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ABSTRACT

Despite the success of Deep Neural Networks (DNNs) in ophthalmic tasks, their
robustness in real-world clinical settings remains uncertain. This paper presents
a case study on the semantic robustness of DNN models for colour fundus imag-
ing. We first introduce a novel optimisation algorithm, DIRECT-LSR, to identify
worst-case robustness against clinically relevant semantic perturbations, including
geometric transformation, illumination distortion, and motion blur. Our method
provides a reliable lower bound with theoretical guarantees, enabling a practi-
cal black-box robustness validation approach. Evaluating various commonly used
DNN models on colour fundus datasets, we demonstrate their vulnerability to
semantic perturbations, particularly geometric transformations that drastically re-
duce model accuracy despite preserving clinically relevant features. As a sec-
ondary contribution, we show that a randomised data augmentation strategy can
serve as an effective and accessible defence mechanism to improve models’ relia-
bility. However, since the performance gaps between clean and perturbed images
persist, our results also highlight the need for more advanced defences in future
work, offering insights for developing more reliable artificial intelligence systems.

1 INTRODUCTION

Medical diagnosis is a safety-critical task that requires Artificial Intelligence (AI) models to be both
reliable and trustworthy. However, Deep Neural Network (DNN)-based AI models are known to be
highly sensitive to various perturbations (Goodfellow et al., 2014; Wang et al., 2023b; Baek et al.,
2024; Luo et al., 2024), raising concerns about their robustness in real-world clinical settings (Javed
et al., 2025). In this work, we conduct a case study on the reliability of DNN models in Colour
Fundus Photography (CFP), a cornerstone of ophthalmology for diagnosing a wide range of eye
diseases (Grzybowski et al., 2024). Recent DNN models have demonstrated strong performance
in CFP-based diagnosis (Grzybowski et al., 2024; Weng et al., 2024) and image quality assess-
ment (Shen et al., 2020), yet their robustness under clinically realistic perturbations lacks compre-
hensive validation. The conventional approach to evaluating robustness involves formulating the
generation of perturbations as an optimisation problem, thereby identifying worst-case examples to
test a model’s performance. (Goodfellow et al., 2014; Wang et al., 2023b). Yet this line of work faces
fundamental challenges in CFP. First, algorithmic perturbations, especially pixel-level noise (Madry
et al., 2018), rarely correspond to any biological or imaging artefact, limiting their clinical plausi-
bility (Bortsova et al., 2021). Second, authentic distortions in fundus imaging arise from various
factors, such as lens artefacts, eye movement, and device noise, resulting in complex perturbations
that are difficult to formulate and optimise (Shi et al., 2022). Third, despite attempts to introduce
semantic perturbations in medical imaging (Zhang et al., 2022b), there is still no principled frame-
work for evaluating worst-case robustness under clinically relevant distortions. Existing approaches
often rely on randomly generated natural corruptions (Hendrycks et al., 2019), which may preserve
some realism but fail to capture worst-case perturbations.

To address these gaps, we propose a practical framework for evaluating the semantic robustness of
DNN models in CFP tasks. As shown in Fig. 1, our approach focuses on three typical distortions
in CFP images acquisition, including geometric transformations, illumination distortions, and mo-
tion blur, from an adversarial perspective. Methodologically, we introduce DIRECT-LSR, which
combines DIRECT optimisation (Jones et al., 1993; Gablonsky, 2001) and the Least Squares Re-
gression (LSR) estimation (Huang et al., 2023). Compared to first-order optimisation (Madry et al.,
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Figure 1: Semantic perturbation examples across four tasks: image quality assessment (EYEQ), DR
grading (EYEPACS), and AMD/glaucoma diagnosis (AREDS/GLC). Model predictions on original
images and perturbed images are shown in green and red, respectively.

2018) used for adversarial attacks, which is ineffective for optimising geometric perturbations and
often performs worse than random search (Engstrom et al., 2019), DIRECT-LSR efficiently identi-
fies near-optimal perturbations while providing provable lower-bound estimates of worst-case model
performance. In contrast to formal verification approaches (Balunović et al., 2019; Mohapatra et al.,
2020), DIRECT-LSR offers a practical black-box alternative that scales to diverse DNN architectures
While, in theory, DIRECT-LSR could achieve sound verification given sufficiently many queries,
such guarantees cannot be ensured under limited query budgets. Regarding the CFP-related tasks,
we consider four common scenarios, including Diabetic Retinopathy (DR) grading (Weng et al.,
2024), the diagnosis of Age-related Macular Degeneration (AMD) (Pirbhai et al., 2005) and glau-
coma (Ting et al., 2017), and image quality check (Shen et al., 2020). To ensure clinical plausibility,
we work with ophthalmic experts to assess the perturbed CFP images and to define semantically
meaningful perturbation strengths that align with real-world conditions and human perspective.

