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Abstract

Hypergradient represents how the hyperparameter of an optimization problem (or inner-
problem) changes an outer-cost through the optimized inner-parameter, and it takes a cru-
cial role in hyperparameter optimization, meta learning, and data influence estimation.
This paper studies hypergradient computation involving a stochastic inner-problem, a typi-
cal machine learning setting where the empirical loss is estimated by minibatches. Stochastic
hypergradient estimation requires estimating products of Jacobian matrices of the inner it-
eration. Current methods struggle with large estimation variance because they depend on
a specific sequence of Jacobian samples to estimate this product. This paper overcomes
this problem by mixing two different stochastic hypergradient estimation methods that use
distinct sequences of Jacobian samples. Furthermore, we show that the proposed method
enables almost sure convergence to the true hypergradient through the stochastic Kras-
nosel’skĭı-Mann iteration. Theoretical analysis demonstrates that, compared to existing
approaches, our method achieves lower asymptotic variance bounds while maintaining com-
parable computational complexity. Empirical evaluations on synthetic and real-world tasks
verify our theoretical results and superior variance reduction over existing methods.

1 Introduction

Hypergradient is essential in a wide range of tasks, including bilevel optimization which encompasses hy-
perparameter optimization (Maclaurin et al., 2015; Franceschi et al., 2017; Liu et al., 2018; Lorraine et al.,
2019) and meta learning (Andrychowicz et al., 2016; Finn et al., 2017; Franceschi et al., 2018), as well as
an explainability technique called data influence estimation (Koh & Liang, 2017; Hara et al., 2019; Pruthi
et al., 2020; Xue et al., 2021). Using a hyperparameter (or outer-parameter) λ and an inner-parameter x
that parameterize a scalar cost f and a vector mapping φ, the hypergradient can be defined as

dλf(x(λ), λ)︸ ︷︷ ︸
hypergradient

with x(λ) = φ(x(λ), λ),

where dλf(x(λ), λ) represents the derivative of λ 7→ f(x(λ), λ), which takes the differentiation of λ 7→ x(λ)
into account. A common choice for φ is to set φ(x, λ) = x − γ∂xg(x, λ) with γ ∈ R++ and a strongly-convex
function g. In this case, x(λ) = φ(x(λ), λ) is equivalent to the minimization problem x(λ) = arg minx g(x, λ).

Calculating exact hypergradients is prohibitive for large-scale problems as it requires the inverse of a
parameter-sized matrix, making their efficient approximations crucial. A method called approximate im-
plicit differentiation (AID) (Grazzi et al., 2020; Pedregosa, 2016; Lorraine et al., 2019; Rajeswaran et al.,
2019) considers the following form derived from the chain rule and implicit function theorem:

dλf(x(λ), λ) = ∂λφ(I − ∂xφ)−1∂xf + ∂λf,

where the arguments (x(λ), λ) are omitted and ∂xf represents ∂f/∂x. AID then replaces x(λ) with the
inexact solution and approximately solves the resulting linear system. A common AID approach called
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fixed-point method (Lorraine et al., 2019) uses a truncated Neumann series approximation with M terms to
solve the linear system,

(I − ∂xφ)−1 ≈
M−1∑
m=0

∂xφm,

to avoid explicit calculation of the inverse matrix and Jacobian1.

When the Jacobian matrix ∂xφ is stochastically estimated, a typical scenario where the empirical loss is
estimated by minibatches, computing hypergradient becomes even more challenging. To perform such an
estimation, Koh & Liang (2017) and Grazzi et al. (2021) used the stochastic fixed-point method which
performs the following iteration with independent samples of ∂xφ denoted by (Âm)m∈N:

ŵm+1 = Âmŵm + ∂xf. (1)

After M iterations, ŵM estimates the truncated Neumann series as:

ŵM =
M−1∑
m=0

(
M−1∏
k=m

Âk

)
∂xf ≈

M−1∑
m=0

∂xφm∂xf.

This method can be seen as estimating the Jacobian product by,

∂xφM−m ≈ ÂM−1ÂM−2 · · · Âm+1Âm,

for each m < M . This approach incurs large estimation variance because each order of the Jacobian product
is sampled only once using a specific sequence of Jacobian samples.

This work aims at reducing estimation variance by employing multiple different sequences of Jacobian samples
to estimate any order of Jacobian product, without sacrificing computational complexity. We first point out
that there are two hypergradient estimators that use different sequences of Jacobian samples to estimate their
product: Stochastic fixed-point method (StocFP) (Koh & Liang, 2017; Grazzi et al., 2021) and Stochastic
recurrent backpropagation (StocRB) (Ji et al., 2021; Yang et al., 2021). Next, we propose MixedFP, which
updates a weighted average of StocFP and StocRB at each step. MixedFP realizes variance reduction
by estimating the Jacobian product of a given order using various sample sequences. Furthermore, we
improve our MixedFP so it converges almost surely to the true hypergradient by applying the stochastic
Krasnosel’skĭı-Mann iteration (Grazzi et al., 2021; Bravo & Cominetti, 2024).

Additionally, this paper quantifies the variance reduction performance of the proposed method both theoret-
ically and empirically. Our analysis showed that the proposed method improves the expected error compared
to the existing stochastic bilevel optimization methods (Grazzi et al., 2021; Ji et al., 2021; Arbel & Mairal,
2022) in terms of one-shot hypergradient estimation. Numerical experiments using real-world data also sup-
port the theoretical observations and demonstrate that proposed methods can estimate hypergradients more
accurately than the existing methods.

The main contributions of this work are as follows:

• We point out that there are two algorithms in stochastic hypergradient estimation methods that
estimate Jacobian products using different sequences of samples: Stochastic fixed-point method
(StocFP) and Stochastic recurrent backpropagation (StocRB).

• We propose MixedFP, which reduces the estimation variance by iteratively updating a weighted
average of StocFP and StocRB.

• We achieve almost sure convergence to the true hypergradient by applying the stochastic Kras-
nosel’skĭı-Mann iteration to MixedFP.

1For simplicity of exposition, here we assume that the exact inner solution x(λ) is given. In practice, AID also approximates
this solution.
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• Through theoretical analysis of error bounds, we demonstrate improvement over previous research
(Grazzi et al., 2021; Ji et al., 2021; Arbel & Mairal, 2022).

• Our experiments using real-world data demonstrate a smaller estimation variance of the proposed
methods compared to the existing approaches.

2 Related Work

Stochastic hypergradient estimation has been studied in the context of stochastic bilevel optimiza-
tion (Ghadimi & Wang, 2018; Couellan & Wang, 2016; Ji et al., 2021) to minimize estimation variances
of solutions for both inner- and outer-problems. Ji et al. (2021) and Yang et al. (2021) propose methods that
focus on two-time scale updates and stepsize adjustments to accelerate inner-problem optimization with a
warm-up strategy. However, these studies do not address the variance reduction of stochastic hypergradi-
ent estimation because the noise on the hypergradient estimation is manageable by decreasing stepsizes of
their outer-optimization. In contrast, our work specifically aims at reducing the variance of hypergradient
estimation itself. This is particularly important for tasks like influence estimation (Koh & Liang, 2017;
Khanna et al., 2019), which estimates the impact of excluding training data on performance by a single-shot
hypergradient estimation.

There are a few studies that addressed the variance reduction of hypergradient estimation. Grazzi et al.
(2021) applied the stochastic Krasnosel’skĭı-Mann iteration to (1), which is equivalent to solving minv

1
2 ∥(I −

∂xφ)v −∂xf∥2 by the stochastic gradient descent (Arbel & Mairal, 2022), to achieve almost sure convergence
to the true hypergradient. Moreover, Arbel & Mairal (2022) applies the warm-up to the hypergradient
estimation to improve convergence properties. Our MixedFP incorporates their solution as a special case,
enabling a more general and effective framework for stochastic hypergradient estimation. Note that this
paper does not restrict the context of hypergradients to bilevel optimization, and therefore the warm-up
strategy is not employed. Introducing a warm-up is a promising direction for future research, which can
enhance the convergence of the bilevel optimization solved by our MixedFP.

3 Hypergradient and Stochastic Approximate Implicit Differentiation

In this section, we first redefine the hypergradient and then introduce two existing methods for computing
stochastic hypergradients. We also highlight the difference in the sequences of Jacobian samples used for
estimation in these methods.

3.1 Hypergradient and Its Approximation

The hypergradient dλf(x(λ), λ) is the total derivative of the composite function λ ∈ Rdλ 7→ f(x(λ), λ) ∈ R,
where f(x, λ) ∈ R is the outer-cost function and x(λ) ∈ Rdx is the inner-parameter solution. The solution
of the inner-parameter x(λ) is defined as the fixed point of a mapping φ : Rdx ×Rdλ → Rdx , which gives the
hypergradient as

dλf(x(λ), λ) with x(λ) = φ(x(λ), λ).

Approximate implicit differentiation (AID) (Lorraine et al., 2019; Pedregosa, 2016) is a set of approaches
consisting of the derivation of a linear system for dλf(x(λ), λ) using the implicit function theorem along
with two approximations: an approximate inner solution x(λ) and an approximate linear system solution.
The implicit function theorem and chain rule rewrite the hypergradient in a form that involves an inverse
matrix:

dλf(x(λ), λ) = ∂λφ · dxf + ∂λf, (2a)
where dxf = (I − ∂xφ)−1∂xf. (2b)

Here and hereafter, the arguments (x(λ), λ) are omitted when clear from the context. Moreover, for any
vector function h : Rm → Rn, we denote its partial derivative by ∂xh(x) ∈ Rm×n; e.g., ∂λf represents the
partial derivative of f(x(λ), λ) with respect to the second argument, treating x(λ) as a constant.
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(2) is justified under the following assumption.
Assumption 1. For every λ ∈ Rdλ , we assume:

(i) φ(·, λ) is a contraction; i.e., there exists a constant ρ < 1 such that ∥∂xφ(x, λ)∥ ≤ ρ for any x ∈ Rdx .

(ii) φ(x, λ) and f(x, λ) are differentiable at any x ∈ Rdx .

Since calculating the inverse matrix is expensive for a large dx, Lorraine et al. (2019) proposed the fixed-point
method, which approximates (2b) using a truncated Neumann series:

dxf ≈
M−1∑
m=0

∂xφm∂xf. (3)

This approximation becomes exact as M approaches infinity. Hereafter, we consider a scenario where the
exact inner solution x(λ) is given, since our analysis in Appendix C indicates that the error from the inexact
inner solution remains consistent among ours and previous work.

3.2 Stochastic Approximate Implicit Differentiation

From here on, we assume that we only have access to a stochastic estimator of φ(x, λ) denoted by φ̂(x, λ; ξ),
where ξ is some random variable whose values lie within a measurable space X . For convenience, we introduce
the following notations:

A = ∂xφ(x(λ), λ), Â = ∂xφ̂(x(λ), λ; ξ), Âm = ∂xφ̂(x(λ), λ; ξm), c = ∂xf(x(λ), λ),

where (ξm)m∈N are independent copies of ξ. We assume that φ̂ satisfies the following conditions:
Assumption 2. For every x ∈ Rdx and λ ∈ Rdλ ,

(i) φ̂(x, λ; ξ) is an unbiased estimator of φ(x, λ); i.e., E[φ̂(x, λ; ξ)] = φ(x, λ), ∀x, λ.

(ii) φ̂ is differentiable with respect to the first and second arguments at any ξ ∈ X .

Assumption 2(i) can be easily satisfied in a typical machine learning scenario where the stochastic mapping
is a stochastic gradient descent, i.e., φ̂(x, λ; ξ) = x − γ∂xĝ(x, λ; ξ), and the instance ξ is uniformly sampled
from a finite dataset.

Note that, unlike common settings of stochastic bilevel optimization (e.g., Ghadimi & Wang (2018)), we
do not consider estimation of f . This is solely for clarity, as our primary focus is on the estimation error
caused by the inverse matrix approximation with stochastic φ̂, and our primary distinction from the previous
studies (Arbel & Mairal, 2022; Grazzi et al., 2020) is the improvement on this approximation.

