
Beyond Topological Self-Explainable GNNs:
A Formal Explainability Perspective

Steve Azzolin * 1 Sagar Malhotra * 2 Andrea Passerini 1 Stefano Teso 1

Abstract
Self-Explainable Graph Neural Networks (SE-
GNNs) are popular explainable-by-design GNNs,
but their explanations’ properties and limitations
are not well understood. Our first contribution fills
this gap by formalizing the explanations extracted
by some popular SE-GNNs, referred to as Mini-
mal Explanations (MEs), and comparing them to
established notions of explanations, namely Prime
Implicant (PI) and faithful explanations. Our anal-
ysis reveals that MEs match PI explanations for a
restricted but significant family of tasks. In gen-
eral, however, they can be less informative than PI
explanations and are surprisingly misaligned with
widely accepted notions of faithfulness. Although
faithful and PI explanations are informative, they
are intractable to find and we show that they can
be prohibitively large. Given these observations,
a natural choice is to augment SE-GNNs with al-
ternative modalities of explanations taking care of
SE-GNNs’ limitations. To this end, we propose
Dual-Channel GNNs that integrate a white-box
rule extractor and a standard SE-GNN, adaptively
combining both channels. Our experiments show
that even a simple instantiation of Dual-Channel
GNNs can recover succinct rules and perform on
par or better than widely used SE-GNNs.

1. Introduction
Self-Explainable GNNs (SE-GNNs) are Graph Neural Net-
works (Scarselli et al., 2008; Wu et al., 2020b) designed
to combine high performance and ante-hoc interpretability.
In a nutshell, a SE-GNN integrates two GNN modules: an
explanation extractor responsible for identifying a class-
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discriminative subgraph of the input and a classifier map-
ping said subgraph onto a prediction. Since this subgraph,
taken in isolation, is enough to infer the prediction, it plays
the role of a local explanation thereof. Despite the popular-
ity of SE-GNNs (Miao et al., 2022a; Lin et al., 2020; Serra
& Niepert, 2022; Zhang et al., 2022; Ragno et al., 2022;
Dai & Wang, 2022), little is known about the properties and
limitations of their explanations. Our work fills this gap.

Focusing on graph classification, we introduce the notion
of Minimal Explanations (MEs) as the minimal subgraphs
of the input ensuring that the classifier outputs the target
prediction. We then show that some popular SE-GNNs are
implicitly optimized for generating MEs. We further com-
pare MEs with two other families of formal explanations:
Prime Implicant explanations1 (PIs) and faithful explana-
tions. Faithful explanations are subgraphs that are sufficient
and necessary for justifying a prediction, i.e., they capture
all and only those elements that cause the predicted label
(Yuan et al., 2022; Tan et al., 2022; Agarwal et al., 2023;
Azzolin et al., 2025). PIs, instead, are minimally sufficient
explanations extensively studied in formal explainability
of tabular and image data (Marques-Silva, 2023; Darwiche
& Hirth, 2023; Wang et al., 2021). They are also highly
informative, e.g., for any propositional formula the set of
PIs is enough to reconstruct the original formula (Ignatiev
et al., 2015). Moreover, both PI and sufficient explanations
are tightly linked to counterfactuals (Beckers, 2022) and
adversarial robustness (Ignatiev et al., 2019). An example
of these families’ nuances is shown in Fig. 1.

Our results show that MEs match PI explanations in the
restricted but important family of motif-based prediction
tasks, where labels depend on the presence of topological
motifs. Although in these tasks MEs inherit all benefits of
PIs, in general they are neither faithful nor PIs.

These observations motivate augmenting SE-GNNs with
alternative explanation modalities to address their limita-
tions. To this end, we introduce Dual-Channel GNNs (DC-
GNNs), a novel family of SE-GNNs that aim to extend the
perks of motif-based tasks to more general settings. DC-
GNNs combine a SE-GNN and a non-relational white-box

1Also known as sufficient reasons (Darwiche & Hirth, 2023).
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Figure 1: Examples of a Minimal, PI, and faithful explana-
tion (w.r.t Proposition 5.3 and Proposition 5.4) for the predic-
tions of the two classifiers ∃x∃y.E(x, y) and ∀x∃y.E(x, y)
introduced in Section 2 on a triangle. Solid nodes and edges
represent the explanation R, whilst dashed ones represent
the complement C = G \ R. At a high level, MEs high-
light the smallest label-preserving subgraphs, PIs and faith-
ful sufficient explanations encode the subgraph ensuring
that no complement perturbation can change the prediction,
while faithful necessary explanations highlight subgraphs
that once removed bring a prediction change.

predictor, adaptively employing one or both depending on
the task. Intuitively, the non-relational channel handles non-
topological aspects of the input, leaving the SE-GNN free
to focus on topological motifs with MEs. This setup encour-
ages the corresponding MEs to be more compact, all while
avoiding the (generally exponential (Marques-Silva, 2023))
computational cost of extracting PIs explicitly. Empirical
results on three synthetic and five real-world graph classifi-
cation datasets highlight that DC-GNNs perform as well or
better than SE-GNNs by adaptively employing one channel
or both depending on the task.

Contributions. Summarizing, we:

• Formally characterize the class of explanations that a
popular family of SE-GNNs optimizes for, namely MEs.

• Show that MEs share key properties of PI and faithful
explanations for motif-based prediction tasks.

• Propose Dual-Channel GNNs and compare them em-
pirically to representative SE-GNNs, highlighting their
promise in terms of explanation size and performance.

2. Preliminaries
We will use g to represent a graph classifier, usually rep-
resenting a GNN. Given a graph G = (V,E), we will
use g(G) to denote g’s predicted label on G. Addition-
ally, graphs can be annotated with edge or node features.
Throughout, we will use the notation R ⊂ G to denote that
R is a subgraph of G and R ⊆ G to denote that R may be
a subgraph or G itself. Note that we assume that a subgraph

R ⊆ G can contain all, less, or none of the features of the
nodes (or edges) in G. We will use |G| to indicate the size
of the graph G. The size may be defined in terms of the
number of nodes, edges, features, or their combination, and
the precise semantics will be clear from the context.

Self-explainable GNNs. SE-GNNs are designed to comple-
ment the high performance of regular GNNs with ante-hoc
interpretability. They pair an explanation extractor q map-
ping the input G to a subgraph q(G) = R ⊆ G playing the
role of a local explanation, and a classifier f using R to
infer a prediction:

g(G) = f(q(G)) (1)

In practice, the explanation extractor q outputs per-edge
relevance scores puv ∈ R, which are translated into an edge-
induced subgraph R via thresholding (Yu et al., 2022) or top-
k selection (Miao et al., 2022a; Chen et al., 2024). While we
focus on per-edge relevance scores due to their widespread
use, our results equally apply to per-node relevance scores.

Approaches for training SE-GNNs are designed to extract
an interpretable subgraph that suffices to produce the target
prediction, often formalized in terms of sparsity regular-
ization (Sparsity) (Lin et al., 2020; Serra & Niepert, 2022)
or the Information Bottleneck (IB) (Tishby et al., 2000).
Since the exact IB is intractable and difficult to estimate
(Kraskov et al., 2004; McAllester & Stratos, 2020), com-
mon approaches devise bounds on the divergence between
the relevance scores and an uninformative prior controlled
by the parameter r ∈ [0, 1] (Miao et al., 2022a;b). This
work focuses on representative training objectives for both
Sparsity- and IB-based SE-GNNs, indicated in Table 1.

Logical classifiers. To prove our theoretical results, we
will use basic concepts from First-Order Logic (FOL) as
described in Barceló et al. (2020) and Grohe (2021), and
use E(x, y) to denote an undirected edge between x and y.
A FOL boolean classifier is a FOL sentence Φ that labels an
instance G positively if G |= Φ and negatively otherwise.
For ease of discussion, we fix two FOL classifiers that will
be used to provide examples and intuition in the remainder
of the paper: ∃x∃y.E(x, y) classifies a graph positively if
it has an edge, while ∀x∃y.E(x, y) when it has no isolated
nodes. Note that both can be expressed by a GNN, as they
are in the logical fragment C2 (see Theorem IX.3 in Grohe
(2021)). We say that two classifiers are distinct if there exists
at least one instance where their predictions differ. Although
most of our results discuss general graph classifiers, they
equally apply to the specific case of GNNs.

3. What are SE-GNN Explanations?
Despite being tailored for explainability, SE-GNNs lack a
precise description of the properties of the explanations they
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MODEL GROUP LEARNING OBJECTIVE

GISST (Lin et al., 2020), SMGNN (ours) Sparsity L+ λ1
|E|

∑
(u,v)∈E puv + λ2

|E|
∑

(u,v)∈E puv log(puv) + (1− puv) log(1− puv)

GSAT, LRI (Miao et al., 2022a;b),
GMT (Chen et al., 2024) IB L+ λ1

∑
(u,v)∈E puv log(

puv
r

) + (1− puv) log(
1−puv
1−r

)

Table 1: Training objectives of popular SE-GNNs. L is the cross-entropy loss between model predictions f(q(G)) and
the target variable Y . For GISST and SMGNN, the second term in the objective pushes the relevance score puv of each edge
to be sparse, while the last term pushes scores to align to either 0 or 1 via an entropy loss (Lin et al., 2020). For GSAT,
LRI, and GMT instead, the second term is the IB regularization pushing relevance scores close to the uninformative value
controlled by the hyper-parameter r (Miao et al., 2022a). λ1 and λ2 are the relative strengths of each regularization term.
Theorem 3.2 shows that all of them optimize for generating Minimal Explanations (Definition 3.1).

extract. In this section, we present a formal characterization
(in Definition 3.1) of explanations extracted by SE-GNNs,
called Minimal Explanations (MEs). In Theorem 3.2 we
show that, for an SE-GNN with perfect predictive accu-
racy and a hard explanation extractor, the loss functions in
Table 1 are minimal iff the explanation R is a ME.

Definition 3.1 (Minimal Explanations). Let g be a graph
classifier and G be an instance with predicted label g(G),
then R is a Minimal Explanation for g(G) if:

1. R ⊆ G

2. g(G) = g(R)

3. There does not exist an explanation R′ ⊆ G such that
|R′| < |R| and g(G) = g(R′).

Minimal Explanations are not unique, and we use
ME(g(G)) to denote the set of all MEs for g(G).

Since our goal is to formally analyze explanations extracted
by SE-GNNs, we make idealized assumptions about the
classifier f . Hence, we assume that the SE-GNN is expres-
sive enough and attains perfect predictive accuracy, i.e., it
always returns the correct label for G. We also assume
that it learns a hard explanation extractor, i.e., q outputs
scores saturated2 to {0, 1} (Yu et al., 2020). Under these
assumptions, we show that SE-GNNs in Table 1 optimize
for generating MEs.

Theorem 3.2. Let g be an SE-GNN with a ground truth
classifier f (i.e., f(G) always returns the true label for
G), a hard explanation extractor q, and perfect predictive
accuracy. Then, g achieves minimal true risk (as indicated
in Table 1) if and only if for any instance G, q(G) provides
Minimal Explanations for the predicted label g(G).

Proof Sketch. For a hard explanation extractor q, the risk
terms in Table 1 reduce to L(f(q(G)), Y ) + λ1|q(G)|/|E|
and L(f(q(G), Y )+λ1|q(G)| log(r−1). Since g attains per-
fect predictive accuracy, L(f(q(G)), Y ) is minimal. Hence,

2For IB-based losses in Table 1 scores saturate to {r, 1}.

for both cases, the risk is minimized when q(G) is the small-
est subgraph that preserves the label, i.e., an ME.

