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ABSTRACT

Powder X-ray diffraction (XRD) patterns are highly effective for crystal identi-
fication and play a pivotal role in materials discovery. Although machine learn-
ing (ML) has advanced the analysis of powder XRD patterns, progress has been
constrained by the limited availability of training data and established bench-
marks. To address this, we introduce SimXRD-4M, the largest open-source
simulated XRD pattern dataset to date, aimed at accelerating the development
of crystallographic informatics. We developed a novel XRD simulation method
that incorporates comprehensive physical interactions, resulting in a high-fidelity
database. SimXRD comprises 4,065,346 simulated powder XRD patterns, repre-
senting 119,569 unique crystal structures under 33 simulated conditions that re-
flect real-world variations. We benchmark 21 sequence models in both in-library
and out-of-library scenarios and analyze the impact of class imbalance in long-
tailed crystal label distributions. Remarkably, we find that: (1) current neural
networks struggle with classifying low-frequency crystals, particularly in out-of-
library situations; (2) models trained on SimXRD can generalize to real experi-
mental data.

1 INTRODUCTION

Symmetry identification is a fundamental and crucial step for materials characterization and de-
sign. Specifically, Powder X-ray diffraction (XRD) analysis is exceptionally potent in probing mi-
crostructure, due to its sensitivity to atomic arrangement and the element specificity of atom scat-
tering power. The diffraction pattern reflects the atomic arrangement of the diffracting material, as
depicted in Figure 1, serving as a fingerprint for the crystals.

Figure 1: The X-ray diffraction patterns of
crystal Tb2BaCoO5 and PbSO4.

Traditional methods involve a search-match pro-
cess (Altomare et al., 2008) among numerous known
powder diffraction patterns. Given a target XRD
pattern, it iterates through candidates in databases
until satisfactory alignment is achieved, known as
the search-match method. Although this approach
is prevalent, it is time-consuming (Altomare et al.,
2008; Lv et al., 2024; International Centre for
Diffraction Data) due to two issues: (1) high depen-
dency on human intervention. Matching processes
rely on domain-specific programs that require fre-
quent human-assisted tuning during program execu-
tion; (2) diffraction is a complex, multi-physical coupling process, making structure analysis chal-
lenging even for experienced domain experts.
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Inspired by the remarkable progress of machine learning models, recent studies (Lee et al., 2020;
Szymanski et al., 2021; Maffettone et al., 2021; Wang et al., 2020; Salgado et al., 2023) have at-
tempted to train neural networks on simulated XRD datasets to increase the efficiency of symmetry
identification. They treat XRD patterns as sequences and aim to classify them into specific crystal
systems or space groups. More recent studies (Guo et al., 2024a;b; Li et al., 2024; Cao et al., 2025;
Riesel et al., 2024; Lai et al., 2024) on powder XRD for crystal prediction and generation have
employed advanced ML architectures, achieving significant progress and noteworthy results.

Despite significant progress, several limitations exist in current model development and evaluation:

• Lack of a large-scale and high-quality dataset: Previous research has largely been confined to
specific materials (Fatimah et al., 2022; Lee et al., 2020; Wang et al., 2020). For example, Lee
et al. (Lee et al., 2020) focus on mixtures of 38 distinct binary and ternary crystals in the Sr-Li-
Al-O inorganic compounds. Additionally, the geometric similarity of crystals and experimental
physical factors can result in XRD patterns with similar peak distributions. The introduction of
large-scale databases presents new challenges. Therefore, sufficient coverage of structures and
close alignment with experimental patterns under different physical conditions is necessary for
developing models with high generalization ability.

• Insufficient evaluation on real XRD patterns: While symmetry classification aims to recognize
symmetry from experimental measurements, most studies train and evaluate model performance
on simulated data. Considering the potential bias between simulated and real XRD patterns, mod-
els may overfit simulated data and fail to generalize to real data.

• Limited exploration on out-library identification: Most studies focus on in-library identifica-
tion. This involves training a neural network to generalize across different experimental settings
for the same set of crystals. In contrast, out-library identification aims to generalize to entirely
new crystals. This approach is crucial for discovering novel materials but receives insufficient
attention.

The limited scale of experimental data presents two significant challenges in this field: (1) insuf-
ficient data to adequately test generative capabilities, and (2) difficulty in effectively utilizing such
small-scale experimental datasets for model tuning, even within a transfer learning framework, let
alone for training a model solely based on experimental data. To address this dilemma, we devel-
oped high-fidelity simulation data as a solution. Our results demonstrate no observable differences
in model performance between simulated and experimental test datasets, providing evidence of the
high quality of the simulations. Crafting a high-fidelity simulated XRD pattern dataset is challeng-
ing due to the complexity of domain-specific processes, such as determining crystal stability, con-
figuring instruments, and accounting for physical environmental factors. In this work, we present
a novel XRD simulation method (Appendix B.4) that incorporates comprehensive physical interac-
tions. Using this method, we developed SimXRD, the largest open-source and physically detailed
dataset aimed at advancing this interdisciplinary field. We source crystals from the Materials Project
(MP) (Jain et al., 2013) database and apply rigorous filtering to remove crystals with broken sym-
metry, duplicates, or discrepancies in space group classification. Consequently, SimXRD comprises
4,065,346 X-ray powder diffraction patterns covering 119,569 distinct crystal structures simulated
under various conditions, including grain size, orientation, internal stress, inelastic scattering, ther-
mal vibration, instrumental zero shift, noise and others.

We benchmark both the in-library and out-library symmetry identification performance on SimXRD
of 21 models, which can be divided into three types of sequence models: convolution neural net-
works (i.e., the backbone of existing symmetry classification models), recurrent models, and trans-
formers. Through extensive experiments, we discover that:

• Long-tail distribution: The class labels follow a heavy long-tailed distribution. Most models are
biased toward the high-frequency classes and fail to predict the low-frequency classes, especially
in space group classification. To provide insights into model designs, we evaluate the model
performance under different objective functions and find that label smoothing and focal loss yield
better results.

• Out-library generalization: Out-library classification is challenging, as it requires models to
learn from long-tailed data and generalize to XRD patterns of unobserved crystals. Thus, the
model performance of out-library classification is generally reduced compared to that of in-library
classification.
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Table 1: Summaries of existing powder XRD datasets. ICSD refers to the commercial Inorganic
Crystal Structure Database. MP denotes the open-sourced Material Project.

Dataset #XRD Pattern #Structure Open Access Simulated Crystal Source Year
RRUFF (Lafuente et al., 2015) 3,002 3,002 ✓ × - 2015

XRDSP (Suzuki et al., 2020) 169,536 169,536 ✓ ✓ ICSD 2020
CNN (Lee et al., 2020) 1,785,405 170 × ✓ ICSD 2020

PQNet (Dong et al., 2021) 250,000 1 ✓ ✓ ICSD 2021
XRDAutoAnalyzer (Szymanski et al., 2021) 38,250 150 ✓ ✓ ICSD 2021

XRDIsAllYouNeed (Lee et al., 2022) 328,503 189,476&139,0271 × ✓ ICSD&MP 2022
AdvancedXRDAnalysis (Lee et al., 2023) 29,569,650 197,131 × ✓ ICSD 2023

CrySTINet (Chen et al., 2024) 100 100 ✓ ✓ ICSD 2024
CPICANN (Cao, 2024) 692,190 23,073 ✓ ✓ COD 2024

SimXRD 4,065,346 119,569 ✓ ✓ MP 2024

• Experimental data generalization: The ability to generalize to real experimental data is a gold
standard for symmetry identification models. Remarkably, we found that models trained on
the proposed SimXRD are able to achieve comparable or even better results on the real dataset
(RRUFF), validating the contribution of our dataset construction.

We highlight that our findings provide the research community a clearer insight into the cur-
rent progress in XRD analysis. Additionally, we have made the SimXRD database, simulation
code, benchmark models, evaluation process and tutorial notebooks into a repository: https:
//github.com/Bin-Cao/SimXRD.