3.2.1 Stochastic Fixed-Point Method (StocFP)

The studies by Grazzi et al. (2021) and Koh & Liang (2017) employ an iteration that we call Stochastic
fixed-point method (StocFP), a stochastic variant of the fixed-point method (Lorraine et al., 2019).

ŵ0 = c (4a)
For m = 0, . . . , M − 1:⌊

ŵm+1 = Âmŵm + c (4b)

The iteration (4b) accumulates the products of Jacobian samples and their sum simultaneously. Assump-
tion 2 guarantees that ŵM is an unbiased estimator of the right-hand side of (3). A key advantage of this
method is that the vector-Jacobian product Âmwm ∈ Rdx can be calculated in O(dx) time using reverse
mode automatic differentiation (Baydin et al., 2018), because Âmwm is the derivative of the scalar function
x 7→ φ(x, λ; ξm)⊤wm evaluated at x(λ). The total computation time is therefore O(Mdx) with a memory
requirement of O(dx).
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3.2.2 Stochastic Recurrent Backpropagation (StocRB)

Ji et al. (2021) independently proposed a method for estimating dxf using a different form of iterations:

ŷ0 = 0 ∈ Rdx , û0 = c (5a)
For m = 0, . . . , M − 1:⌊

ŷm+1 = ŷm + ûm

ûm+1 = Âmûm

(5b)

The final output ŷM is an estimator of dxf . Unlike StocFP (4b), this method divides the computation of (3)
into the product of Jacobians estimated by ûm and their sum estimated by ŷm. We refer to (5) as Stochastic
recurrent backpropagation (StocRB) because this method can be understood as backpropagation from f
with respect to x that has recurrently passed through φ̂ for M times.

While both StocFP (4) and StocRB (5) provide the same hypergradient approximation in expectation, they
yield different estimates given the same samples. This is because they estimate the expected Jacobian
product using different sequences of Jacobian samples:
Remark 1. For any m = 1, . . . , M , StocFP estimates Am using ÂM−1 · · · ÂM−m, while StocRB uses
Âm−1 · · · Â0 to estimate the same value:

Stochastic Fixed-Point Method (StocFP) (4)

ŵM = c (= A0c)
+ ÂM−1c (≈ A1c)
+ ÂM−1ÂM−2c (≈ A2c)
...
+ ÂM−1ÂM−2 · · · Â1c (≈ AM−1c)
+ ÂM−1ÂM−2 · · · Â1Â0c (≈ AM c)

Stochastic Recurrent Backprop. (StocRB) (5)

ŷM = c (= A0c)
+ Â0c (≈ A1c)
+ Â1Â0c (≈ A2c)
...

+ ÂM−2 · · · Â1Â0c (≈ AM−1)
+ ÂM−1ÂM−2 · · · Â1Â0c (≈ AM c)

4 Variance Reduction of Stochastic Approximate Implicit Differentiation

The proposed method is based on two ideas. First, in Section 4.1, we show that the estimation variance can
be reduced by a weighted average-like iteration between StocRB and StocFP. Second, Section 4.2 explains
that almost sure convergence to the true hypergradient is achieved by using the stochastic Krasnosel’skĭı-
Mann iteration (Bravo & Cominetti, 2024). For clarity, proofs of all theorems and lemmas are deferred in
the appendix.

4.1 Mixed Fixed-Point Iteration (MixedFP)

Our MixedFP mixes StocFP and StocRB, motivated by the observation in Remark 1 that the sequences of
Jacobian samples used for estimation are different from each other.

We introduce a parameter called the mixing rate α ∈ [0, 1] and derive the following MixedFP algorithm:

v̂0 = 0 ∈ Rdx , ŵ0 = û0 = c (6a)
For m = 0, . . . , M − 1: v̂m+1 = α(v̂m + ûm) + (1 − α)ŵm

ŵm+1 = Âmŵm + c

ûm+1 = Âmûm

(6b)
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Here, ŵm and ûm are the same as in StocFP (4) and StocRB (5), respectively. v̂m+1 estimates the hyper-
gradient (3) and is equal in expectation to ŵm and ŷm. The update iteration for v̂m is a slightly modified
weighted average of ŵm in (4b) and ŷm in (5b). In fact, one can verify that v̂m+1 = ŵm when α = 0 and
v̂m+1 = ŷm when α = 1. It is noteworthy that the update for v̂m+1 is not a simple weighted average of ŵm

and ŷm, because it uses the previously computed value v̂m instead of ŷm. This recursive structure allows
MixedFP to estimate Jacobian products using diverse sequences of Jacobian samples:
Remark 2. When α ∈ (0, 1) and given m ∈ {1, . . . , M}, v̂M uses Âk−1 · · · Âk−m for any k such that
m ≤ k ≤ M to estimate Am. More specifically, with some

∑M
k=m am,k−1 = 1 such that am,k > 0

Mixed Fixed-Point Iteration (MixedFP) (6)

v̂M+1 = c (= A0c)

+
(

a1,M−1 ÂM−1 + · · · + a1,0 Â0︸ ︷︷ ︸
M terms

)
c (≈ A1c)

+
(

a2,M−1 ÂM−1ÂM−2 + · · · + a2,1 Â1Â0︸ ︷︷ ︸
M − 1 terms

)
c (≈ A2c)

...

+
(

aM−1,M−1 ÂM−1 · · · Â1 + aM−1,M−2 ÂM−2 · · · Â0

)
c (≈ AM−1c)

+ ÂM−1ÂM−2 · · · Â1Â0 c (≈ AM c)

This diversity in the products of Jacobian samples cannot be obtained by simply taking a weighted average of
ŵm and ŷm. While MixedFP maintains the same order of computational complexity as StocFP and StocRB,
it requires two vector-Jacobian-products (Âmŵm and Âmûm) at each step. This results in a higher per-
iteration computational cost compared to StocFP and StocRB, which only requires a single JVP computation.
However, our experimental results on computational cost in Appendix D.3 show that MixedFP remains
competitive with existing methods even when evaluated on a wall-clock basis.

Under the following regularity conditions, we show that the expected error of MixedFP improves over StocFP
and StocRB.
Assumption 3. For every λ ∈ Rdλ , we assume that:

(i) E[∥φ̂(x, λ; ξ)∥2] < ∞ for every x ∈ Rdx .

(ii) There exists a constant ρ̂ < 1 such that ∥∂xφ̂(x, λ; ξ)∥ ≤ ρ̂ for every x ∈ Rdx and ξ ∈ X .

(iii) The function f(·, λ) is Lipschitz continuous with some constant Lf ≥ 0.

Theorem 4.1 (MixedFP). Suppose Assumptions 1 to 3 hold and α ∈ [0, 1], then for any m ≥ 0,

E
[
∥v̂m − dxf∥2] ≤

 σ1 + O (ρm
1 ) if α ∈ {0, 1},

1 + α1

(1 + √
α1)2 σ1 + O (max{ρ1, α1}m) otherwise,

where

σ1 =
2L2

f ρ̂2

(1 − ρ̂)2(1 − ρ2) , ρ1 = ρ̂2, α1 = α2.
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Method Base estimator KM iteration Expected ℓ2 error bound
Grazzi et al. (2021) with η = 1 StocFP σ1 + O(ρm

1 )
Ji et al. (2021) StocRB σ1 + O(ρm

1 )
MixedFP StocFP & StocRB 1+α1

(1+√
α1)2 σ1 + O(ρm

1 )

Grazzi et al. (2021) with constant η StocFP ✓ ση + O(ρm
η )

MixedFP-KM with constant η StocFP & StocRB ✓ 1+αη

(1+√
αη)2 ση + O(ρm

η )

Table 1: Comparison of the upper bound of the expected ℓ2 error in stochastic hypergradient estimation.
Our MixedFP and MixedFP-KM can reduce non-decaying errors by 1+αη

(1+√
αη)2 < 1 times smaller than their

counterparts. All symbols are defined in Theorems 4.1 and 4.5 and we assume α ≤ ρ̂ in this table.

This result shows that the scale of the non-decaying term, 1+α1
(1+√

α1)2 ≤ 1, becomes smaller as α increases, but
when α is too large, more specifically when α > ρ̂, the decay rate becomes slower than O(ρm

1 ). Recalling that
α ∈ {0, 1} corresponds to StocFP and StocRB, this indicates that α chosen in 0 < α < ρ̂ improves the non-
decaying term and the decaying term over these conventional methods. Table 1 summarizes these findings.
This analysis also suggests that for sufficiently large m, the smallest error is achieved when α is infinitely
close to, but strictly less than, one. However, for finite m, a smaller α may be optimal if accelerating the
decaying term outweighs the reduction of the non-decaying term. These observations align with the empirical
results in Section 5.1.

4.2 MixedFP-KM: Application of the Stochastic Krasnosel’skĭı-Mann (KM) Iteration

This section shows that the stochastic KM iteration can be applied to MixedFP, enabling almost sure
convergence to the true hypergradient.

The stochastic KM iteration (Grazzi et al., 2021; Bravo & Cominetti, 2024) is an algorithm that finds the
fixed point of a contraction mapping using its unbiased estimation:
Theorem 4.2 (Stochastic KM iteration (Grazzi et al., 2021)). Let ζ be a random variable with values in
a measurable space Z and (ζm)m∈N be independent copies of ζ. Let T : Rd → Rd be a contraction mapping
and suppose a mapping T̂ : Rd × Z → Rd satisfies E[T̂ (s; ζ)] = T (s) and V[T̂ (s; ζ)] ≤ ς1 + ς2∥T (s) − s∥ for
any s ∈ Rd. Consider the stochastic Krasnosel’skĭı-Mann iteration defined by

sm+1 = (1 − ηm)sm + ηmT̂ (sm; ζm), (7)

where stepsizes (ηm)m∈N satisfy

ηk ≤ 1
1 + ς2

, ∀k ∈ N,

∞∑
k=0

ηk = ∞,

∞∑
k=0

η2
k < ∞. (8)

Then the sequence (sm)m∈N converges almost surely to the fixed point of T .

Next, we show that MixedFP is a contraction mapping. To do this, we reformat MixedFP into the following
mapping of a concatenated vector.

F̂ (z; ξ) = B̂z + d, (9)

where z =

v
w
u

 ∈ R3dx , B̂ =

αI αI (1 − α)I
O Â O

O O Â

 ∈ R3dx×3dx , d =

0
c
0

 ∈ R3dx .

The mapping F̂ has the following favorable properties that enable the application of the stochastic KM
iteration.
Lemma 4.3. When Assumptions 1 and 2 hold, the function F (z) = E[F̂ (z; ξ)] with α ∈ [0, 1) is a contraction
mapping that has the unique fixed point [dxf⊤ dxf⊤ 0⊤] ∈ R3dx .
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By applying (7) to the mapping F̂ in (9), we obtain the following algorithm, which we name MixedFP-KM.

v0 = 0 ∈ Rdx , w0 = u0 = c

For m = 0, . . . , M − 1: vm+1 = (1 − ηm)vm + ηm(α(vm + um) + (1 − α)wm)
wm+1 = (1 − ηm)wm + ηm(Âmwm + c)
um+1 = (1 − ηm)um + ηmÂmum

From Theorem 4.2 and Lemma 4.3, it follows that vm converges to dxf with appropriate scheduling of ηm.
Theorem 4.4. Let α ∈ [0, 1), q = max{α, ρ}, and q̂ = max{α, ρ̂}. When Assumptions 1 to 3 hold and ηm

satisfies (8) with ς2 = 2(q̂2 + q2)/(1 − q)2, then

lim
m→∞

vm = dxf a.s.