Our experimental results show that semantic perturbations significantly reduce the accuracy of var-
ious model architectures, with geometric transformations having a more notable negative impact
than illumination distortion and motion blur. Intriguingly, two ophthalmic experts, when examining
the same perturbed images, found that geometric transformations had only a minor effect on their
clinical validation, while severe illumination and motion blur may obscure key diagnostic features.
This finding highlights the discrepancy between the models’ vulnerability and human perception
and enables the alignment between our algorithmic evaluation and clinical reality.

In summary, we present a case study on the semantic robustness of DNN models for colour fun-
dus imaging. On the methodological side, we propose a novel variant of DIRECT optimisation,
namely DIRECT-LSR, which incorporates local least squares regression to estimate local Lipschitz
constants. Furthermore, as shown in Table 2, we find that a randomised data augmentation strategy
can substantially enhance the reliability of DNN models against semantic perturbations. While the
enhanced models demonstrate strong verified robustness against illumination distortions, achieving
similar robustness under geometric transformation and motion blur remains challenging. This high-
lights the need for more effective, domain-specific defence strategies to ensure the clinical reliability
of AI systems.

Related Works The robustness and reliability of AI models for medical tasks have received in-
creasing attention in recent years. While much work has focused on adversarial robustness (Goodfel-
low et al., 2014; Madry et al., 2018) in medical diagnosis (Javed et al., 2025) and segmentation (Cho
et al., 2023; Luo et al., 2024; Wang et al., 2023a), robustness to semantic perturbations, e.g., geomet-
ric transformations, illumination changes, and blur, is arguably more relevant to real-world clinical
practice (Shi et al., 2022). Existing studies show that semantic corruptions naturally occurring dur-
ing image acquisition can substantially degrade the performance of colour fundus imaging models
in real-world settings (Shi et al., 2022; Zhang et al., 2024). However, to the best of our knowledge,
there has been no systematic investigation of semantic robustness for fundus photography models.

On the methodology side, early work by Hendrycks et al. (2019) studied robustness to natural se-
mantic corruptions using randomly generated perturbations. Originally proposed for ImageNet, this
idea has since been adopted in domain-specific settings, including autonomous driving (Kong et al.,
2023; Xie et al., 2023) and medical image classification (Zhang et al., 2022b). However, these ap-
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proaches rely on randomly perturbed datasets and therefore cannot meaningfully assess worst-case
robustness (Hendrycks et al., 2019; Zhang et al., 2022b). Achieving verified semantic robustness
remains challenging: white-box verification methods (Zhang et al., 2018; Balunović et al., 2019;
Mohapatra et al., 2020; Wang et al., 2021; Batten et al., 2024; Brückner & Lomuscio, 2025) struggle
with semantic perturbations and scale poorly to large models, while randomised smoothing (Li et al.,
2021; Hao et al., 2022) offers only probabilistic guarantees and cannot identify worst-case errors.
More recently, black-box optimisation has emerged as a promising alternative, enabling the genera-
tion of pixel-level and geometric perturbations to evaluate the robustness of DNN classifiers (Wang
et al., 2023b).

2 PRELIMINARY

This section formulates the optimisation problem for semantic perturbations and introduces the se-
mantic perturbations.

Problem Formulation Given an input image x ∈ RV×W×3 with resolution V × W and three
colour channels, along with its label y ∈ {1, . . . , C}, our goal is to find the optimal semantic
perturbation Pθ that changes the prediction of x from a well-trained classifier F : RV×W×3 → RC .
The objective function L(θ;F, x, y) : Rn → R in semantic robustness evaluation can be written as

L(θ;F, x, y) = F (Pθ(x))y − max
c∈{1,...,C}\{y}

F (Pθ(x))c, (1)

where the margin loss (Carlini et al., 2017) is adopted due to its sensitivity to the correctness of
the model’s prediction. Finding the optimal perturbation can then be formulated as a minimisation
problem given by

θ∗ = argminθ∈Θ L(θ;F, x, y), (2)
where Θ is a n-dimensional bounded perturbation space that contains all feasible setting θ. Notably,
if L(θ∗;F, x, y) > 0, we can conclude that the model F was not fooled by perturbation Pθ∗ on the
paired image and label (x, y), proving the model’s robustness.

Semantic Perturbations To ensure both clinical relevance and mathematical tractability, we fo-
cus on three representative perturbations that continuously challenge retinal diagnosis, i.e., geo-
metric transformations (Adal et al., 2015), illumination distortion (Mitra et al., 2018), and motion
blur (Williams et al., 2017). In practice, we introduce a parameter γ to control perturbation strength,
with the bounds of each perturbation summarised in Table 1.

