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Abstract

We study the problem of sequentially testing individuals for a binary disease out-
come whose true risk is governed by an unknown logistic model. At each round,
a patient arrives with feature vector xt, and the decision maker may either pay to
administer a (noiseless) diagnostic test—revealing the true label—or skip testing
and predict the patient’s disease status based on their feature vector and prior
history. Our goal is to minimize the total number of costly tests while guaranteeing
that the fraction of misclassifications does not exceed a prespecified error tolerance
α, with probability at least 1− δ. To address this, we develop a novel algorithm
that (i) maintains a confidence ellipsoid for the unknown logistic parameter θ⋆, (ii)
interleaves label-collection and distribution-estimation to estimate both θ⋆ and the
context distribution, and (iii) computes a conservative, data-driven threshold τt on
the logistic score |x⊤

t θ| over θ in the confidence set to decide when testing is neces-
sary. We prove that, with probability at least 1− δ, our procedure does not exceed
the target misclassification rate, and incurs only Õ(

√
T ) excess tests compared to

the oracle baseline that knows both θ⋆ and the patient feature distribution. This
establishes the first no-regret guarantees for error-constrained logistic testing, with
direct applications to cost-sensitive medical screening. Simulations corroborate our
theoretical guarantees, showing that in practice our procedure efficiently estimates
θ⋆ while retaining safety guarantees, and does not require too many excess tests.

1 Introduction

Modern machine learning has recently provided solutions to real-world automated decision-making
systems in various fields such as drug discovery [52, 11], recommendation systems [3, 56], online
ad-allocation [49], and portfolio selection [43]. Bandit algorithms [36] and reinforcement learning
[50] play a significant role in building interactive decision-making systems that collect feedback
from users and improve their performance with each interaction. Two primary challenges exist in the
aforementioned applications: the first is the learning challenge, estimating the problem parameters
which are vital for decision-making; the second is the decision-making challenge, where effective
performance is required concurrently with learning.
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Although machine learning systems perform exceptionally well in practice, sometimes even sur-
passing human performance, when applied in human-centric scenarios safety constraints are
paramount [27, 24]. Many mathematical formulations have been proposed to characterize what
safety means in sequential decision making settings. The first one is based on satisfying cost con-
straints and is characterized by the requirement of playing actions that belong to a safe set as specified
by a cost signal [40, 55, 21]. The second one, also known as conservative bandits, requires the learner
to play actions that achieve a reward level comparable or superior to a fixed baseline [34]. In sequen-
tial decision making problems learning while satisfying a safety criterion typically makes reward
acquisition more challenging. Thus the main challenge in these scenarios remains to understand how
to optimally manage these tradeoffs.

Inspired by the COVID-19 pandemic, and more broadly medical triage application, we study an
online learning problem with a different type of safety constraint. In our setting, patients sequentially
arrive with an associated feature vector (fever, loss of smell, fatigue, blood oxygen saturation), and a
latent unobserved disease state (whether they have COVID or not). The hospital has limited COVID
tests due to resource constraints, and wants to minimize their usage. However, they want to ensure
that they properly quarantine sick patients. Here, we posit a latent (unknown) logistic model between
the patient’s feature vector and their disease status; as more patients are observed, the hospital can
learn that a low blood oxygen saturation and a high fever correspond to a high likelihood of COVID,
and so the patient does not need to be tested but can immediately be classified as sick. Thus, the
hospital must, as the data is being collected, learn a) the distribution of patients, b) the parameters of
the logistic model, and c) the decision threshold of when to test.

Related problems have been studied in the active learning and selective sampling literature [47, 29,
39, 7, 20, 48]. These study settings where context information may be abundant but the labels are
hard to come by [16]. More formally, in the active learning or online selective sampling literature
at the start of every round the learner observes a context vector Xt ∈ Rd and has the option to
query or not the label Zt ∈ {0, 1}. The goal is to build a statistical learning algorithm that achieves
similar performance (i.e., generalization error) to one that observes all the labels while minimizing
the expected number of queries used. A connection between selective sampling and active learning
can be found in [13].

By focusing on the classification task and changing the objective from minimizing the generalization
error to minimizing the cumulative pseudo regret (with respect to the optimal labeling policy), various
algorithms have been developed in the online selective sampling literature, such as [39, 46], by
considering both stochastic and adversarial contexts. The objective in these works is to achieve
sublinear regret while minimizing the expected number of queries made. A similar line of work is
the one of online selective classification [22, 23, 25] where the learner has the right to abstain from
classifying. The objective is to minimize the expected number of abstentions with the least amount of
expected mistakes.