For fixed stepsizes, the error can be bounded by an exponentially decaying term and a non-decaying term.
Theorem 4.5 (MixedFP-KM). Let α ∈ [0, 1). When ηm = η < 1

1−ρ̂ and Assumptions 1 to 3 hold, then for
any m ≥ 0,

E
[
∥vm − dxf∥2] ≤ 1 + αη(

1 + √
αη

)2 ση + O (max{ρη, αη}m) ,

where

ση =
2ηL2

f ρ̂2

(1 − ρ̂)2(2 − η(1 − ρ))(1 − ρ) , ρη = (1 − η + ηρ̂)2, αη = (1 − η + ηα)2.

For comparison, we show our result for the existing method (Grazzi et al., 2021), which applies the stochastic
KM iteration to StocFP2.
Theorem 4.6 (Stochastic KM iteration of StocFP). Suppose ηm = η < 1

1−ρ̂ and Assumptions 1 to 3 hold.
Then for any m ≥ 0,

E
[
∥wm − dxf∥2] ≤ ση + O

(
ρm

η

)
,

where ση and ρη are as defined in Theorem 4.5.

The non-decaying terms in both Theorems 4.5 and 4.6 can be made arbitrarily small by the choice of η at the
cost of a slow decay rate. The observations obtained from comparing these two theorems are essentially the
same as those obtained in Theorem 4.1. That is, when 0 < α < ρ̂, both the non-decaying and decaying term
improve over the existing method (Grazzi et al., 2021). This was also empirically confirmed in Section 5.2.

We note that our theoretical analysis for decreasing stepsizes (Theorem 4.4) provides only asymptotic conver-
gence guarantees without non-asymptotic error bounds. While our experiments employ decreasing stepsizes,
demonstrating its practical performance, the finite-time performance analysis is limited to the fixed stepsize
case (Theorem 4.5). Future work could focus on extending our theoretical analysis to provide non-asymptotic
error bounds for decreasing stepsizes.

5 Experiments

In this section, we first investigate the relationship between the newly introduced parameter α and the
convergence properties of MixedFP. Then, we compare the hypergradient estimation accuracy of our proposed
method with existing approaches in various real-world task settings.

2Theorem 4.6 differs from a result obtained from Grazzi et al. (2021, Theorem 4.2). As discussed in Appendix B.2, this is
solely for a fair comparison with our method, and in some cases Theorem 4.6 is even tighter than the original bound.
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Figure 1: Mean L2 error of hypergradients estimated by MixedFP using different values of α. We adopted
a synthetic inner-problem φ(x(λ), λ) = (I − γĤ)x(λ) + Bλ and plotted results obtained with different γ.

5.1 Effect of Mixing Rate

5.1.1 Settings

This experiment evaluates the hypergradient estimation error in a synthetic setting where we can explicitly
control the Jacobian matrix samples. Specifically, we compute the hypergradient for the following case:

f(x(λ), λ) = c⊤x(λ) + d⊤λ, φ(x, λ) = (I − γĤ)x + Bλ,

where Ĥ ∈ Rdx×dx is a random variable sampled from a discrete uniform distribution Ĥ ∼
Uniform({H1, . . . , Hn}). Each matrix in H1, . . . , Hn was constructed such that its eigenvalues follow the
uniform distribution over [0, 1− ϵ] with a small constant ϵ ∈ R++ to meet our assumptions. We tested differ-
ent γ over (0, 1], which corresponds to varying the values of ρ and ρ̂. The other coefficients c ∈ Rdx , d ∈ Rdλ ,
and B ∈ Rdx×dλ were generated by sampling their elements independently from a uniform distribution over
[0, 1]. Note that x and λ vanish upon differentiation, thus their values do not affect the hypergradient
estimation. The experiment was run 100 times with different seed values for sampling Ĥ.

5.1.2 Results and Discussion

Fig. 1 shows the mean squared error of hypergradients at different γ and α.

Estimations with α = 0.99 or α = 0.999 consistently outperform both α = 0 (StocFP) and α = 1 (StocRB)
across different values of γ, highlighting the benefit of our mixing strategy. The results suggest that the
optimal value of α is close to but not exactly one, aligning with the observation from Theorem 4.1. The
superior performance of α = 0.99 over the larger α = 0.999 is also consistent with Theorem 4.1: for finite
iterations, a slightly smaller α can be optimal when faster decay outweighs the increased non-decaying term.

Additionally, we observe that increasing γ accelerates the decay rate while enlarging the non-decay term.
Higher values of γ result in smaller values for both ρ and ρ̂, which aligns with a theoretical finding in
Theorem 4.1 that implies a smaller ρ̂ leads to a larger non-decaying term σ1 and a faster decay rate ρ1.

Furthermore, some settings show interesting patterns in their error curves. When γ = 10−1 with α = 0.999
or 0.99, the error seems to decay at two distinct rates: initially faster, then slower after a certain number of
iterations (around m = 50). This seems to reflect the bound O(max{ρ1, α1}m), which is yielded from the
sum of two terms with different decay rates ρ1 and α1 (as in Appendix A.5 (39)); the term with the faster
decay rate converges quickly, and for sufficiently large m, the slower decay rate eventually dominates.

5.2 Comparison with Existing Approaches

In this section, we consider several real-world machine learning settings to compare the hypergradient estima-
tion accuracy of our proposed method with existing approaches across various combinations of the dataset,
inner-problem, and outer-cost.
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Figure 2: Comparison of stochastic hypergradient estimation methods evaluated on different tasks. Each
line shows a mean squared error over 10 trials with different Jacobian sample sequences (Âm)m∈N. Method-
specific parameters were optimized by grid search, selecting settings with minimal average error over the last
1,000 iterations.

5.2.1 Tasks

We evaluated the performance of hypergradient estimation methods for the following task settings:

• Synthetic problem evaluates the estimation accuracy of hypergradients of the synthetic outer-cost
with the synthetic inner-problem used in Section 5.1.

• Hyperparameter optimization performs binary classification on Adult Income dataset (Becker
& Kohavi, 1996), where the outer-parameter is a vector of regularization coefficients, each corre-
sponding to a dimension of the inner-parameter.

• Influence estimation conducts multi-class classification on Fashion-MNIST (Xiao et al., 2017),
where the outer-parameter is a vector of loss masks, each assigned to a corresponding sample.

• Meta learning tackles a regression problem on the California Housing dataset (Pace & Barry,
1997), where the outer-parameter determines a biased regularization term.

Except for the synthetic setting, we adopt φ̂(x, λ; ξ) = x−γ∂xg(x, λ; ξ) and define f and g for each setting as
follows. We denote training inputs and outputs by ξin and ξout, and use (ξ′

in, ξ′
out) ∈ Ξval for the independent

validation dataset.

Hyperparameter optimization refers to the hypergradient estimation problem in a bilevel problem where
the regularization coefficients serve as hyperparameters. Specifically, as in Grazzi et al. (2021), we compute
the hypergradient for an outer-problem that finds the optimal hyperparameters λ whose elements are different
regularization coefficients for each dimension of x:

f(x, λ) =
∑

(ξ′
in,ξ′

out)∈Ξval

BCE(ξ′
out, ξ′⊤

in x), g(x, λ; (ξin, ξout)) = BCE(ξout, ξ⊤
inx) + 1

2x⊤diag(λ)x, (10)

10
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where ξin ∈ R14, ξout ∈ {0, 1}, BCE(p, q) = log (1 + exp(−pq)), and diag(λ) denotes the diagonal matrix
whose diagonal entries are the elements of λ.

Influence estimation (Koh & Liang, 2017; Khanna et al., 2019) estimates the change in performance
when a sample is excluded from the inner-problem. Influence estimation is equivalent to estimating the
hypergradient of an outer-parameter that determines the loss mask of each sample. That is, with the sample
index j = Uniform({1, . . . , N}) with dataset size N ,

f(x, λ) =
∑

(ξ′
in,ξ′

out)∈Ξval

CE(ξ′
out, ξ′⊤

in x), g(x, λ; j) = λjCE(ξout,j , ξ⊤
in,jx), (11)

where CE(p, q) = −
∑10

c=1 pc log
(

exp(qc)/
∑10

c′=1 exp(qc′)
)

and (ξin,j , ξout,j) ∈ R784 × {0, 1}10 denotes the
j-th sample in the training dataset. For the values of the loss mask, let 1 ∈ {1}N be the ones vector and
1 ̸=j ∈ {0, 1}N denote a vector with ones except for a zero at the j-th index. Then, we can express the
inner-solution obtained including or excluding the j-th sample as x(1) or x(1̸=j), respectively. The linear
approximation of the change in f when the j-th sample is excluded from the training dataset is given by

f(x(1̸=j), 1 ̸=j) − f(x(1), 1) ≈ dλf(x(λ), λ)|⊤λ=1 (1 ̸=j − 1) = − dλj f(x(λ), λ)
∣∣
λ=1 ∈ R.

By computing a vector − dλf(x(λ), λ)|λ=1 ∈ RN , we can obtain this approximation for all samples in the
dataset. Thus, influence estimation reduces to estimation of the hypergradient.

Further details on influence estimation and its connections to existing work (Koh & Liang, 2017) are provided
in Appendix D.2.2.

Meta learning is the following task adopted in Grazzi et al. (2020), which simplifies the task called implicit
meta learning (Denevi et al., 2019; Rajeswaran et al., 2019).

f(x, λ) = 1
2

∑
(ξ′

in,ξ′
out)∈Ξval

∥ξ′⊤
in x(λ) − ξ′

out∥2, g(x, λ; (ξin, ξout)) = 1
2∥ξ⊤

inx − ξout∥2 + µ

2 ∥x − λ∥2, (12)

where (ξin, ξout) ∈ R8 × R, µ ∈ R++, and λ ∈ Rdx .

5.2.2 Baselines and Procedure

Hypergradient estimation is performed using the five methods: StocFP, StocRB, MixedFP, StocFP with
KM-iteration (denoted as StocFP+KM→ and StocFP+KM↓), and MixedFP with KM-iteration (denoted as
MixedFP+KM→ and MixedFP+KM↓). KM→ and KM↓ represent constant and linearly decreasing ηm, respectively,
and we used ηm = β/(δ + m) as the decreasing stepsize following Grazzi et al. (2021).

For each setting and method, we conducted the experiment 10 times using different seed values to vary the
sequence (Âm)m<M , and calculated the mean squared error ℓ2 with respect to dxf . We computed the exact
values of ∂xf , ∂λf , and ∂λφ in (2) to ensure that the only source of randomness came from (Âm)m<M .
We approximated x(λ) as accurately as possible by minimizing g using full-batch optimizations until they
converge. The impact of approximation errors in x(λ) is analyzed only theoretically in Appendix C. For the
outer-parameter λ, we used task-specific initialization values without performing outer-optimization.

To ensure a fair comparison between the baseline and proposed methods, we use the parameters that yield
the best performance for each method. These parameters include η, α, β and δ, which were determined
vigrida search by minimizing the average error over the last 1,000 steps.

More detailed settings are deferred to our appendix.

5.2.3 Results and Discussion

In all tasks, MixedFP+KM↓ yielded the best performance (Table 1). Our theoretical analysis quantifies the
improvements achieved under a fixed stepsize (by comparing Theorem 4.5 and Theorem 4.6), while for a de-
creasing stepsize, we have only established asymptotic convergence (Theorem 4.4). Nevertheless, these results

11
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demonstrate that, in practice, MixedKM can also improve estimation accuracy with decreasing stepsizes.
When using KM-iteration with constant stepsizes, MixedFP+KM→ achieves lower error than its counterpart
StocFP-KM→, which supports our results of Theorem 4.5. Among methods without KM-iteration, StocFP
and StocRB tend to reach plateaus in the early iterations, while MixedFP continues to reduce error over a
relatively larger number of steps.

6 Conclusion

We presented a stochastic hypergradient estimation method that reduces variance incurred by estimation
error of the product of the inner-iteration’s Jacobian matrices. Our proposed MixedFP combines existing
StocFP and StocRB estimators to leverage their distinct sequences of Jacobian samples, thereby reducing
estimation variance without increasing computational complexity. Moreover, by applying the stochastic KM
iteration into MixedFP, we established almost sure convergence to the true hypergradient. Empirical evalu-
ations on synthetic and real-world tasks, including hyperparameter optimization, data influence estimation,
and meta learning, validated our theoretical findings and demonstrated improved estimation accuracy in
practical scenarios.