2 RELATED WORK

2.1 EXISTING DATASETS

Several datasets have been developed to train neural models for crystallography. Table 1 provides a
summary of these datasets, compared across several key dimensions:

• Dataset Size: Existing open-source databases either contain relatively small structures tailored to
specific purposes (Chen et al., 2024; Dong et al., 2021; Szymanski et al., 2021; Lee et al., 2020) or
consider limited environmental settings (Chen et al., 2024; Suzuki et al., 2020). Crystal structure
databases form the backbone of XRD pattern databases. Although the database developed by
Lee et al. (Lee et al., 2022; 2023) encompasses nearly all the crystals in the Inorganic Crystal
Structure Database (ICSD) (Zagorac et al., 2019) and the Materials Project (MP) (Jain et al.,
2013), it contains a significant number of repeated crystals with broken symmetries. Additionally,
it does not sufficiently account for various physical conditions, resulting in a relatively small
XRD pattern database. SimXRD, by contrast, employs the entire MP database of January 2024,
totaling 154,718 crystal structures. During the generation of the SimXRD database, we applied
screening methods to improve crystal quality. Additionally, we simulate XRD patterns under
various environments to meet the academic-industry requirements.

• Availability: Most pattern datasets are openly available, as indicated in Table 1, though some
datasets can only be retrieved upon reasonable request (Lee et al., 2020; 2022; 2023). Additionally,
published diffraction pattern datasets are saved in various formats, requiring specific data loaders
provided by the authors. In contrast, the SimXRD-4M dataset developed in our work is fully
accessible and features an easier workflow for machine learning training, easily integrable with
TensorFlow or PyTorch frameworks.

• Simulation vs. Experiments: Among the existing datasets, only the RRUFF Project (La-
fuente et al., 2015) aims to create a comprehensive set of high-quality spectral data from well-
characterized minerals. Since its inception in 2005 (RRUFF, 2005), RRUFF has compiled a col-
lection of 3,002 high-quality experimental powder XRD patterns as of March 2024. Conducting
the experiments is time-consuming. Thus, recent studies have employed domain-specific soft-
ware to generate simulated data. Earlier studies primarily relied on widely-used software tools,
such as Pymatgen (Ong et al., 2013), FullProf (Rodrı́guez-Carvajal, 2001), and GSAS-II (Toby
& Von Dreele, 2013), to simulate patterns for training. However, these approaches often showed
varying degrees of performance degradation when applied to experimental test sets. SimXRD

1Union of ICSD and MP database, existing the same structures.

3

https://github.com/Bin-Cao/SimXRD
https://github.com/Bin-Cao/SimXRD


Published as a conference paper at ICLR 2025

addresses these limitations by employing the newly developed PysimXRD, which accounts for
a wider range of real-world conditions, including grain size, internal stress, external temperature
variations, grain orientation, instrument drift, instrument noise, detector geometry, and scattering-
induced background. This comprehensive approach ensures higher fidelity in data generation,
improving the robustness of the resulting models.

2.2 SYMMETRY IDENTIFICATION

Most existing methods for symmetry identification rely on one-dimensional convolutional neural
networks for building classification models. The models developed in recent years have primarily
focused on CNN architectures (Dong et al., 2021; Wang et al., 2020; Park et al., 2017). In partic-
ular, they focus on designing CNNs with deep layers (Lee et al., 2022) and large kernel sizes (Le
et al., 2023), ensemble CNNs (Maffettone et al., 2021; Szymanski et al., 2021), and CNNs with-
out dropout (Lee et al., 2020) and pooling layers (Salgado et al., 2023). However, whether CNNs
can address long-tailed distributions, as well as the performance of other sequence models, remain
underexplored.

3 SIMXRD-4M DATASET

3.1 PRELIMINARIES

Crystal symmetry Symmetry in crystallography is a fundamental property of the orderly arrange-
ments of atoms in crystals (Su et al., 2024). Each atomic arrangement possesses certain symmetry
elements, which are transformations that leave the arrangement unchanged. These elements include
rotation, translation, reflection, and inversion. The specific symmetry elements present in a crys-
talline solid determine its shape and influence its physical properties. Crystals are classified based
on their geometry and symmetry elements, falling into one of 7 crystal systems, and could further
divide into 230 space groups (Clegg, 2023). Further details are provided in AppendixB.1.

XRD pattern Powder XRD patterns offer a one-dimensional representation of the three-
dimensional diffraction pattern and are the most common experimental measurement. Specifically,
each one-dimensional powder X-ray diffraction pattern in SimXRD is presented in the format of d-I
(lattice plane distance-intensity), where the x-axis represents lattice plane distances and the y-axis
represents corresponding intensities, as shown in Figure 2. The diffraction pattern we provide is a
1D tensor with 3501 elements. These points represent lattice plane distances, equally spaced from
1.199 Å to 8.853 Å, with a step size of 0.0176 Å. This corresponds to a typical experimental setup
for a two-theta diffractometer (copper target), where the diffraction angle is scanned from 10° to 80°
with a step size of 0.02°. The d-I pattern is independent of the wavelength of the incident X-rays,
making it universally applicable across all experimental X-ray sources. Lattice plane distances de-
note the detected atomic directions. Some distances lack peaks due to geometric constraints from
the lattice cell and extinction effects (Lund et al., 2010) under diffraction. The relative intensity is
normalized, with the maximum intensity set to 100, making the pattern independent of the incident
X-ray intensity.

3.2 DATA GENERATION AND PROCESSING

Crystal data The crystal structures used in this study were sourced from Material Project (Jain
et al., 2013), a comprehensive, searchable database containing information on solid-state materials
and molecules. It provides detailed data on the physical properties of these materials, such as elas-
tic tensors, band structures, and formation energies, derived from electronic structure calculations,
providing a more comprehensive reference for crystal studies. We utilize the latest dataset, denoted
as MP-2024.1, which includes a total of 154,718 crystallographic structures as of January 2024.

Crystal Filtering To ensure consistency between recorded space group numbers (crystal systems)
and atomic arrangements, and to enhance the quality of crystal structures, we performed a thorough
examination of each structure in the MP database. We used Spglib (Togo et al., 2024), a library
designed for identifying and managing crystal symmetries, to analyze all structures. Structures
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Figure 2: (A) The workflow of the large simulated XRD database and symmetry classification bench-
mark consists of four main components: (1) Retrieval of crystal data from the Materials Project
database. (2) Multiphysical coupling simulations to generate high-fidelity powder XRD patterns.
(3) Application of three machine learning model types, CNNs, recurrent models, and transform-
ers, for benchmarking the database.(4) Symmetry classification, which maps powder XRD patterns
to specific space groups and crystal systems. (B) Experimental XRD pattern of a Li-rich layered
oxide cathode (Li2MnO3) was compared with simulated pattern generated using PysimXRD. The
simulation incorporates multiphysical coupling, producing patterns that closely match experimental
measurement with minimal residual errors.

exhibiting broken symmetry, duplication, or discrepancies in space groups were excluded. Addi-
tionally, only structures containing up to 500 atoms per lattice cell (conventional unit cell) were
retained, effectively covering nearly all inorganic materials in the MP dataset. A total of 119,569
crystal structures were screened. Further details are given in Appendix A.1.

Simulation in SimXRD Figure 2 illustrates the overall simulation process. The experimental
XRD patterns depend on both the crystal’s intricate structure and practical factors, including the
sample’s state and instrumental parameters. Our goal is to simulate this process using domain-
specific custom software Pysimxrd (Appendix B.4). First, we specify the environmental settings
and then compute the XRD patterns for the given crystals. By varying the environmental param-
eters, we generate all samples in the SimXRD dataset. We systematically analyze the physical
conditions affecting the XRD profiles, categorizing them into factors that influence the sample’s
internal structure and those affect instrumental measurements. These parameters, along with their
respective value ranges, are outlined in the Appendix B.4. For each input crystal, we randomly
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combine these physical conditions within reasonable ranges, repeating the process 33 times to sim-
ulate XRD patterns across diverse environments. Each XRD pattern is standardized, with the x-axis
values (lattice plane distance) uniformly set based on the experimental settings, resulting in a vector
of 3501 dimensions. The y-axis values (diffraction intensity) are simulated according to the crystal
structure and diffraction conditions.