Geometric transformations are implemented via the intrinsic matrix on the pixel coordinates. For
example, a pixel located at (xj , yj) in the original image x is mapped to (x′i, y

′
i) in the perturbed

variant x′ as [
x′j
y′j

]
=

[
θhors · cos θr −θvrts · sin θr θhort

θhors · sin θr θvrts · cos θr θvrtt

]
[xi, yi, 1]

⊤. (3)

Here, θr represents the rotation angle, and we denote θhors and θvrts as the scaling factors, θhort and
θvrtt as the shifting factors, where the superscripts hor and vrt indicate the horizontal and vertical
directions, respectively.

Illumination distortion in colour fundus imaging would be inevitable due to hardware variation and
lighting conditions. We simulate the illumination changes in CFP images by adjusting the bright-
ness and contrast. Brightness is commonly modified in the HSV colour space by shifting the bright-
ness channel xbrt with θbrt (Mohapatra et al., 2020; Zhang et al., 2022a), which can be written as
min(max(xbrt + θbrt, 0), 1). The contrast adjustment is performed in the RGB colour space by
scaling with θcnt (Zhang et al., 2022a), and this perturbation is given by min(max(x · θcnt, 0), 1).In
line with Retinex theory (Jobson et al., 1997), we sequentially apply brightness and contrast modi-
fications to generate complex photometric distortions that partially mimic human visual adaptation
to illumination changes.

Motion Blur is a common distortion in real-world CFP imaging, typically caused by relative move-
ment between the patient’s eye and the camera. We model motion blur as a convolution with a
directional blur kernel (Riba et al., 2020). Specifically, the kernel is constructed by embedding a 1-
D weight vector w of length θks. The elements of w are given by wi = d+ (1− 2d)/(θks − 1) · i,

3
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Table 1: The bounds of each perturbation factor.

Perturbation Hyperparameters

Geometric θvrts , θhors ∈ [−γ, γ], θr ∈ [−γπ, γπ] θvrtt , θhort ∈ [1− γ, 1 + γ],

Illumination θbrt ∈ [−γ, γ], θcnt ∈ [1− γ, 1 + γ]

Motion Blur θks = γ, θang ∈ [−π, π], θdir ∈ [−1, 1]

where d = (θdir + 1)/2. This vector is then embedded into the centre of a θks × θks matrix, subse-
quently rotated by an angle θang , and finally normalised. In practice, we fix the blur kernel size θks

and optimise its angle θang and direction θdir to maximise impact on the target models.

3 VALIDATION VIA DETERMINISTIC OPTIMISATION

This section outlines the DIRECT optimisation for robustness validation and introduces a novel
lower-bound estimation method based on local least squares regression.

3.1 DIRECT OPTIMISATION OVERVIEW

DIRECT is a gradient-free global optimisation method. The algorithm iteratively trisects the
normalised search space Θ and locates Potential Optimal (PO) partitions for further explo-
ration (Gablonsky, 2001). We denote the PO partition by P and the maximum divide level by H ,
i.e., the maximum number of trisections allowed per dimension. We write σi as a short-hand of
σ(Θi) = ∥Θi∥p, representing an Lp norm of Θi and let σH denote the smallest partition size, where
each dimension reaches the maximum divide level.

Consider a PO partition Θi at level h < H , which has m ∈ N≤n dimensions with side length 3−h

and n−m dimensions with side length 3−h−1. The algorithm samples two points along each of the
m dimensions with longer edges, given by θi± 3−h−1ej , for j ∈ {1, . . . ,m}, where θi ∈ Rn is the
centre of Θi and ej is a unit vector along j-th dimension. These sampled points are then queried,
and the DIRECT algorithm divides the partition based on the obtained results.

Lemma 1. (Gablonsky, 2001) Given the index set H and a positive tolerance τ > 0. Let Lmin

denote the current best query result. Let Hp
1 = {q ∈ H : σq < σp}, Hp

2 = {q ∈ H : σq > σp} and
Hp

3 = {q ∈ H : σq = σp}. A hyperrectangle Θp is said to be potentially optimal if

L(θp) ≤ L(θq), ∀q ∈ Hp
3, (4)

and there is a K̃ > 0 such that

maxq∈Hp
1

L(θp)−L(θq)
σp−σq ≤ K̃ ≤ minq∈Hp

2

L(θq)−L(θp)
σq−σp , (5)

and
τ · |Lmin| ≤ Lmin − L (θp) + σp minq∈Hp

2

L(θq)−L(θp)
σq−σp . (6)

As shown in Lemma 1, DIRECT employs three criteria to identify PO partitions. Eq. (4) selects
partitions that yield the lowest objective value among those of equal size, ensuring that the current
best-performing regions are retained. Eqs. (5) and (6) further filter the selected partitions based on
their potential to yield improved solutions, balancing between exploration of unexplored regions
and exploitation of promising areas. This strategy enables DIRECT to efficiently allocate sampling
efforts across the search space and progressively refine the solution. We defer the pseudocode to
Alg. 1 in the appendix and refer readers to Jones et al. (1993) and Gablonsky (2001).