Proofs relevant to the discussion are reported in the main
text, while the others are available in Appendix A. Having
established a link between SE-GNNs and MEs, we proceed
to analyze the formal properties of MEs, starting from the
following remark encoding a broad notion of informative
explanation.
Remark 3.3. A simple desideratum for any type of explana-
tion is that it gives information about the classifier beyond
the predicted label. A weak formulation of this desideratum
is that explanations for two distinct classifiers should differ
on at least one instance where they predict the same label3

Note that Remark 3.3 can be seen as the dual of the Im-
plementation Invariance Axiom (Sundararajan et al., 2017).
The following theorem, however, shows that MEs can fail
to satisfy this desideratum for certain prediction tasks, indi-
cating potential limits in the informativeness of MEs.

Theorem 3.4. There exist two distinct classifiers g and g′

such that for any G where g(G) = g′(G) we have that

ME(g(G)) = ME(g′(G)) (2)

Proof. Let g and g′ be boolean graph classifiers given by
FOL formulas g = ∃x∃y.E(x, y) and g′ = ∀x∃y.E(x, y)
respectively. Let G be any positive instance for both g
and g′, and let E and V be the set of edges and nodes
in G, respectively. For any e ∈ E, we have that e is a
Minimal Explanation for both g(G) and g′(G) (e.g. see
Fig. 1). Hence, ME(g(G)) = ME(g′(G)) = E. Similarly,
if G is a negative instance for both g and g′, we have that a
Minimal Explanation is a subgraph consisting of any single
node from G, and ME(g(G)) = ME(g′(G)) = V .

Intuitively, this result indicates that there exist two distinct
graph classifiers for which MEs are the same for any input.

3To avoid this desideratum being vacuously satisfied, we as-
sume that there exists at least one instance where the two classifiers
predict the same label.
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Hence, inspecting explanations alone makes it impossible
to tell the two apart, meaning that MEs can fail to be infor-
mative wrt Remark 3.3.

Theorem 3.4 highlights additional insights worth discussing.
Consider again the classifier g′ = ∀x∃y.E(x, y), and let
G be a negative instance for g′ composed of three nodes
{u1, u2, u3}, only two of which are connected by the edge
(u1, u2) ∈ E. In this case, a user may expect to see the
isolated node u3 as an explanation. However, any subgraph
consisting of a single isolated node from the set {u1, u2, u3}
is a valid ME. This highlights that as MEs focus only on
the subgraphs allowing the model to reproduce the same
prediction, they may lead to counter-intuitive explanations.

Furthermore, Theorem 3.4 implies that⋃
G∈Ω(y) ME(g(G)) =

⋃
G∈Ω(y) ME(g′(G)) (3)

where Ω(y) is the set of all instances G such that g(G) =
g′(G) = y, with g = ∃x∃y.E(x, y) and g′ is as above. Intu-
itively, Eq. (3) shows that the insight of Theorem 3.4 applies
even when aggregating MEs across all instances where the
two classifiers yield the same prediction. Hence, there are
classifiers where model-level explanations built by aggre-
gating over local explanations (Setzu et al., 2021; Azzolin
et al., 2022) may also not be informative w.r.t. Remark 3.3.

In the next section, we investigate a widely accepted for-
mal notion of explanations, namely Prime Implicant ex-
planations (PIs). We analyze the informativeness of MEs
compared to PIs and characterize when they match.

4. Minimal and Prime Implicant Explanations
Having established the link between SE-GNNs and MEs in
Section 3, in this section, we provide a formal comparative
analysis between MEs and PIs for graph classifiers. While
PIs are extensively studied for tabular and image-like data
(Marques-Silva et al., 2020; Marques-Silva, 2023), little
investigation has been carried out for graphs. Our analysis
shows that MEs match PIs for a large class of tasks – those
based on the recognition of motifs – but they do not align
in general. We also show that PIs can be more informative
than MEs w.r.t the desideratum in Remark 3.3. Let us start
by defining PIs for graph classifiers.

Definition 4.1 (PI explanation). Let g be a classifier and G
be an instance with predicted label g(G), then R is a Prime
Implicant explanation for g(G) if:

1. R ⊆ G.

2. For all R′, such that R ⊆ R′ ⊆ G, we have that
g(G) = g(R′).

3. No other R′ ⊂ R satisfies both (1) and (2).

Like MEs, PIs are not unique, and we use PI(g(G)) to
denote the set of all PIs for g(G).

PIs feature several nice properties, in that they are guar-
anteed to be the minimal explanations that are provably
sufficient for the prediction (Shih et al., 2018; Beckers,
2022; Darwiche & Hirth, 2023). To illustrate the differ-
ence between MEs and PIs, we provide an example for two
different classifiers in Fig. 1. Note that for the classifier
∃x∃y.E(x, y), MEs match PIs. This observation indeed
generalizes to all existentially quantified positive FOL for-
mulas, as shown next.

4.1. MEs Match PI for Positive Existential Classifiers

We now show that our previous observation that MEs equal
PIs for ∃x∃y.E(x, y) generalizes to all positive existential
tasks. This reinforces the use of SE-GNNs in various practi-
cal applications and our proposed method, as discussed at
the end of this section and in Section 6.

Theorem 4.2. Given a classifier g expressible as a purely
existentially quantified positive first-order logic formula and
a positive instance G of any size, then a Minimal Explana-
tion for g(G) is also a Prime Implicant explanation for
g(G).

Proof sketch. A purely existentially quantified positive
FOL formula g is of the form ∃x1, . . . ,∃xk.Φ(x1, . . . , xk),
where Φ is quantifier-free and does not contain any negation.
For a positive instance G, a ME is the smallest subgraph
R induced by nodes in a tuple ā = (a1, . . . , ak), such that
Φ(ā) holds. Now, any supergraph of R necessarily contains
ā and hence witnesses ∃x1, . . . ,∃xk.Φ(x1, . . . , xk), while
any smaller subgraph violates ∃x1, . . . ,∃xk.Φ(x1, . . . , xk),
as ā is minimal by construction. Hence, R is a PI.

Note that tasks based on the recognition of a topological
motif (like the existence of a star) can indeed be cast as ex-
istentially quantified positive4 formulas (∃xyzw.E(x, y) ∧
E(x, z) ∧ E(x,w) ∧ x ̸= y ̸= z ̸= w), qualifying MEs
as ideal targets for those tasks. Motif-based tasks are in-
deed useful in a large class of practically relevant scenarios
(Sushko et al., 2012; Jin et al., 2020; Chen et al., 2022; Wong
et al., 2024), and have been a central assumption in many
works on GNN explainability (Ying et al., 2019; Miao et al.,
2022a; Wu et al., 2022). Theorem 4.2 theoretically supports
using SE-GNNs for these tasks, and shows they optimize
for minimally sufficient explanations (PIs). However, global
properties such as long-range dependencies (Gravina et al.,
2022) or classifiers like ∀x∃yE(x, y), cannot be expressed
by purely existential statements. In such scenarios, PIs can
be more informative than MEs, as we show next.

4Note that the positive fragment of FOL admits inequalities
like (x ̸= y) as positive atoms (Kuperberg, 2023).
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4.2. MEs are Not More Informative than PIs

Although Section 4.1 shows that MEs match PIs for positive
existential tasks, real-world properties like counting cannot
be expressed by existential formulas. Here, we show that be-
yond positive existential tasks, MEs can be less informative
than PIs (Remark 3.3).

Proposition 4.3. Let g be a classifier and y a given label.
Let Ω(y)

g be the set of all the finite graphs (potentially with
a given bounded size) with predicted label y. Then,⋃

G∈Ω
(y)
g

ME(g(G)) ⊆
⋃

G∈Ω
(y)
g

PI(g(G)) (4)

This result shows that when considering the union of all
finite graphs, PIs subsume MEs. Hence, if two classifiers
share all PIs then they necessarily share all MEs as well,
meaning that MEs do not provide more information about
the underlying classifier than PIs. Conversely, we show that
there exist cases where PIs provide strictly more information
about the underlying classifier than MEs.

Theorem 4.4. There exist two distinct classifiers g and g′

and a label y such that:

1. For all graphs G s.t. g(G) = g′(G) = y, we have

ME
(
g(G)

)
= ME

(
g′(G)

)
. (5)

2. There exists at least one graph G∗ with g(G∗) =
g′(G∗) = y such that

PI
(
g(G∗)

)
̸= PI

(
g′(G∗)

)
. (6)

Theorem 4.4 shows that PIs can overcome MEs’ limits in
certain tasks. For example, Theorem 3.4’s classifiers yield
identical MEs but differing PIs (see Fig. 1).

To summarize, Theorem 4.2 justifies SE-GNNs’ perfor-
mance on many benchmarks, as their explanations can in-
herit desirable properties of PIs. However, Theorem 3.4
and Theorem 4.4 show that MEs may not be informative
for certain tasks, motivating an extension of SE-GNNs that
preserves their performance on positive existential tasks but
adaptively aids them in other tasks. We will exploit this
observation for our proposed method in Section 6.

5. Minimal Explanations can be Unfaithful
A widespread approach to estimating the trustworthiness
of an explanation is faithfulness (Yuan et al., 2022; Amara
et al., 2022; Agarwal et al., 2023; Longa et al., 2024), which
consists in checking whether the explanation contains all
and only the elements responsible for the prediction. Clearly,
unfaithful explanations fail to convey actionable informa-
tion about what the model is doing to build its predictions

(Agarwal et al., 2024). This section reviews a general notion
of faithfulness (Azzolin et al., 2025) in Definition 5.1 and
shows that faithfulness, MEs (Section 3), and PIs (Section 4)
can overlap – in some restricted cases – but are generally
misaligned.

Intuitively, faithfulness metrics assess how much the pre-
diction changes when perturbing either the complement –
referred to as sufficiency of the explanation – or the expla-
nation itself – referred to as necessity of the explanation.
Perturbations are sampled from a distribution of allowed
modifications, which typically include edge and node re-
movals. Then, an explanation is said to be faithful when it
is both sufficient and necessary.
Definition 5.1 (Faithfulness). Let R ⊆ G be an explana-
tion for g(G) and C = G \ R its complement. Let pR
be a distribution over perturbations to C, and pC be a dis-
tribution over perturbations to R. Also, let ∆(G,G′) =
1{g(G) ̸= g(G′)} indicate a change in the predicted label.
Then, Suf and Nec compute respectively the degree of suf-
ficiency and degree of necessity of an explanation R for a
decision g(G) as:

Suf(R) = exp(−EG′∼pR
[∆(G,G′)]), (7)

Nec(R) = 1− exp(−EG′∼pC
[∆(G,G′)]). (8)

The degree of faithfulness Faith(R) is then the harmonic
mean of Suf and Nec.

The (negated) exponential normalization ensures that Suf
(resp. Nec) increases for more sufficient (resp. necessary)
explanations. Note that both Suf and Nec need to be non-
zero for a Faith score above zero. According to this def-
inition, the degree of necessity will be high when many
perturbations of R lead to a prediction change and is thus 1
when all of them do so. Suf is analogous.

As the next theorem shows, MEs can surprisingly fail in
being faithful even for trivial tasks.
Theorem 5.2. There exist tasks where Minimal Explana-
tions achieve a zero degree of faithfulness.

Proof. Let g = ∃x∃y.E(x, y) and G be a positive instance
with more than one edge. Then, a Minimal Explanation R
consisting of a single edge (see Fig. 1) achieves a Nec(R)
value of zero, as any perturbations to R will leave G \
R unchanged. Hence, g remains satisfied, meaning that
Nec(R) = 0 and thus Faith(R) = 0.

Note that ∃x∃y.E(x, y) achieves non-zero Nec(R) iff R
contains every edge, whereas Suf(R) = 1 is guaranteed by
the presence of a single edge. These observations indeed
generalize, as shown next.
Proposition 5.3. An explanation R ⊆ G for g(G) has
a maximal Suf(R) score if and only if there exists a PI
explanation M ⊆ R for g(G).
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Proposition 5.4. An explanation R ⊆ G for g(G) can
have a non-zero Nec(R) score only if it intersects every PI
explanation for g(G).