3.3 DATA ANALYSIS

Long-tailed distribution The distribution of space groups on a logarithmic scale is shown in Fig-
ure 3. The space groups in the MP dataset are ranked in descending order, and their frequencies
are plotted on a logarithmic scale. This reveals differences in frequency spanning several orders of
magnitude. The data clearly exhibit a highly imbalanced, long-tailed distribution. Since MP-2024.1
serves as a comprehensive database of commonly occurring material systems, this distribution im-
balance is inherent to the physical population of crystals in nature. This imbalance can lead to
biased model performance, as the model may be more inclined to predict the majority class, leading
to lower accuracy for the minority classes. Since minority crystals are also important for material
discovery, addressing long-tailed sequence learning is crucial for symmetry identification. However,
existing models do not consider this challenge, making it necessary to evaluate their performance
across different classes. The detailed space group distribution and the energy distribution of crystals
are presented in Appendix A.1.

Figure 3: The distribution of space groups on
logarithmic scale

Case study A case study is conducted to investi-
gate the difference between experimental and simu-
lated XRD patterns of Li2MnO3. Initially, the phys-
ical states of the tested sample and the experimen-
tal settings were obtained using a refinement method
(see Appendix B.7). Subsequently, the XRD pattern
was generated inversely using the Pysimxrd. Fig-
ure 2 (B) shows the results where we can observe
that the generated profile exhibits extreme similarity
to the experimental measurements(Lei et al., 2024).
Therefore, by altering the physical states within a
reasonable range, other patterns corresponding to
different experimental settings can be generated.
Such simulation allows us to obtain high-quality data
in a relatively efficient manner, compared to experimental patterns.

4 BENCHMARK

4.1 PROBLEM DEFINITION

Symmetry classification Formally, SimXRD treats the problem as a multi-class sequence classi-
fication task. Given the XRD pattern X = [x1, x2, · · · , xn] ∈ Rn where xi is the i-th intensity
value and X is arranged by lattice plane distance, the goal is to predict its symmetry Y ∈ Rk. Here
n is the feature dimension which is 3501 in our dataset. For crystal system classification, k = 7, and
for space group classification, k = 230. We did not consider practical factors such as average grain
size and stress as input variables, since these are not directly measurable in real-world diffraction
experiments.

In/Out-library crystallographic tasks In-library classification aims to generalize across different
experimental environments for the same set of structures. Consequently, the training and testing
datasets consist the same structures but with varying simulation parameters. In contrast, out-library
classification seeks to generalize to different crystals. Therefore, the training and testing datasets
consist of different types of crystals. More details are provided in Appendix B.2.
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Table 2: Results of in library crystal system classification and space group classification. Inference
time is measured for a batch size of 100 samples and experiments are run on a GeForce RTX 3090
GPU.

Model # Conv. # Dropout # Pooling Ensemble Ref. Crystal System Space Group
Accuracy F1 Precision Recall Time (ms) Accuracy F1 Precision Recall Time (ms)

CNN1 3 ✓ AvgPool × (Park et al., 2017) 0.559 0.418 0.427 0.431 3.2 0.241 0.002 0.001 0.005 3.4
CNN2 2 × MaxPool × (Lee et al., 2020) 0.466 0.236 0.222 0.283 1.8 0.241 0.002 0.001 0.005 1.9
CNN3 3 × MaxPool × (Lee et al., 2020) 0.531 0.328 0.315 0.369 3.5 0.241 0.002 0.001 0.005 3.6
CNN4 7 ✓ MaxPool × (Wang et al., 2020) 0.316 0.069 0.045 0.143 1.4 0.241 0.002 0.001 0.005 1.4
CNN5 3 ✓ AvgPool ✓ (Maffettone et al., 2021) 0.517 0.394 0.489 0.378 0.6 0.295 0.022 0.025 0.026 0.6
CNN6 7 ✓ MaxPool × (Dong et al., 2021) 0.316 0.069 0.045 0.143 65.0 0.241 0.002 0.001 0.005 65.0
CNN7 6 ✓ MaxPool ✓ (Szymanski et al., 2021) 0.862 0.863 0.887 0.845 6.8 0.588 0.124 0.147 0.130 6.9
CNN8 14 ✓ MaxPool × (Lee et al., 2022) 0.377 0.162 0.148 0.221 3.1 0.241 0.002 0.001 0.005 3.1
CNN9 3 ✓ MaxPool × (Le et al., 2023) 0.795 0.817 0.826 0.810 1.9 0.599 0.597 0.681 0.556 1.9

CNN10 4 ✓ MaxPool × (Le et al., 2023) 0.870 0.888 0.892 0.885 1.8 0.705 0.792 0.853 0.759 1.8
CNN11 3 ✓ None × (Salgado et al., 2023) 0.902 0.922 0.932 0.914 4.8 0.758 0.750 0.735 0.828 4.8

MLP 0.316 0.069 0.045 0.143 1.6 0.241 0.002 0.001 0.005 1.6
RNN 0.381 0.183 0.200 0.202 8.0 0.245 0.003 0.002 0.007 8.1

LSTM 0.728 0.743 0.762 0.728 14.6 0.515 0.156 0.224 0.151 14.6
GRU 0.765 0.788 0.802 0.777 15.1 0.575 0.273 0.400 0.251 15.1

Bidirectional-RNN 0.365 0.155 0.197 0.185 14.7 0.245 0.003 0.002 0.007 14.7
Bidirectional-LSTM 0.791 0.814 0.825 0.805 29.1 0.559 0.384 0.533 0.346 29.1
Bidirectional-GRU 0.800 0.826 0.840 0.816 30.3 0.627 0.451 0.609 0.408 30.3

Transformer 0.338 0.127 0.172 0.155 83.4 0.241 0.002 0.001 0.005 83.5
iTransformer 0.627 0.611 0.652 0.599 1.9 0.388 0.135 0.320 0.118 1.9

PatchTST 0.720 0.752 0.766 0.740 3.3 0.631 0.811 0.850 0.784 3.3

4.2 EXPERIMENTAL SETTING

Dataset split For in-library classification, a fundamental task in crystallography, the dataset is
randomly split according to the types of simulated environments, resulting in 119,569 × 30 training
instances, 119,569 × 1 validation instances, and 119,569 × 2 testing instances. The data recorded for
training, validation, and testing include crystals from different simulated environments (e.g., grain
size, stress, temperature). Under out-of-library settings, the training and testing XRD patterns are
generated from non-overlapping crystals. This setup yields 83,698 × 33 training instances, 11,957 ×
33 validation instances, and 23,914 × 33 testing instances.

Baselines We consider the following three types of sequence classification models:

• CNN-based Models: We evaluate all existing CNN architectures proposed for symmetry identi-
fication. Since most models do not have specific names, we classify them based on their number
of convolution layers, pooling layers, and whether they use ensemble learning or dropout layers.
Table 2 summarizes the existing 11 CNN models.

• Recurrent Models: We select three basic recurrent neural networks: RNN (Medsker & Jain,
1999), LSTM (Hochreiter & Schmidhuber, 1997), and GRU (Chung et al., 2014). Additionally,
since XRD patterns can be viewed from both forward and backward, we also evaluate the perfor-
mance of bidirectional RNN, LSTM, and GRU (Schuster & Paliwal, 1997).

• Transformers: Transformers have proven effective in variety of sequence modeling tasks. We
evaluate the performance of the raw transformer (Vaswani et al., 2017) and two advanced trans-
former models - iTransformer (Liu et al., 2023) and PatchTST (Nie et al., 2023).

Besides these models, we also include MLP as a straightforward baseline. For recurrent models
and transformers, we first use them to learn sequence representations, and then employ an MLP to
predict the symmetry.

Implementation details We use the following hyper-parameters across all experiments: Batch
size of 128 and learning rate of 2.5 × 10−4. All models are trained for 50 epochs with an early
stopping patience of 3. We use the Cross-Entropy function to measure the difference between pre-
dictions and the ground truth. The performance of the models is evaluated using accuracy, macro
F1-score, macro precision, and macro recall as metrics. All models are implemented using the
PyTorch (Paszke et al., 2019) library and trained on GeForce RTX 3090 GPU.
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Table 3: Results of weighted classification, label smoothing, and Focal loss on crystal system and
space group classification.

