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Abstract—In this paper, we provide lower bounds on the L2-
error of approximation of arbitrary functions f : [0, 1] → R
by polynomials of degree at most n, with the constraint that
the coefficients of these polynomials in the Bernstein basis of
order n are bounded by nα for some α ≥ 0. For Lipschitz
functions, this lower bound matches, up to a factor of

√
logn,

a previously obtained constructive upper bound for the error
of approximation by one-bit polynomials in Bernstein form via
Σ∆ quantization where the functions are bounded by 1 and the
coefficients of the approximating polynomials are constrained to
be in {±1}.

I. INTRODUCTION AND STATEMENT OF THE MAIN
THEOREM

For any natural number n, let Bn := (pn,k)nk=0, where

pn,k(x) :=

(
n

k

)
xk(1− x)n−k, x ∈ [0, 1],

denote the Bernstein basis of order n for the linear space Pn of
polynomials of degree at most n, considered as a subspace of
real-valued functions on [0, 1]. Consider the “synthesis map”
Sn : Rn+1 → Pn associated with the Bernstein basis:

Snu :=

n∑
k=0

ukpn,k, u ∈ Rn+1. (1)

In recent work [1], it was shown that for every continuous
function f : [0, 1]→ [−1, 1] and for every positive integer n,
there exists a sign vector σ := (σ0, . . . , σn) ∈ {±1}n+1 such
that∣∣f(x)− (Snσ)(x)

∣∣ . ωf

( 1√
n

)
+ min

(
1,

1√
nX

)
, (2)

where ωf stands for the modulus of continuity of f and X :=
x(1−x). Here, An . Bn means An ≤ CBn for all n where C
is an absolute constant. When C depends on some parameter
α, we use the notation .α. In fact, a more refined version of
the bound (2) was shown in [1], but this refinement will not
be needed in this note.

The sign vector σ is computed constructively, in linear
time, from n + 1 regular samples of f on [0, 1] by means of
first-order Σ∆ quantization, which is a well-known analog-
to-digital conversion method. (See e.g. [5] for theory and

engineering applications.) Note that
∑
k pn,k = 1 so that

‖Snσ‖∞ ≤ 1, therefore ‖f‖∞ ≤ 1 is necessary for approx-
imability.

While the error bound (2) is not uniform in x, it offers
p-norm bounds on [0, 1] for all p < ∞. When p = 2 and
f : [0, 1]→ [−1, 1] is Lipschitz, it follows easily that∥∥f − Snσ∥∥2 .

|f |Lip√
n

+

√
log n

n
. (3)

The log n term is removable if ‖f‖∞ < 1. In this case, for
every µ < 1 and ‖f‖∞ ≤ µ, it is also shown in [1] that using
second order Σ∆ quantization yields∣∣f(x)− (Snσ)(x)

∣∣ .µ ωf (
1√
n

) + min

(
1,

1

nX

)
, (4)

and therefore ∥∥f − Snσ∥∥2 .µ
1 + |f |Lip√

n
. (5)

It is natural to ask if the 1/
√
n term above is tight in any

sense. The ε-capacity of the Lipschitz ball

L :=
{
f ∈ Lip([0, 1]) : ‖f‖∞ ≤ 1, |f |Lip ≤ 1

}
in Lp([0, 1]) is the logarithm (base 2) of the maximal number
of points that are ε-separated (with respect to ‖·‖p distance) in
L. (See [2] as well as [3], [6].) It is known that this number is
bounded below (as well as above, up to p-dependent constants)
by 1/ε, hence the covering radius of any set of N points is
at least of order 1/ log2N . In our setting, this means that we
cannot expect approximation of general f ∈ L by polynomials
of the form Snσ with accuracy better than 1/n. Hence there
is a gap, roughly of order 1/

√
n (depending on whether we

assume µ < 1 or µ = 1), between the achievable upper bound
in the 2-norm and this universal entropic lower bound.