Future work will focus on extending our analysis to the case of decreasing stepsizes and exploring efficiency
improvements in the application, including bilevel optimization.
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A Theoretical Analysis of MixedFP-KM

In this section, we provide a detailed analysis of the proposed MixedFP-KM. We first recall the iteration
schemes, then present key lemmas giving explicit forms of the iterates and the corresponding error bounds.
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A.1 Recap of the Iterations

Let η ∈ R++ be a stepsize. We denote by (vm), (wm), and (um) the sequences generated by the following
iteration:

v0 = 0, (13)
w0 = c, (14)
u0 = c, (15)

and for m = 0, 1, 2, . . .

vm+1 = (1 − η)vm + η (α (um + vm) + αwm) = rvm + η (αum + αwm) , (16)

wm+1 = (1 − η)wm + η
(

Âmwm + c
)

= P̂mwm + ηc, (17)

um+1 = (1 − η)um + η
(

Âmum

)
= P̂mum, (18)

where α ∈ [0, 1], α = 1 − α, r = 1 − η (1 − α), and P̂m = I − η
(

I − Âm

)
.

A.2 Proof of Asymptotic Convergence of MixedFP-KM

This section provides the proofs for Lemma 4.3 and Theorem 4.4.

Lemma 4.3. When Assumptions 1 and 2 hold, the function F (z) = E[F̂ (z; ξ)] with α ∈ [0, 1) is a contraction
mapping that has the unique fixed point [dxf⊤ dxf⊤ 0⊤] ∈ R3dx .

Proof. Let B = E[B̂]. Because B is a block triangle matrix, its eigenvalues are those of diagonal blocks, that
are ensured to lie in [0, 1) by Assumption 1 and α ∈ [0, 1). Hence, F is a contraction mapping which has a
unique fixed point.

Let the first, second, and third blocks of the fixed point z∗ = T (z∗) be v∗, w∗, and u∗. From Assumption 1,
we know that u∗ = 0. Under Assumption 2, w∗ satisfies w∗ = Aw∗ + c thus w∗ = (I − A)−1c = dxf . Finally,
since we know that v∗ = αv∗ + (1 − α)dxf , which is true only when v∗ = dxf since 1 − α ̸= 0.

Theorem 4.4. Let α ∈ [0, 1), q = max{α, ρ}, and q̂ = max{α, ρ̂}. When Assumptions 1 to 3 hold and ηm

satisfies (8) with ς2 = 2(q̂2 + q2)/(1 − q)2, then

lim
m→∞

vm = dxf a.s.

Proof. Let q = ∥B∥ and q̂ = ∥B̂∥, where B = E[B̂]. Since B is a block triangular matrix, its eigenvalues
are determined by those of its diagonal blocks, giving us q = max{α, ρ} from Assumption 1. Similarly, we
can establish that q̂ = max{α, ρ̂} under Assumption 3. Applying Theorem 4.3 from Grazzi et al. (2021),
we obtain ς2 = 2 q̂2+q2

(1−q) . Therefore, combining Theorem 4.2 and Lemma 4.3, we conclude that the statement
holds true.

A.3 Closed-Form Expressions of MixedFP-KM

We first derive closed-form expressions (or general forms) for the iterates (vm), (wm), and (um) under the
MixedFP-KM iteration (16) to (18) with a fixed step-size η. Note that in this section, we exclusively consider
the case where the step-size remains constant throughout the iterations to avoid any confusion.
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Lemma A.1 (General-Term Representation). Under the MixedFP-KM iteration (13) to (18) with a fixed
step-size η = ηm, for m ≥ 0 we have:

vm+1 =η

m∑
k=0

rm−k (αuk + αwk) , (19)

wm+1 =

 m∏
j=0

P̂j

 c + η

m∑
k=0

 m∏
j=k+1

P̂j

 c, (20)

um+1 =

 m∏
j=0

P̂j

 c, (21)

where α ∈ [0, 1], α = 1 − α, r = 1 − η (1 − α), and P̂m = I − η
(

I − Âm

)
.

Proof. We prove each identity by induction.

(Proof of (19)) For m = 0, (16) matches (19) since

v1 = ηr0 (αu0 + αw0) .

Assume (19) holds for some m ≥ 0. Then from (16),

vm+2 = rvm+1 + η (αum+1 + αwm+1)

= r

(
η

m∑
k=0

rm−k (αuk + αwk)
)

+ η (αum+1 + αwm+1)

= η

m+1∑
k=0

rm+1−k (αuk + αwk) .

This completes the inductive step.

(Proof of (20)) For m = 0, from (17), we have

w1 = P̂0c + ηc,

since w0 = c. This is consistent with (20) for m = 0 because

w1 =

 0∏
j=0

P̂j

 c + η

0∑
k=0

 0∏
j=k+1

P̂j

 c = P̂0c + ηc.

Assume (20) holds for some m ≥ 0. Then from (17),

wm+2 = P̂m+1wm+1 + ηc

= P̂m+1

 m∏
j=0

P̂j

 c + P̂m+1η

m∑
k=0

 m∏
j=k+1

P̂j

 c + ηc

=

m+1∏
j=0

P̂j

 c + η

m+1∑
k=0

 m+1∏
j=k+1

P̂j

 c.

This completes the proof for wm+1.

(Proof of (21)) The derivation is analogous to that of wm, except that no extra ηc term added. For m = 0,
(21) and (18) are consistent because both are

u1 = P̂0c.
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from u0 = c.

The inductive step is essentially the same as above, giving

um+2 = P̂m+1um+1 =

m+1∏
j=0

P̂j

 c.

Hence (21) holds.

A.4 General Error Terms

This section considers differences between (vm, wm, um) and their deterministic counterparts (vm, wm, um),
namely,

v0 = 0, (22)
w0 = c, (23)
u0 = c, (24)

and for m = 0, 1, 2, . . .

vm+1 = (1 − η) vm + η (α (um + vm) + αwm) = rvm + η (αum + αwm) , (25)
wm+1 = (1 − η) wm + η (Awm + c) = Pmwm + ηc, (26)
um+1 = (1 − η) um + η (Aum) = Pmum, (27)

where P = I − η(I − A). The next lemma gives a useful expression for these differences.
Lemma A.2 (General Error Terms). Under the MixedFP-KM iteration (13) to (18) with ηm = η and its
deterministic counterpart (22) to (27), for s ≥ 1 we have,

vs − vs = η

s−1∑
k=0

rs−1−k (α (uk − uk) + α (wk − wk)) , (28)

ws − ws = η

s−1∑
j=0

P s−1−j(Âj − A)
{(

j−1∏
i=0

P̂i

)
c + η

j−1∑
k=0

(
j−1∏

i=k+1
P̂i

)
c

}
, (29)

us − us = η

s−1∑
k=0

P s−1−k
(

Âk − A
)(k−1∏

i=0
P̂i

)
c, (30)

where P = I − η(I − A).

Proof. We give the argument for each of the three differences, using induction and the results in Lemma A.1.

(Difference for vm) As the direct consequence of Lemma A.1, the general term of the deterministic case is
given by

vs+1 =η

s∑
k=0

rs−k (αuk + αwk) , (31)

One can directly obtain (28) by comparing the general terms (19) and (31).

(Difference for ws) By subtracting (26) from (17), the following recursion is shown to hold:

ws+1 − ws+1 = P̂sws − Pws + ηc − ηc

= P (ws − ws) + (P̂s − P )ws

= P (ws − ws) + η(Âs − A)ws. (32)
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Hence, (29) is consistent with (32) when s = 0, because both are

w1 − w1 = η(Â0 − A)c, (33)

using the fact that w0 = w0 = c. Assume (29) holds for some s ≥ 1. Then, from (32) and (20),

ws+1 − ws+1 = P (ws − ws) + η(Âs − A)ws

= ηP

s−1∑
j=0

P s−1−j(Âj − A)
{(

j−1∏
i=0

P̂i

)
c + η

j−1∑
k=0

(
j−1∏

i=k+1
P̂i

)
c

}

+ η(Âs − A)
{(

s−1∏
i=0

P̂i

)
c + η

s−1∑
k=0

(
s−1∏

i=k+1
P̂i

)
c

}

= η

s∑
j=0

P s−j(Âj − A)
{(

j−1∏
i=0

P̂i

)
c + η

j−1∑
k=0

(
j−1∏

i=k+1
P̂i

)
c

}

This completes the proof for s + 1.

(Difference for us) Similar steps yield (30), now without the extra c term in the iteration for um+1. Namely,
substraction of (18) from (27) yields

us+1 − us+1 = P (us − us) + η(Âs − A)us,

and one can show that this is consistent with (30) when s = 0. When (30) is assumed to be true for some
s ≥ 1, then (30) holds true for s + 1 because

us+1 − us+1 = P (us − us) + η(Âs − A)us (34)

= ηP

s−1∑
j=0

P s−1−j(Âj − A)
(

j−1∏
i=0

P̂i

)
c + η(Âs − A)

(
s−1∏
i=0

P̂i

)
c (35)

= η

s∑
j=0

P s−j(Âj − A)
(

j−1∏
i=0

P̂i

)
c. (36)

A.5 Bounding Variance Norm of MixedFP-KM

We prove the bound on E
[
∥vm − vm∥2] starting with proving a useful lamma.

Lemma A.3. Let x > 1 and let m ≥ 0 be an integer. Then

m−1∑
k=0

(2(m − k) − 1)xk ≤ xm(x + 1)
(1 − x)2 .

Proof. First, observe that

m−1∑
k=0

(2(m − k) − 1)xk = (2m − 1)
m−1∑
k=0

xk − 2
m−1∑
k=0

kxk.

Since x ̸= 1, the geometric series partial sum is

m−1∑
k=0

xk = 1 − xm

1 − x
.
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A standard result (or by differentiating the geometric series) gives

m−1∑
k=0

kxk = x − mxm + (m − 1)xm+1

(1 − x)2 ,

Multiplying the desired inequality

m−1∑
k=0

(2(m − k) − 1) xk ≤ xm(x + 1)
(1 − x)2

by (1 − x)2 (which is positive for x > 1) reduces the task to proving

(2m − 1)(1 − xm)(1 − x) − 2
(
x − mxm + (m − 1)xm+1) ≤ xm(x + 1).

A short computation shows that the left-hand side simplifies to

(2m − 1) − (2m + 1)x + xm + xm+1,

so that the inequality becomes
2m − 1 ≤ (2m + 1)x.

Since x > 1, the last inequality holds, and the proof is complete.

Lemma A.4. Suppose ηm = η < 1
1−ρ̂ , and Assumption 3 hold, then for any m ≥ 0,

E
[
∥vm − vm∥2] ≤

1 + α2
η(

1 + √
αη

)2 ση + O (max{ρη, αη}m) ,

where

ση =
2ηL2

f ρ̂2

(1 − ρ̂)2(2 − η(1 − ρ))(1 − ρ) , ρη = (1 − η + ηρ̂)2, αη = (1 − η + ηα)2.

Proof. Throughout this proof, we assume E
[
∥Âj − A∥2

]
̸= 0, because if ∥Âj − A∥2 = 0 almost surely for all

j, then there is no error to bound and we directly obtain E
[
∥vm − vm∥2] = 0, which trivially satisfies the

desired inequality.

We begin by introducing the following notation:

Xk,j = P k−1−j , X̂k,j =
k−1∏
i=j

P̂i, Ŷk = η

k−1∑
j=0

 k−1∏
i=j+1

P̂i

 = η

k−1∑
j=0

X̂k,j+1.

From Lemma A.2, the difference vm − vm can be expressed in terms of the deviations Âj − A. Specifically,

vm − vm = η

m−1∑
k=0

rm−1−k
k−1∑
j=0

η
{

αXk,j

(
Âj − A

)
X̂j,0 + α

(
Xk,j(Âj − A)(X̂j,0 + Ŷj)

)}
c

= η2
m−1∑
k=0

rm−1−k
k−1∑
j=0

Xk,j

(
Âj − A

)(
X̂j,0 + αŶj

)
c.