Crystal System Classification
Training Weighted classification Label smoothing Focal loss
Metric F1 Precision Recall F1 Precision Recall F1 Precision Recall
CNN1 0.565 0.538 0.642 0.578 0.587 0.575 0.607 0.608 0.610
CNN2 0.690 0.659 0.734 0.497 0.493 0.506 0.511 0.506 0.518
CNN3 0.699 0.665 0.765 0.723 0.765 0.698 0.536 0.529 0.546
CNN4 0.229 0.191 0.390 0.066 0.043 0.142 0.066 0.043 0.142
CNN5 0.397 0.379 0.468 0.382 0.431 0.375 0.313 0.339 0.321
CNN6 0.069 0.046 0.142 0.069 0.046 0.142 0.069 0.046 0.142
CNN7 0.740 0.710 0.793 0.863 0.887 0.844 0.851 0.871 0.836
CNN8 0.546 0.533 0.625 0.566 0.590 0.559 0.554 0.687 0.547
CNN9 0.780 0.748 0.824 0.802 0.820 0.788 0.814 0.803 0.807

CNN10 0.800 0.767 0.848 0.877 0.898 0.860 0.844 0.857 0.834
CNN11 0.811 0.797 0.845 0.931 0.943 0.921 0.887 0.895 0.882

MLP 0.069 0.046 0.142 0.069 0.046 0.142 0.069 0.046 0.142
RNN 0.154 0.184 0.236 0.180 0.200 0.196 0.167 0.197 0.187

LSTM 0.086 0.153 0.171 0.706 0.721 0.697 0.701 0.712 0.701
GRU 0.769 0.737 0.821 0.783 0.799 0.771 0.727 0.742 0.717

Bidirectional-RNN 0.169 0.184 0.238 0.144 0.192 0.176 0.159 0.150 0.179
Bidirectional-LSTM 0.717 0.684 0.789 0.795 0.819 0.775 0.622 0.653 0.602
Bidirectional-GRU 0.704 0.674 0.777 0.861 0.863 0.863 0.845 0.843 0.847

Transformer 0.134 0.161 0.178 0.130 0.169 0.156 0.129 0.171 0.156
iTransformer 0.545 0.516 0.643 0.590 0.618 0.580 0.604 0.630 0.598

PatchTST 0.672 0.643 0.745 0.710 0.735 0.691 0.714 0.722 0.709

Space Group Classification
CNN1 0.000 0.000 0.005 0.002 0.001 0.005 0.002 0.001 0.005
CNN2 0.000 0.000 0.005 0.002 0.001 0.005 0.002 0.001 0.005
CNN3 0.000 0.000 0.005 0.002 0.001 0.005 0.002 0.001 0.005
CNN4 0.001 0.000 0.005 0.002 0.001 0.005 0.002 0.001 0.005
CNN5 0.033 0.028 0.056 0.002 0.001 0.005 0.002 0.001 0.005
CNN6 0.000 0.001 0.005 0.002 0.001 0.005 0.002 0.001 0.005
CNN7 0.220 0.217 0.377 0.124 0.143 0.131 0.250 0.225 0.217
CNN8 0.000 0.000 0.005 0.002 0.001 0.005 0.002 0.001 0.005
CNN9 0.391 0.325 0.739 0.370 0.648 0.303 0.582 0.674 0.535

CNN10 0.200 0.223 0.649 0.542 0.806 0.452 0.774 0.851 0.732
CNN11 0.000 0.000 0.005 0.615 0.836 0.525 0.751 0.741 0.815

MLP 0.000 0.000 0.005 0.002 0.001 0.005 0.002 0.001 0.005
RNN 0.000 0.002 0.006 0.003 0.001 0.006 0.003 0.001 0.005

LSTM 0.000 0.000 0.006 0.143 0.210 0.137 0.140 0.206 0.137
GRU 0.215 0.180 0.610 0.185 0.261 0.176 0.227 0.192 0.653

Bidirectional-RNN 0.004 0.006 0.010 0.003 0.002 0.006 0.004 0.005 0.009
Bidirectional-LSTM 0.148 0.135 0.518 0.177 0.278 0.166 0.177 0.275 0.159
Bidirectional-GRU 0.088 0.099 0.276 0.297 0.475 0.246 0.472 0.638 0.416

Transformer 0.001 0.001 0.006 0.002 0.002 0.005 0.002 0.002 0.005
iTransformer 0.083 0.096 0.387 0.092 0.172 0.090 0.173 0.365 0.149

PatchTST 0.121 0.123 0.386 0.677 0.801 0.609 0.719 0.808 0.665

4.3 RESULTS

In-library classification Table 2 displays the baseline performance and inference time for the
classification of crystal systems and space groups. Based on the results, we make the following
observations:

• Most existing CNN models are unsuitable for symmetry identification within the large scale of the
SimXRD database. It is clear that the crystal system classification accuracies of several CNNs,
e.g., CNN 4 and 6 are on par with that of MLP. As shown in the additional results in Appendix A.2,
the reason for this is that their predictions are heavily biased by high frequency classes, making
them unable to predict low-frequency classes effectively. This limitation is even more apparent in
space group classification, where the accuracy of most CNNs (i.e., CNN 1-4, 6, and 8) is 0.241,
indicating that their outputs are almost fixed to the most frequent space group.

• Convolutional neural networks without pooling have achieved the best performance in most tasks,
consistent with the findings of previous work (Salgado et al., 2023). Since the peak maximum and
the relative value among peaks in XRD patterns are closely related to the atom arrangement of
crystals, employing pooling layers may lead to information loss, which can affect peak identifica-
tion and result in lower accuracy.
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Table 4: Results of out-library symmetry identification.
Task Crystal System Classification Space Group Classification

Model Accuracy F1 Precision Recall Accuracy F1 Precision Recall
CNN1 0.627 0.437 0.565 0.472 0.285 0.003 0.002 0.006
CNN2 0.606 0.419 0.428 0.425 0.285 0.003 0.002 0.006
CNN3 0.659 0.501 0.496 0.507 0.285 0.003 0.002 0.006
CNN4 0.378 0.078 0.054 0.142 0.285 0.003 0.002 0.006
CNN5 0.495 0.278 0.285 0.283 0.285 0.003 0.002 0.006
CNN6 0.378 0.078 0.054 0.142 0.285 0.003 0.002 0.006
CNN7 0.673 0.607 0.633 0.608 0.429 0.053 0.050 0.072
CNN8 0.612 0.452 0.448 0.497 0.286 0.003 0.001 0.006
CNN9 0.675 0.632 0.629 0.644 0.439 0.099 0.137 0.113

CNN10 0.692 0.659 0.650 0.674 0.430 0.107 0.168 0.121
CNN11 0.702 0.672 0.659 0.690 0.481 0.136 0.167 0.150

MLP 0.378 0.078 0.054 0.142 0.285 0.003 0.002 0.006
RNN 0.409 0.162 0.149 0.178 0.274 0.003 0.002 0.009

LSTM 0.657 0.575 0.583 0.589 0.431 0.070 0.092 0.085
GRU 0.707 0.678 0.656 0.709 0.480 0.110 0.143 0.125

Bidirectional-RNN 0.403 0.157 0.146 0.174 0.295 0.004 0.003 0.008
Bidirectional-LSTM 0.704 0.663 0.654 0.678 0.349 0.035 0.044 0.051
Bidirectional-GRU 0.722 0.699 0.697 0.705 0.498 0.138 0.192 0.149

Transformer 0.376 0.138 0.231 0.158 0.285 0.003 0.005 0.006
iTransformer 0.606 0.495 0.519 0.526 0.367 0.053 0.085 0.064

PatchTST 0.656 0.616 0.612 0.627 0.375 0.067 0.093 0.082

• Bidirectional recurrent models consistently outperform their unidirectional counterparts. These
results highlight an important physical attribute of XRD patterns : ensuring the consistent retrieval
of crystal information through bidirectional pattern reading. This property is distinct from previ-
ous sequence tasks such as text and time-series classification, necessitates further model design
considerations.

• The raw transformer encounters difficulties when dealing with the long-tailed sequence prob-
lem. However, compared to the raw transformer, we observe that PatchTST achieves a significant
performance improvement, demonstrating that subsequence-level patches are beneficial for peak
identification and further enhancing classification performance.

Long-tailed objective functions The long-tailed distribution significantly impedes the symmetry
identification of XRD patterns. To address this issue, we further train all baseline models using
the following techniques: (1)Weighted classification that reweights training instances based on the
inverse of class frequency; (2) Label smoothing that applies cross-entropy with targets smoothed
towards a uniform distribution; (3) Focal loss that focuses on hard-to-classify examples by down-
weighting the loss for easy examples. The results are presented in Table 3. These results show
that weighted classification does not improve model performance. This lack of improvement is
likely because increasing the importance of minority classes leads to a decrease in accuracy for the
majority classes. In contrast, label smoothing and focal loss generally generally yield better results
for both crystal system and space group classification, suggesting promising research directions for
model designs.