More recently, Wang et al. (2023b) modified the DIRECT algorithm for robustness evaluation by
introducing a lower-bound estimation of the objective function defined in Eq. (1). Their method
computes the slope K̂ between the centre and newly sampled points at each PO partition. The
slopes along a single dimension are given by

K̂i+
j =

|L(θi)−L(θi+
j )|

3−h−1 and K̂i−
j =

|L(θi)−L(θi−
j )|

3−h−1 , (7)

4
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1st iteration 5th iteration 10th iteration 50th iteration… … …

Figure 2: An illustration of DIRECT-LSR on test function: f(z) = 1
2 (sin(13z) sin(27z) + 1),

where z ∈ [0, 1]. The partitions are indicated by dashed vertical lines, and the local least squares
regressions are shown as the red lines.

where θi+j and θi−j denote θi ± 3−h−1ej , respectively. Then the local slope K̂i of θi is updated as

K̂i = max{K̂+
i,1, K̂

−
i,1, . . . , K̂

+
i,m, K̂−

i,m}. (8)

Let I be a set of the indices of all partitions. The lower bound of the global minimum is estimated
using the found optima θo = argmini∈IL(θi) and the largest recorded slope K̂max = maxi∈I K̂

i,
leading to the bound as following:

L̂min = L(θo)− K̂maxσo. (9)

3.2 LOCAL LEAST SQUARES REGRESSION ESTIMATION

While using the largest slope to estimate the lower bound of the objective is practical, this approach
does not provide any guarantees on the tightness or soundness of the resulting bound. To address
this limitation, we propose a variant of the DIRECT optimisation algorithm that incorporates Least
Squares Regression (LSR) to estimate the local Lipschitz constants (Huang et al., 2023), namely
DIRECT-LSR. We conduct LSR after evaluating the sampled points at each PO partition. At any PO
partition Θi with m dimensions selected for trisection, DIRECT-LSR refines the sampled points by
projecting them onto the hyperplane spanned by the sampled dimensions. Specifically, each point is
refined as θ̃ = Im · θ, where θ ∈ Rn and Im ∈ Rm×n is a projection matrix. Each row of Im is a
one-hot vector corresponding to one of the selected dimensions. Then DIRECT-LSR constructs the
design matrix Xi ∈ R(2m+1)×(m+1) as

Xi =

[
1 1 1 · · · 1 1

θ̃i θ̃i+1 θ̃i−1 · · · θ̃i+m θ̃i−m

]⊤
, (10)

and observation vector y ∈ R2m+1 as

yi =
[
L(θi) L(θi+1 ) L(θi−1 ) · · · L(θi+m ) L(θi−m )

]⊤
. (11)

Here, the dimensionality of Xi and yi is adaptively determined by the number of dimensions being
divided within the partition Θi. Based on the design matrix and observation vector, the local LSR
can be written as

[bi, βi] = (Xi⊤Xi)−1Xi⊤yi, (12)
where [bi, βi] ∈ Rd+1 are the regression coefficients associated with partition Θi. Since bi ∈ R
denotes the intercept, a local Lipschitz constant can be estimated as K̂i = ∥βi∥p, and the lower
bound estimation can be written as

L̂min = mini∈I
(
L(θi)− K̂iσi

)
. (13)

To provide intuition, we visualise the behaviour of DIRECT-LSR on a 1-D test function in Fig. 2.

3.3 CONVERGENCE ANALYSIS

Begin with a mild smoothness assumption, we assume the objective function L is differentiable and
its second-order partial derivatives are upper-bounded.
Assumption 1. The objective functionL is differentiable over the n-dimensional perturbation space
Θ, and, for any i, j ∈ {1, . . . , n} and θ ∈ Θ, we have

∣∣∣ ∂L(θ)
∂θi∂θj

∣∣∣ ≤ κ.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Building on the sample complexity analysis from Huang et al. (2023), we can derive a bound that
relates the number of samples to the gap between the estimated and real Lipschitz constant. As
stated in Theorem 2, for each PO partition Θi with m ∈ N≤n dimensions under trisection, the LSR
is performed on an m-dimensional hyperplane. Note that DIRECT samples and queries 2m points
in Θi, so, including the centre point, the total number of samples is 2m+ 1.