However, in real-world scenarios like the one in [6], it makes sense to ask that the training error
remain under a safety threshold with high probability while minimizing the number of queries. For
example in the streaming patient scenario we described above, where patients arrive one by one and
the medical provider needs to classify them as sick or not. In this problem, due to the sensitive nature
of making misclassification mistakes, the objective is to devise a selective testing procedure that can
guarantee the total misclassification error remains below a safety threshold α ∈ [0, 1]. Testing every
patient clearly attains this safety threshold, but can be prohibitively expensive. Our question is thus:

Can we design an adaptive algorithm that minimizes the expected number of tests while maintaining
a misclassification rate below a specified safety threshold?

In this work, we formalize this notion of (α, δ)-safety, where an algorithm attains a misclassification
error rate of α with probability at least 1 − δ. We define a baseline testing policy, that is optimal
when the α classification rate is only required to hold in expectation, which tests p⋆ ≜ p⋆(α) fraction
of the time. We develop an adaptive algorithm to solve this problem, with (α, δ)-safety guarantees,

which requires only a sublinear number of excess tests: O(
√

dT
p⋆(α) log(T/δ)).* We corroborate our

theoretical results through comprehensive synthetic experiments.

*In Theorem 2 we show that the regret is upper bounded by Õ(
√

dT/(p⋆λ0)) where λ0 is the minimum
eigenvalue of the covariance matrix of the contexts observed under the optimal policy. When contexts are

2



2 Preliminaries

Notation We adopt the following notation throughout the paper. The inner product between two
vectors x, y ∈ Rn will be denoted either as x⊤y or as ⟨x, y⟩. We denote the ℓ2 norm of a vector
x ∈ Rd as ∥x∥2 =

√
⟨x, x⟩ and ∥x∥A =

√
x⊤Ax for any positive semi-definite matrix A ∈ Rd×d

The minimum eigenvalue of a matrix A ∈ Rd×d will be denoted as λmin(A). The set {1, 2, . . . , n} is
denoted as [n]. The logistic function is denoted as µ(z) = 1

1+exp(z) and 1(E) denotes the indicator
function of an event E. For two functions f, g we say that f(x) ≼ g(x) when there exists an absolute
constant c > 0 such that f(x) ≤ cg(x) for all x. We use upper case letters for random variables and
lower case for scalars. For any measurable set A we denote the set of all distributions on A as ∆(A).

2.1 Problem Definition

We consider the following repeated interaction between a learner and the environment. At every
round t ∈ [T ], the environment generates a context Xt ∈ Rd on the unit sphere. These contexts are
identically distributed, and are drawn independently from an unknown distribution with density P .
Every patient-context has an unseen random label Yt ∈ {0, 1} that represents their disease status. We
assume that Yt ∼ Ber(µ(X⊤

t θ⋆)), independent from all other Xt′ and Yt′ . Here, θ⋆ ∈ Θ ⊆ Rd is
some fixed parameter vector unknown to the learner, such that ∥θ⋆∥2 ≤ 1.

At each round, the learner observes the patient’s context Xt and must decide whether or not to test
the patient, denoted by Zt ∈ {0, 1}. Then, the learner must predict whether the patient is healthy or
sick, denoted by Ŷt ∈ {0, 1}. If Zt = 1, the patient is tested, and the learner observes the true label
Yt, and so can predict Ŷt = Yt. The random variable Zt can depend on information obtained prior
to that decision, i.e. Ht = {X1, Z1Y1, X2, Z2Y2, . . . , Xt} and possibly on internal randomization
of the learner. Similarly, Ŷt must be Ft = σ{X1, Z1Y1, X2, Z2Y2, · · · , Xt, ZtYt} measurable. The
goal of the learner is to minimize the expected number of tests applied, while guaranteeing that the
misclassification rate is less than a desired threshold α, with probability at least 1− δ. We define this
constraint as (α, δ)-safety:

Definition 1. An algorithm outputting {Ŷt} satisfies (α, δ)-safety if

P

(
1

T

T∑
t=1

1{Ŷt ̸= Yt} ≤ α

)
≥ 1− δ

where the probability is computed with respect to the randomness in {Xt}, {Yt}, and any randomness
internal to the algorithm in constructing {Ŷt}.

Our safe learning objective can then be framed as below:

min
{Ŷt},{Zt}

T∑
t=1

EZt s.t. {Ŷt} satisfy (α, δ) safety. (1)

2.2 Baseline policy

First, we characterize the optimal testing strategy satisfying the conditions of equation 1 in the
case where the feature distribution P and optimal discriminator θ⋆ are known a priori to the learner.
Although many decision rules Zt are possible, we will focus on threshold rules of the form:

Zt = 1{|X⊤
t θ⋆| ≤ τ} Ŷt =


0 if X⊤

t θ⋆ < −τ,

Yt if |X⊤
t θ⋆| ≤ τ,

1 if X⊤
t θ⋆ > τ.