Note that Proposition 5.3 (along with Theorem 4.2) show
that MEs are indeed maximally sufficient for existentially
quantified positive FOL formulas. However, this might
not be enough to ensure a non-zero Faith score, as shown
in Proposition 5.4. In general, MEs highlight a minimal
class-discriminative subgraph, whereas faithful explanations
highlight all possible causes for the prediction, and the two
notions are fundamentally misaligned.

6. Beyond (Purely) Topological SE-GNNs
Our analysis highlights that explanations extracted by SE-
GNNs can be, in general, both ambiguous (Theorem 3.4)
and unfaithful (Theorem 5.2), potentially limiting their use-
fulness for debugging (Teso et al., 2023; Bhattacharjee &
von Luxburg, 2024; Fontanesi et al., 2024), scientific discov-
ery (Wong et al., 2024), and Out-of-Distribution (OOD) gen-
eralization (Chen et al., 2022; Gui et al., 2023). Nonetheless,
we also showed that for a specific class of tasks, precisely
those based on the presence of motifs, MEs are actually an
optimal target, in that they match PIs and are the minimal
explanations that are also provably sufficient (Theorem 4.2
and Proposition 5.3).

As PI and faithful explanations can generally be more infor-
mative than MEs (Proposition 4.3 and Theorem 4.4), one
might consider devising SE-GNNs that always optimize for
them. We argue, however, that aiming for PI or faithful
explanations can be suboptimal, as they can be large and
complex in the general case. For example, a PI explanation
for a positive instance of ∀x∃y.E(x, y) is an edge cover
(Weisstein, 2025), which grows with the size of the instance.
Similarly, the explanation with an optimal faithfulness score
for ∃x∃y.E(x, y) is the whole graph. Furthermore, finding
and checking such explanations is inherently intractable, as
both involve checking the model’s output on all possible
subgraphs (Yuan et al., 2021). These observations embody
the widely observed phenomenon that explanations can get
as complex as the model itself (Rudin, 2019).

6.1. Dual-Channel GNNs

This motivates us to investigate Dual-Channel GNNs (DC-
GNNs), a new family of SE-GNNs aiming to preserve the
perks of MEs for motif-based tasks while freeing them from
learning non-motif-based patterns, which would be inef-
ficiently represented as a subgraph. To achieve this, DC-
GNNs pair an SE-GNN-based topological channel – named
Topo– with an interpretable channel – named Rule– pro-
viding succinct non-topological rules. To achieve optimal
separation of concerns while striving for simplicity, we

jointly train the two channels and let DC-GNNs adaptively
learn how to exploit them.

Definition 6.1. (DC-GNN) Let g1 : G 7→ [0, 1]n1 be a SE-
GNN, g2 : G 7→ [0, 1]n2 an interpretable model of choice,
and aggr : [0, 1]n1+n2 7→ Y an aggregation function. A
DC-GNN is defined as:

g(G) = aggr
(
g1(G), g2(G)

)
. (9)

While the second channel g2 can be any interpretable model
of choice, we will experimentally show that even a simple
sparse linear model can bring advantages over a standard
SE-GNN, leaving the investigation of a more complex ar-
chitecture to future work. Therefore, in practice, we will
experiment with

g2(G) = σ
(
W

∑
u∈G xu

)
, (10)

where xu ∈ Rd is the node feature vector of u, W ∈ Rn2×d

the weights of the linear model, and σ is an element-wise
sigmoid activation function. Also, we will fix n1 = n2

equal to the number of classes of Y . In the experiments, we
will promote a sparse W via weight decay.

A key component of DC-GNNs is the aggr function joining
the two channels. To preserve the interpretability of the
overall model, aggr should act as a gateway for making the
final predictions based on a simple combination of the two
channels. To achieve this while ensuring differentiability,
we considered an extension of Logic Explained Networks
(LENs) (Barbiero et al., 2022), described below.

Implementing aggr. LENs are small Multi-layer Percep-
trons (MLP) taking as input a vector of activations in [0, 1]
(Barbiero et al., 2022). The first layer of the MLP is regu-
larized to identify the most relevant inputs while penalizing
irrelevant ones via an attention mechanism. To promote
the network to achieve discrete activations scores without
resorting to high-variance reparametrization tricks (Azzolin
et al., 2022; Giannini et al., 2024), we propose augmenting
LENs with a progressive temperature annealing of the input
vector. We validate the effectiveness of this extension in
preserving the semantics of each channel, together with a
comparison to other baselines, in Appendix C.4.

7. Empirical Analysis
We empirically address the following research questions:

Q1 Can DC-GNNs match or surpass plain SE-GNNs?

Q2 Can DC-GNNs adaptively select the best channel for
each task?

Q3 Can DC-GNNs extract more focused explanations?
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Figure 2: Illustration of our Dual-Channel architecture for a positive instance of TopoFeature, where positive
instances contain a cycle and at least two red nodes. Numbers indicate edge relevance scores. SE-GNNs may fail to highlight
precisely the elements relevant to the prediction, as the task involves non-topological patterns. DC-GNNs, instead, provide
more focused topological explanations by offloading part of the prediction to interpretable rules (cf. Fig. 7 and Fig. 10).

Full details about the empirical analysis are in Appendix B.
Our code is publicly available on GitHub5.

Architectures. We test two representative SE-GNNs back-
bones from Table 1, namely GISST (Lin et al., 2020) and
GSAT (Miao et al., 2022a), showing how adding an inter-
pretable side channel can enhance them. We also propose
a new SE-GNN named SMGNN, which replaces the graph-
agnostic GISST’s explanation extractor with that of GSAT.
More details are available in Appendix B.

Datasets. We consider three synthetic and five real-
world graph classification tasks. Synthetic datasets include
GOODMotif (Gui et al., 2022), and two novel datasets.
RedBlueNodes contains random graphs where each node
is either red or blue, and the task is to predict which color is
more frequent. Similarly, TopoFeature contains random
graphs where each node is either red or uncolored, and the
task is to predict whether the graph contains at least two
red nodes and a cycle, which is randomly attached to the
base graph. Both datasets contain two OOD splits where the
number of total nodes is increased or the distribution of the
base graph is changed. For GOODMotif we will use the
original OOD splits (Gui et al., 2022). Real-world datasets
include MUTAG (Debnath et al., 1991), BBBP (Morris et al.,
2020), MNIST75sp (Knyazev et al., 2019), AIDS (Riesen
& Bunke, 2008), and Graph-SST2 (Yuan et al., 2022).

A1: DC-GNNs performs on par or better than plain SE-
GNNs. We list in Table 2 the results for synthetic datasets
and in Table 3 those for real-world benchmarks. In the for-
mer, DC-GNNs always match or surpass the performance of
plain SE-GNNs, and similarly, in the latter DC-GNNs per-
form competitively with SE-GNNs baselines, and in some
cases can even surpass them all while keeping a comparable
running time as SE-GNNs as shown in Appendix C.1. For
example, DC-GNNs consistently surpass the baseline on
AIDS and Graph-SST2 by relying on the non-relational
interpretable model. These results are in line with previous
literature highlighting that some tasks can be unsuitable for

5https://github.com/steveazzolin/
beyond-topo-segnns

testing topology-based explainable models (Azzolin et al.,
2025), and that graph-based architectures can overfit the
topology to their detriment (Bechler-Speicher et al., 2023).
We present further experiments in Appendix C.2 and Ap-
pendix C.3, where we show the sensitivity of DC-GNNs to
different hyper-parameter choices, and that DC-GNNs are
also applicable to SE-GNNs beyond Table 1, respectively.

We further analyze their generalization abilities by re-
porting their performance on OOD splits in Table 4.
Surprisingly, DC-GNNs significantly outperformed base-
lines on OOD1 of GOODMotif but underperformed on
OOD2, likely due to the intrinsic instability of OOD per-
formance in models trained without OOD regularization
(Chen et al., 2022; Gui et al., 2023). For RedBlueNodes
and TopoFeature instead, DC-GNNs exhibit substantial
gains in seven cases out of eight, achieving perfect extrapo-
lation on RedBlueNodes.

A2: DC-GNNs can dependably select the appropriate
channel(s) for the task. Results in Table 2 clearly show that
both DC-GNNs correctly identify the appropriate channel(s)
for all tasks. In particular, they focus on the interpretable
model for RedBlueNodes as the label can be predicted
via a simple comparison of node features. For GOODMotif,
they rely on the underlying SE-GNN only, as the label de-
pends on a topological motif. For TopoFeature, instead,
they combine both channels as the task can be decomposed
into a motif-based sub-task and a comparison of node fea-
tures, as expected from the dataset design. While the chan-
nel importance scores predicted by the aggr are continuous,
we report a discretized version indicating only the channel(s)
achieving a non-negligible (≥ 0.1) score to avoid clutter.
Raw scores are reported in Table 8.

To measure the dependability of the channel selection mech-
anism of DC-GNNs, we perform an ablation study by setting
to zero both channels independently. We report the resulting
accuracy in the last two columns for every dataset in Table 2.
Results show that when the model focuses on just a single
channel, removing the other does not affect performance.
Conversely, when the model finds it useful to mix informa-
tion from both channels, removing either of them prevents

7
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Table 2: DC-GNNs can reliably select the most appropriate channel based on the task. The table shows the test accuracy,
the selected channel, and the test accuracy when removing one of the two channels. GISST is excluded from this analysis
as it cannot extract meaningful explanations for TopoFeature and GOODMotif.

Model RedBlueNodes TopoFeature GOODMotif

Acc Channel Acc
w/o Topo

Acc
w/o Rule

Acc Channel Acc
w/o Topo

Acc
w/o Rule

Acc Channel Acc
w/o Topo

Acc
w/o Rule

GIN 99 ± 01 - - - 96 ± 02 - - - 93 ± 00 - - -

GSAT 99 ± 01 - - - 99 ± 01 - - - 93 ± 00 - - -
DC-GSAT 100 ± 00 Rule 100 ± 01 50 ± 02 100 ± 00 Both 50 ± 00 60 ± 20 93 ± 01 Topo 34 ± 01 93 ± 00

SMGNN 99 ± 00 - - - 95 ± 01 - - - 93 ± 01 - - -
DC-SMGNN 100 ± 00 Rule 99 ± 01 50 ± 02 100 ± 00 Both 50 ± 00 50 ± 00 93 ± 00 Topo 34 ± 01 93 ± 00

Table 3: DC-GNNs performs on par or better than a plain SE-GNN. The table shows the test accuracy and the selected
channel for real-world experiments. Channel relevance with “*” means that DC-GNNs select the indicated channel in
nine seeds over ten: For AIDS, that single seed uses the topological channel, as it can easily fit the task without incurring
performance loss; For BBBP, instead, the DC-GNN tries to use both channels but incurs performance loss. “Mix” instead
indicates that different seeds rely on different channels without incurring performance loss.

Model AIDS MUTAG BBBP Graph-SST2 MNIST75sp
F1 Channel Acc Channel AUC Channel Acc Channel Acc Channel

GIN 96 ± 02 - 81 ± 02 - 68 ± 03 - 88 ± 01 - 92 ± 01 -

GISST 97 ± 02 - 78 ± 02 - 66 ± 03 - 85 ± 01 - 91 ± 01 -
DC-GISST 99 ± 02 Mix 79 ± 02 Topo 65 ± 02 Topo 87 ± 02 Mix 91 ± 01 Topo

GSAT 97 ± 02 - 79 ± 02 - 66 ± 02 - 86 ± 02 - 94 ± 01 -
DC-GSAT 99 ± 03 Rule 79 ± 02 Topo 65 ± 03 Topo* 87 ± 02 Rule 94 ± 02 Topo

SMGNN 97 ± 02 - 79 ± 02 - 66 ± 03 - 86 ± 01 - 92 ± 01 -
DC-SMGNN 99 ± 01 Rule* 80 ± 02 Topo 65 ± 05 Topo* 87 ± 01 Rule 93 ± 01 Topo

Table 4: DC-GNNs can generalize better to OOD than
plain SE-GNN. GISST is excluded from this analysis as it
cannot extract meaningful explanations for TopoFeature
and GOODMotif. Numbers indicate OOD accuracy.