Theorem 2 (Sample Complexity (Huang et al., 2023)). Consider a n-dimensional PO partition
Θi ∈ Θ with m dimensions selected for trisection and suppose the objective L satisfies Assump-
tion 1. Then the gap between the estimated local Lipschitz constant K̂i and the best Lipschitz
constant Ki∗ can be quantified as

|K̂i −Ki∗| ≤ C κ∥Θi∥∞
m
√
2m+1

, (14)

where C is a constant and ∥ · ∥∞ represents the L∞ norm.

Theorem 2 provides a preliminary bound on this estimation gap that can be further simplified. As
described in Corollary 1, ∥Θi∥∞ can be replaced by 3−h according to the space trisection process
of DIRECT. Because 3 ≥ m

√
2m+ 1 ≥ 1 holds for m ≥ 1, we have C κ3−h

m
√
2m+1

≤ Cκ3−h. Besides,

following the practice in Huang et al. (2023), we let the constant C = (20m
1
p−

1
2 )−1 in Eqs. (14)

and (15), where p denotes the Lp norm used to compute the partition size σ.

Corollary 1. Consider a n-dimensional PO partition Θi ∈ Θ at level h with m dimensions selected
for trisection and suppose the objective L satisfies Assumption 1. The gap between the estimated
local Lipschitz constant K̂i and the best Lipschitz constant Ki∗ can be quantified as

|K̂i −Ki∗| ≤ Cκ3−h. (15)

According to Corollary 1, the estimated Lipschitz constant converges exponentially to the true Lip-
schitz constant with respect to the divide level, i.e., limh→∞ Cκ3−h = 0. While we introduce H to
control the search granularity, setting H = 6 already yields an error bound on the order of 10−3.

4 EMPIRICAL STUDIES

Our experiments include three parts: (1) Evaluating the effectiveness of DIRECT-LSR in estimating
reliable lower bounds; (2) Assessing the impact of semantic perturbations across varying strengths,
including comparisons with baseline methods and expert validation on perturbed images; (3) Bench-
marking the semantic robustness of DNNs on CFP tasks, with additional comparison on randomised
data augmentation for robustness improvement.

4.1 GENERAL SETUP

Datasets For CFP-related tasks, we consider one quality assessment task and three representative
diagnostic tasks in common ophthalmic scenarios that rely on CFP as the primary imaging reference:
(1) Image quality assessment on EYEQ dataset (Shen et al., 2020) with C = 3 classes (Reject,
Usable, Good); (2) Diabetic retinopathy (DR) grading on EYEPACS dataset (Dugas et al., 2015)
with C = 5 levels (No, Mild, Moderate, Severe, Proliferative); (3) Age-related macular degeneration
(AMD) classification (C = 2) using the first and last visit of participants in AREDS study (Group
et al., 1999), identifying AMD severity into non-advanced and advanced AMD (Davis et al., 2005;
Bridge et al., 2021); (4) Glaucoma classification (C = 2) using a combined dataset GLC based on
five clinical studies (Islam et al., 2021; Zhang et al., 2010; De Vente et al., 2023; Bajwa et al., 2020;
Orlando et al., 2020). The details of each datasets are summarised in the appendix (Table 3).

DNN models We evaluate four model architectures as targets: three convolutional backbones, i.e.,
ResNet50 (He et al., 2016), EfficientNet (Tan & Le, 2019), and DenseNet (Huang et al., 2017),
and a pure Transformer model (RetFound (Zhou et al., 2023)). On each CFP dataset, we fine-tune
the target models for 80 epochs using the Adam optimiser Kingma (2014) with a learning rate of
0.0005. For RetFound, we only train the final layer on each dataset, whereas we fine-tune the entire
convolutional models. During fine-tuning, the checkpoints achieving the highest test-set F1 score
are selected, and their performance on the clean datasets is reported in the appendix (Table 4).

6
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Figure 3: Visualising the lower bound estimates derived from the proposed Least Squares Regression
(LSR) method. Evaluations are performed on two tasks: (a) minimisation of the 3D Schwefel
function, and (b) optimisation of geometric perturbations on the first image from the EYEPACS test
set, targeting the RetFound model.
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Figure 4: Accuracy of ResNet50 on perturbed CFP images, with distortions optimised by DIRECT-
LSR, first-order gradient descent, Bayesian, and random search. The dark line indicates expert
validation of preserved clinical features.