When P and θ⋆ are known, a threshold decision rule is optimal when the constraint satisfaction is
imposed only in expectation, as we show in the following proposition:

uniformly distributed on the unit sphere, λ0 = 1/
√
d, recovering the linear dimension dependence of linear

bandits.
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Proposition 1. Consider a variation of safe learning (Equation (1)) where the constraint holds in
expectation, and both the sequence of contexts {Xt}Tt=1 and the parameter vector θ⋆ are known. The
optimal policy for this problem is a threshold rule:

min
{Ŷt}

T∑
t=1

EZt s.t. E

(
1

T

T∑
t=1

1{Ŷt ̸= Yt}

)
≤ α.

The proof of this proposition follows by relating this to the fractional knapsack problem, which
we detail in Appendix F. This motivates our use of a threshold policy as a baseline. We consider
competing against the optimal threshold decision rule τ⋆ that is a function of P , θ⋆, and α.

To identify τ⋆, we begin by analyzing the performance of a fixed threshold τ . To do this we define
the function perr(θ, P, τ) as the probability of misclassification incurred by the the threshold τ , if θ
was the underlying logistic parameter, and where the expectation is taken with respect to P :

perr(θ, P, τ) =

∫
(1 + exp(|x⊤θ|))−11

{
|x⊤θ| > τ

}
P (dx). (2)

The term inside the integral (1+exp(|x⊤θ|))−1 = min
{

1
1+exp(x⊤θ)

, 1− 1
1+exp(x⊤θ)

}
is the optimal

misclassification error for a fixed x, θ pair. The term 1
{
|x⊤θ| > τ

}
equals one only if we predict

the label ŷ without observing the real label y for context x, when using a threshold rule. Having
defined the error probability for a given threshold τ , we can now easily define the optimal threshold.
For any problem parameters θ ∈ Rd, α′ ∈ [0, 1], and distribution ρ ∈ ∆(X ), we define the optimal
decision threshold τ⋆ as the minimum value of τ ∈ [0, 1] that satisfies the α-fraction misclassification
constraint:

τ⋆(θ, ρ, α′) ≜ min{τ : perr(θ, ρ, τ) ≤ α′}. (3)
Evaluated at the true parameters θ⋆, P, and α, the optimal threshold τ⋆ alluded to in Proposition 1
implies that any any algorithm requires an expected number of tests p⋆T , where

τ⋆ ≜ τ⋆(θ⋆, P, α), (4)

p⋆ ≜ P
(
x : |x⊤θ⋆| ≤ τ⋆

)
. (5)

Here, we have overloaded notation for τ⋆ as both a function, and the evaluation of this function at the
true problem parameters. Note that in practice, perr must be estimated using P̂ , our observed samples
from P , in addition to θ⋆ being unknown.

Before introducing our “regret” objective, we examine the relationship between the safety parameter α,
which serves as an input, and the baseline policy sampling probability p⋆. When the misclassification
rate threshold α approaches zero, the system must minimize error rates, necessitating testing of
all cases. This constraint leads to increased values of τ⋆ and, consequently, higher values of p⋆.
Conversely, in the degenerate scenarios where α approaches unity, policies become indifferent to
misclassification errors and conduct vanishing testing, yielding values of p⋆ that approach zero.

This lets us define the “safe regret” of an algorithm as the number of excess tests it takes over this
oracle baseline, while satisfying (α, δ)-safety. An algorithm could trivially sample at each time step
and satisfy the misclassification criterion; the question is, for a given misclassification rate α, and
error probability δ, can a learner achieve sublinear safe regret in T , as defined in Definition 2?
Definition 2. For any policy π : X → {0, 1}2 that produces the sequence of actions and predictions
{Zt}∞t=1, {Ŷ }∞t=1, we define the safe regret of π as follows:

E

[
T∑

t=1

Zt − p⋆

]
s.t. P

(
1

T

T∑
t=1

1{Ŷt ̸= Yt} ≤ α

)
≥ 1− δ.

To analyze this quantity, we make the following natural assumptions.
Assumption 1. The optimal baseline tests a nonzero fraction of the time, i.e. p⋆ > 0.

Other works such as, [39], [46], use the notation Tε to describe the number of times the Bayes optimal
classifier outputs a label with confidence less than a fixed parameter ε > 0. Our p⋆ is analogous to Tε.
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It serves as a measure to quantify the inherent difficulty of the problem instance (how many patients
are close to the decision boundary).

We make two additional assumptions on the density of the contexts P , which are reasonable for
patient data with continuous valued features.
Assumption 2. The density P is upper and lower bounded by constants [m,M ], where 0 < m ≤
P (x) ≤ M < ∞, for all x such that ∥x∥2 ≤ 1.
Assumption 3. There exists a constant λ0 > 0:

λmin

(
E
[
XX⊤ ∣∣ ∣∣X⊤θ⋆

∣∣ ≤ τ⋆
])

≥ λ0.