Model RedBlueNodes TopoFeature Motif
OOD1 OOD2 OOD1 OOD2 OOD1 OOD2

GIN 94 ± 01 87 ± 05 61 ± 06 61 ± 04 63 ± 13 64 ± 03

GSAT 98 ± 01 98 ± 01 81 ± 08 87 ± 04 67 ± 12 57 ± 04

DC-GSAT 100 ± 00 100 ± 00 87 ± 13 86 ± 12 72 ± 13 49 ± 05

SMGNN 97 ± 01 85 ± 05 55 ± 02 75 ± 03 65 ± 06 62 ± 06

DC-SMGNN 99 ± 01 100 ± 00 93 ± 06 98 ± 01 82 ± 08 43 ± 04

the model from making the correct prediction, as expected.

A3: DC-GNNs can uncover high-quality rules and MEs.
When the linear model g2 is sparse, it is possible to interpret
the weights as inequality rules enabling a full understanding
of the predictions, cf. Appendix B.3. In fact, by focusing
on model weights with non-negligible magnitude, we can
extract the expected ground truth rule for RedBlueNodes,
whilst subgraph-based explanations fail to convey such a
simple rule as shown in Appendix C.7. At the same time,
for TopoFeature the interpretable model fires when the
number of red nodes is at least two. This result, together
with the fact that the DC-GNN is using both channels (see

Table 2), confirms that the two channels are cooperating as
expected: the interpretable model fires when at least two
red nodes are present, and the SE-GNN is left to recognize
when the motif is present, achieving more focused and com-
pact explanations as depicted in Fig. 2. The alignment of
those formulas to the ground truth annotation process is also
reflected in better extrapolation performance, as shown in
Table 4. We further discuss in Appendix C.5 an additional
experiment on AIDS where we match the result of Pluska
et al. (2024), showing that a GNN can achieve a perfect
score by learning a simple rule on the number of nodes.
Those results highlight that better and more intuitive expla-
nations can be obtained without relying on a subgraph of the
input. We further provide a quantitative (Appendix C.6) and
qualitative (Appendix C.7) analysis showing how DC-GNN
can yield explanations that better reflect what the underlying
SE-GNN is using for predictions.

8. Related Work
Explaining GNNs. SE-GNNs are a physiological response
to the inherent limitations of post-hoc GNN explainers
(Longa et al., 2024; Li et al., 2024). SE-GNNs usually
rely on regularization terms and architectural biases – such
as attention (Miao et al., 2022a;b; Lin et al., 2020; Serra &
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Niepert, 2022; Wu et al., 2022; Chen et al., 2024), proto-
types (Zhang et al., 2022; Ragno et al., 2022; Dai & Wang,
2021; 2022), or other techniques (Yu et al., 2020; 2022;
Giunchiglia et al., 2022; Spinelli et al., 2023; Ferrini et al.,
2024) – to encourage the explanation to be human inter-
pretable. Our work aims at understanding the formal proper-
ties of their explanations, which have so far been neglected.

Beyond subgraph explanations. Pluska et al. (2024) and
Köhler & Heindorf (2024) proposed to distill a trained GNN
into an interpretable logic classifier. Their approach is how-
ever limited to post-hoc settings, and the extracted expla-
nations are human-understandable only for simple datasets.
Nonetheless, this represents a promising future direction for
integrating a logic-based rule extractor as a side channel in
our DC-GNNs framework. Müller et al. (2023) and Bechler-
Speicher et al. (2024) introduced two novel interpretable-by-
design GNNs that avoid extracting a subgraph explanation
altogether, by distilling the GNN into a Decision Tree, or
by modeling each feature independently via learnable shape
functions, respectively. However, we claim that subgraph-
based explanations are desirable for existential motif-based
tasks, and thus, we strike for a middle ground between
subgraph and non-subgraph-based explanations.

Formal explainability. While GNN explanations are com-
monly evaluated in terms of faithfulness (Agarwal et al.,
2023; Christiansen et al., 2023; Azzolin et al., 2025), for-
mal explainability has predominantly been studied for non-
relational data, where it primarily focuses on PI explanations
(Marques-Silva, 2023; Darwiche & Hirth, 2023; Wang et al.,
2021). Important properties of PI explanations include suffi-
ciency, minimality, and their connection to counterfactuals
(Marques-Silva & Ignatiev, 2022). Simultaneously, PI expla-
nations can be exponentially many (but can be summarized
(Yu et al., 2023) for understanding) and are intractable to
find and enumerate for general classifiers (Marques-Silva,
2023). Our work is the first to systematically investigate for-
mal explainability for GNNs and elucidate the link between
PI explanations and SE-GNNs.

9. Conclusion and Limitations
We have formally characterized the explanations given
by sparsity- and Information Bottleneck-based Self-
Explainable Graph Neural Networks (SE-GNNs) as Mini-
mal Explanations (MEs). We identified and analyzed MEs’
relation to established notions of explanations, like Prime
Implicant (PI) and faithful explanations. Our analysis re-
vealed that MEs match PIs and achieve maximal sufficiency
score for motif-based tasks. However, in general MEs can
be uninformative, whereas faithful and PI explanations can
be large and intractable to find. Motivated by this, we in-
troduced Dual-Channel GNNs (DC-GNNs), a new class of
SE-GNNs that adaptively provide either MEs, interpretable

rules, or their combination. We empirically validate DC-
GNNs, confirming their promise.

Limitations: Our theoretical analysis is focused on Sparsity-
and IB-based SE-GNNs, which are popular choices due to
their effectiveness and ease of training. Alternative formu-
lations optimize explanations for different objectives than
minimality (Wu et al., 2022; Deng & Shen, 2024), and more
work is needed to provide a unified formalization of this
broader class of subgraph-based explanations. Nonetheless,
we expect our theoretical findings to also hold for many
post-hoc explainers, as they also optimize for the minimal
subgraph explaining the prediction (Ying et al., 2019; Luo
et al., 2020). Furthermore, despite showing that DC-GNNs
with a simple linear model have several benefits, we believe
that more advanced interpretable channels should be investi-
gated. On this line, our baseline can serve as a yardstick for
future developments of DC-GNNs.

Impact Statement
Our analysis highlights the intrinsic limitations of expla-
nations produced by a wide class of explainable-by-design
GNNs, and in this sense serves as a warning for stakehold-
ers from blindly trusting explanations produced by these
models.
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Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter,
J., and Silva, J.-P. The logical expressiveness of graph
neural networks. In ICLR, 2020.

Bechler-Speicher, M., Amos, I., Gilad-Bachrach, R., and
Globerson, A. Graph neural networks use graphs when
they shouldn’t. arXiv preprint arXiv:2309.04332, 2023.

Bechler-Speicher, M., Globerson, A., and Gilad-Bachrach,
R. The intelligible and effective graph neural additive net-
work. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=SKY1ScUTwA.

Beckers, S. Causal Explanations and XAI. In Conference
on Causal Learning and Reasoning, pp. 90–109, 2022.

Bhattacharjee, R. and von Luxburg, U. Auditing local expla-
nations is hard. arXiv preprint arXiv:2407.13281, 2024.

Chen, Y., Zhang, Y., Bian, Y., Yang, H., Kaili, M., Xie, B.,
Liu, T., Han, B., and Cheng, J. Learning causally invari-
ant representations for out-of-distribution generalization
on graphs. Advances in Neural Information Processing
Systems, 35:22131–22148, 2022.

Chen, Y., Bian, Y., Han, B., and Cheng, J. How interpretable
are interpretable graph neural networks? In Forty-first
International Conference on Machine Learning, 2024.

Christiansen, M., Villadsen, L., Zhong, Z., Teso, S., and
Mottin, D. How faithful are self-explainable gnns? arXiv
preprint arXiv:2308.15096, 2023.

Dai, E. and Wang, S. Towards self-explainable graph neural
network. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management,
pp. 302–311, 2021.

Dai, E. and Wang, S. Towards prototype-based self-
explainable graph neural network. arXiv preprint
arXiv:2210.01974, 2022.

Darwiche, A. and Hirth, A. On the (complete) reasons
behind decisions. Journal of Logic, Language and Infor-
mation, 32(1):63–88, 2023.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G.,
Shusterman, A. J., and Hansch, C. Structure-activity rela-
tionship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies
and hydrophobicity. Journal of medicinal chemistry, 34
(2):786–797, 1991.

Deng, J. and Shen, Y. Self-interpretable graph learning
with sufficient and necessary explanations. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11749–11756, 2024.
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A. Proofs
A.1. Proof of Theorem 3.2

Preliminaries and Assumptions. Recall that an SE-GNN g is composed of a GNN-based classifier f and an explanation
extractor q. Given an instance G, the explanation extractor q returns a subgraph q(G) = R ⊆ G, and the classifier provides
a label g(G) = f(q(G)).

Note that analyzing the losses presented in Table 1 is challenging due to the potentially misleading minima induced by
undesirable choices of λ1 and λ2. For example, choosing the explanation regularization weight λ1 and λ2 in Table 1 to be
zero can trivially lead to correct predictions but with uninformative explanations. Equivalently, setting λ1 and λ2 too high
yields models with very compact yet useless explanations, as the model may not converge to a satisfactory accuracy. Since
our goal is to analyze the nature of explanations extracted by q, we assume that f expresses the ground truth function. Also,
we assume the SE-GNN to have perfect predictive accuracy, meaning that f(q(G)) always outputs the ground truth label for
any input. Those two assumptions together allow us to focus only on the nature of the explanations extracted by q.

We also consider an SE-GNN with a hard explanation extractor. For sparsity-based losses (Eq. (11)), this amounts to
assigning a score equal to 1 for edges in the explanation R, and equal to 0 for edges in the complement G \ R. For
Information Bottleneck-based losses (Eq. (14)), instead, the explanation extractor assigns a score of 1 for edges in the
explanation R, and equal to r for edges in the complement G\R, where r is the hyper-parameter chosen as the uninformative
baseline for training the model (Miao et al., 2022a). Therefore, an explanation R is identified as the edge-induced subgraph
where edges have a score puv = 1.

Theorem 3.2. Let g be an SE-GNN with a ground truth classifier f (i.e., f(G) always returns the true label for G), a hard
explanation extractor q, and perfect predictive accuracy. Then, g achieves minimal true risk (as indicated in Table 1) if and
only if for any instance G, q(G) provides Minimal Explanations for the predicted label g(G).