Letting

Zk = rm−k−1
k−1∑
j=0

Xk,j(Âj − A)
(

X̂j,0 + αŶj

)
c,

18
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we then write

vm − vm = η2
m−1∑
k=0

Zk.

(Bounding E[∥vm − vm∥2] using the martingale sequence) Zk is the martingale sequence with respect to its
input Fk−1 = (Â0, . . . , Âk−1) because from E[Âk−1 − A] = 0, we have

E[Zk | Fk−2, . . . F0] = E[Zk | Fk−2]

= rm−k−1


k−2∑
j=0

Xk,j(Âj − A)
(

X̂j,0 + αŶj

)
+ Xk,k−1E

[
Âk−1 − A

] (
X̂k−1,0 + αŶk−1

)
= Zk−1,

Using this property, we compute

E

∥∥∥∥∥
m−1∑
k=0

Zk

∥∥∥∥∥
2 =

m−1∑
k=0

E
[
∥Zk∥2]+ 2

m−1∑
k=0

m−1∑
j=k+1

E
[
Z⊤

k Zj

]

=
m−1∑
k=0

E
[
∥Zk∥2]+ 2

m−1∑
k=0

m−1∑
j=k+1

E

ZT
k E[Zj | Fk]︸ ︷︷ ︸

=Zk


=

m−1∑
k=0

E
[
∥Zk∥2]+ 2

m−1∑
k=0

(m − 1 − k)E
[
∥Zk∥2]

=
m−1∑
k=0

(2(m − k) − 1)E
[
∥Zk∥2]

Hence,

E
[
∥vm − vm∥2] ≤ η4E

∥∥∥∥∥
m−1∑
k=0

Zk

∥∥∥∥∥
2

= η4
m−1∑
k=0

(2(m − k) − 1)r2(m−k−1)E


∥∥∥∥∥∥

k−1∑
j=0

Xk,j(Âj − A)
(

X̂j,0 + αŶj

)
c

∥∥∥∥∥∥
2


= η4
m−1∑
k=0

(2(m − k) − 1)r2(m−k−1)
k−1∑
j=0

∥Xk,j∥2E
[∥∥∥(Âj − A)(X̂j,0 + αŶj)c

∥∥∥2
]

,

where the last equation uses the property of martingale difference sequence:

E
[
Xk,j(Âj − A)

(
X̂j,0 + αŶj

)
| Fj−2, . . . F0

]
= 0.

(Bounding the inner variance norm) By expanding the variance, for some random vector X, we have a
common property

E
[
∥X − E[X]∥2] = E

[
∥X∥2]− 2E

[
X⊤E[X]

]
+ ∥E[X]∥2

= E
[
∥X∥2]− ∥E[X]∥2

So applying this to
X = (Âj − A)(X̂j,0 + αŶj)c,
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we condition on Fj−1 to get

E
[
∥(Âj − A)(X̂j,0 + αŶj)c∥2 | Fj−1

]
= E[∥Âj(X̂j,0 + αŶj)c∥2 | Fj−1] − E

[
∥A(X̂j,0 + αŶj)c∥2 | Fj−1

]
︸ ︷︷ ︸

=∥A(X̂j,0+αŶj)c∥2

.

Bounding ∥Âj∥ ≤ ρ̂ from Assumption 3, we get

E
[
∥(Âj − A)(X̂j,0 + αŶj)c∥2

]
≤ ρ̂2∥c∥2E

[
∥X̂j,0 + αŶj∥2

]
.

(Handling the geometric sums) Substituting into the earlier inequality, we obtain the error bound:

E
[
∥vm − vm∥2] ≤ η4∥c∥2ρ̂2

m−1∑
k=0

(2(m − k) − 1)r2(m−k−1)
k−1∑
j=0

∥Xk,j∥2E
[
∥X̂j,0 + αŶj∥2

]
. (37)

To simplify the notations for the bound in the summation, let

R̂ = (1 − η) + ηρ̂, R = (1 − η) + ηρ, r = (1 − η) + ηα.

Then bound each of ∥Xk,j∥, ∥X̂j,0∥, and ∥Ŷj∥ is obtained by geometric terms in R or R̂:

∥Xk,j∥ ≤ Rk−j−1, ∥X̂j,0∥ ≤ R̂j , ∥Ŷj∥ ≤ η

j−1∑
s=0

R̂j−s−1 = η

1 − R̂

(
1 − R̂j

)
.

It follows that

E
[
∥X̂j,0 + αŶj∥2

]
≤
((

1 − α
η

1 − R̂

)
R̂j + α

η

1 − R̂

)2

≤ 2
(

1 − α
η

1 − R̂

)2
R̂2j + 2

(
α

η

1 − R̂

)2

where the last inequality uses ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2. Let’s define the following symbols to simplify our
expressions:

Rp = R2, R̂p = R̂2, rp = r2, ω = Rp

rp
,

κ1 = 2
(

1 − α
η

1 − R̂

)2
, κ2 = 2

(
α

η

1 − R̂

)2
, π1 = R̂p

Rp
, π2 = R−1

p ,

Using these definitions, we can continue our derivation:

∥Xk,j∥2E
[
∥X̂j,0 + αŶj∥2

]
≤ R2(k−j−1)

[
2
(

1 − α
η

1 − R̂

)2
R̂2j + 2

(
α

η

1 − R̂

)2
]

= Rk−j−1
p

[
κ1R̂j

p + κ2

]
= Rk−j−1

p κ1R̂j
p + Rk−j−1

p κ2

= Rk−1
p

[
κ1

R̂j
p

Rj
p

+ κ2
1

Rj
p

]
= Rk−1

p

[
κ1πj

1 + κ2πj
2

]
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Using the above derivation, (37) is expressed as

E
[
∥vm − vm∥2] ≤ η4∥c∥2ρ̂2 1

Rp
rm−1

p

m−1∑
k=0

(2(m − k) − 1)ωk

κ1

k−1∑
j=0

πj
1 + κ2

k−1∑
j=0

πj
2

 . (38)

We then split this into a decaying part and a non-decaying part.

First, consider the first term of the decaying factor in (38). Recalling π1 > 1 implied by E
[
∥Âj − A∥2

]
̸= 0

and Lemma A.3, we have

κ1
1

Rp
rm−1

p

m−1∑
k=0

(2(m − k) − 1)ωk
k−1∑
j=0

πj
1 = κ1

1
Rp

1
π1 − 1rm−1

p

m−1∑
k=0

(2(m − k) − 1)ωk
(
πk

1 − 1
)

≤ κ1
1

Rp

1
π1 − 1rm−1

p

(
(ωπ1)m+1

(ωπ1 − 1)2

)

= κ1
1

R̂p

Rp
− 1

1
Rp

rm−1
p

(
R̂p

rp

)m+1

(
R̂p

rp
− 1
)2

= κ1
1

r2
p

(
R̂p − Rp

) R̂m+1
p − rm+1

p(
R̂p

rp
− 1
)2 = O

(
max{R̂p, r̂p}m

)
. (39)

Now consider the second term of (38), which is the non-decaying part. Similarly, we use Lemma A.3 and
π2 > 1 from E

[
∥Âj − A∥2

]
̸= 0, having

κ2
1

Rp
rm−1

p

m−1∑
k=0

(2(m − k) − 1)ωk
k−1∑
j=0

πj
2 = κ2

1
Rp

1
π2 − 1rm−1

p

m−1∑
k=0

(2(m − k) − 1)ωk
(
πk

2 − 1
)

≤ κ2
1

Rp

1
π2 − 1rm−1

p

(ωπ2)m (ωπ2 + 1)
(ωπ2 − 1)2

= κ2
1

1 − Rp
rm−1

p

(
1

rp

)m (
1 + 1

rp

)
(

1
rp

− 1
)2

= κ2
1

1 − Rp

1 + rp

(1 − rp)2 .

Since the denominator can be replaced with

1 − R2 = 1 − ((1 − η) + ηρ)2 = η (2 − η (1 − ρ)) (1 − ρ),
(1 − R̂)2 = (1 − ((1 − η) + ηρ̂))2 = η2 (1 − ρ̂)2

,(
1 − r2)2 =

(
1 − (1 − η(1 − α))2)

)2
= η2 (2 − η(1 − α))2 (1 − α)2

,

the non-decaying part is finally expressed as

κ2
1

Rp
rm−1

p

m−1∑
k=0

(2(m − k) − 1)ωk
k−1∑
j=0

πj
2 ≤ 2 1 + (1 − η(1 − α))2

η3ρ̂2(1 − ρ̂)2 (2 − η(1 − ρ)) (1 − ρ) (2 − η(1 − α))2 . (40)
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By injecting the decaying term (39) and non-decaying term (40) into (38), we present the final result as:

E
[
∥vm − vm∥2] ≤ 2L2

f ρ̂2 η(1 + (1 − η(1 − α))2)
(1 − ρ̂)2 (2 − η(1 − ρ)) (1 − ρ) (2 − η(1 − α))2 + O (max{ρη, αη}m)

= 1 + (1 − η(1 − α))2

(2 − η(1 − α))2 ση + O (max{ρη, αη}m)

=
1 + α2

η(
1 + √

αη

)2 ση + O (max{ρη, αη}m) .

A.6 Convergence Analysis of Deterministic MixedFP-KM

Lemma A.5. Suppose ηm = η < 1
1−ρ̂ and Assumption 3 hold, then for any m ≥ 0,

∥vm − dxf∥2 = O
(
max{ρη, αη}m

)
.

where
ρη = (1 − η + ηρ)2, αη = (1 − η + ηα)2.

Proof. From Lemma A.1, we have

vm = η

m−1∑
k=0

rm−k−1 (αuk + αwk)

= η

m−1∑
k=0

rm−k−1

(
αP kc + α

(
P kc + η

k−1∑
s=0

P k−s−1c

))

= η

m−1∑
k=0

rm−k−1

(
P kc + αη

k−1∑
s=0

P k−s−1c

)
. (41)

Using the identity for the matrix inverse
∑n−1

i=0 Xi = (I − Xn) (I − X)−1 and the fact that

η(I − P )−1c = η (I − (I − η(I − A)))−1
c

= η (η(I − A))−1
c = dxf,

the term inside the sum in (41) can be rewritten as

P kc + αη

k−1∑
s=0

P k−s−1c = P kc + αη
(
(I − P k)(I − P )−1) c

= P k
(
I − α(I − A)−1) c + αdxf.

By letting D = I − α(I − A)−1 and substituting them into (41), we obtain

vm − dxf = η

m−1∑
k=0

rm−k−1 (P kDc + αdxf
)

− dxf

= η

m−1∑
k=0

rm−k−1P kDc + αη

1 − r︸ ︷︷ ︸
=1

(1 − rm) dxf − dxf

= η

m−1∑
k=0

rm−k−1P kD − rmdxf.
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Using ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, we have

∥vm − dxf∥2 ≤ 2η2 ∥D∥2

(
m−1∑
k=0

rm−k−1Rk

)2

∥c∥2 + 2
(

rm

1 − ρ

)2
∥c∥2

= 2η2 ∥D∥2
(

Rm − rm

R − r

)2
∥c∥2 + 2

(
rm

1 − ρ

)2
∥c∥2

= O
(
max{R, r}2m

)
= O

(
max{ρη, αη}m

)
.

A.7 Main Convergence Theorems

Theorem 4.5 (MixedFP-KM). Let α ∈ [0, 1). When ηm = η < 1
1−ρ̂ and Assumptions 1 to 3 hold, then for

any m ≥ 0,

E
[
∥vm − dxf∥2] ≤ 1 + αη(

1 + √
αη

)2 ση + O (max{ρη, αη}m) ,

where

ση =
2ηL2

f ρ̂2

(1 − ρ̂)2(2 − η(1 − ρ))(1 − ρ) , ρη = (1 − η + ηρ̂)2, αη = (1 − η + ηα)2.