Out-library classification Different splitting mechanisms are essential for preliminary experi-
ments. Consequently, we conduct experiments using out-of-library settings, where the training and
testing XRD patterns come from non-overlapping structures. To ensure that the training, validation,
and test datasets consist of distinct crystals, we randomly partition the dataset by crystal type. The
results are detailed in Table 4. Based on the findings, we have the following observations:

• Performance decrease compared to in-library classification. This decline is anticipated, as out-of-
library classification requires models to generalize across different crystal types, which presents a
greater challenge.

• The relative model performances align with the results from in-library identification, with
Bidirectional-GRU and CNN11 achieving higher scores. However, there is a noticeable decline in
out-of-library cases, as the models need to account for varying extinction effects across different
space groups, which introduces significant challenges.

• Models such as CNN1-4, CNN6, CNN8, MLP, and Transformer exhibit poor performance in
out-of-library identification, with accuracy scores around 24%, close to random prediction. This
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Table 5: Generalization experiments on RRUFF dataset.
Task Crystal System Classification Space Group Classification

Model Accuracy F1 Precision Recall Accuracy F1 Precision Recall
CNN1 0.623 0.542 0.563 0.539 0.241 0.004 0.002 0.010
CNN2 0.425 0.210 0.178 0.143 0.241 0.004 0.002 0.010
CNN3 0.506 0.313 0.397 0.332 0.241 0.004 0.002 0.010
CNN4 0.297 0.065 0.042 0.143 0.241 0.004 0.002 0.010
CNN5 0.530 0.402 0.511 0.384 0.302 0.043 0.045 0.051
CNN6 0.297 0.065 0.042 0.143 0.241 0.004 0.002 0.010
CNN7 0.868 0.877 0.899 0.860 0.577 0.202 0.205 0.222
CNN8 0.297 0.065 0.042 0.143 0.241 0.004 0.002 0.010
CNN9 0.792 0.819 0.832 0.809 0.615 0.500 0.555 0.486
CNN10 0.859 0.885 0.893 0.879 0.696 0.685 0.741 0.669
CNN11 0.893 0.920 0.930 0.914 0.766 0.700 0.754 0.687

MLP 0.325 0.070 0.046 0.143 0.241 0.004 0.002 0.010
RNN 0.377 0.165 0.203 0.185 0.245 0.006 0.004 0.013

LSTM 0.723 0.735 0.747 0.731 0.522 0.230 0.275 0.230
GRU 0.774 0.801 0.817 0.788 0.575 0.360 0.421 0.357

Bidirectional-RNN 0.365 0.152 0.190 0.184 0.245 0.005 0.003 0.013
Bidirectional- LSTM 0.788 0.813 0.820 0.808 0.553 0.367 0.419 0.354
Bidirectional-GRU 0.804 0.845 0.864 0.834 0.636 0.448 0.512 0.429

Transformer 0.354 0.138 0.219 0.165 0.241 0.004 0.002 0.010
iTransformer 0.629 0.612 0.658 0.607 0.392 0.143 0.156 0.151

PatchTST 0.723 0.764 0.785 0.750 0.635 0.696 0.748 0.687

underscores the need for further development of domain-specific models to effectively address the
challenges of out-of-library identification.

Experimental data generalization A generalization experiment is conducted using the experi-
mental RRUFF dataset. We train and validate all baseline models on SimXRD and then test their
performance on RRUFF. The results are presented in Table 5. The findings indicate that the models
generally achieve consistent performance on both SimXRD and RRUFF. Notably, CNN 11 consis-
tently delivers the best accuracy, even surpassing its performance on SimXRD (e.g., CNN 11 in
space group classification). Models that exhibited lower accuracy on SimXRD (e.g., CNN 1-6) also
perform poorly on RRUFF.

5 CONCLUSION

In this paper, we introduce SimXRD, the largest open-source XRD pattern dataset for symmetry
identification. Data analysis reveals that the symmetry labels follow a long-tailed distribution. We
evaluate 21 models on two different splitting patterns (in-library and out-of-library) and find that
most existing models struggle to accurately predict the symmetry of low-frequency classes, even
when addressing for class imbalance. This limitation hinders their real-world applicability. Our
results emphasize the importance of modeling long-tailed sequence classification and conducting
comprehensive comparison to accurately assess the capabilities of various models. To promote
further research and advancements in symmetry identification algorithms, we make both SimXRD
and the simulation code available as open-source.

Limitations While SimXRD improves upon previous datasets in terms of sample size, crystal
quality, and accessibility, the long-tailed and imbalanced label distribution remains an inherent limi-
tation. The distribution of crystallographic symmetry arises through natural processes and is invari-
ant to human intervention, making such biases difficult to address in any dataset. Potential solutions
include developing class-imbalanced algorithms or incorporating additional information about the
target crystals.

Future works We view SimXRD as an evolving project and are committed to its ongoing devel-
opment. Future plans include: (1) Developing long-tailed sequence classification models through
techniques such as data augmentation (Chu et al., 2020; Zheng et al., 2024) or enhancing features
via graph inputs Liu et al. (2024a); (2) Exploring training approaches like multi-stage learning to
address the imbalanced nature of XRD patterns; (3) Designing data augmentation strategies Liu
et al. (2024b) for XRD patterns, while ensuring that methods like random swapping do not generate
instances that violate underlying physical principles.
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A ADDITIONAL RESULTS

A.1 LONG-TAILED DISTRIBUTION AND FORMATION ENERGY

The distributions of space groups and crystal systems are shown in Figure 4A and B. The forma-
tion energy (Ef ) of a configuration represents the energy required or released during its formation.
Thus, the formation process can be either endothermic or exothermic. A more negative formation
energy indicates greater structural and thermal stability Turnbull (1956). Figures 4C and D illus-
trate the formation energy per atom across 154,718 crystal structures in MP-2024.1 and 119,569
crystal structures in SimXRD. Figure 4C highlights the high-quality crystal data in MP-2024.1,
with 90.33% of structures exhibiting negative formation energy. In comparison, the crystal data in
SimXRD shows a negative formation energy rate of 92.18%, indicating that the excluded crystals are
primarily unstable. This high-quality structural data forms the foundation of XRD pattern databases.

A B

C

D

1 : Cubic
2 : Hexagonal
3 : Tetragonal
4 : Orthorhombic
5 : Trigonal
6 : Monoclinic
7 : Triclinic

90.33%

92.18%

Figure 4: The statics of dataset. (A) The distribution of structures contained in the SimXRD database
across various space groups (uniformly divided into 5 categories according to the frequency) and (B)
crystal systems (C) The distribution of –formation energy/atom of crystals contained in MP-2024.1
and (D) SimXRD. Space groups 89, 103, and 104 have been excluded from Figure A to enhance
clarity, each appearing only once.

A.2 PERFORMANCE W.R.T. LONG-TAILED DISTRIBUTION

To further investigate the model’s performance, we display the accuracy of each crystal system and
space group at different frequencies in Figure 5 under in-library symmetry identification. To better
visualize the model performance on space groups, we divided the results of 280 space groups into
5 categories according to their frequency (the same as Figure 4). From the results, we observe the
following:

• In crystal system classification, the performance of most CNN models, the raw RNN, and trans-
formers is affected by the frequency of crystal systems. They cannot predict the XRD patterns of
Cubic and Hexagonal symmetry (their accuracies are almost zero). In contrast, multiple domain-
specific CNN (i.e., CNN 7, 9, 10, 11), LSTM, GRU, and advanced Transformers (i.e., iTrans-
former and PatchTST) can mitigate long-tail distributions.
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Figure 5: Classification accuracy of each model w.r.t. crystal systems and space groups. The same
as Figure 4(A), Space groups are classified into 5 categories based on their frequency. N denotes
the number of crystals.

• Space group classification is more challenging than crystal system classification. Most models
can only predict space groups with high frequency and struggle predict most low-frequency space
groups. Surprisingly, PatchTST achieves comparable performance with the best models in all
low-frequency space groups. Given that PatchTST is a model specifically tailored for time se-
ries forecasting, its performance on XRD pattern classification still has considerable room for
improvement.