Proof. We proceed to prove the Theorem by analyzing two cases separately:

Sparsity-based losses Let us consider the following training objective of a prototypical sparsity-based SE-GNN, namely
GISST (Lin et al., 2020). Here we focus just on the sparsification of edge-wise importance scores, and we discuss at the
end how this applies to node feature-wise scores:

min L
(
f(q(G)), Y

)
+ λ1

1

|E|
∑

(u,v)∈E

puv + λ2
1

|E|
∑

(u,v)∈E

puv log(puv) + (1− puv) log(1− puv) (11)

Given that the importance scores puv can only take values in {0, 1}, the last term in Eq. (11) equals to 0. Also, given that
every edge outside of q(G) has puv = 0 and every edge in q(G) has puv = 1, we have that∑

(u,v)∈E

puv = |q(G)| (12)

Hence, the final minimization reduces to:

min L
(
f(q(G)), Y

)
+ λ1

|q(G)|
|E|

(13)

Minimal True Risk for SE-GNN ⇒ Minimal Explanations
Given that f is the ground truth classifier, then due to perfect predictive accuracy for f(q(G)) we have that f(q(G)) =
f(G) = y∗, where y∗ is the ground truth label for G. This implies that L(f(q(G)), Y ) is minimal. Now, for the true
risk to be minimal we must additionally have that λ1|q(G)|/|E| in Eq. (13) is minimized as well. Note that q(G) returns
the explanation R. Hence, minimizing λ1|q(G)|/|E| in Eq. (13) requires that we find the smallest R ⊆ G such that
L(f(q(G)), Y ) is also minimal, hence f(q(G)) = f(R) = y∗. Also, note that f(R) = f(q(R)) by perfect predictive
accuracy of f(q(R)) and f being the ground truth classifier. Hence, we have that for an instance G, R ⊆ G is the smallest
subgraph such that f(q(G)) = f(q(R)). Hence, R is a Minimal Explanation for f(q(G)).
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Minimal True Risk for SE-GNN ⇐ Minimal Explanations
We now show the other direction of the statement, i.e., if q(G) provides Minimal Explanations then an SE-GNN g (with
ground truth graph classifier f and perfect predictive accuracy) achieves minimal true risk. Since, g achieves perfect
predictive accuracy, we have that L(f(q(G)), Y ) is minimal. Furthermore, by definition of Minimal Explanations and
assumption of perfect predictive accuracy, we have that R is the smallest subgraph such that f(q(G)) = f(q(R)) = y∗.
Hence, λ1|q(G)|/|E| can not be further minimized in Eq. (13).

The same argument applies verbatim when adding the sparsification of (discrete) node feature explanations to Eq. (11), as
prescribed in Lin et al. (2020).

Information Bottleneck-based losses Let us consider the following training objective of a prototypical stochasticity
injection-based SE-GNN, namely GSAT (Miao et al., 2022a). The same holds for other models like LRI (Miao et al.,
2022b), GMT (Chen et al., 2024), and GIB6 (Wu et al., 2020a):

minL
(
f(q(G), Y

)
+ λ1

∑
(u,v)∈E

puv log(
puv
r

) + (1− puv) log(
1− puv
1− r

) (14)

By the hard explanation extractor assumption, puv = 1 when (u, v) ∈ R and r otherwise. Then, we can differentiate the
contribution of each edge to the second term separately, depending on its importance score:
For edges where puv = 1: ∑

(u,v)∈E

puv log(
puv
r

) + (1− puv) log(
1− puv
1− r

) = |q(G)| log(1
r
) (15)

For edges where puv = r: ∑
(u,v)∈E

puv log(
puv
r

) + (1− puv) log(
1− puv
1− r

) = 0 (16)

We can then rewrite the minimization as follows:

min L
(
f(q(G), Y

)
+ λ1|q(G)| log(1

r
) (17)

which optimizes the same objective as Eq. (13), as the terms not in common are constants. Thus, a similar argument to that
of sparsity-based losses follows.

A.2. Proof of Theorem 4.2

Theorem 4.2. Given a classifier g expressible as a purely existentially quantified positive first-order logic formula and a
positive instance G of any size, then a Minimal Explanation for g(G) is also a Prime Implicant explanation for g(G).

Proof. Let g be a classifier that can be expressed as a boolean FOL formula of the form

∃x1 ∃x2 . . . ∃xk Φ(x1, x2, . . . , xk), (18)

where Φ is positive and quantifier-free. A positive instance G for g is an instance such that G |= g. Now, let R ⊆ G be a
Minimal Explanation for g(G), i.e, for G |= Φ. We must show that R is also a PI explanation.

We now show that R satisfies conditions (1), (2) and (3) for PI Explanation as given in Definition 4.1

1. By definition of Minimal Explanation, we already have R ⊆ G. Hence, condition (1) is satisfied.

2. Since R is a Minimal Explanation, we have that R |= g. Also, g is purely existential and positive, hence there are
specific elements a1, . . . , ak ∈ R witnessing g; that is, R |= Φ(a1, . . . , ak). Now if Γ is a subgraph of G such that
R ⊆ Γ, then all ai and relations containing ai remain in Γ. Hence Γ also satisfies g and therefore Γ |= g. This shows
that every superset Γ of R inside G satisfies g, satisfying the condition (2) in the PI explanation definition.

6Even though it is not designed for interpretability, as it predicts importance scores at every layer making the resulting explanatory
subgraph not intelligible, here we also include GIB as a reference as it shares the same training objective.
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3. Finally, we now show that R is minimal. Note that since R is a Minimal Explanation, there exists no |R′| ≤ |R|, such
that R′ |= g. In particular, if there was a R′ ⊂ R such that R′ |= g, that would contradict the minimality condition for
a Minimal Explanation. Consequently, no such R′ can serve as a smaller PI explanation. This ensures condition (3).

Remark: There exist classifiers that are not existentially quantified but Minimal Explanations still equal PI explanations.
For instance, ∃=1x.Red(x) can not be expressed as a purely existentially quantified first-order logic formula for which
Minimal Explanations still equal PI explanations.

A.3. Proof of Proposition 4.3

Proposition 4.3. Let g be a classifier and y a given label. Let Ω(y)
g be the set of all the finite graphs (potentially with a

given bounded size) with predicted label y. Then,⋃
G∈Ω

(y)
g

ME(g(G)) ⊆
⋃

G∈Ω
(y)
g

PI(g(G)) (4)

Proof. Any Minimal Explanation R for g(G) is also an instance with a label g(R) = g(G) = y. We now show that a Minimal
Explanation for g(R) is also a PI explanation for g(R), and hence it is contained in

⋃
G∈Ω

(y)
g

PI(g(G)). For any R′ ⊂ R, we
have that g(R′) ̸= g(G) (as R is a Minimal Explanation for g(G)), and hence g(R′) ̸= g(R). Furthermore, any extension
of R (within R) does not lead to prediction change, vacuously. Hence, R is a PI explanation for g(R) = g(G) = y.

A.4. Proof of Theorem 4.4

Theorem 4.4. There exist two distinct classifiers g and g′ and a label y such that:

1. For all graphs G s.t. g(G) = g′(G) = y, we have

ME
(
g(G)

)
= ME

(
g′(G)

)
. (5)

2. There exists at least one graph G∗ with g(G∗) = g′(G∗) = y such that

PI
(
g(G∗)

)
̸= PI

(
g′(G∗)

)
. (6)

Proof. We continue with g and g′ as given in the proof of Theorem 3.4, i.e., g = ∃x∃y.E(x, y) and g′ = ∀x∃y.E(x, y). As
shown in Theorem 3.4, condition 1 is true for g and g′. Now, for any positively labeled graph G∗, PI(g(G∗)) is the set of
edges in G∗, whereas PI(g′(G∗)) is the set of edge covers. As shown in Fig. 1, there exists a graph (say a triangle) such that
the set of edge covers is different from the set of edges.

A.5. Proof of Proposition 5.3

Proposition 5.3. An explanation R ⊆ G for g(G) has a maximal Suf(R) score if and only if there exists a PI explanation
M ⊆ R for g(G).

Proof. An explanation R is maximally sufficient if all possible edge deletions in G \R leave the predicted label g(G′) equal
to g(G), where G′ are the possible graphs obtained after perturbing G \R. Equivalently, every possible extension G′ of R in
G preserves the label. This is true if and only if R is a PI explanation or there exists a subgraph M ⊂ R, which is a PI.

A.6. Proof of Proposition 5.4

Proposition 5.4. An explanation R ⊆ G for g(G) can have a non-zero Nec(R) score only if it intersects every PI explanation
for g(G).

Proof. An explanation R has zero necessity score if all possible edge deletions in R leave the predicted label g(G′) equal to
g(G), where G′ ⊆ G are the possible subgraphs obtained after perturbations in R. Assume to the contrary that R does not
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intersect a PI explanation M , and has a non-zero necessity score. Then, there exists a graph G′ obtained by perturbing R
such that g(G) ̸= g(G′). But note that M ⊆ G′ and M is a PI by assumption, hence g(G) must be equal to g(G′), leading
to a contradiction. Therefore, R must intersect all prime implicants to have a non-zero necessity score.

B. Implementation Details
B.1. Datasets

In this study, we experimented on nine graph classification datasets commonly used for evaluating SE-GNNs. Among those,
we also proposed two novel synthetic datasets to show some limitations of existing SE-GNNs. More details regarding each
dataset follow:

• RedBlueNodes (ours). Nodes are colored with a one-hot encoding of either red or blue. The task is to predict whether
the number of red nodes is larger or equal to the number of blue ones. The topology is randomly generated from a
Barabási-Albert distribution (Barabási & Albert, 1999). Each graph contains a number of total nodes in the range
[10, 100]. We also generate two OOD splits, where respectively either the number of total nodes is increased to 250
(OOD1), or where the distribution of the base graph is switched to an Erdos-Rényi distribution (OOD2) (Erdos et al.,
1959).

• TopoFeature (ours). Nodes are either uncolored or marked with a red color represented as one-hot encoding. The
task is to predict whether the graph contains a certain motif together with at least two nodes. The base graph is randomly
generated from a Barabási-Albert distribution (Barabási & Albert, 1999). Each graph contains a number of total nodes in
the range [8, 80]. We also generate two OOD splits, where respectively either the number of total nodes is increased to
250 (OOD1), or where the distribution of the base graph is switched to an Erdos-Rényi distribution (OOD2) (Erdos et al.,
1959)

• GOODMotif (Gui et al., 2022) is a three-classes synthetic dataset for graph classification where each graph consists of a
basis and a special motif, randomly connected. The basis can be a ladder, a tree (or a path), or a wheel. The motifs are a
house (class 0), a five-node cycle (class 1), or a crane (class 2). The dataset also comes with two OOD splits, where the
distribution of the basis changes, whereas the motif remains fixed (Gui et al., 2022). In our work, we refer to the OOD
validation split of Gui et al. (2022) as OOD1, while to the OOD test split as OOD2.

• MUTAG (Debnath et al., 1991) is a molecular property prediction dataset, where each molecule is annotated based on its
mutagenic effect. The nodes represent atoms and the edges represent chemical bonds.

• BBBP (Wu et al., 2018) is a dataset derived from a study on modeling and predicting barrier permeability (Martins et al.,
2012).

• AIDS (Riesen & Bunke, 2008) contains chemical compounds annotated with binary labels based on their activity against
HIV. Node feature vectors are one-hot encodings of the atom type.

• AIDSC1 (ours) is an extension of AIDS where we concatenate the value 1.0 to the feature vector of each node.

• MNIST75sp (Knyazev et al., 2019) converts the image-based digits inside a graph by applying a super pixelation
algorithm. Nodes are then composed of superpixels, while edges follow the spatial connectivity of those superpixels.

• Graph-SST2 is a sentiment analysis dataset based on the NLP task of sentiment analysis, adapted from the work of
Yuan et al. (2022). The primary task is a binary classification to predict the sentiment of each sentence.

B.2. Architectures

SE-GNNs The SE-GNNs considered in this study are composed of an explanation extractor q and a classifier f . The
explanation extractor is responsible for predicting edge (or equivalently node) relevance scores puv ∈ [0, 1], which indicate
the relative importance of that edge. Scores are trained to saturate either to 1 or to a predetermined value that is considered
as the uninformative baseline. For IB-based losses, this value corresponds to the parameter r (Miao et al., 2022a;b),
whereas for Sparsity based it equals 0 (Lin et al., 2020; Yu et al., 2020). The classifier then takes as input the explanation
and predicts the final label. Generally, both the explanation extractor and the classifier are implemented as GNNs, and
relevance scores are predicted by a small neural network over an aggregated representation of the edge, usually represented
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as the concatenation of the node representations of the incident nodes. A notable exception is GISST, using a shallow
explanation extractor directly on raw features. Both explanation extractors and classifiers can then be augmented with other
components to enhance their expressivity or their training stability like virtual nodes (Wu et al., 2022; Azzolin et al., 2025)
and normalization layers (Ioffe, 2015). Then, SE-GNNs may also differ in their training objectives, as shown in Table 1, or
the type of data they are applied to (Miao et al., 2022b).