4.2 ESTIMATED LOWER BOUND AND DIVIDE LEVEL

In this experiment, we compare the lower bounds estimated by DIRECT-LSR (Eq. (13)) with those
obtained using the approach of Wang et al. (2023b) (Eq. (9)). The comparison is conducted on two
tasks, which are the minimisation of the 3D Schwefel function with a known global minimum of 0
and the optimisation of geometric perturbations on an EYEPACS test image against the RetFound
model. As illustrated in Fig. 3, while both methods eventually reach similar minima, the LSR-based
estimates are consistently tighter and more stable across both tasks. We also compare the results
under different maximum levels H ∈ 5, 6, 7. As shown in Fig. 3b, the found minima at H = 5
are consistently worse than those obtained at H = 6 and H = 7, indicating insufficient search
granularity. In contrast, the results for H = 6 and H = 7 are nearly identical, suggesting that
increasing the level beyond 6 yields diminishing returns. Therefore, we set H = 6 as the default,
offering a reliable and efficient trade-off for subsequent evaluations.

4.3 PERTURBATION IMPACT AND BASELINE COMPARISON

In this experiment, we compare the DIRECT-LSR to baseline methods and evaluate the target mod-
els’ semantic robustness at different perturbation strengths. The geometric and illumination per-
turbations are carried out at γ ∈ {0.05, 0.1, 0.15, 0.2}. The kernel size of motion blur is set to
γ ∈ {3, 5, 7, 9}. We conduct experiments on 50 uniformly sampled images from each of the four
CFP tasks, applying three types of semantic perturbations at varying strengths. The target model here
is the ResNet50. We perform DIRECT-LSR optimisation with up to 2000 queries, using H = 6.
The average runtime is approximately 4.2 seconds per example. For comparison, we evaluate three
additional baselines: Bayesian optimisation, random search, and a first-order adversarial attack.
Bayesian optimisation uses the expected improvement acquisition function (Frazier, 2018) and re-
quires additional runtime to update the Gaussian process surrogate model, averaging 95.7 seconds
per example. Random search is performed with 2000 queries, returning the best result among the
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Table 2: Semantic robustness benchmark on CFP tasks. All models share the same training setup;
models marked “+ Aug.” additionally apply random semantic perturbation as data augmentation.
Best results are in bold.

Model Metric
EYEQ EYEPACS AREDS GLC

Clean Geo. Illu. MB Clean Geo. Illu. MB Clean Geo. Illu. MB Clean Geo. Illu. MB

Retfound
Acc. 0.896 0.148 0.488 0.18 0.808 0.438 0.71 0.622 0.948 0.184 0.842 0.844 0.894 0.42 0.616 0.63

L̂min > 0 / 0.108 0.48 0.002 / 0.042 0.71 0.004 / 0.114 0.842 0.064 / 0.18 0.616 0.004

RetFound Acc. 0.872 0.596 0.696 0.788 0.802 0.56 0.742 0.748 0.94 0.662 0.872 0.874 0.886 0.488 0.68 0.792
+ Aug. L̂min > 0 / 0.386 0.696 0.064 / 0.3 0.742 0.102 / 0.292 0.872 0.017 / 0.28 0.68 0.072

ResNet50
Acc. 0.912 0.116 0.51 0.156 0.77 0.0 0.39 0.398 0.952 0.258 0.898 0.88 0.928 0.218 0.866 0.82

L̂min > 0 / 0.054 0.508 0.034 / 0.0 0.386 0.0 / 0.0 0.898 0.006 / 0.004 0.86 0.006

ResNet50 Acc. 0.898 0.428 0.744 0.83 0.838 0.356 0.646 0.758 0.936 0.658 0.906 0.908 0.956 0.476 0.902 0.89
+Aug. L̂min > 0 / 0.208 0.744 0.112 / 0.092 0.644 0.028 / 0.184 0.902 0.16 / 0.028 0.9 0.024

EfficientNet
Acc. 0.896 0.136 0.724 0.164 0.786 0.0 0.24 0.416 0.938 0.238 0.896 0.806 0.936 0.264 0.868 0.676

L̂min > 0 / 0.024 0.724 0.014 / 0.0 0.238 0.0 / 0.0 0.896 0.002 / 0.002 0.868 0.002

EfficientNet Acc. 0.882 0.518 0.534 0.77 0.852 0.43 0.596 0.768 0.942 0.698 0.92 0.926 0.946 0.554 0.894 0.88
+ Aug. L̂min > 0 / 0.228 0.534 0.084 / 0.134 0.584 0.034 / 0.13 0.92 0.226 / 0.176 0.894 0.052

DenseNet
Acc. 0.9 0.136 0.73 0.16 0.784 0.01 0.632 0.572 0.948 0.406 0.896 0.876 0.94 0.188 0.86 0.788