A.3 PARAMETERS INTERVALS STUDY

To study how simulation parameters influence model performance on SimXRD, we perform an
additional comparison by dividing the testing instances into three distinct intervals based on their
key simulation parameters:

• Category 1: Grain size (nm) ∈ [2, 10], atomic thermal offset (Å) ∈ [0.4, 0.5], orientation random-
ness (%) ∈ [30, 40], zero shifting (°) ∈ [1, 1.2].

• Category 2: Grain size (nm) ∈ [40, 50], atomic thermal offset (Å) ∈ [0, 0.1], orientation random-
ness (%) ∈ [0, 10], zero shifting (°) ∈ [0, 0.2].

• Category 3: The parameter domain excludes Category 1 and Category 2.

The three parameter categories represent three simulated experimental scenarios: Category 1 reflects
a high degree of peak broadening and external influence, while Category 2 is aligned with relative
ideal conditions, exhibiting lower broadening and noise. Category 3 represents an intermediate state
between the two. The accuracy of space group classification is displayed in Table 6. The results
indicate that the baselines generally perform better in Category 2 and exhibit the lowest accuracy in
Category 1, underscoring the challenges of modeling experimental XRD patterns in more complex
physical situations. These insights highlight the need for developing a high-fidelity database that
encompasses diverse crystals and covers a sufficient range of practical scenarios.
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Table 6: Parameter Categories comparison of crystal systems & space group
Task Crystal System Classification Space Group Classification

Metric Category1 Category2 Category3 Category1 Category2 Category3
CNN1 0.523 0.553 0.554 0.250 0.233 0.241
CNN2 0.452 0.467 0.464 0.250 0.233 0.241
CNN3 0.318 0.384 0.307 0.250 0.233 0.241
CNN4 0.375 0.305 0.302 0.250 0.233 0.241
CNN5 0.500 0.545 0.526 0.312 0.286 0.295
CNN6 0.375 0.305 0.302 0.250 0.233 0.241
CNN7 0.781 0.894 0.862 0.437 0.566 0.575
CNN8 0.375 0.305 0.302 0.250 0.233 0.241
CNN9 0.781 0.823 0.785 0.343 0.646 0.609
CNN10 0.812 0.908 0.868 0.406 0.727 0.704
CNN11 0.656 0.908 0.895 0.562 0.823 0.775

MLP 0.312 0.327 0.324 0.250 0.233 0.241
RNN 0.468 0.383 0.367 0.218 0.236 0.245

LSTM 0.593 0.761 0.727 0.281 0.577 0.515
GRU 0.531 0.793 0.765 0.437 0.596 0.575

Bidirectional-RNN 0.343 0.362 0.365 0.250 0.236 0.245
Bidirectional-LSTM 0.781 0.837 0.790 0.437 0.600 0.559
Bidirectional-GRU 0.656 0.818 0.800 0.437 0.596 0.575

Transformer 0.375 0.364 0.338 0.250 0.233 0.240
iTransformer 0.500 0.662 0.627 0.312 0.378 0.388

PatchTST 0.562 0.745 0.720 0.437 0.672 0.631

A.4 FEATURE ANALYSIS

We also analyze the relative feature importance map to provide model interpretability, as shown
in Figure 6. By masking features in powder XRD patterns, we observe the impact of the masked
features on the model’s inference by calculating the relative accuracy drop. This approach reflects
the relative importance of the masked features for model classification. As expected, masking critical
features results in a significant drop in accuracy.

To further investigate, we categorize peak features into five groups based on their intensity: (1) Peaks
with intensities within the 0–20% maximum intensity range, (2) Peaks within the 20–40% intensity
range, (3) Peaks within the 40–60% intensity range, (4) Peaks within the 60–80% intensity range,
and (5) Peaks within the 80–100% intensity range. We evaluate the model’s inference performance
with these masked features, as shown in Figure 6. The results demonstrate a clear trend: when high-
intensity peaks, particularly those in category 5, are masked, a significant accuracy drop is observed
across all baselines. This indicates that the ML model heavily relies on high-intensity peaks, similar
to the “characteristic peaks” identified in search-match approaches.

Interestingly, for models that perform well on relative tasks, masking peaks in categories 3 or 4 also
noticeably affects performance. This suggests that these models capture more comprehensive pattern
characteristics by giving attention to relatively weak intensity peaks. Such behavior is reasonable
for deep neural networks, as they extract more detailed information rather than relying solely on the
’three strongest diffraction peaks’. This leads to better performance.

Comparing the results of CNN11, BiGRU, and PatchTST, three models that performed relatively
well in these symmetry identification tasks, we observe distinct strategies for decision-making.
CNN11 places greater emphasis on characteristic peaks in category 5, indicating that its inference
approach aligns closely with the traditional search-match method. PatchTST follows a similar trend,
but the relative accuracy drop is more pronounced, suggesting that PatchTST captures a broader
range of peak characteristics compared to CNN11. In contrast, BiGRU exhibits a gradient in the
accuracy drop, indicating that it selectively focuses on relatively strong peaks while progressively
reducing emphasis on weaker peaks based on their intensity. This strategy is intuitively reasonable,
as weaker peaks are more susceptible to noise. These observations suggest that bidirectional ar-
chitectures, such as BiGRU, may provide a promising solution for studying powder XRD data, as
concluded in the main text.

17



Published as a conference paper at ICLR 2025

0.000

-0.121

0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000

-0.079 -0.143

-0.001

-0.124

-0.001

-0.436 -0.036

-0.331 -0.398 -0.414

-0.001

CNN1 CNN2 CNN3 CNN4

CNN5 CNN6 CNN7 CNN8

CNN9 CNN10 CNN11 MLP

RNN LSTM GRU BiRNN

BiLSTM BiGRU Transformer iTransformer

PatchTST

-0.048 -0.318 -0.385 -0.044

-0.421 -0.430 -0.002 -0.129

-0.245

R
el
at
iv
e

A
cc
ur
ac
y

R
el
at
iv
e

A
cc
ur
ac
y

R
el
at
iv
e

A
cc
ur
ac
y

R
el
at
iv
e

A
cc
ur
ac
y

R
el
at
iv
e

A
cc
ur
ac
y

R
el
at
iv
e

A
cc
ur
ac
y

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

Figure 6: The relative classification accuracy drops when peak features are masked across all base-
lines. These features are categorized into five groups based on their intensity. 1: Peaks with inten-
sities within the 0–20% maximum intensity range, 2: Peaks within the 20–40% intensity range, 3:
Peaks within the 40–60% intensity range, 4: Peaks within the 60–80% intensity range, and 5: Peaks
within the 80–100% intensity range.
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B ADDITIONAL BACKGROUND

B.1 MORE DETAILS ABOUT CRYSTAL SYMMETRY

The seven crystal systems are cubic(#1), hexagonal(#2), tetragonal(#3), orthorhombic(#4), trigo-
nal(#5), monoclinic(#6), and triclinic(#7). Crystals can be diagrammatically represented by an or-
derly stacking of lattice cells, whose shape determines the crystal system to which they belong. Unit
cells of identical shape can have lattice points, representing an atom or group of atoms, at their
centers or faces, in addition to the corners. These additional lattice points further divide the seven
crystal systems into 14 Bravais lattices, which are then subdivided into 32 crystal classes, or point
groups. Each point group corresponds to a possible combination of rotations, reflections, inversions,
and improper rotations. When translational elements are included, these point groups yield the 230
space groups (Clegg, 2023).

B.2 IN-LIBRARY AND OUT-OF-LIBRARY TASKS

In-library identification is a fundamental task in crystallography that aims to accurately identify crys-
tal types based on XRD patterns measured in various environments. Since 1938, crystallographers
have been documenting all discovered structures and archiving them as Powder Diffraction Files
(PDFs). By comparing and retrieving these PDFs, researchers can determine the structures of stud-
ied materials by matching them with historical data. With advancements in computing, numerous
software programs have been developed to assist in the search-match process.

A related concept is out-of-library identification, which involves discovering previously unknown
structures that lack recorded data. This process depends on symmetry identification to determine
the basic space group information, followed by subsequent refinement. Traditionally, the geometric
characteristics of a crystal system are determined based on physical properties, such as electrical
conductivity, optical behavior, and thermal properties. The space group is then identified by ex-
amining extinction effects. Next, the ideal chemical formula is determined based on the estimated
number of atoms and Wyckoff positions. Validation is performed using techniques such as Rietveld
refinement and site optimization.