We resorted to the codebase of Gui et al. (2022) for implementing GSAT, which contains the original implementation tuned
with the recommended hyperparameters. GISST is implemented following the codebase of Christiansen et al. (2023).
When reproducing the original results was not possible, we manually tuned the parameters to achieve the best downstream
accuracies. We use the same explanation extractor for every model, implemented as a GIN (Xu et al., 2018), and adopt Batch
Normalization (Ioffe, 2015) when the model does not achieve satisfactory results otherwise. Following Azzolin et al. (2025),
we adopt the explanation readout mitigation in the final global readout of the classifier, so to push the final prediction to
better adhere to the edge relevance scores. This is implemented as a simple weighted sum of final node embeddings, where
the weights are the average importance score for each incident edge to that node. The only exceptions are GOODMotif,
BBBP, and Graph-SST2, where we use a simple mean aggregator as the final readout to match the results of original
papers.

Model hyper-parameter. We set the weight of the explanation regularization as follows: For GISST, we weight all
regularization by 0.01 in the final loss; For SMGNN, we set 1.0 and 0.8 the L1 and entropy regularization respectively; For
GSAT, we set the value of r to 0.7 for GOODMotif, MNIST75sp, Graph-SST2, and BBBP, to 0.5 for TopoFeature,
AIDS, AIDSC1, and MUTAG, and to 0.3 for RedBlueNodes. Also, for GSAT we set the decay of r is set every 10 step
for every dataset, except for Graph-SST2 and GOODMotif where it is set to 20. Then, the parameter λ regulating the
weight of the regularization is set to 0.001 for all experiments with SMGNN, while to 1 for GSAT on every dataset except for
RedBlueNodes.

For each model, we set the hidden dimension of GNN layers to be 64 for MUTAG, 300 for GOODMotif, BBBP, and
Graph-SST2, and 100 otherwise. Similarly, we use a dropout value of 0.5 for GOODMotif and Graph-SST2, of 0.3
for MNIST75sp, MUTAG, and BBBP, and of 0.0 otherwise.

SMGNN. The explanation extractor q of GISST is implemented as a simple MLP over input features, meaning the explanation
does not depend on topological information. To overcome this limitation, we propose a simple augmentation named Simple
Modular GNN (SMGNN). SMGNN adopts the same explanation extractor as GSAT, which is however trained with the
GISST’s sparsification loss after an initial warmup of 10 epochs. Therefore, SMGNN adopts a specular architecture as GSAT,
but with the sparsification loss of GISST. Similarly to GSAT, unless otherwise specified, the classifier backbone is shared
with that of the explanation extractor, and composed of 5 layers for BBBP, and 3 layers for all the other datasets.

Dual-Channel GNNs Dual-Channel GNNs are implemented as a reference SE-GNN of choice, whose architecture
remains unchanged, and a linear classifier taking as input a global sum readout of node input features. Both models have an
output cardinality equal to the number of output classes, with a sigmoid activation function. Then, the outputs of the two
models are concatenated and fed to our (B)LENs, described in Appendix C.4. Following Barbiero et al. (2022), we use an
additional fixed temperature parameter with a value of 0.6 to promote sharp attention scores of the underlying LENs. Also,
the number of layers of (B)LENs and LENs are fixed to 3 including input and output layer, and the hidden size is set to
350 for MNIST75sp, 64 for MUTAG and BBBP, 30 for GOODMotif, and 20 otherwise. The input layer of (B)LENs and
LENs does not use the bias parameter. We adopt weight decay regularization to promote the sparsity of the linear model.
For the additional experiment on AIDSC1 (see Appendix C.5), a more stringent L1 sparsification is applied.

B.3. Extracting rules from linear classifiers

Although linear classifiers do not explicitly generate rules, their weights can be interpreted as inequality-based rules. For this
interpretation to be meaningful, the model should remain simple, with sparse weights that promote clarity. In this section,
we review how this can be achieved.

A (binary) linear classifier makes predictions based on a linear combination of input features, as follows:

y = wTx+ b (19)

where x ∈ Rd is a d-dimensional input vector , and w ∈ Rd and b ∈ R the learned parameters. The decision boundary of
the classifier corresponds to the hyperplane wTx + b = 0, and the classification is then based on the sign of y. We will
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(a) (b)

Figure 3: Decision boundary of the linear classifier of DC-SMGNN for RedBlueNodes over the validation split (random
seed 1 and 2). The plot is in 2D since RedBlueNodes contains only red or blue nodes.

consider a classifier predicting the positive class when

wTx+ b ≥ 0. (20)

By unpacking the dot product, Eq. (20) corresponds to a weighted summation of input features, where weights correspond
to the model’s weights w:

w1x1 + · · ·+ wdxd + b ≥ 0. (21)

For ease of understanding, let us commit to the specific example of RedBlueNodes. There, the linear classifier in the
side channel of DC-GNNs takes as input the sum of node features for each graph. Therefore, our input vector will be
x = [xr, xb, xu], where xr, xb, xu indicates the number of red, blue, and uncolored nodes, and a positive prediction is made
when

wrxr + wbxb + wuxu + b ≥ 0. (22)

If the model is trained correctly, and the training regime promotes enough sparsity – e.g. via weight decay or L1 sparsification
– we can expect to have wu ∼ 0 as there are no uncolored nodes and thus feature xu carries no information, and b ∼ 0. Then,
we can rewrite Eq. (22) as

wrxr ≥ −wbxb (23)

Then, wr = −wb is a configuration of parameters that allows to perfectly solve the task, yielding the formula

xr ≥ xb (24)

We show in Fig. 3 that indeed our DC-GNNs learned such configuration of parameters by illustrating the decision boundary
for the first two random seeds over the validation set. The figure confirms that the decision boundary is separating graphs
based on the prevalence of red or blue nodes.

We plot in Fig. 4 a similar figure for TopoFeature, where the decision boundary intersects the y-axis, on average over 10
seeds, at the value of 1.23. By inspecting the model’s weights, non-red nodes are assigned a sensibly lower importance
magnitude (at least 102 lower). Therefore, to convey a compact formula, we keep only the contribution of xr, resulting on
average in the final formula xr ≥ 1.23, which fires when at least two red nodes are present.
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(a) (b)

Figure 4: Decision boundary of the linear classifier of DC-SMGNN for TopoFeature over the validation split (random
seed 1 and 2). For seed 1, wr = 0.89, wb = 4e−42, wu = −0.001, and b = −1.3. For seed 2, wr = 0.92, wb = −1e−33,
wu = −0.002, and b = −1.09. Since xb equals 0 as there are no blue nodes in the dataset, we drop its visualization
collapsing the plot to 2D. When providing the final interpretable formula, we drop xb and xu due to their sensible lower
magnitude. More aggressive sparsification can be applied to the training of the linear model to promote an even lower wu.

B.4. Training and evaluation.

Every model is trained for the same 10 random splits, and the optimization protocol is fixed across all experiments following
previous work (Miao et al., 2022a) and using the Adam optimizer (Kingma & Ba, 2015). Also, for experiments with
Dual-Channel GNN, we fix an initial warmup of 20 epochs where the two channels are trained independently to output the
ground truth label. After this warmup, only the overall model is trained altogether. The total number of epochs is fixed to
100 for every dataset except for Graph-SST2 where it is set to 200.

For experiments on Graph-SST2 we forced the classifier of any SE-GNNs to have a single GNN layer and a final linear
layer mapping the graph embedding to the output. The parameters of the classifier are then different from those of the
explanation extractor and trained jointly.

When training SMGNN, to avoid gradient cancellation due to relevance scores approaching exact zero, we use a simple
heuristic to push the scores higher when their average value in the batch is below 2e−9. This is implemented by adding back
to the loss of the batch the negated mean scaled by 0.1. This is similar to value clapping used by GISST, but we found it to
yield better empirical performances.

B.5. Software and hardware

Our implementation is done using PyTorch 2.4.1 (Paszke et al., 2017) and PyG 2.4.0 (Fey & Lenssen, 2019). Experiments
are run on two different Linux machines, with CUDA 12.6 and a single NVIDIA GeForce RTX 4090, or with CUDA 12.0
and a single NVIDIA TITAN V.

C. Additional Experiments
C.1. Running time analysis

Table 5 presents the running time for two instances of SE-GNNs and DC-GNNs on real-world datasets, showing that the
proposed architecture is not adding any significant computational overhead to the base architecture.
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Table 5: Average running time in seconds of SE-GNNs and DC-GNNs for two real-world datasets.

Model Graph-SST2 BBBP

GSAT 4.78± 0.23 0.55± 0.18
DC-GSAT 4.50± 0.32 0.58± 0.18

SMGNN 6.51± 0.37 0.53± 0.18
DC-SMGNN 6.32± 0.50 0.71± 0.22

C.2. Hyper-parameter ablation study

Table 6 presents an ablation study on the GOODMotif dataset to investigate the robustness of our results to the choice of
hyper-parameter. Overall, results are stable across the hyper-parameter choice, except for a small fluctuation when choosing
r = 0.5 as the parameter of GSAT. However, for r ≥ 0.7, performance stabilizes.

Table 6: Ablation study on the hyper-parameter choice for the GOODMotif dataset. The values underlined represent chosen
values for the main experiments. Results indicate test accuracy.

Hyper-parameter Value DC-GSAT DC-SMGNN

(B)LENs hidden size
15 92± 01 93± 01
30 93± 01 93± 01
64 92± 01 93± 01

(B)LENs num layers
2 93± 01 93± 01
3 93± 01 93± 01
4 93± 01 93± 01

(B)LENs sigmoid temperature
0.1 93± 01 93± 01
0.3 93± 01 93± 01
0.5 93± 01 93± 01

GSAT’s r
0.5 90± 02 -
0.7 93± 01 -
0.9 93± 01 -

C.3. Testing DC-GNNs on DIR (Wu et al., 2022)

Following the recommendation of an anonymous reviewer, we performed an additional experiment with DIR (Wu et al.,
2022), which is a SE-GNNs not fitting the taxonomy of Table 1. While DIR may not output Minimal Explanations,
our proposed Dual-Channel GNNs is a general framework that can be applied to any SE-GNNs. We report the results
for augmenting DIR with our DC-SMGNN framework in Table 7. In running those experiments, we did not perform
hyper-parameter tuning, thus final model accuracies and stability might be further improved by a more careful selection.

Table 7: Augmenting DIR with our proposed Dual-Channel GNNs framework.

Model AIDS MUTAG BBBP Graph-SST2 MNIST75sp
F1 Channel Acc Channel AUC Channel Acc Channel Acc Channel

DIR 96 ± 03 - 78 ± 02 - 64 ± 02 - 83 ± 01 - 83 ± 02 -
DC-DIR 96 ± 03 Rule 78 ± 04 Mix 65 ± 02 Topo* 83 ± 01 Mix 82 ± 02 Topo

C.4. Ablation study on how to choose aggr

Our implementation of aggr relies on LENs to combine the two channels in an interpretable manner. LENs are however
found to be susceptible to leakage (Azzolin et al., 2022), that is they can exploit information beyond those encoded in the
activated class. Leakage hinders the semantics of input activations, thus comprising the interpretability of the prediction
(Margeloiu et al., 2021; Havasi et al., 2022). Popular remedies include binarizing the input activations (Margeloiu et al.,
2021; Azzolin et al., 2022; Giannini et al., 2024) so as to force the hidden layers of LENs to focus on the activations
themselves, rather than their confidence.
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Table 8: Raw channel relevance scores for the experiments in Table 2. The ”Channel” column reports, the relative importance
computed for each channel, For binary classification tasks, the first entry corresponds to the SE-GNN channel, whereas the
last is to the interpretable model. For multi-class tasks, the first |Y | entries correspond to the importance for each of the |Y |
SE-GNNs outputs, whereas the last |Y | to that of the linear model. For GOODMotif, in particular, |Y | = 3.