Adaptive sampling works such as [46, 29], and those tackling learning halfspaces, commonly assume
the Tsybakov noise condition [51, 14]. The Tsybakov noise condition with parameters (α,A) states
that Px∼P [η(x) ≥ 1/2 − t] ≤ At

α
1−α for any 0 < t ≤ 1/2, where η(x) = P(Y (x) = 1). This

implies that, around the value of 1/2 where the Bayes Optimal classifier is uncertain, the density of the
contexts decays rapidly at a rate controlled by the parameters (α,A). In our setting, this assumption
is not necessary or helpful, as near the uncertainty boundary the learner will simply test the patient.
Another assumption in the literature is that the contexts are uniformly distributed over the surface
of the unit sphere (Theorem 2 in [12]). Our assumption is much less stringent, and encompasses
standard distributions such as smooth densities of the form f(x) = g(∥x∥), or truncated Gaussian
distributions.

Note that these assumptions are strictly for the analysis of our algorithm. We do not require knowledge
of any of these parameters m,M, λ0, or p⋆ as input to our algorithm. We are able to learn and adapt
to them on the fly, they simply need to be strictly positive and finite.
Theorem 1 (Informal statement of Theorem 2). Under Assumptions 1-3, Algorithm 1 satisfies
(α, δ)-safety, and has safe regret of order O(

√
d

p⋆λ0
T log(T/δ)).

2.3 Logistic Bandits tools

Our algorithm leverages confidence intervals for θ⋆ from existing methods. [17] provides two
methods (Appendix B.3): the first produces a confidence ellipsoid, while the second provides a tighter
but non-convex confidence set. The advantage of the non-convex one is the lack of dependence on
the quantity κ ≜ sup(X,θ)∈(X ,Θ)

1
µ̇(⟨X,θ⟩) that characterizes the non-linearity of the logistic function

over the decision set (X ,Θ) and scales exponentially with the size of the decision set. In our setting,
we utilize the first method to simplify the algorithm and its analysis. Moreover, we can bound the
value of κ = 1

µ(1)(1−µ(1)) ≤ 6 as |⟨x, θ⋆⟩| ≤ 1 by Cauchy-Schwarz and boundedness assumptions
for ∥x∥ , ∥θ⋆∥. Recently, tighter confidence intervals for the logistic bandit setting were proven by
[37], but the results of [17] are sufficient for our needs.

Before stating our algorithm, we borrow some notation from [17]. We denote the labeled samples
we use for estimating θ⋆ that have been collected up to beginning of round t as St

θ, with N t
θ = |St

θ|.
Since in this work we only collect labeled samples (Xt, Yt) if we test at a given round, N t

θ may not
equal t− 1. We define the regularized log-likelihood as

Lt(θ) =
∑
s∈St

θ

[
ys logµ(x

T
s θ) + (1− ys) log(1− µ(xT

s θ))
]
− 1

2
∥θ∥22,

and its maximum (regularized) likelihood estimator as θ̂t = argmaxθ∈Rd Lt(θ). We also denote the
design matrix as Vt =

∑
s∈St

θ
XsX

⊤
s + κId, and for technical reasons we consider a projection θLt

of θ̂t onto the feasible set Θ defined as follows,

θLt ≜ argmin
θ∈Θ

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥
V −1
t

where gt(θ) =
∑
s∈St

θ

µ(⟨xs, θ⟩)xs + θ. (6)

These allow us to define the confidence ellipsoid Ct for θ⋆, which is implicitly a function of δ:

Ct ≜
{
θ ∈ Θ,

∥∥θ − θLt
∥∥
Vt

≤ Bt

}
, (7)
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Where the confidence radius Bt is defined as:

Bt ≜ 2κ

(
1 +

√
log

(
1

δ

)
+ 2d log

(
1 +

N t
θ

κd

))
. (8)

We will track how quickly this decays with λt
min ≜ λmin(Vt), which is computable from the observed

data.

These confidence intervals [17] satisfy the following anytime, high probability guarantees:

Lemma 1. [Lemma 12 of [17].] For any fixed choice of δ, let Gθ be the “good” event that the
confidence intervals defined in Equation (7) are valid:

P(Gθ) = P
(
∀t ≥ 1, θ⋆ ∈ Ct | N t

θ

)
≥ 1− δ.

Since the number of samples N t
θ collected to estimate Ct is a random variable in our setting, we

condition on its value in Lemma 1.