Proof. We divide the difference into

vm − dxf = (vm − vm) + (vm − dxf),

where vm is the deterministic counterpart. Then

E
[
∥vm − dxf∥2] ≤ E

[
∥vm − vm∥2]+ E

[
∥vm − dxf∥2] ,

where the cross term vanishes because E [vm − vm] = 0. Applying Lemma A.4 (for ∥vm − vm∥) and
Lemma A.5 (for ∥vm − dxf∥) proves the claim.

We obtain Theorem 4.1 as the special case of Theorem 4.5 where η = 1 with additional consideration for
α = 1.
Theorem 4.1 (MixedFP). Suppose Assumptions 1 to 3 hold and α ∈ [0, 1], then for any m ≥ 0,

E
[
∥v̂m − dxf∥2] ≤

 σ1 + O (ρm
1 ) if α ∈ {0, 1},

1 + α1

(1 + √
α1)2 σ1 + O (max{ρ1, α1}m) otherwise,

where

σ1 =
2L2

f ρ̂2

(1 − ρ̂)2(1 − ρ2) , ρ1 = ρ̂2, α1 = α2.

Proof. For α ∈ [0, 1), this result is the special case of Theorem 4.5 where η = 1, which gives αη = α2 = α1,
ρη = ρ̂2 = ρ1, and ση = 2L2

f ρ̂2

(1−ρ̂)2(1−ρ2) = σ1. When α = 1, v̂m is equivalent to ûm−1 whose error is given by
Corollary B.1.
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B Theoretical Analysis of StocFP with the Stochastic KM Iteration

B.1 Convergence of StocFP with the Stochastic KM Iteration

Theorem 4.6 (Stochastic KM iteration of StocFP). Suppose ηm = η < 1
1−ρ̂ and Assumptions 1 to 3 hold.

Then for any m ≥ 0,
E
[
∥wm − dxf∥2] ≤ ση + O

(
ρm

η

)
,

where ση and ρη are as defined in Theorem 4.5.

Proof. The proof is divided into two parts: the variance bound (that is, the stochastic error between wm

and wm), and the deterministic error bound (i.e., the bias ∥wm − dxf∥2). We then combine these two parts.

From (29), the error in the w–sequence can be written as

wm − wm = η

m−1∑
j=0

P m−1−j(Âj − A)
{(

j−1∏
i=0

P̂i

)
c + η

j−1∑
k=0

(
j−1∏

i=k+1
P̂i

)
c

}
.

Recall

Xm,j := P m−1−j , X̂j,0 :=
j−1∏
i=0

P̂i, Ŷj := η

j−1∑
k=0

j−1∏
i=k+1

P̂i.

Then,

wm − wm = η

m−1∑
j=0

Xm,j(Âj − A)
(

X̂j,0 + Ŷj

)
c.

Because E[Âj ] = A from Assumption 3, the sequence

Wj := Xm,j(Âj − A)
(

X̂j,0 + Ŷj

)
c

forms a martingale–difference sequence with respect to the natural filtration Fj = σ(Â0, . . . , Âj). Hence, by
orthogonality of martingale differences and the Cauchy–Schwarz inequality,

E
[
∥wm − wm∥2] = E


∥∥∥∥∥∥η

m−1∑
j=0

Wj

∥∥∥∥∥∥
2


≤ η2E


∥∥∥∥∥∥

m−1∑
j=0

Wj

∥∥∥∥∥∥
2


= η2
m−1∑
j=0

E
[
∥Wj∥2] .

By expanding the term in the summation, we have

E
[
∥Wj∥2] = E

[
∥Xm,j(Âj − A)(X̂j,0 + Ŷj)c∥2

]
= ∥Xm,j∥2E

[
∥(Âj − A)(X̂j,0 + Ŷj)c∥2

]
Conditioning on Fj−1, we get

E
[
∥(Âj − A)(X̂j,0 + Ŷj)c∥2 | Fj−1

]
= E

[
∥Âj(X̂j,0 + Ŷj)c∥2 | Fj−1

]
− ∥A(X̂j,0 + Ŷj)c∥2
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where we used the E
[
∥X − E[X]∥2] = E

[
∥X∥2]− ∥E[X]∥2. From Assumption 3, we have ∥Âj∥ ≤ ρ̂, which

gives us

E
[
∥(Âj − A)(X̂j,0 + Ŷj)c∥2

]
≤ ρ̂2∥c∥2E

[
∥X̂j,0 + Ŷj∥2

]
Therefore,

E
[
∥Wj∥2] ≤ ∥Xm,j∥2ρ̂2∥c∥2E

[
∥X̂j,0 + Ŷj∥2

]
(42)

Furthermore, since the norm of P = I −η(I −A) is bounded by ∥P∥ ≤ R with R = (1−η)+ηρ = 1−η(1−ρ).
Thus,

∥Xm,j∥ ≤ Rm−1−j

Similarly, the product of the stochastic matrices satisfies

∥X̂j,0∥ ≤ R̂j , ∥Ŷj∥ ≤ η

j−1∑
k=0

R̂j−k−1 = η

1 − R̂

(
1 − R̂j

)
with R̂ = (1 − η) + ηρ̂ = 1 − η(1 − ρ̂). Therefore,

∥X̂j,0 + Ŷj∥2 ≤
(

R̂j + η

1 − R̂

(
1 − R̂j

))2
.

≤ 2
(

1 − η

1 − R̂

)2
R̂2j + 2

(
η

1 − R̂

)2

Substituting them into (42) gives

E
[
∥wm − wm∥2] ≤ η2∥c∥2ρ̂2

m−1∑
j=0

R2(m−1−j)

(
2
(

1 − η

1 − R̂

)2
R̂2j + 2

(
η

1 − R̂

)2
)

. (43)

By letting

κ3 = 2
(

1 − η

1 − R

)2
, κ4 = 2

(
η

1 − R

)2
, Rp = R2, R̂p = R̂2, π1 = R̂p

Rp
, π2 = R−1

p ,

We simplify the notation of as (43) as

E
[
∥wm − wm∥2] ≤ η2∥c∥2ρ̂2Rm−1

p

m−1∑
k=0

(
κ3πk

1 + κ4πk
2
)

.

Since R = 1 − η(1 − ρ) < R̂ = 1 − η(1 − ρ̂) < 1 from ρ̂ > ρ and 0 < η < 1
1−ρ̂ , we have

Rm−1
p

m−1∑
k=0

(
κ3πk

1 + κ4πk
2
)

= Rm−1
p

(
κ3

πk
1 − 1

π1 − 1 + κ4
πk

2 − 1
π2 − 1

)

≤

(
κ3

R̂m
p

R̂p − Rp

+ κ4
1

1 − Rp

)

= κ4
1

1 − Rp
+ O

(
R̂m

p

)
= 2

η(1 − ρ̂)2(2 − η(1 − ρ))(1 − ρ) + O
(

R̂m
p

)
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It follows that

E
[
∥wm − wm∥2] ≤ 2L2

f ρ̂2 η

(1 − ρ̂)2 (2 − η(1 − ρ)) (1 − ρ) + O
(
(1 − η(1 − ρ̂))2m

)
.

We now derive in full the bound for the deterministic error ∥wm − dxf∥2. The deterministic iteration is
given by

w0 = c, wm+1 = Pwm + ηc, with P = I − η(I − A).

Unrolling this recursion yields

wm = P mc + η

m−1∑
k=0

P m−1−kc.

Changing the index (letting j = m − 1 − k) we have

wm = P mc + η

m−1∑
j=0

P j = P mc + η (I − P m) (I − P )−1c.

Subtracting dxf from wm yields

wm − dxf =
[
P mc + η (I − P m) (I − P )−1c

]
− η(I − P )−1c

= P mc + η [(I − P m) − I] (I − P )−1c

= P mc − ηP m(I − P )−1c

= P m
[
c − η(I − P )−1c

]
.

Since dxf = η(I − P )−1c, we rewrite this as

wm − dxf = P m (c − dxf) .

As ∥P∥ ≤ 1 − η(1 − ρ) =: R holds under Assumption 3, we deduce that

∥wm − dxf∥2 = O
(

(1 − η(1 − ρ))2m
)

.

We now decompose the overall error as

wm − dxf = (wm − wm) + (wm − dxf) .

Since E [wm − wm] = 0, we have

E
[
∥wm − dxf∥2] ≤ E

[
∥wm − wm∥2]+ ∥wm − dxf∥2.

Inserting the bounds derived above yields

E
[
∥wm − dxf∥2] ≤ 2L2

f ρ̂2 η

(1 − ρ̂)2 (2 − η(1 − ρ)) (1 − ρ) + O
(
(1 − η(1 − ρ̂))2m

)
.

We obtain the error bounds for StocFP (4) StocRB (5) as the special case of Theorem 4.6 where η = 1.
Corollary B.1 (StocFP and StocRB). Suppose Assumptions 1 to 3 hold. Then for any m ≥ 0,

E
[
∥ŵm − dxf∥2] = E

[
∥ŷm − dxf∥2] ≤ σ1 + O (ρm

1 ) ,

where σ1 and ρ1 are as defined in Theorem 4.1.
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B.2 Comparison with the Existing Result

Theorem 4.6 for StocFP with the stochastic KM iteration (StocFP-KM) slightly differs from a bound derived
from results in the original paper (Grazzi et al., 2021).

Grazzi et al. (2021, Theorem 5.1) presents a non-asymptotic error bound for StocFP-KM with a decreasing
stepsize, while the bound for a fixed stepsize is partially provided in their Theorem 4.1, which is a non-
asymptotic version of our Theorem 4.2. By combining their Theorem 4.1 and their proof of Theorem 5.1,
we can derive the following result for StocFP-KM with a constant stepsize.
Theorem B.2 (Fixed stepsize and asymptotic version of Grazzi et al. (2021, Theorem 5.1)). Let σ2 =
2(ρ̂2+ρ2)

(1−ρ)2 and suppose 0 < η ≤ 1
1+σ2

and Assumptions 1 to 3 hold. Then for any m ≥ 0,

E
[
∥wm − dxf∥2] ≤ 2L2

f ρ̂2 η

(1 − ρ2) (1 − ρ)2 + O
(
(1 − η(1 − ρ2))m

)
Although both Theorem 4.6 and Theorem B.2 evaluate the same method, the derivations differ. We chose
to evaluate the error of the existing method using an approach similar to our own analysis in Theorem 4.5
in order to ensure a fair comparison between our proposed method and that of Grazzi et al. (2021). Con-
sequently, our Theorem 4.6 does not unfairly penalize the method in Grazzi et al. (2021); in fact, there are
cases where Theorem 4.6 even yields tighter bounds than Theorem B.2. One example is obtained by choosing

ρ = 0.1, ρ̂ = 0.2, η = 10−2.

These values satisfy the side conditions 0 < ρ < 1, ρ < ρ̂, and η < 1
1−ρ̂ . By dividing both errors by 2ηL2

f ρ̂2,
we have

1
(1 − ρ̂)2(2 − η(1 − ρ))(1 − ρ)︸ ︷︷ ︸

≈0.872

+O

(1 − η(1 − ρ̂))2︸ ︷︷ ︸
=0.984

m <
1

(1 − ρ2) (1 − ρ)2︸ ︷︷ ︸
≈1.247

+O

1 − η(1 − ρ2)︸ ︷︷ ︸
=0.990

m
This is an example where both the non-decaying term and the decaying term of our Theorem 4.6 are superior
to Theorem B.2 obtained from the existing results.

C Impact of Approximate Inner Solutions on Estimation Accuracy

In the previous sections, we analyzed the convergence properties of MixedFP-KM and StocFP-KM under the
assumption that the inner problem is solved exactly. However, in practical applications, we often work with
approximate solutions of the inner problem. This section investigates how the accuracy of hypergradient
estimation is affected when using inexact inner solutions, providing theoretical guarantees for the error
bounds in such scenarios.