Therefore, we provided two types of splits:

• In-library Classification: In our in-library benchmark, the dataset is divided based on different
simulation environments. Both the training and testing datasets contain the same structures, but
under varying simulation conditions. This setup corresponds to in-library identification in XRD
phase analysis.

• Out-of-library Classification: In our out-of-library benchmark, the dataset is split according to
crystal types. The training and testing datasets consist of different structures, mirroring the out-
of-library identification process in XRD phase analysis.

B.3 SEARCH-MATCH APPROACH

Conventionally, the primary method for in-library phase identification in X-ray powder diffraction
patterns is the search-match approach, which consists of three main steps. Initially, (d, I) values, rep-
resenting interplanar spacing (d) and intensity (I) of each peak, are extracted from the pattern. Subse-
quently, potential phases are sought from diffraction databases based on characteristic d values, such
as Hanawalt indexes (University College London, date accessed). Following this, candidate phases
are compared to the (d, I) values of the pattern using a scoring system to assess alignment, aiding
in selecting the most suitable candidate phase. This process iterates until satisfactory alignment is
achieved for most (d, I) values. A recent study (Lutterotti et al., 2019) employs an approach utilizing
the Rietveld method for conducting a Full Profile Search-Match (FPSM). Crystal structures selected
from databases are automatically aligned with raw data via the Rietveld method, culminating in a
score determined by Rwp (Millane, 1989). The phase with the highest score is acknowledged, and
this iterative procedure persists until specified criteria are met. Subsequently, a Rietveld quantifica-
tion is executed to ascertain the weight fraction of each phase. Despite advancements in computer
technology that have enabled new qualitative methods, the core workflow of the search-match ap-

19



Published as a conference paper at ICLR 2025

proach remains unchanged: matching experimental data with database entries, which contain partial
information abstracted from raw diffraction patterns, and calculating a corresponding score.

B.4 XRD PATTERN SIMULATION

Powder XRD provides a one-dimensional representation of three-dimensional diffraction patterns
and is the most common experimental measurement, as shown in Figure 8. These patterns reflect the
relative arrangement of atoms in three-dimensional space. The interaction of X-rays with condensed
materials during diffraction involves elastic collisions between photons and electrons. Consequently,
factors that affect atomic arrangement and electron behavior influence the shape of the diffraction
pattern, emphasizing the need for high-fidelity simulation technologies. To address this gap, we
developed Pysimxrd.

The diffraction vector G∗ is defined as

|G∗| = 2 sin θ

λ
, (1)

where λ is the wavelength of the scattered particle and θ = 2θ/2, with 2θ being the angle between
the incident and diffracted beams. In three dimensions, scattering occurs only at a discrete set of
reciprocal vectors, K, forming the reciprocal lattice,

K = ha∗ + kb∗ + lc∗, (2)

where a∗, b∗, and c∗ are the reciprocal lattice vectors, and h, k, and l are constants. The diffraction
condition is defined as

2πG∗ = K. (3)

The x-axis of simulation patterns d is the reciprocal of |G∗|, i.e., d = 1/|G∗|.
The diffraction intensity I on each diffraction vector G∗ for a single phase is determined by

I(G∗) = SF ∗F∅LPOD + IBG, (4)

where S denotes the scale factor, F is the structure factor, F ∗ is the complex conjugate of F , ∅
is the profile function, L is the Lorentz-polarization factor, P is the multiplicity, O is the preferred
orientation factor, D is the Debye-Waller factor, and IBG is the background intensity. The structure
factor is computed as:

F =

N∑
j=1

fje
2πiG∗·R, (5)

where fj is the form factor Hubbell et al. (1974) in XRD, R is the lattice coordinate of atom j, and
N is the total number of atoms in a lattice cell.

The Lorentz-polarization L is calculated by,

L =
1 + cos2 2θ

sin2 θ cos θ
, (6)

where θ = arcsin
(

λ|G∗|
2

)
. The multiplicity P is determined by counting the number of diffraction

vectors present within an Ewald diffraction sphere. The Debye-Waller factor D is calculated by ,

D = e−2M , (7)

where M = 6h2T
mkΘ2

(
ϕ
(
Θ
T

)
+ Θ

4T

) (
sin2 θ

)
/λ, h is Planck’s constant, m is atom mass, k is Boltz-

mann constant, Θ is the average characteristic temperature, T is absolute temperature, and ϕ(Θ/T )
is the Debye function.

The profile function (∅) is modeled by convolving various factors, including diffraction, detector
geometry, and noise factors etc. The simulated peaks are calculated by:

y(x) = W ∗G ∗ S. (8)

20



Published as a conference paper at ICLR 2025

Here, * denotes the convolution process, and W , G, and S represent the contributions to the observed
XRD pattern from diffraction emission, instrumental factors, and the noise mixture, respectively. S
is modeled as a Gaussian peak.

The W is a Voigt function Armstrong (1967),

W =
1

σ
√
2π

∫ ∞

−∞

[
γ

(2θ − t)2 + γ2

]
exp

(
− (2θ − t)2

2σ2

)
dt. (9)

Peak broadening is correlated with the Full Width at Half Maximum (FWHM, Γ), where 2γ =
2
√
2 ln 2σ = Γ Caglioti et al. (1958). Γ is calculated by Scherrer’s equation Miranda & Sasaki

(2018) related to finite grain size.

The geometrical factorVan Laar & Yelon (1984), G, accounts for the actual dimensions of the de-
tectors and the powder sample. It is defined as follows:

D(2α, 2θ) =
δI(2θ)

δ(2α)
d(2α), (10)

G(2α, 2θ) =
L

4HSh cos(2α)

∫
dz, (11)

where 2α represents the Bragg angle. The detector is slit-shaped, with a height of 2H , and the
sample has a height of 2S. L denotes the distance between the sample and the detector.

The simulation environments in our study encompass three key aspects. The first aspect pertains
to the sample, where we simulate the average grain size, the ideal orientation effect of the powder,
and the lattice cell’s extinction and torsional deformation under internal stress. The second aspect
involves the testing conditions, accounting for factors such as atomic thermal vibrations at room
temperature, air scattering-induced signal noise, and instrumental vibration-induced noise. The third
aspect relates to the diffractometer, including the zero shift of the angular position and detector’s
geometry.

The adjustable parameters of the simulation environments include:

• Finite grain size (for Voigt peaks): the average grain size is set as a random number in the range
of 2 nm to 50 nm to replicate the degree of experimental broadening (Maniammal et al., 2017).
Instrumental broadening becomes apparent in the experimental patterns as convolution with the
crystal peak occurs. Typically, in the refinement process, it is common to separate observed
peaks into Voigt and instrumental components. However, quantifying the instrumental compo-
nent proves challenging as it varies with the diffraction angle. Therefore, in our simulations, we
opt for a smaller grain size than realistic to accurately replicate the degree of experimental broad-
ening. Pysimxrd can also model the asymmetric peak by convolving the instrumental geometry
factors in equation 11. If a convolution peak is applied, the grain size range must be adjusted
accordingly.

• Orientation: the ideal powder sample is assumed to have no orientation, however, this is impossi-
ble. The orientation effect arises from the uneven distribution of small grains in the incident beam,
leading to an uneven distribution of reciprocal sites across the reciprocal spheres of the powder
sample. To simulate the impact of orientation, we set the intensity by perturbation within a 40%
range based on the ideal simulation to mimic the orientation randomness.

• Thermal vibration: the temperature is converted to the kinetic energy of atoms, which is simulated
by allowing atoms to shift from their average positions within a range of 0.01-0.5 angstrom.

• Internal stress: internal stress is simulated by applying elastic deformation of the recorded lattice
constant by up to 10%.

• Instrument zero shifting: the zero shift is simulated by randomly translating 2θ within -1.2 to 1.2
degrees.

• Instrument noise: 2% Gaussian white noise is added to the entire pattern to reflect instrument
noise.
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• Inelastic Scattering: A sixth-order polynomial function is employed to simulate the background
distribution, encompassing phenomena such as Compton scattering, fluorescence, and multiple
scattering. This simulated background is then integrated into the XRD pattern with a 2% ratio.