Before diving into our algorithm and its analysis, we discuss the role and behavior of key quantities
that will arise. To begin, the numbers of samples collected N t

θ to build our θ confidence intervals
grows linearly in t, concretely N t

θ ⪰ p⋆t.As a consequence, the bound Bt used in Ct (which

satisfies Bt ≤ BT ) grows extremely slowly in t, with Bt ⪰
√

d log(1 + p⋆t
d ). The other portion of

the confidence interval involves ∥x∥V −1
t

, which we must upper bound. We show that ∥x∥V −1
t

≤
∥x∥2

λmin(V
−1
t )

⪯ 1√
tλ0

, from Assumption 3. Many prior works in Online Logistic Regression [8] or in
Linear Bandits [1] utilize the elliptic potential lemma, which is unnecessary due to the stochastic
contexts in our setting.

3 Algorithm design

After defining these logistic bandit preliminaries, we are now able to define and analyze our algorithm,
SCOUT (Safe Contextual Online Understanding with Thresholds) in Algorithm 1. At every time
step, SCOUT observes the label of a specific context if the inner product between this context and the
estimated θ⋆ is too close to an estimator of the true threshold τ⋆. To iteratively refine the estimates of
θ⋆ and τ⋆, SCOUT employs a classical sample-splitting trick to avoid dependencies, utilizing data
from odd samples for estimation of the context distribution P (which is used to estimate τ⋆), and
data from even samples where a test was performed for θ⋆ estimation.

The testing condition Zt can be computed as follows: we defer the derivation and details to Ap-
pendix C. Note that if we were to target α fraction misclassification, then half of the time we would
exceed this, so instead we target αt = max(0, α−

√
log(7t2/δ)/2t) (discussed inAppendix H.3).

Zt ≜ 1{|⟨Xt, θ
L
t ⟩| ≤ τt} (9)

where τt ≜ τ̂(θLt , P̂t, αt) +Bt/
√

λt
min = τ⋆(θLt , P̂t, αt − ζt − 2Bt/

√
λt
min) + 3Bt/

√
λt
min. This

can be framed as Zt = 1{ct ≤ 0}, where ct ≜ |⟨Xt, θ
L
t ⟩| − τt. This can be compared to the optimal

rule Z⋆
t = 1{|⟨Xt, θ

⋆⟩| ≤ τ⋆} = 1{c⋆t ≤ 0} where c⋆t ≜ |⟨Xt, θ
⋆⟩| − τ⋆. The two sampling rules

match except for the use of the estimated quantities θLt , P̂t, as opposed to the true unknown quantities,
and the use of additional exploration bonuses and uncertainty penalties. ζt arises from confidence
intervals on our estimates, where we only have samples P̂t and not the true P :

ζt ≜

√
d log (3/εQ) + log

(
π2t2

3δ

)
4t

. (10)

The other term, Bt ∥Xt∥V −1
t

, arises from the fact that we only have the estimate θLt and not θ⋆. The
final term εQ is a quantization parameter used in our analysis (discussed in Appendix A.1.1), and
should be thought of as some small quantity of order 1/T 2.
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Algorithm 1 SCOUT

1: Input: Number of rounds T , target error rate α, confidence level δ
2: Initialize: S(1)

P = ∅, S(1)
θ = ∅. Maintain N t

P = |St
P |, N t

θ = |St
θ|

3: for t = 1, 2, . . . , T do
4: Observe context Xt

5: if t ≤ 2 then
6: Set Zt = 1
7: else
8: Compute θLt from (6) and τt from (9)
9: Set Zt = 1{|⟨θLt , Xt⟩| ≤ τt}

10: end if
11: if Zt = 1 then
12: Observe Yt

13: Predict Ŷt = Yt

14: else
15: Predict Ŷt = 1{⟨Xt, θ

L
t ⟩ > 0}

16: end if
17: if Zt = 1 and t is even then
18: Set St+1

θ = St
θ ∪ {(Xt, Yt)}

19: end if
20: if t is odd then
21: Set St+1

P = St
P ∪ {Xt}

22: end if
23: end for

4 Regret Analysis

With safety in place, we now show that our algorithm achieves sublinear regret. To derive a regret
bound, we begin by analyzing the regret at an arbitrary round t > T0 in Lemma 14. We defer the
proof to Appendix H.4. Summing this lemma over rounds T yields the following overall Theorem.
Theorem 2. Algorithm 1 satisfies (α, δ)-safety, and has safe regret (see Definition 2) at most

O

(√
K2

max(d+ log(1/δ))T log(T )

p⋆λ0

)

The proof can be found at Appendix H.5, Kmax is a problem dependent constant depending on τ⋆

and P that arises in Lemma 6. Note that δ can even scale exponentially in T and the algorithm will
still have sublinear regret. In the linear bandits literature, the dependency on the dimension is ×(d).
In our analysis, this extra O(

√
d) is hidden inside the 1/

√
λ0 term where in the case that contexts are

uniformly distributed over the unit sphere, λ0 = Θ(1/
√
d).

