

2
u1 +

tk+2L−1∑
t=tk+L

G(ϵk + 1)

2
u1

)

= min
u∈U

∑
k∈[K]

GDLϵk
2

u1

=
GDL

2
min

u′∈{0,1}

∑
k∈[K]

ϵku
′. (27)

Combining (26) and (27), we obtain

E

∑
t∈[T]

⟨gt, yt⟩ − min
u∈C(0)

∑
t∈[T]

⟨gt, u⟩

 = E

 ∑
k∈[K]

tk+2L∑
t=tk

⟨gt, yt⟩ − min
u∈C(0)

∑
k∈[K]

tk+2L∑
t=tk

⟨gt, u⟩


≥ −GDL

2
E

 min
u′∈{0,1}

∑
k∈[K]

ϵku
′


=

GDL

2
E

 max
u′∈{0,1}

∑
k∈[K]

ϵku
′

 ,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000 50000
T

102

103

104

Re
gr

et

MaxCOSD (Hihat+, 2023)
Ours (OGD)
Ours (SOGD)

with Lmax

without Lmax

Figure 1: Experimental Results

where the last equality is derived from the fact that −ϵk is a Rademacher random variable. Finally,
we obtain

GDL

2
E

 max
u′∈{0,1}

∑
k∈[K]

ϵku
′

 =
GDL

4
E

∣∣∣∣∣∣
∑

k∈[K]

ϵk

∣∣∣∣∣∣


≥ GDL

4

√
K ≥ Ω(GD

√
LmaxT),

where we used max(a, b) = a+b
2 + |a−b|

2 in the equality, Khintchine inequality in the second in-
equality, and K = Θ(T/L) in the last inequality.

I EXPERIMENTS

We present the results of numerical experiments using synthetic demand data. We conduct experi-
ments varying the value of T ∈ [2000, 5000, 10000, 20000, 50000] and measure the regret for each
algorithm. We consider an inventory system for a single item with a warehouse capacity of D = 1,
and a newsvendor loss of ℓt(y) = 5max(dt−y, 0)+max(y−dt, 0), where dt is the demand of round
t. The demands are artificially generated as dt = D/2(1 + (1 − ϵ(T)) sin(w(T)t), where w(T) =
2π log T/T and ϵ(T) = 1/ log T . This parameterization ensures Lmax ∼ O(log T) and demand
fluctuation

∑T
t=1 |dt − dt−1| ∼ O(log T), which are dominated by ϵ(T), and w(T), respectively.

We adopt the ideal comparator ut = dt, that incurs zero loss and gives PT =
∑T

t=1 |dt − dt−1|.
Initial inventory level and initial order is set to zero and 1/2, respectively. We set the parameter γ
for MaxCOSD as γ = 0.5ρ/D where ρ represents the minimum of the demand series (note that we
consider a deterministic demand in this experiment). We note that OGD requires PT as an input,
whereas SOGD does not.

The results are shown in Fig. 1. In the experiment, our algorithms significantly outperform the base-
line (MaxCOSD). We observe that the algorithms using the doubling trick (solid lines) sometimes
achieve lower regret than those with Lmax information (dashed lines). This is because when using
Lmax, the learning rate is set smaller than that used in the doubling trick case. As a result, it requires
longer time to shift from the initial value to an appropriate order level, which can deteriorate the
performance.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

J THE USE OF LARGE LANGUAGE MODELS

In this paper, we used large language models to refine and check our writing; we did not use them
for any other significant tasks.

27

	Introduction
	Contributions

	Related Works
	Problem Setting
	Environmental Difficulty Indicator
	Regret

	 Proposed Algorithms
	Projection Property
	Doubling trick for the unknown switching cost
	Algorithms for the Base Learner

	Lower Bound
	Conclusions and Limitations
	Discussion on L
	Extention to the high-probability regret
	Order estimation of PT
	Proofs of the Lemmas in Sections 4.1 and 4.2
	Lemmas on the Projection Operator C(x)
	Proof of Lemma 1
	Proof of Lemma 5
	Proof of Lemma 6
	The Other Technical Lemma for Lemma 1
	Proof of Lemma 2

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Experiments
	The Use of Large Language Models