In short, the errors induced by inexact inner solves are consistent between the mixed and stochastic estima-
tors, and the variance term, which MixedFP–KM is expressly designed to curb, remains unchanged.

We suppose that Jacobians and gradients are evaluated at an approximate inner solution x̃ ∈ Rdx , writing
δx := x̃ − x(λ), introducing smoothness of stochastic Jacobians and gradients.
Assumption 4 (Smoothness with respect to the inner parameter). There exist finite constants LA, Lc > 0
such that for every λ ∈ Rdλ , x, x′ ∈ Rdx , and ξ ∈ X ,

∥∂xφ̂(x, λ; ξ) − ∂xφ̂(x′, λ; ξ)∥ ≤ LA∥x − x′∥, ∥∂xf(x, λ) − ∂xf(x′, λ)∥ ≤ Lc∥x − x′∥.

C.1 MixedFP-KM with Inexact Inner Solution

MixedFP-KM runs with Jacobians and gradients evaluated at x̃, producing the stochastic sequence

z̃m = (ṽm, w̃m, ũm), m = 0, 1, . . .
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and its deterministic counterpart (same recursion, but replacing each ∂xφ̂(x̃, λ; ξm) by its expectation) is
denoted ¯̃zm = (¯̃vm, ¯̃wm, ¯̃um).

We also use the following standard resolvent identity.
Lemma C.1 (Resolvent identity). Let A, Ã ∈ Rdx×dx be such that I − A and I − Ã are invertible. Then

(I − Ã)−1 − (I − A)−1 = (I − Ã)−1(Ã − A)(I − A)−1. (44)

Proof. Starting from the right-hand side,

(I − Ã)−1(Ã − A)(I − A)−1 = (I − Ã)−1[(I − A) − (I − Ã)
]
(I − A)−1,

because Ã − A = (I − A) − (I − Ã). Distributing the product,

(I − Ã)−1(I − A)(I − A)−1 − (I − Ã)−1(I − Ã)(I − A)−1 = (I − Ã)−1 − (I − A)−1.

This completes the proof.

Theorem C.2 (MixedFP-KM with inexact inner solution). Let δx = x̃ − x(λ). Suppose Assumptions 1 to 4
hold and that MixedFP–KM is run with Jacobians and gradients evaluated at x̃, generating ṽm. Assume also
0 < η < 1

1−ρ̂ . Then for all m ≥ 0,

E
[
∥ṽm − dxf∥2] ≤ 1 + αη

(1 + √
αη)2 ση + K∥δx∥2 + O

(
max{ρη, αη}m

)
,

where αη, ρη, ση are from Theorem 4.5 and

K = 2
(

L2
c

(1 − ρ)2 + ∥c∥2L2
A

(1 − ρ)4

)
.

Proof. Let Ã = ∂xφ(x̃, λ), c̃ = ∂xf(x̃, λ). We decompose the total difference:

ṽm − dxf = (ṽm − ¯̃vm) +
(¯̃vm − ¯̃v∞

)
+
(¯̃v∞ − dxf

)
.

Here, ¯̃vm is the deterministic sequence obtained by replacing each ∂xφ̂(x̃, λ; ξk) with Ã, and ¯̃v∞ = (I −Ã)−1c̃.
Taking norms and expectations, we use (a + b)2 ≤ 2a2 + 2b2 and note that E[ṽm − ¯̃vm] = 0, so cross terms
vanish in expectation. Thus,

E
[
∥ṽm − dxf∥2] ≤ E

[
∥ṽm − ¯̃vm∥2]+ ∥(¯̃vm − ¯̃v∞) + (¯̃v∞ − dxf)∥2

≤ E
[
∥ṽm − ¯̃vm∥2]+ ∥¯̃v∞ − dxf∥2 + 2∥¯̃vm − ¯̃v∞∥∥¯̃v∞ − dxf∥ + ∥¯̃vm − ¯̃v∞∥2

First, replacing A by Ã and c by c̃ in the proof of Lemma A.4 shows

E
[
∥ṽm − ¯̃vm∥2] ≤ 1 + αη

(1 + √
αη)2 ση + O

(
max{ρη, αη}m

)
,

noting that ∥Ã − A∥ ≤ ρ̂. Next, ¯̃v∞ − dxf = (I − Ã)−1c̃ − (I − A)−1c is handled by the resolvent identity of
Lemma C.1, which implies

(I − Ã)−1 − (I − A)−1 = (I − Ã)−1(Ã − A)(I − A)−1.

Hence noting c̃ = (c̃ − c) + c,

(I − Ã)−1c̃ − (I − A)−1c = (I − Ã)−1(c̃ − c) + (I − Ã)−1(Ã − A)(I − A)−1c.

Because ∥(I − Ã)−1∥ ≤ 1
1−ρ and ∥Ã − A∥ ≤ LA∥δx∥, ∥c̃ − c∥ ≤ Lc∥δx∥ from Assumption 4, we get

∥¯̃v∞ − dxf∥ ≤ ∥c̃ − c∥
1 − ρ

+ ∥Ã − A∥∥c∥
(1 − ρ)2 ≤

( Lc

1 − ρ
+ ∥c∥LA

(1 − ρ)2

)
∥δx∥.
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Therefore its squared norm is at most

∥¯̃v∞ − dxf∥2 ≤ 2
( L2

c

(1 − ρ)2 + ∥c∥2L2
A

(1 − ρ)4

)
∥δx∥2,

which is our constant term K∥δx∥2.

Finally, by the analysis in Lemma A.5 with the single fixed matrix Ã and vector c̃, we get

∥¯̃vm − ¯̃v∞∥ = O
(
max{R, r}m

)
.

Recalling that ∥¯̃v∞ − dxf∥ is constant,

2∥¯̃vm − ¯̃v∞∥∥¯̃v∞ − dxf∥ + ∥¯̃vm − ¯̃v∞∥2 = O
(
max{ρη, αη}m

)
Collecting all three parts completes the proof.

C.2 StocFP-KM with Inexact Inner Solution

The following result quantifies the additional error that appears when the fixed–point equation for the inner
variable is solved only approximately. All assumptions stated earlier remain in force.

Let x̃ be an inexact inner solution and define

δx := x̃ − x(λ), Ãm := ∂xφ̂
(
x̃, λ; ξm

)
, c̃ := ∂xf

(
x̃, λ

)
.

For a fixed stepsize η ∈
(
0, 1

1−ρ̂

)
the stochastic Krasnosel’skĭı–Mann (KM) version of StocFP is

w̃0 = c̃, w̃m+1 = (1 − η)w̃m + η
(
Ãmw̃m + c̃

)
, m = 0, 1, . . .

Theorem C.3 (StocFP–KM with inexact inner solution). Let Assumptions 1 to 4 hold and let w̃m be
generated as above. Then for every m ≥ 0,

E
[
∥w̃m − dxf∥2] ≤ ση + K∥δx∥2 + O

(
ρm

η

)
, (45)

where ση and ρη = (1 − η + ηρ̂)2 are the constants of Theorem 4.6 and K is defined in Theorem C.2.

Proof. Set Ã = ∂xφ(x̃, λ) and c̃ = ∂xf(x̃, λ). Let ¯̃wm be the deterministic KM sequence obtained by replacing
every Ãm with Ã and define the limit ¯̃w∞ = (I − Ã)−1c̃.

Exactly as in the proof of Theorem C.2, decompose the error and bound the squared norm:

E
[
∥w̃m − dxf∥2] ≤ E

[
∥w̃m − ¯̃wm∥2]+ ∥( ¯̃wm − ¯̃w∞) + ( ¯̃w∞ − dxf)∥2

≤ E
[
∥w̃m − ¯̃wm∥2]+ ∥ ¯̃w∞ − dxf∥2 + 2∥ ¯̃wm − ¯̃w∞∥∥ ¯̃w∞ − dxf∥ + ∥ ¯̃wm − ¯̃w∞∥2.

With A replaced by Ã and c by c̃, the variance bound in Theorem 4.6 yields E∥w̃m − ¯̃wm∥2 ≤ ση + O(ρm
η ).

The resolvent identity Lemma C.1 gives ¯̃w∞ − dxf = (I − Ã)−1(c̃ − c) + (I − Ã)−1(Ã − A)(I − A)−1c. Using
∥(I − Ã)−1∥ ≤ (1 − ρ)−1, ∥Ã − A∥ ≤ LA∥δx∥, and ∥c̃ − c∥ ≤ Lc∥δx∥ yields

∥ ¯̃w∞ − dxf∥ ≤
(

Lc

1−ρ + ∥c∥LA

(1−ρ)2

)
∥δx∥,

whose square is bounded by K∥δx∥2.

Applying the deterministic part of Lemma A.5 to the single matrix Ã gives

∥ ¯̃wm − ¯̃w∞∥ = O(Rm).

Therefore, the cross product 2∥ ¯̃wm − ¯̃w∞∥∥ ¯̃w∞ − dxf∥ because the first factor decays geometrically while
the second is constant (O(∥δx∥)).

Collecting the three contributions gives the stated bound.
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C.3 Discussion

The two error bounds derived above share the same structure and, to leading order, the same magnitude. In
both Theorems C.2 and C.3 the mean–square error can be written as

(non-decaying error from variance)︸ ︷︷ ︸
ση or 1+αη

(1+
√

αη)2 ση

+ K∥δx∥2︸ ︷︷ ︸
bias from inexact inner solution

+ (decaying error)︸ ︷︷ ︸
O
(

ρm
η

)
or O

(
max{ρη,αη}m

)
where the constants K, ση, αη, and ρη are identical (up to the harmless factor (1 + αη)/(1 + √

αη)2) in the
two approaches.

The key observation is that the variance component is unaffected by inner–loop bias. As shown in the
proof of Theorem C.2, the perturbation δx = x̃ − x(λ) influences the estimator only through the resolvent
difference, giving rise to the deterministic term K∥δx∥2; it leaves unchanged the second-moment bound of
the martingale difference sequence that drives the variance. Consequently, the variance-reduction mechanism
built into MixedFP–KM is preserved even when the inner fixed-point equation is solved only approximately.

D Experiment Setup Details

In this section, we provide detailed information about the setup used in our empirical evaluations.

D.1 Effect of Mixing Rate

The experiment in Section 5.1 evaluates the estimation error of hypergradients in the synthetic setting where
the Jacobian matrix is a random variable. We implemented the following configuration:

The experiment used the following parameter settings: dimension of inner-parameter dx = 10; dimension of
outer-parameter dλ = 10; number of parent matrices H1, . . . , Hn for sampling n = 1000; eigenvalue bound
parameter ϵ = 10−2; maximum iterations M = 1000; scale parameter values γ ∈ {10−3, 10−2, 10−1, 1.0};
and mixing rate values 1 − α ∈ {0, 0.001, 0.01, 0.1, 1.0}, where α = 0 corresponds to StocFP and α = 1.0
corresponds to StocRB.

Any matrix in H1, . . . , Hn was constructed to ensure that each eigenvalue follows a uniform distribution in
[0, 1 − ϵ]. The matrix Hi ∈ {H1, . . . , Hn} was constructed through the following process: first, generating
a random matrix R ∈ Rdx×dx with entries sampled from a standard normal distribution; then creating a
symmetric matrix S = (R + R⊤)/2; next, computing the QR decomposition of S to obtain orthogonal eigen-
vectors Q; followed by sampling eigenvalues {λ1, . . . , λdx} uniformly from [0, 1 − ϵ]; and finally constructing
Hi = Q · diag(λ1, . . . , λdx

) · Q⊤.

The coefficients c ∈ Rdx , d ∈ Rdλ , and B ∈ Rdx×dλ were sampled independently from a uniform distribution
in [0, 1] for each element.

D.2 Compare with Existing Approaches

In this section, we provide detailed information about the setup and results in Section 5.2.