5 Conclusion

In this work we introduced SCOUT, the first algorithm that provably balances no-regret learning
with a high-probability safety guarantee on the empirical misclassification rate in logistic bandits.
Our analysis shows that a simple, efficiently-computable testing rule suffices to achieve the order
optimal Õ

(√
dT/λ0

)
excess-test rate. Empirical results (Appendix D) confirm that these bounds

translate to practice on moderately large horizons.
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A Stability of error estimates

To analyze our algorithm, we first study the stability properties of perr. Concretely, the learner does
not a priori know P or θ⋆, and by extension τ⋆. Thus, we must show that, as we gradually learn these
quantities, our estimates of the error probabilities are not too far off.

A.1 Stability with respect to context sampling P̂t

Analyzing Equation (2), we note that we do not know the true distribution P , but only have access
to samples from it. For any fixed θ and τ , (2) is a sum of i.i.d. [0, 1/2] bounded random variables,
enabling us to use standard concentration bounds.

Lemma 2. Let P̂t be the empirical distribution of constructed from ⌊t/2⌋ i.i.d. samples from P .
Then, for any fixed θ and τ , with probability at least 1− δ over the randomness in P̂t:∣∣∣perr(θ, P̂t, τ)− perr(θ, P, τ)

∣∣∣ ≤
√

log
(
π2t2

3δ

)
4t

This requires the application of Hoeffding’s inequality [54]. We defer additional proof details to
Appendix G.1.1.

We would like this bound to hold over all θ ∈ Θ and τ ∈ [0, 1]. However, this would preclude using
a union bound over our estimators, due to the uncountable nature of these sets of these sets. Thus, we
utilize an ϵ-net for both τ ∈ [0, 1] and θ ∈ Θ.

A.1.1 Quantization

We define quantized versions of τ and θ, so that we can safely union bound the failure probability of
our estimators over the countable quantized set. We take an εQ = T−2 covering of the unit interval
for τ as Qτ ≜ N ([0, 1], εQ), denoting the quantized τ value as τQ ∈ Qτ . We additionally take an
εQ covering of the d dimensional unit sphere for θ as Qθ ≜ N (Sd−1, εQ), denoting the quantized θ

value as θQ ∈ Qθ. Then, |Qτ | = ε−1
Q and |Qθ| ≤ (3/ε)d [53].

To this end, we define the quantized optimized τ as τ⋆Q, which is close to the true τ⋆:

τ⋆Q(θ, P̂ , α) ≜ min{τQ ∈ Qτ : perr(θ, P̂ , τQ) ≤ α}. (11)

As perr is monotonically decreasing in the threshold τ we have that

τ⋆(θ, P̂ , α) ≤ τ⋆Q(θ, P̂ , α) ≤ τ⋆(θ, P̂ , α) + εQ. (12)

A.2 Stability of τ⋆ with respect to θ

We now show that our estimate perr(θ, P̂ , τ) is close to perr(θ
⋆, P̂ , τ) when θ is close to θ⋆, for any

distribution ρ and threshold τ .

Lemma 3. For all θ, θ′ ∈ Θ, τ ≥ ∥θ−θ′∥Vt√
λt
min

, and density ρ(x) on X :

perr(θ, ρ, τ) ≤ perr

(
θ′, ρ, τ − ∥θ − θ′∥Vt√

λt
min

)
+

∥θ − θ′∥Vt√
λt
min

.

We defer the proof to Appendix G.2.1. This indicates that as our estimation of θ improves, so will our
error probability estimates. To this end, we define the good event Gperr where our error probability
estimates are uniformly bounded by ζt on our quantized set as:

Gperr =
{∣∣∣perr(θQ, P̂t, τQ)− perr(θQ, P, τQ)

∣∣∣ ≤ ζt : ∀t ∈ [T ],∀θQ ∈ Qθ,∀τQ ∈ Qτ

}
. (13)

The following lemma shows that this good event Gperr happens with overwhelming probability.
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Lemma 4. The good event Gperr satisfies P(Gperr) ≥ 1− δ.

We defer the proof of this Lemma to Appendix G.2.2, which utilizes Lemma 2 and the union bound
over the quantized sets Qθ and Qτ . Conditioning on the good event Gperr , we show that τ⋆Q(θQ, P̂t, α)
is close to τ⋆ when θQ is close to θ⋆.