However, using the entropic lower bound ignores the spe-
cific constraints of approximation using both one-bit coeffi-
cients and the Bernstein basis at the same time. How these two
constraints interact with each other is to be understood. There
is, in fact, a trivial obstruction to achieving high approximation
accuracy near the endpoints of [0, 1]: For any σ ∈ {±1}n+1,



we have |(Snσ)(0)| = |(Snσ)(1)| = 1. It can be checked
that the derivative satisfies ‖(Snσ)′‖∞ ≤ 2n, therefore we
have |(Snσ)(x)| ≥ 1/2 whenever min(x, 1 − x) ≤ 1/(4n),
implying that ‖Snσ‖2 ≥ 1/

√
8n. In other words, it is not

possible to approximate f = 0 to accuracy of order better
than 1/

√
n. A similar lower bound applies to any constant

function with its value in (−1, 1).
Even if we allowed for non-discrete coefficients, but still in

[−1, 1], the set of polynomials that are available for approxi-
mation is limited by the choice of the basis. Geometrically, the
problem is to understand the degree to which the parallelotope
Sn([−1, 1]n+1), or its vertices given by Sn({±1}n+1), can
approximate L.

For this purpose, given any n ∈ N, f : [0, 1] → R, and
U ⊂ Rn+1, let us define

En(f ;U)p := inf
u∈U

∥∥f − Snu∥∥p, (6)

which measures the error of best approximation to f from
Pn in the p-norm with coefficients in the Bernstein basis Bn
chosen from U . For a class of functions F , we define

En(F ;U)p := sup
f∈F

En(f ;U)p. (7)

With this notation, the above findings can be summarized as

n−1/2 . En(µL; {±1}n+1)2 .µ

{
n−1/2, µ < 1,
(n/ log n)−1/2, µ = 1.

Our result in this paper will show that the constructive upper
bound is actually tight up to a factor of log n even when the
coefficients are chosen without discretization from [−1, 1]. In
other words, as far as L is concerned, the discreteness of the
coefficients can only play a secondary role in influencing the
actual behaviour of En(L, {±1}n+1)2. In fact, our main result
given in Theorem 1 states that the above lower bound persists
over a much wider range of bounded (but otherwise arbitrary)
real-valued coefficients:

Theorem 1. For any α ≥ 0,

En(L, nα[−1, 1]n+1)2 &α
1√

n log n
. (8)

This result may seem surprising at first, but it is rooted in the
fact that, numerically speaking, the Bernstein basis can only
span a O(

√
n) dimensional space effectively. It was shown

in [1] that the ε-numerical rank of Bn, i.e. the number of
singular values sk of Sn that lie above εs0, is asymptotic to√

2n log(1/ε). More precisely, the singular values sk undergo
a phase transition at k ≈

√
n. When we prove our theorem in

the next section, we will make use of the specific distribution
of the singular values to quantify this phase transition.

II. THE PROOF OF THE MAIN THEOREM

A. Singular values and singular vectors of Sn
It was shown in [1] that Sn has the singular value decom-

position

Snu =

n∑
k=0

sk〈u, ϕk〉ψk (9)

where ψ0, . . . , ψn are the first n + 1 continuous Legendre
polynomials on [0, 1], ϕ0, . . . , ϕn are the discrete Legendre
polynomials on {0, . . . , n}, related by Snϕk = skψk, and the
singular values sk := sk(n) are given (in decreasing order) by

sk =

√
(n)k

(n+ k + 1)k+1
, k = 0, . . . , n.

Here (t)k := t(t−1) . . . (t−k+1) denotes the falling factorial
function with (t)0 = 1 and 〈·, ·〉 is the Euclidean inner-product
on Rn+1.

We recall that both families of Legendre polynomials
are orthonormal, the former in L2([0, 1]) and the latter in
L2({0, . . . , n + 1}) which is identified with Rn+1. It is
important to note that the ϕk depend on n, meanwhile the
ψk do not. By nature of their definition, we have

span(ψ0, . . . , ψk) = Pk

for all k.
It’s more convenient to work with the eigenvalues λk := s2k

of S∗nSn. The following is a simple upper bound:

Lemma 2. The eigenvalues λk of S∗nSn satisfy

λk ≤
e−k

2/(n+k)

n+ k + 1
, k = 0, . . . , n.

Proof. We have 1 − x ≤ e−x for all x ∈ R so that for all
j ≥ 0 we have

n− j
n+ k − j

≤ 1− k

n+ k
≤ e−k/(n+k).

Using this bound, it follows at once that

λk =
1

n+ k + 1

k−1∏
j=0

n− j
n+ k − j

≤ 1

n+ k + 1
exp(−k2/(n+ k)).

B. Proof of Theorem 1.

We proceed with the proof of Theorem 1. Suppose we are
given any f ∈ L2([0, 1]) and u ∈ Rn+1. For any m ≥ 0, let
Pm be the orthogonal projection operator onto Pm, which we
can express as

Pmf =

m∑
k=0

〈f, ψk〉L2ψk.