D.2.1 Setups

The synthetic problem setting differs from that in Section 5.1 in the following aspects: we used fixed γ = 1.0
instead of varying it over [0, 1], the dimensions of inner-parameter x and outer-parameter λ were both set
to 100, we ran experiments with 10 different random seeds (instead of 100), and we used 10,000 iterations
for each method. For the hyperparameter optimization task, we used binary classification with the Adult
Income dataset. For the influence estimation task, we standardized the Fashion MNIST data with zero
mean and unit variance. For the meta learning task, we used the min-max scaling on the California Housing
dataset with the regularization parameter β = 0.1. Table 2 shows the dataset sizes and the values of γ for
φ(x, λ) = (I − γĤ)x + Bλ used in the three real-world tasks.
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Task Dataset ntrain nval dx dλ γ

Hyperparameter Optimization Adult Income 5000 5000 14 14 100

Influence Estimation Fashion MNIST 5000 5000 784 5000 10−2

Meta Learning California Housing 5000 5000 8 8 10−1

Table 2: Experiment settings for the real-world tasks.

D.2.2 Influence Estimation

We define the influence of the j-th instance ∆jf as the change in validation loss f(x, λ) after excluding the
j-th instance from the training dataset with N samples, denoted by

∆jf = f(x(1̸=j), 1 ̸=j) − f(x(1), 1)

where 1 ̸=j ∈ {0, 1}N is a vector with ones except for a zero at the j-th index. Let i ∼ Uniform({1, . . . , N})
denote an index of the instance in the dataset and g(x, λ; i) = λiG(x; ξi) with (ξi)i≤N represent the inner
loss of the i-th instance ξi masked by the i-th element of λ. Then, the inner solutions x(1) and x(1̸=j) are
defined as the minimizers of an with λ = 1 and λ = 1̸=j , respectively:

x(1) = arg min
x

Ei[g(x, 1; i)], x(1 ̸=j) = arg min
x

Ei[g(x, 1̸=j ; i)].

x(1 ̸=j) can be seen as the solution of the inner problems in which the j-th instance is excluded from the
dataset, since Ei[g(x, 1 ̸=j ; i)] = 1

N

∑N
i=1 g(x, 1 ̸=j ; i) = 1

N

∑N
i=1(1 − δij)G(x; ξi) where δij is the Kronecker

delta. Under this formulation, the j-th element of the hypergradient −dλj
f(x(λ), λ) at λ = 1 provides a

linear approximation of the influence of the j-th instance, because

f(x(1̸=j), 1̸=j) − f(x(1), 1) = dλf(x(λ), λ)|⊤λ=1 (1 ̸=j − 1) + O(∥1 ̸=j − 1∥2)
= − dλj

f(x(λ), λ)
∣∣
λ=1 + O(1).

A similar definition of the influence and its approximation were also presented in Koh & Liang (2017).
Recalling φ(x, λ) = x − γ

N

∑
i ∂xg(x, λ; i), at λ = 1, we have

∂xφ = I − γH, ∂λj
φ = −γ∂xG(x; ξj),

where H = 1
N

∑
i ∂2

xG(x; ξi). From (2a), we have

− dλj f(x(λ), λ)
∣∣
λ=1 = −∂xG(x; ξj)⊤H−1∂xf,

which is the downweight version of their Eq. (2).

For the initialization of inner-parameter x, we used samples from the normal distributions scaled by a constant
factor for both logistic regression models used in the hyperparameter optimization and influence estimation
tasks and linear regression models for the meta learning. For the outer-parameter λ, the initialization
varies by task. In the synthetic task, λ is initialized with values sampled uniformly from [0,1]. In the
Hyperparameter optimization task, λ serves as a regularization coefficient initialized with a small constant
value. In the influence estimation task, λ represents loss weights for each training sample, which is a ones-
vector. In the meta learning task, λ functions as a biased regularization term set to the initial value of the
model’s parameters x.

Any inner-problem optimization was performed using the Adam optimizer with a learning rate of 0.01. To
rule out the effect incurred by inexact x(λ), for any task, we used the full-batch inner loss to compute
gradients for Adam and ran 1,000 epochs to ensure the convergence.

We optimized the hyperparameters using grid search to find the configuration that minimizes the aver-
age error over the last M/10 iterations. For each method, we performed a grid search over the following
hyperparameter ranges:

31



Under review as submission to TMLR

• Mixing rate 1 − α ∈ {0, 10−4, 2 × 10−4, 5 × 10−4, 10−3, 2 × 10−3, 5 × 10−3, 10−2, 2 × 10−2, 5 ×
10−2, 10−1, 2 × 10−1, 5 × 10−1}

• Stepsize η ∈ {10−3, 2 × 10−3, 5 × 10−3, 10−2, 2 × 10−2, 5 × 10−2, 10−1, 2 × 10−1, 5 × 10−1, 1.0}

• For decreasing stepsize schedule: β ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000} and δ ∈
{10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000} with the constraint β ≤ δ

D.3 Results

For completeness, we provide additional experimental results that complement the main findings presented
in Section 5.2.

Fig. 3 presents the same experimental results as Fig. 2, but with error bars indicating the standard deviation
across multiple runs. The error bars represent the standard deviation above and below the mean squared
error across runs with different sequences (ξm)m∈N.

We also provide a computational cost comparison since our MixedFP and MixedFP-KM methods require
computing two vector-Jacobian products (VJPs) per iteration,

Fig. 4 shows the results from Fig. 2 and Fig. 3 with the horizontal axis changed from algorithm iterations
to the number of VJP computations. This transformation stretches the horizontal axis for MixedFP and
MixedFP-KM by a factor of two, since our approach requires computing two VJPs per iteration: Âmûm and
Âmŵm as shown in (6b). This represents a worst-case analysis assuming VJP computation dominates the
total cost and that our two VJPs require exactly twice the computation time.

The results show that our methods’ advantage is reduced when evaluated on a wall-clock basis compared to
iteration count, though performance remains competitive with existing approaches. Note that this represents
a worst-case analysis assuming VJP computation dominates total cost and our two VJPs require exactly twice
the computation time. In practice, the actual overhead is less than 2× because the two VJP computations
share common computations (particularly the forward pass, as they use the same samples). Moreover, the
two VJP computations can be parallelized, potentially hiding the wall-clock impact.
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Figure 3: Results corresponding to Fig. 1 with added visualization of variance across runs. Each line shows
the mean squared error over 10 trials with different Jacobian sample sequences (Âm)m∈N, with error bars
indicating standard deviation.

33



Under review as submission to TMLR

0k 2k 4k 6k 8k 10k
Number of JVP computations

100

101

102

2 e
rro

r f
ro

m
 

f

Synthetic Problem

0k 2k 4k 6k 8k 10k
Number of iterations

10 3

10 2

10 1

2 e
rro

r f
ro

m
 

f

Hyperparam. Optimization

0k 2k 4k 6k 8k 10k
Number of VJP computations

10 4

2 e
rro

r f
ro

m
 

f

Influence Estimation

0k 2k 4k 6k 8k 10k
Number of VJP computations

10 3

10 2

2 e
rro

r f
ro

m
 

f

Meta Learning

StocFP
StocRB
MixedFP

StocFP+KM  (StocFP + KM-iteration with constant )
StocFP+KM  (StocFP + KM-iteration with decreasing )

MixedFP+KM  (MixedFP-KM with constant )
MixedFP+KM  (MixedFP-KM with decreasing )

Figure 4: Comparison of stochastic hypergradient estimation methods evaluated by number of vector-
Jacobian products (VJPs). The horizontal axis represents the number of VJPs, effectively stretching
MixedFP and MixedFP-KM curves by a factor of two. This provides a worst-case analysis of wall-clock
performance, assuming VJP computation dominates total cost and our two VJPs require exactly twice the
computation time. Method-specific parameters were re-optimized under this new metric.
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E Additional Experiments: Hyperparameter Optimization

In this section, we evaluate the practical impact of improved hypergradient estimation accuracy on actual
bilevel optimization performance. While Section 5.2 demonstrated that our MixedFP-KM method achieves
superior hypergradient estimation accuracy, it remains unclear whether this theoretical advantage translates
to better optimization performance in real bilevel optimization tasks. To address this question, we conduct
a bilevel optimization experiment using the hyperparameter optimization setting adopted in Section 5.2.

E.1 Settings

We employ the same inner and outer problem formulation as the hyperparameter optimization task in
Section 5.2, where the outer-parameter λ represents regularization coefficients for each dimension of the
inner-parameter x. The inner problem minimizes the binary cross-entropy loss on the training dataset, while
the outer problem minimizes the validation loss with respect to the regularization parameters. In addition
to the training and validation splits used in Section 5.2, we introduce a separate test set of 5,000 samples to
evaluate the final model performance after the outer optimization.

We configure the bilevel optimization with 100 outer optimization steps using SGD with a learning rate of
20.0, and 100 inner optimization steps per outer iteration using Adam with a learning rate of 0.01. The
hypergradient estimation depth is set to 100 iterations (reduced from 10,000 in Section 5.2 for computational
efficiency), and we conduct experiments across five random seeds to get the averate test accuracy. We
compare all hypergradient estimation methods from Section 5.2: StocFP, StocRB, MixedFP, StocFP+KM→,
StocFP+KM↓, MixedFP+KM→, and MixedFP+KM↓, with all method-specific hyperparameters (η, α, β, and δ) set
to the optimal values determined by grid search as in Section 5.2.

E.2 Results and Discussion

Fig. 5 presents the learning curves for both validation and test losses across all methods. Methods incorporat-
ing the stochastic Krasnosel’skĭı-Mann iteration (MixedFP+KM↓, MixedFP+KM→, and StocFP+KM↓) demonstrate
substantially better performance than their non-KM counterparts (StocRB, StocFP, and MixedFP). Among
these stochastic-KM-based methods, MixedFP+KM↓ exhibits the steepest initial loss reduction and the highest
test accuracy, which is correlated with the hypergradient estimation accuracy results shown in Fig. 6 where
MixedFP+KM↓ achieved the smallest error. These results validate that the improved hypergradient estimation
accuracy demonstrated in Section 5.2 can translate to practical benefits in bilevel optimization.
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Figure 5: Test loss and accuracy curves for hyperparameter optimization of regularization coefficients across
different hypergradient estimation methods. Curves show the average values over 5 runs with standard
deviation error bars.
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Figure 6: Hypergradient estimation errors at the initial outer-step using the optimal method-specific param-
eters (η, α, β, and δ) determined by grid search, which are then used in the bilevel optimization experiment
shown in Fig. 5.
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def mixed_fp_km(
f: Callable[[Tensor, Tensor], Tensor],
phi: Callable[[Tensor, Tensor, Tensor], Tensor],
x: Tensor,
lambda_: Tensor,
samples: Sequence[Tensor],
etas: Sequence[float],
alpha: float,
M: int

) -> Tensor:
# Compute outer gradients and initialize v, w, u
v = torch.zeros_like(x)
(c,) = torch.autograd.grad(f(x, lambda_), x)
w, u = c.clone(), c.clone()

for m in range(M):
eta = etas[m]
samp = samples[m]

# phi with fixed lambda
phi_fixed = lambda x_: phi(x_, lambda_, samp)

# Compute VJPs
_, (Aw,) = torch.autograd.functional.vjp(phi_fixed, (x,), (w,))
_, (Au,) = torch.autograd.functional.vjp(phi_fixed, (x,), (u,))

# Update v, w, u
v = (1 - eta) * v + eta * (alpha * (v + u) + (1 - alpha) * w)
w = (1 - eta) * w + eta * (Aw + c)
u = (1 - eta) * u + eta * (Au)

return v.detach()

Figure 7: Minimal Python implementation of the MixedFP-KM, corresponding to (9).

F Python Implementation of MixedFP-KM

The following Python pseudocode Fig. 7 provides an explicit implementation of the MixedFP-KM algorithm,
as introduced and discussed in Section 4.2.

In this implementation, the vector-Jacobian product for the stochastic mapping Âm = ∂xφ̂(x(λ), λ; ξm)
is computed using the automatic differentiation tools of PyTorch. The iterative updates for the variables
(v, w, u) and other notations correspond to those given in (9).
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