Lemma 5. Conditioning on Gperr , for any θQ ∈ Qθ ∩ Ct, θ ∈ Ct such that ∥θQ−θ∥Vt√
λt
min

≤ τ⋆(θ, P, α−

ζt −
∥θQ−θ⋆∥Vt√

λt
min

) it is true that:

τ⋆Q(θQ, P̂t, α) ≤ τ⋆

(
θ, P, α− ζt −

∥θQ − θ∥Vt√
λt
min

)
+

∥θQ − θ∥Vt√
λt
min

+ εQ,

τ⋆Q(θQ, P̂t, α) ≥ τ⋆

(
θ, P, α+ ζt +

∥θQ − θ∥Vt√
λt
min

)
− ∥θQ − θ∥Vt√

λt
min

We defer the proof of this Lemma to Appendix G.3. This enables us to construct an estimator
τ̂(θQ, P̂t, α) by selecting θ = θ⋆, by noting that on the good events Gθ and Gperr that:

∥θQ − θ⋆∥Vt ≤ 2Bt. (14)

Thus, for any θQ ∈ Qθ ∩ Ct we can construct an estimator τ̂ as:

τ̂(θQ, P̂t, α) ≜ τ⋆Q

(
θQ, P̂t, α− ζt − 2Bt/

√
λt
min

)
+ 2Bt/

√
λt
min, (15)

where conditioning on Gperr , Gθ, it holds that τ̂(θQ, P̂t, α) ≥ τ⋆(θ⋆, P, α) for all θQ ∈ Qθ ∩ Ct.

A.3 Smoothness of τ⋆ with respect to α

The last property we will need for our analysis is that τ⋆ does not vary too quickly with respect to
α. We show that for small γ, τ⋆(θ⋆, P, α− γ) is not too much larger than τ⋆. Note that while perr
is continuous with respect to τ when evaluated at the true distribution P , it is discontinuous when
evaluated at P̂ due to the resulting indicator functions. However, utilizing Assumption 2, the true
distribution of contexts is upper and lower bounded by constants, and so perr, which integrates the
distribution, will change at an upper and lower bounded rate.

Lemma 6. Under Assumptions 1 and 2,

τ⋆(θ⋆, P, α− γ) ≤ τ⋆(θ⋆, P, α) +Kmaxγ + εQ, (16)

for γ ≤ γmax (defined in Equation (18)), where Kmax is defined in Equation (19).

We defer the proof to Appendix G.4.1, where the constants described are:

τmax ≜ (1 + τ⋆)/2 (17)

γmax ≜ argmax
γ<α

{γ : τ⋆(θ⋆, P, α− γ) ≤ τmax} (18)

Kmax ≜
(1 + e)

2mπ arccos(τmax)
(19)

With these stability arguments in hand, we can now analyze the performance of SCOUT.

B The good event

As is common practice in Multi-Armed Bandit analyses, we define a “good event” under which all
concentration arguments hold, and condition on this event for the remainder of our analysis. To this
end, we first define a collection of high-probability events under which our algorithm performs as
anticipated.
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We begin by showing that the confidence intervals Ct are valid, i.e., θ⋆ ∈ Ct for all t (utilizing the
results from [17]), and then prove that we have collected sufficiently many samples that their radius
decays at the desired rate. Although we cannot determine the exact distribution of the context, label
pair samples to estimate θ⋆, we can demonstrate that our policy is pessimistic and tests whenever
the optimal policy would do so. By Assumption 1 the probability that the optimal policy tests at
any given round is p⋆. Recall that N t

θ = |St
Θ| denotes the number of samples (Xs, Ys) collected

to estimate θ⋆ up to round t, and similarly N t
P = |St

P | for the context estimation. The good event
comprises the following constituent events.

Definition 3. At round t the good event Gt holds that

1. Gθ: Defined in Lemma 1, the confidence sets Ct are valid in that θ⋆ ∈ Ct for all t.

2. Gperr : The estimates of perr on Qθ ×Qτ are ζt accurate (Lemma 2).

3. G
(2)
t : the confidence sets Ct gets enough samples, that is N t

θ ⪰ p⋆t−
√
t log(t/δ) ⪰ p⋆t/2.

4. G
(3)
t : The minimum eigenvalue of the empirical covariance matrix formed by our testing

policy grows linearly in t. Let λt
min ≜ λmin

(∑
s∈St

Θ
XsX

⊤
s

)
. Then, without loss of

generality, it holds for the same constant T0 that for all t ≥ T0:

λt
min ≥ p⋆tλ0

8
.

Let G(i) = ∩T
t=1G

(i)
t for i = 2, 3. The good event G is the intersection of G(i) with Gperr , i.e.

G = Gθ ∩G(2) ∩G(3) ∩Gperr .