L̂min > 0 / 0.054 0.73 0.046 / 0.0 0.632 0.0 / 0.086 0.896 0.07 / 0.0 0.86 0.002

DenseNet Acc. 0.898 0.422 0.702 0.86 0.828 0.31 0.718 0.758 0.944 0.674 0.908 0.914 0.964 0.45 0.9 0.886
+ Aug. L̂min > 0 / 0.242 0.702 0.128 / 0.066 0.716 0.036 / 0.414 0.908 0.456 / 0.114 0.9 0.082

sampled perturbations. Its average runtime is 4 seconds per example. Finally, we implement a first-
order adversarial attack similar to projected gradient descent (Madry et al., 2018), using 50 iterations
with a step size equal to one tenth of the available perturbation range, resulting in an average runtime
of 0.35 seconds per example. While the first-order attack is faster than DIRECT-LSR and random
search in terms of runtime, it requires access to the models’ parameters and GPUs for backpropa-
gation. In alignment with clinical practice, two ophthalmic experts evaluate whether the perturbed
CFP images preserved essential features required for diagnosis. We provide an illustration of the
marking interface in the appendix. The results are summarised in Fig. 4.

DIRECT-LSR vs. baselines We can observe from Fig. 4 that DIRECT-LSR consistently identifies
stronger semantic perturbations than baseline methods, while also exhibiting greater stability across
tasks. Random search performs competitively at lower distortion levels but exhibits high variabil-
ity. First-order adversarial attacks achieve strong results in certain tasks but remain unstable across
datasets and perturbation types. Due to the lack of a convergence guarantee, both random search
and first-order attack may achieve worse performance as γ increases. Bayesian optimisation, on
the other hand, often fails to locate effective perturbations, highlighting its limitation in optimising
the semantic perturbation. Notably, we find that the first-order attack, commonly used to evaluate
robustness against pixel-level perturbations (Madry et al., 2018), consistently performs worse than
simple random search. This observation is consistent with Engstrom et al. (2019), which reported
that random search can outperform first-order attacks under geometric perturbations. Our results
further show that this phenomenon also occurs under illumination and motion-blur perturbations.

Perturbation Effectiveness All perturbations show a strong negative impact on the target models’
accuracy as γ increases. Geometric perturbations cause the most significant drop in performance
across all tasks. It drops the model’s accuracy to zero on the EYEPACS dataset. Illumination pertur-
bations notably affect the models’ performance on EYEQ, EYEPACS, and GLC. Motion blur leads
to relatively mild performance degradation on AREDS, EYEPACS, and GLC, and shows a compa-
rable impact to geometric perturbations on EYEQ, highlighting the task and model-specific sensitiv-
ities. In addition, the grey solid line (D.LSR LB) indicates the number of examples with a positive
estimated lower bound. As the perturbation strength increases, this line consistently drops across
datasets and distortion types, reflecting the growing difficulty of maintaining robustness guarantees
under stronger perturbations. Compared to accuracy curves, the grey line provides a complementary
view of model reliability, highlighting cases where robustness cannot be certified even if empirical
accuracy remains moderate, especially with the geometric perturbation and motion blur.

Expert Validation To align with clinical practice, we invite two ophthalmic experts to assess the
perturbed CPF images. Each expert reviews the perturbed images and determines whether key
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(b) Semantic augmentation training setup

Figure 5: Averaged prediction transition matrices on the EYEQ (image quality check) dataset com-
paring (a) standard and (b) augmented training strategies. The matrices show how models’ predic-
tions change under illumination, motion blur, and geometric perturbations. The labels 0, 1, and 2
correspond to good, usable, and rejected image quality, respectively. All values are row normalised.

diagnostic features are sufficiently preserved to support the original clinical label. As illustrated
by the dark solid lines in Fig. 4, notable degradations are observed only under strong illumination
distortions and motion blur. In contrast, even at maximum strength, geometric perturbation causes
only marginal reductions in expert agreement, with illumination and motion blur at medium strength
producing similarly minor effects.

4.4 BENCHMARK SEMANTIC ROBUSTNESS

In this experiment, we evaluate the robustness of CFP models. For testing, 500 samples are uni-
formly selected from the test set of each dataset. Based on expert assessments, the perturbation
strengths are set to 0.2 for geometric transformations, 0.1 for illumination changes, and 5 for mo-
tion blur. While the finetuning setup remains unchanged, we introduce a simple data augmentation
strategy that randomly applies valid semantic perturbations to training examples to examine whether
semantic robustness can be improved (detailed in the Appendix). As reported in Table 2, we report
both model accuracy and the proportion of examples with a positive lower bound.