A B

C D

Figure 7: Comparison of simulation pattern with experimental pattern of PbSO4 (A) The generated
PbSO4 powder XRD without considering the simulation environment. (B) The generated PbSO4
powder XRD based on a set of parameters that account for finite grain size, orientation, thermal
vibrations, and internal stress. (C) The generated PbSO4 powder XRD with an extended set of pa-
rameters that further include zero-shift correction, noise, peak convolution, and background effects.
(D) The experimentally observed data. Note: The PbSO4 structure corresponds to entry 1010950.cif
from the Crystallography Open Database. The parameter sets used in the simulations were opti-
mized by minimizing the differences between the simulated and experimental patterns, rather than
being randomly assigned. All patterns were converted to Q-space using a wavelength of 1.54 Å.

As illustrated in Figure 7, the multiphysical coupling observed in experimental XRD can be incor-
porated into the simulation parameter space by introducing more realistic conditions. Specifically,
considering factors such as orientation, thermal vibrations, zero-shift corrections, noise, and other
sources of randomness significantly improves the realism of the simulations. These parameters col-
lectively influence the arrangement of peaks, their intensities, and overall shapes in the diffraction
pattern.

B.5 CRYSTAL AND DIFFRACTION

Among various investigative methods, diffraction analysis stands out as exceptionally potent for
probing microstructure, primarily due to its sensitivity to atomic arrangement and the element speci-
ficity of atom scattering power. Each intensity maximum, termed a line profile or peak, within a
diffraction pattern reflects the atomic arrangement along certain direction of the diffracting material.

Powder X-ray diffraction, in particular, furnishes a remarkably diverse array of structural details,
encoded in the material- and instrument-specific distribution of coherently scattered monochromatic
wave intensity, with wavelengths corresponding to lattice spacing. The X-rays are generated by a
cathode ray tube, filtered to produce monochromatic radiation, collimated for concentration, and
directed towards the sample. When conditions satisfy Bragg’s Law, which relates the wavelength
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of electromagnetic radiation to the diffraction angle and lattice spacing in a crystalline sample, the
incident rays interact with the sample to produce constructive interference and a diffracted ray, as
shown in Figure 8.

The diffracted X-rays are subsequently detected, processed, and quantified. By scanning the sample
across a range of diffraction angles, all possible diffraction directions of the lattice are accessible
due to the random orientation of powder sample.

B.6 SYMMETRY RECOGNITION IN STRUCTURE DETERMINATION

Pattern refinement (Rietveld, 1967; 1969) is essential for accurately determining the crystal structure
in diffraction studies. In XRD refinement, the initial step involves identifying the crystal phase of
the given XRD pattern. This is crucial because it facilitates the calculation of the static structure
factor (Svensson et al., 1980), which aids in determining atomic sites during refinement.

cathode

filter 
collimator

detector
filter 

experiment crystal

Figure 8: Experimental pro-
cedure for recording XRD
patterns.

Using existing crystal databases, the commonly employed search-
match approach retrieves potential structures that match the ob-
served pattern, effectively performing in-library identification. The
matched structure, along with basic crystallographic information
such as crystal symmetry, serves as a foundational element for fur-
ther analysis. In out-of-library situations, the geometry of the crys-
tal lattice must be established from scratch, as there is no recorded
structure history. By solving the diffraction indices corresponding
to a set of lattice planes for each diffraction peak, a process known
as indexing calculation (Rodriguez-Garcia et al., 2021), the crystal
symmetry can be determined.

Whether the observed patterns are from in-library or out-of-library
crystals, symmetry identification combined with indexing is a uni-
versal method for determining lattice geometry to initiate the re-
finement process. This is why many researchers seek a general
method for deriving the symmetry of structures based on diffrac-
tion patterns. Once the fundamental crystallographic information is
obtained, techniques such as pattern decomposition and Rietveld
refinement (Rietveld, 1967; 1969; Le Bail, 2005) are employed.
These methodologies help determine atomic sites, temperature factors, grain sizes, residual stress,
and other intricate structural details from the diffraction patterns, thereby contributing to the com-
prehensive understanding of a crystal structure.

B.7 WHOLE POWDER PATTERN FITTING AND REFINEMENT

Structure refinement is an effective method for determining crystal structures. Traditionally, refine-
ment begins with a set of reasonably estimated parameters with physical significance. Accurately
identifying the structure’s space group aids in establishing rational parameters. However, without
prior structural knowledge, this process becomes trial and error. Although identifying the space
group initiates the process, its validation relies on refinement outcomes.

A significant advancement in powder diffraction fitting for structure refinement emerged with the
Rietveld method(Rietveld, 1967; 1969), which pioneered whole pattern fitting over the analysis
of individual, non-overlapping Bragg diffraction peaks. The Whole Powder Pattern Fitting (WPPF)
approach within the Rietveld method uses profile intensity calculations and a least-squares algorithm
for structure refinement. By minimizing the disparities between observed experimental profiles and
theoretical profiles, it extracts all structural information. Once fitting reaches its limit, the parameters
in the theoretical model represent the only determinable physical information. SimXRD’s pattern
simulation also relies on the structural information contained within the theoretical model. The
Pawley(Pawley, 1981) and Le Bail(Le Bail et al., 1988) methods, two widely used WPPF techniques,
are developed after the Rietveld method.

These parameters with physical significance are diverse, and one important type is peak shape pa-
rameters. The parameters of each diffraction peak (positions, intensities, and shapes) within a whole
XRD pattern offer detailed structural insights from different aspects, making their quantitative and
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accurate extraction from the overall XRD profile highly significant. This quantification of peak
information and the subsequent derivation of physical parameters constitute the essence of the re-
finement endeavor.

B.8 SIM2REAL GAP

To illustrate the advantages of Pysimxrd in generating high-fidelity powder XRD patterns, we com-
pared its performance with a widely recognized software, GSAS-II (Toby & Von Dreele, 2013).
The simulation process involves the use of refinement software, starting with the determination of
suitable parameter sets through the refinement procedure provided by each software. The lattice
constants derived from these refinements are summarized in Table 7. Once the parameters are con-
firmed, the corresponding simulation patterns are generated.

Table 7: Derived crystal structures in refinement.

Lattice Constants (Å)
Models Crystals a b c α β γ

Pysimxrd Mn2O3 9.4082(2) 9.4082(2) 9.4082(2) 90 90 90
Pysimxrd RuO2 4.5381(7) 4.5381(7) 3.1248(4) 90 90 90
GSAS-II Mn2O3 9.4197(1) 9.4197(1) 9.4197(1) 90 90 90
GSAS-II RuO2 4.5351(8) 4.5351(8) 3.1226(0) 90 90 90

Two experimental powder XRD patterns were obtained using an X’Pert Pro MPD (Panalytical) in
Bragg-Brentano geometry with a copper X-ray source (λK-α = 1.5406 Å). The samples used were
Mn2O3 and RuO2 crystals. As shown in Figure 9, Pysimxrd and GSAS-II demonstrated comparable
accuracy in reconstructing the Mn2O3 pattern. However, Pysimxrd showed significant advantages
in reconstructing the RuO2 pattern. This superiority stems from Pysimxrd’s ability to account for
a broader range of simulation environments and its greater flexibility in tuning parameters, which
resulted in a more accurate reconstruction with lower R-factors.

A B

C D

Figure 9: Comparison of simulated and experimental patterns: (A) The Mn2O3 pattern simulated
using Pysimxrd. (B) The Mn2O3 pattern simulated using GSAS-II. (C) The RuO2 pattern simulated
using Pysimxrd. (D) The RuO2 pattern simulated using GSAS-II. The R-factors, calculated as (Toby,
2006), are used to evaluate the quality of the fitting.
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B.9 THE T-SNE PLOTS OF POWDER XRD PATTERNS

We also computed t-SNE plots (Van der Maaten & Hinton, 2008) based on XRD patterns, along
with their corresponding crystal systems and space groups, as shown in Figure 10. The results indi-
cate that the projection plots for both SimXRD and RRUFF exhibit bilateral symmetry and distinct
manifolds. However, due to the limited data in RRUFF, the two datasets show some discrepancies,
reflected in the differences in crystal system and space group distributions across the XRD patterns.

A

B

Figure 10: (A)The t-SNE plot for XRD patterns in the SimXRD validation dataset. (B) The t-SNE
plot for XRD patterns in the RRUFF dataset. Numbers 1–7 represent the seven crystal systems
(Appendix B.1), while 1–230 correspond to the space groups.
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