Since Pmf is the best L2-approximation to f from Pm, we
have

‖f −Pmf‖2 ≤ ‖f −Pm(Snu)‖2
≤ ‖f − Snu‖2 + ‖Snu−Pm(Snu)‖2. (10)

Notice that for 0 ≤ m ≤ n− 1

Snu−Pm(Snu) =

n∑
k=m+1

sk〈u, ϕk〉ψk



so that

‖Snu−Pm(Snu)‖22 =

n∑
k=m+1

s2k|〈u, ϕk〉|2 ≤ s2m+1‖u‖22.

Plugging this bound in (10), it follows that

‖f − Snu‖2 ≥ ‖f −Pmf‖2 − sm+1‖u‖2. (11)

It is important to note that this bound is valid for all f ∈
L2([0, 1]), u ∈ Rn+1, and 0 ≤ m ≤ n−1. Taking the infimum
of both sides over u ∈ U := nα[−1, 1]n+1 yields

En(f, nα[−1, 1]n+1)2 ≥ ‖f −Pmf‖2 − sm+1n
α
√
n+ 1

(12)
and further taking the supremum of both sides over f ∈ L
yields

En(L, nα[−1, 1]n+1)2 ≥ sup
f∈L
‖f−Pmf‖2−sm+1n

α
√
n+ 1.

(13)
We note that we are still free to choose m. We first seek

a simple lower bound on supf∈L ‖f − Pmf‖2 which will
then give us a suitable reference value to optimally choose
m. It will suffice to utilize the known bounds concerning
the Kolmogorov m-width dm(L)2 of the Lipschitz ball L
in L2([0, 1]) which is defined to be the infimum, over all
m-dimensional linear subspaces Xm ⊂ L2([0, 1]), of the
deviation of L from Xm given by

sup
f∈L

inf
g∈Xm

‖f − g‖2.

It is known (e.g. [3], [4]) that

dm(L)2 & m−1.

Hence we can immediately conclude that

sup
f∈L
‖f −Pmf‖2 & dm+1(L)2 &

1

m+ 1
. (14)

By Lemma 2, we know that

sm+1 ≤
e−(m+1)2/(4n)

√
n+ 1

,

hence injecting this bound and the bound (14) into (13), we
obtain

En(L, nα[−1, 1]n+1)2 &
1

m+ 1
− nαe−(m+1)2/(4n). (15)

Setting m + 1 = dC
√
n log ne where C ≥ 2

√
α+ 1, we get

that
nαe−(m+1)2/(4n) ≤ nα−C

2/4 ≤ n−1

so that

En(L, nα[−1, 1]n+1)2 &α
1√

n log n
(16)

for all sufficiently large n.

III. EXTENSIONS AND DISCUSSION

It is evident from the proof of Theorem 1 in Section II-B
that the result is immediately generalizable to other function
classes for which the m-widths are known, as the main lower
bound (12) is valid for any function. The Lipschitz ball is
the same as the class B1

∞, the unit ball of the Sobolev space
W 1
∞([0, 1]) defined by absolutely continuous functions with

derivative in L∞([0, 1]). Analogously, the class Brp is defined
via the Sobolev space W r

p ([0, 1]), r ∈ N+. For this class, the
m-width dm(Brp)2 is known (see [3], [4]) to be equivalent to
m−r with constants that depend on r and p. Hence a similar
selection of m �

√
n log n as done above yields

En(Brp, n
α[−1, 1]n+1)2 &α,r,p

1

(n log n)r/2
. (17)

The method of Σ∆ quantization was also applied to func-
tions of higher regularity in [1], and non-uniform pointwise
error bounds that reflect additional smoothness were obtained.
For example, it was shown that if f ∈ Br∞ for r ≥ 2 and
‖f‖∞ ≤ µ < 1, then there exists σ ∈ {±1}n+1 such that

|f(x)− (Snσ)(x)| .µ,r ‖f‖W r
∞
n−r/2 + min(1, X−rn−r/2)

(18)
for all n & ‖f (2)‖∞/(1 − µ). While no method can produce
high accuracy over all of [0, 1] due to the constraints near the
endpoints, these pointwise upper bounds provide much faster
decay guarantees for the approximation error on compact
subintervals [δ, 1− δ] ⊂ (0, 1).

Returning to lower bounds, the methods and analysis in this
paper relied significantly on the 2-norm. We leave the case of
other p-norms for future work.
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