Model RedBlueNodes TopoFeature GOODMotif
Acc Channel Acc Channel Acc Channel

DC-GSAT 100 ± 00 [0.02, 0.98]± 0.05 100 ± 00 [0.47, 0.53]± 0.27 93 ± 01
[0.33, 0.36, 0.30, 4e−3, 2e−4, 1e−4]
±[0.33, 0.36, 0.29, 1e−2, 2e−4, 1e−4]

DC-SMGNN 100 ± 00 [0.05, 0.95]± 0.10 100 ± 00 [0, 31, 0, 69]± 0.11 93 ± 00
[0.27, 0.19, 0.53, 1e−4, 3e−5, 1e−3]
±[0.39, 0.29, 0.39, 0.0, 0.0, 0.0]

Table 9: Ablation study for the choice of aggr. The reference architecture in use is SMGNN and the dataset used for the
evaluation is TopoFeature. The ”Channel” column reports, when aggr supports it, the relative importance computed for
each channel, where the first entry corresponds to the SE-GNN channel, whereas the last to the interpretable model.

aggr TopoFeature
Acc Channel Num red nodes ≥

aggrGödel 96 ± 03 Not supported -
aggrProduct 96 ± 04 Not supported -
aggrLinear 79 ± 11 [−1.22, 1.77]± [1.65, 0.92] 0.24± 1.01
aggrMLP 99 ± 02 Not supported -
aggrLENs 95 ± 05 [0.62, 0.38]± 0.42 0.17± 1.47
aggrST

LENs 65 ± 07 [0.01, 0.99]± 0.01 0.70± 0.96
aggr(B)LENs (ours) 100 ± 00 [0.31, 0.69]± 0.11 1.23± 0.17

In our work, we adopt a different strategy to avoid leakage in LENs and propose to anneal the temperature of the input
activations so as to gradually approach a binary activation during training, while ensuring a smooth differentiation. Input
activations are generally assumed to be continuous in [0, 1], and usually generated by a sigmoid activation function (Barbiero
et al., 2022). Therefore, our temperature annealing simply scales the raw activation before the sigmoid activation by a
temperature parameter τ , where τ is linearly annealed from a value of 1 to 0.3. The resulting model is indicated with the
name of (Binary)LENs– (B)LENs in short.

In the following ablation study, we investigate different approaches for implementing aggr, showing that only (B)LENs
reliably achieve satisfactory performances while preserving the semantics of each channel. The baselines for implementing
aggr considered in our study are as follows:

• Logic combination based on T-norm fuzzy logics, like Gödel aggrGödel(A,B) = min(A,B) and Product logic
aggrProduct(A,B) = A ∗B (Klement et al., 2013).

• Linear combination aggrLinear(A,B) = W [A||B], where || concatenaMEs the two inputs.

• Multi-Layer Perceptron aggrMLP(A,B) = W3(σ(W2(σW1[A||B]))).

• Logic Explained Network (LENs) aggrLENs(A,B) = LENs(A||B).

• Logic Explained Network (LENs) with discrete input aggrST
LENs(A,B) = LENs(ST (A)||ST (B)). The discreteness of

the input activations is obtained using the Straight-Trough (ST) reparametrization (Jang et al., 2016; Azzolin et al.,
2022; Giannini et al., 2024), which uses the hard discrete scores in the forward step of the network, while relying on
their soft continuous version for backpropagation.

We provide in Table 9 the results for DC-SMGNN using different aggr choices over TopoFeature. In this dataset, the
expected rule to be learned by the interpretable channel is number of red nodes ≥ 2. Among the alternatives, aggrGödel,
aggrProduct, and aggrMLP do not allow to understand how the channels are combined, resulting in unsuitable aggr functions
for our purpose. aggrLinear and aggrST

LENs, instead, fail in solving the task. aggrLENs, however, achieve both a satisfactory
accuracy and an interpretable combination of channels. Nonetheless, the presence of leakage hinders a full understanding of
the interpretable rule, as the hidden layers of the LENs are allowed to exploit the confidence of the interpretable channel’s
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predictions in building an alternative rule, that it is now no longer intelligible. Overall, (B)LENs is the only choice that
allows the combination of both accuracy and an interpretable combination of the two channels, all while preserving the
semantics of the channels as testified by the rule number of red nodes ≥ 1.23 matching the expectations7.

C.5. More experiments on AIDS

In Table 3 we showed that a simple linear classifier on sum-aggregated node features can suffice for achieving the same,
or better, performances than a plain SE-GNN. Even if the linear classifier is promoted for sparsity via weight decay
regularization, the resulting model is still difficult to be interpreted, as it assigns non-negligible scores to a multiple of
input features, making it difficult to extract a simple rule. For this reason, we extend the original set of node features by
concatenating the value 1.0 for each node. The role of this additional feature is to allow the linear classifier to easily access
the graph-level feature number of nodes. We name the resulting updated dataset AIDSC1.

Then, we train the same models as Table 3, where we increase the sparsity regularization on both the SE-GNN and the linear
model, to heavily promote sparsity. This is achieved by setting to 0.1 the weight decay regularization for the SE-GNN,
and to 0.01 a L1 sparsification to the linear classifier. The results are shown in Table 10, and show that under this strong
regularization, SE-GNN struggles to solve the task. Conversely, the Dual-Channel GNN augmentation still solves the
task, while providing intelligible predictions. In fact, by inspecting the weights of the linear classifier when picked by the
Dual-Channel GNN, the resulting model weights reveal that the model is mainly relying on the count of nodes in the graph,
as pointed out in Pluska et al. (2024). For completeness, we report in Table 12 the full weight matrix for DC-SMGNN.

Table 10: Dual-Channel GNNs solve AIDSC1 even when prompted for strong sparsification, whereas plain SE-GNN
achieves suboptimal predictions. Results are averaged only over seeds where the Dual-Channel GNN selects the linear
classifier as the main channel. We indicate with superscript numbers the seeds left out from the analysis. The rule is
extracted from the last column of Table 12 and averaged across nine seeds.

Model AIDSC1
F1 Channel Rule

GIN 85 ± 05 - -

GISST 68 ± 06 - -
DC-GISST 2 99 ± 02 Rule num nodes ≤ 12.66± 0.18

GSAT 70 ± 06 - -
DC-GSAT 4,10 99 ± 02 Rule num nodes ≤ 13.64± 1.41

SMGNN 68 ± 06 - -
DC-SMGNN 10 99 ± 02 Rule num nodes ≤ 13.89± 3.07

C.6. Dual-Channel GNN can improve the faithfulness of SE-GNNs

To measure the impact of the Dual-Channel GNN augmentation to plain SE-GNNs on the faithfulness of explanations,
we compute Faith (Definition 5.1) for SMGNN and GSAT with their respective augmentations on TopoFeature and
GOODMotif. Following Christiansen et al. (2023), we compute Faith for both the actual explanation and a randomized
explanation obtained by randomly shuffling the explanation scores before feeding them to the classifier, and computing their
ratio.

Faith ratio =
Faith(E)
Faith(R)

(25)

where R is the original explanation, and E a randomly shuffled explanation. The metric achieves a score of 1 when the two
values match, meaning the model is as faithful to the original explanation as a random explanation, whilst achieves a score
of 0 when the faithfulness of the original explanation is considerably higher than that of a random one.

We compute the metric over the entire validation splits, and extract hard explanations by applying a topK strategy as
indicated in previous studies (Amara et al., 2022; Longa et al., 2024), where k ∈ [0.3, 0.6, 0.9] for GOODMotif, and

7Since the number of nodes is discrete, any threshold value in [1 + ϵ, 2] corresponds to the rule ≥ 2.
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Table 11: Faithfulness of SE-GNNs and their augmentations for TopoFeature and GOODMotif. Following (Christiansen
et al., 2023), we report the ratio between Faith computed over randomly shuffled explanations and original ones. Therefore,
scores close to zero indicate better values.

Model TopoFeature GOODMotif
Faith ratio (↓) Faith ratio (↓)

GSAT 0.42 ± 0.10 0.78 ± 0.08

DC-GSAT 0.39 ± 0.43 0.69 ± 0.11

SMGNN 0.65 ± 0.28 1.00 ± 0.00

DC-SMGNN 0.04 ± 0.04 1.00 ± 0.00

k ∈ [0.05, 0.1, 0.2, 0.4, 0.8] for TopoFeature. Perturbations are limited to edge removals, and we force isolated nodes to
be removed from the explanation. To compute Suf and Nec, we refer to the implementation of Azzolin et al. (2025) which
requires a hyperparameter b encoding the number of removals to apply at each perturbation. To obtain more robust results,
we vary b ∈ [0.01, 0.05, 0.1], corresponding to a number of perturbations equal to a b percentage of the graph size. Then,
the final Faith score is taken as the best Faith across k and averaged across the values of b.

The final results are reported in Table 11 and highlight that for TopoFeature, where both DC-GNNs can exploit the
interpretable channel (see Table 2), Dual-Channel GNNs can achieve considerable gains in faithfulness. DC-GSAT, in
particular, achieves a better score but with a considerably higher standard deviation. By inspecting the raw scores, however,
we see that across the values b, DC-GSAT scores [1.00, 0.05, 0.12] whereas GSAT achieves [0.50, 0.27, 0.48], indicating
that b = 0.01 can be an unfortunate choice for this model as it may not bring enough perturbations to let the model change
prediction. On the other values of b, however, the model achieves a significant gain in faithfulness ratio of almost an order of
magnitude. On GOODMotif, instead, as the Dual-Channel GNNs does not have any advantage in using an interpretable
model, we do not expect significant changes in the faithfulness scores as indicated in Table 11, where the only gain is due to
higher variance.

We argue that the substantial gains in faithfulness mainly come from the ability of Dual-Channel GNNs to delegate each
sub-task to the channel that can best handle it, i.e., learning the motif for the SE-GNN and the ”≥” rule to the linear classifier.
In doing so, the underlying SE-GNN can better focus on highlighting the topological explanation, resulting in a more
faithful explanation. This insight is supported by the analysis of the compactness of explanations provided in Appendix C.7,
showing that indeed those SE-GNNs can better focus on the topological sub-task.

C.7. Plotting Explanations

In this section, we aim to provide examples of explanations of SE-GNNs and DC-GNNs. For visualization purposes, we
rely on an importance threshold to plot the hard explanatory subgraph over the entire graph. Such threshold is picked by
plotting the histogram of importance scores and chosen in such a way as to separate regions of higher scores from regions of
lower scores. We will analyze the following datasets:

TopoFeature. Fig. 5 and Fig. 6 present the histograms of explanation relevance scores for GSAT and SMGNN respec-
tively. Overall, SMGNN achieves a better separation between higher and lower explanation scores, making it easier to select
a proper threshold to plot explanations. Therefore, we will proceed to show explanation examples in Fig. 7 only for SMGNN
for seed 1, picking as threshold the value 0.8. Overall, the model succeeded in giving considerably higher relevance to edges
in the motif, but failed in highlighting red nodes as relevant for predictions of class 1, hindering a full understanding of the
model’s decision process.