We can see that all models exhibit substantial gains in robustness when trained with data augmen-
tation. While the enhanced RetFound model exhibits the most noticeable robustness improvement
on EYEPACS, convolution models actually achieve comparable and even better performance on
other datasets. The superior performance of convolution models aligns with the finding of Zhu et al.
(2024), which suggests that convolutional neural networks can outperform Vision Transformers on
CFP datasets. However, since performance gaps remain, particularly under geometric perturbations,
semantic robustness continues to pose a significant challenge, indicating that simple data augmenta-
tion alone is insufficient to resolve the problem.

On the other hand, robustness under illumination perturbations is easier to validate, with most cor-
rectly classified examples in both original and augmented models achieving a positive lower bound.
However, for geometric and motion blur perturbations, only a few examples obtain a positive lower
bound. This may be attributed to the fact that illumination distortions only introduce uniform pixel-
level changes, and the inherent variability in lighting conditions within CFP encourages models to
learn illumination-invariant features. In contrast, the tested models appear to be more sensitive to
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geometric transformations and motion blur, even under clinically meaningful perturbation settings,
making robustness validation more challenging. The vulnerability to geometric transformations may
be attributed to insufficient variability in spatial configurations within the training data, whereas mo-
tion blur may obscure critical diagnostic features essential for accurate prediction.

Additionally, we conduct a case study on the EYEQ dataset for the image-quality assessment task,
while the remaining analyses are deferred to the appendix. Fig. 5 visualises the averaged prediction
transition caused by different semantic perturbations across all models. Among three perturbations,
the illumination perturbation produces the mildest changes, indicating that global brightness fluctu-
ations do not strongly affect the learned features. Motion blur, on the other hand, severely affects
the standard trained models, where 92% of usable images are downgraded to rejected. Because our
previous expert assessment shows that the motion blur at this level would not compromise clini-
cal usability, this phenomenon suggests the standard trained models may have overfit to imaging
sharpness and learnt to rely on blur as a rejection cue. For Geometric transformations, the standard
trained models exhibit the problematic flip, where 35% of rejected images are classified as usable.
This counterintuitive shift shows that the standard trained model may rely on unstable features that
are easily disturbed by geometric perturbations, making the perturbed images’ quality even appear
“better.” As shown in Fig. 5b, semantic augmentation generally improves the trained models’ robust-
ness. While the augmented models still show some sensitivity to motion blur, where many “good”
images are considered as “usable”, they are more stable under most settings, showing stronger diag-
onal patterns in the transition matrices. Compared with the standard trained models, they produce
fewer inconsistent label flips, demonstrating the practical benefit of semantic augmentation for train-
ing clinically reliable models.

5 CONCLUSION AND DISCUSSION

Summary. This work presents a principled and clinically informed study on the semantic robustness
of AI models in colour fundus imaging. We propose an optimisation-based framework for worst-
case robustness evaluation under clinically relevant perturbations. Centred on the DIRECT-LSR
solver, our method can achieve a tighter and more stable lower bound estimation with theoretical
guarantees than existing approaches. To ensure clinical relevance, ophthalmic experts were engaged
to assess perturbed images and guide the choice of meaningful perturbation strengths. Experiments
across four colour fundus imaging tasks reveal that semantic perturbations can substantially degrade
performance, even for domain-specific foundation models like RetFound. While a randomised data
augmentation strategy effectively enhances robustness without sacrificing accuracy on clean data,
semantic robustness remains an open challenge that requires further systematic investigation and
more advanced defence methods.

Limitations. While we introduce three optimisable semantic perturbations, certain real-world dis-
tortions (e.g., lens artefacts) are not included, as they remain difficult to model and optimise. In ad-
dition, although DIRECT-LSR comes with a convergence guarantee in theory, it may fail to achieve
sound verification in challenging cases, especially under limited query budget. Furthermore, this
work primarily focuses on evaluating semantic robustness rather than developing new defence strate-
gies, which we leave for future exploration. Overall, our study provides valuable insights and points
toward promising research directions for reliable AI in ophthalmology, particularly in designing
more realistic perturbations and reducing the performance gap between clean and perturbed inputs.

6 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. No human subjects or animal experiments were
involved. All datasets were used in accordance with their respective usage guidelines, ensuring that
privacy was not violated. No personally identifiable information was accessed, and no experiments
were conducted that could raise privacy or security concerns. We have also taken care to minimise
potential biases or discriminatory outcomes in the research. We remain committed to transparency,
integrity, and ethical responsibility throughout the research process.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We confirm that all results reported in this paper are reproducible. The experimental
setup—including training procedures, model configurations, and hardware specifications—is de-
scribed in detail in the main paper and appendix. Upon acceptance, we will release the full source
code to facilitate replication. In addition, the datasets used in this work (EYEPACS, AREDS, EYEQ,
and GLC) are publicly available, enabling consistent and reproducible evaluation.
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