We proceed now to analyze the explanations extracted for the same samples for DC-SMGNN. First, we plot the histogram of
explanation scores in Fig. 8, showing better sparsification than a plain SMGNN. For reference, we also plot the histogram for
DC-GSAT scores in Fig. 9, where the same sparsification effect can be observed. Then, we report in Fig. 10 the explanations
for the same graphs as in Fig. 7, showing that DC-SMGNN achieves better sparsification than a plain SMGNN. In fact, since
the rule at least two red nodes is learned by the interpretable model, the underlying SMGNN now just looks at the topological
motif, and indeed the substantially more sparse edge score reflects this behavior. Overall, DC-SMGNN explanations reflect
more closely the actual predictive behavior of the underlying SE-GNN.
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Figure 5: Histograms of explanation relevance scores for GSAT on TopoFeature (validation set). The model fails to
reliably separate between relevant and non-relevant edges, making it difficult to select a proper relevance threshold.
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Figure 6: Histograms of explanation relevance scores for SMGNN on TopoFeature (validation set). The sparsification
mechanism of SMGNN better separaMEs edges with higher importance than the rest of the graph.
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Figure 7: Examples of explanations for SMGNN (seed 1) over TopoFeature. Relevant edges are those with puv ≥ 0.8
and are highlighted in red. Edges are annotated with their respective puv score. Samples of class 1 must have both a cycle
and at least 2 red nodes.
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Figure 8: Histograms of explanation relevance scores for DC-SMGNN on TopoFeature (validation set). Since the
underlying SMGNN is now only looking for the topological motif (as the rule at least two red nodes is learned by the
interpretable model), the Dual-Channel GNN is allowed to sparsify all the other edges better, achieving more compact
explanations. For seed 1, non-zero scores are clutter around 0.38.
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Figure 9: Histograms of explanation relevance scores for DC-GSAT on TopoFeature (validation set).
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Figure 10: Examples of explanations for DC-SMGNN (seed 1) over TopoFeature. Relevant edges are those with
puv ≥ 0.2 and are highlighted in red. The threshold is picked by looking at the histogram in Fig. 8. Edges are annotated
with their respective puv score. Overall, DC-SMGNN achieves better sparsification than SMGNN (Fig. 7).
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Figure 11: Histograms of explanation relevance scores for GSAT on RedBlueNodes (validation set). The model fails
to reliably separate between relevant and non-relevant edges, making it difficult to select a proper relevance threshold.
Specifically, most edges are assigned an importance close to 0.3, which matches the uninformative prior r selected during
training.

RedBlueNodes. Fig. 11 and Fig. 12 show the edge relevance scores for GSAT and SMGNN respectively. Overall,
the histograms show that both models fail to reliably identify a relevant subgraph with a consistently higher importance
than irrelevant ones. Examples of explanations for both models, plotted in Fig. 13 and Fig. 14, confirm that subgraph-
based explanations fail to convey actionable insights into what the model is predicting, as no clear pattern emerges from
explanations. Conversely, both DC-GSAT and DC-SMGNN provide intelligible prediction by relying on a simple linear
classifier encoding the ground truth rule number of red nodes ≥ blue nodes (see Table 2 and Fig. 3).

AIDS. Among each random seed, seed 8 achieves a test F1 score of 1.0, highlighting that the model is likely to have
learned to just count the number of nodes in each graph, and to make the prediction based on such count (Pluska et al., 2024).
This strategy is proven to be effective in this dataset, as highlighted in Appendix C.5 and Pluska et al. (2024). By plotting
the histogram of explanatory scores in Fig. 15, and some examples of explanations in Fig. 16, we cannot unambiguously
assess which rule the model is using for making predictions. Conversely, as shown in Appendix C.5, DC-GSAT can achieve
the same performances while declaring that only node count statistics are being used for prediction.
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Figure 12: Histograms of explanation relevance scores for SMGNN on RedBlueNodes ((validation set)). The model
assigns very cluttered scores to almost all edges, failing to highlight a subset that is reliably more relevant than the others,
making it difficult to select an appropriate threshold for showing the explanations to consumers.
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Idx: 3 Class 1

(a)

Idx: 10 Class 0

(b)

Figure 13: Examples of explanations for GSAT (seed 1) over RedBlueNodes. Relevant edges are those with puv ≥ 0.7
and are highlighted in red. Edges are not annotated with their respective puv score to avoid excessive clutter.

Idx: 3 Class 1

(a)

Idx: 10 Class 0

(b)

Figure 14: Examples of explanations for SMGNN (seed 1) over RedBlueNodes. Relevant edges are those with puv ≥ 0.2
and are highlighted in red. Edges are not annotated with their respective puv score to avoid excessive clutter.
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Figure 15: Histograms of explanation relevance scores for GSAT on AIDS (validation set).
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Idx: 4 Class 1
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Figure 16: Examples of explanations for GSAT (seed 8) over AIDS. Relevant edges are those with puv ≥ 0.8 and are
highlighted in red. Edges are not annotated with their respective puv score to avoid excessive clutter.

35



Beyond Topological Self-Explainable GNNs

Table 12: Dual-Channel GNN’s linear classifier weights for the DC-SMGNN experiment in Table 10. The L1 sparsification
effectively promotes the model to give considerably higher importance to the last input feature, corresponding to the number
of nodes in the graph. Seed 10 is omitted as the linear classifier is not in use.

Model AIDSC1
DC-SMGNN’s seed Weights (W) Bias (b) - b / W[-1]

seed 1

-6.1e-03 -3.2e-02 -9.5e-03 -1.8e-02 -3.8e-04
7.8e-03 -2.4e-04 7.0e-04 5.9e-04 1.4e-03
3.9e-04 1.6e-02 -4.4e-04 1.4e-03 -6.9e-04
4.1e-05 -2.6e-02 -7.0e-04 3.1e-04 -9.6e-04
-3.8e-04 8.9e-04 1.1e-04 3.7e-05 -2.2e-04
-3.3e-04 -3.3e-04 9.7e-04 4.3e-04 1.4e-03
-8.6e-05 3.4e-04 4.1e-04 3.6e-04 1.1e-03
-1.7e-03 1.7e-03 3.4e-04 -2.9e-01

3.64 12.45

seed 2

-2.0e-02 -3.0e-02 8.0e-03 7.3e-03 -7.3e-04
2.7e-02 -6.5e-04 2.0e-02 -4.9e-05 -9.4e-04
7.2e-02 -4.0e-04 -1.4e-04 -2.6e-04 -3.4e-04
1.1e-03 3.0e-04 8.4e-06 1.3e-04 -9.4e-04
-3.9e-05 -9.3e-04 -5.1e-04 -1.4e-03 6.3e-04
3.4e-04 1.3e-03 5.6e-04 1.2e-04 -6.4e-04
4.5e-04 3.8e-05 8.0e-05 1.6e-04 -3.3e-04
1.3e-04 7.1e-04 5.9e-04 -2.9e-01

3.63 12.57

seed 3

-1.2e-02 -3.1e-02 3.2e-04 2.4e-04 3.6e-04
2.4e-03 -1.4e-04 -4.4e-04 1.5e-06 1.8e-05
6.1e-05 2.4e-04 6.5e-04 -1.2e-04 -2.3e-04
-6.4e-04 -3.1e-04 1.0e-03 -2.8e-03 -1.2e-03
-3.9e-05 1.1e-03 -5.2e-04 -6.0e-04 -1.1e-03
-4.1e-05 2.0e-04 -3.6e-04 -9.2e-04 -7.6e-04
-3.4e-05 -1.3e-04 -8.7e-04 -8.2e-04 -1.4e-03
5.4e-04 6.6e-04 -3.3e-04 -2.7e-01

3.38 12.45

seed 4

-9.7e-03 -1.6e-02 -7.9e-03 -2.0e-02 8.0e-04
4.8e-03 -5.9e-04 6.0e-05 3.9e-04 -1.1e-03
-3.6e-04 6.3e-04 -1.7e-03 3.2e-04 -1.0e-03
4.4e-04 -3.4e-02 7.9e-04 -8.5e-04 -6.0e-04
4.7e-04 -2.8e-04 -9.4e-04 -5.9e-04 -1.0e-03
1.2e-05 -7.1e-05 -5.1e-05 9.3e-04 1.3e-03
1.5e-04 -1.3e-04 -4.9e-04 5.1e-04 7.9e-04
2.5e-05 -4.0e-04 -4.4e-04 -2.8e-01

3.42 12.04

seed 5

-1.7e-01 -2.0e-01 -1.3e-01 1.2e-04 -8.6e-04
-1.2e-03 2.1e-04 -2.0e-04 -1.4e-03 -5.7e-04
1.3e-04 -5.2e-04 -3.5e-04 -9.1e-04 4.6e-04
-6.7e-04 3.6e-04 1.0e-03 -6.8e-04 -4.0e-04
-4.7e-04 -9.2e-04 8.1e-04 -5.2e-04 -1.9e-06
-2.4e-04 -5.2e-04 2.0e-04 4.5e-04 -1.3e-03
5.5e-04 2.5e-04 -5.5e-04 6.2e-04 -1.0e-03
4.2e-04 2.1e-04 8.9e-04 -2.0e-01

4.48 22.18

seed 6

-1.0e-02 -6.9e-02 -2.0e-03 -1.3e-02 -4.7e-03
1.5e-02 -1.1e-03 5.1e-04 8.4e-04 7.4e-04
-8.2e-04 -3.4e-04 -1.3e-03 6.7e-04 -8.1e-07
1.3e-03 -1.7e-02 6.9e-04 2.7e-04 8.7e-04
-8.5e-05 3.1e-04 -3.1e-04 -5.3e-04 -9.0e-04
-4.1e-04 1.2e-03 5.8e-04 -4.2e-04 1.6e-03
-5.1e-04 9.4e-04 4.4e-04 8.4e-04 6.4e-05
2.4e-04 -1.7e-04 -9.2e-04 -2.6e-01

3.90 15.07

seed 7

-1.8e-02 -2.7e-02 -5.5e-03 -1.6e-02 4.9e-04
-4.3e-03 -8.5e-04 1.6e-04 -8.3e-04 9.1e-04
-5.5e-04 -1.1e-03 -6.8e-04 -1.6e-04 -1.4e-03
9.0e-04 -3.5e-02 2.6e-04 1.3e-03 3.0e-04
-5.3e-05 -1.0e-03 -1.0e-03 -4.5e-04 7.9e-04
6.3e-04 1.3e-03 -5.1e-04 8.9e-04 -4.7e-04
2.0e-03 1.0e-03 -3.9e-04 -1.0e-03 -1.0e-04
4.6e-04 1.0e-03 -6.5e-04 -2.9e-01

3.63 12.32

seed 8

-1.0e-02 -2.2e-02 2.0e-03 -1.6e-02 3.1e-04
5.0e-04 -1.2e-03 -3.9e-04 7.8e-04 -5.8e-04
9.9e-05 -8.4e-04 7.6e-04 -3.9e-04 2.0e-04
7.2e-04 -2.3e-02 -5.3e-04 -4.5e-04 7.0e-04
5.9e-04 -1.1e-04 6.5e-04 -6.3e-04 7.9e-06
-5.8e-04 -3.3e-04 -5.5e-04 -1.2e-03 -9.8e-05
-7.0e-05 3.1e-04 -3.4e-04 -2.0e-03 7.8e-05
-3.5e-04 -8.5e-04 3.3e-05 -2.9e-01

3.47 12.18

seed 9

-1.4e-02 -3.1e-02 5.7e-03 -2.1e-02 -2.2e-04
8.5e-03 3.0e-05 1.3e-04 -6.1e-04 5.7e-04
1.2e-04 -2.5e-03 -1.3e-03 -1.8e-04 1.7e-03
2.5e-04 -2.7e-02 6.9e-04 2.5e-04 1.1e-03
-5.1e-04 -9.9e-04 1.5e-04 1.1e-04 2.4e-04
-9.5e-04 -8.2e-04 1.6e-04 -3.8e-04 -6.3e-04
-5.5e-04 1.7e-03 1.0e-03 -1.1e-04 6.4e-04
7.1e-04 -1.9e-04 -4.5e-04 -2.6e-01

3.59 13.73
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