The first event, P(Gθ ≥ 1− δ, follows from Lemma 1, i.e. the concentration inequality proven by
[17]. The second one, P(Gperr) ≥ 1− δ, is proved by Lemma 4. Then, we have to prove that G(2)

holds with high probability. To do so, we utilize the fact that when the optimal policy tests, then
when Gθ and Gperr hold our policy does the same, as proved in Lemma 8. Observe that on G

(2)
t , we

have that N t
θ ≥ p⋆t/2 for all t ≥ T0 for some constant T0 (only a function of δ). For the last event,

P(G(3)) ≥ 1− 2δ we use a covering argument to bound the minimum eigenvalue of the covariance
matrix (see e.g. Section 4.4 of [53] for additional details). Then, we use G(2) as a lower bound of the
number of samples collected to construct the empirical covariance matrix and the union bound. We
see that G occurs with high probability in the following lemma.

Lemma 7.
P(G) = P(Gθ ∩G(2) ∩G(3) ∩Gperr) ≥ 1− 6δ.

Detailed proofs are deferred to Appendix I.

C From Stability Analysis to Algorithmic Decisions and Safety

We design our testing rule based on two main principles. First, our testing rule must be "pessimistic",
in that when the baseline policy tests, our policy does the same, even for the worst possible θ⋆.
Second, our testing rule must be computationally efficient. The second trivially follows from our
stated algorithm, and we prove the first in the following lemma:

Lemma 8. The testing rule Zt defined in Algorithm 1 satisfies, conditioned on Gperr and Gθ, that
Z⋆
t = 1 =⇒ Zt = 1, i.e. Zt ≥ Z⋆

t a.s.

We defer the proof to Appendix H.1. Another property of our testing rule is that it makes no additional
errors beyond the baseline policy, on the good event Gperr . As formalized in the following lemma, our
algorithm makes predictions identical to those of the oracle policy when it does not test.

Lemma 9. Let Ŷt the prediction of our policy, where Y ⋆
t is the prediction of the oracle baseline

policy. On the good event Gperr , when Zt = 0 (which implies that Z⋆
t = 0) then Ŷt = Ŷ ⋆

t .

We defer the proof to Appendix H.2.
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Having developed and motivated our testing rule we now formally prove that it satisfies our desired
(α, δ)-safety guarantees, utilizing Lemma 8 and Lemma 9. In the first lemma, we proved that when
the baseline policy tests, our policy tests too. In the second one, we proved that when the baseline
policy predicts, our policy outputs the same prediction.

More formally, we define the Bernoulli random variable ξt = 1{Ŷt ̸= Yt}, that denotes whether
the algorithm made a mistake at round t, and ξ⋆t = 1{Y ⋆

t ̸= Yt} respectively for the baseline
policy. When the algorithm tests (i.e. Zt = 1) then we observe the label and it holds that ξt = 0.
Conditioning on the good event G, ξt ≤ ξ⋆t almost surely (formalized in Appendix H.3). This implies
a total error probability bound, stated in the following lemma.

Lemma 10. On the good event G (Definition 3) the total error probability of Algorithm 1 is upper
bounded by α with probability at least 1− δ.

We defer the proof to Appendix H.3.

D Numerical results

We corroborate our theoretical guarantees with numerical simulations, to show that our algorithm
is able to efficiently compute the testing rule, and converge to the optimal error rate. We generate
simulations varying the dimensionality and the target error rate α, showing the rapid convergence
of our method when p⋆ is large. We see that in all instances our algorithm maintains the desired
error rate, and has sublinear regret. Experiments were run on a 2023 Macbook Pro, and took under 5
minutes.

D.1 Modifications from written algorithm

For our numerical simulations, we implemented a version of SCOUT with a few minor modifications
from Algorithm 1 to enable it to run faster in practice. These changes are common in practical
applications of online learning algorithms to balance theoretical rigor with performance.

Batched Parameter Updates: as written, SCOUT updates the parameter estimate and the testing
threshold at every time step t. In a setting with a large time horizon T , re-running the estimation
procedures on ever-growing datasets at each step is computationally prohibitive, and wasteful as
these will not change too much iteration to iteration. Instead, our implementation updates these
estimates only periodically. Concretely, the estimates for θ and τ are cached and reused for a block
of subsequent time steps. The frequency of these updates is decreased as the simulation progresses,
reflecting the gradual convergence of the parameters.

Simplified Testing Condition: The testing rule in Equation (9) is given by ⟨Xt, θ
L
t ⟩| ≤ τt. This

incorporates several uncertainty terms derived from our theoretical analysis. While crucial for the
regret bounds, computing these quantities at every step is not necessary in practice, and the same
performance can be obtained by simply collapsing these terms into a) the τ estimate, and b) a bound
on Bt∥Xt∥V −1

t
(note that in practice this second term may not be known, as it will depend on λ0,

which SCOUT will adapt to). The testing decision becomes Zt = 1 if |⟨Xt, θ
L
t ⟩| is less than the sum

of these two terms.

Omission of the Projection Step: Our theoretical analysis utilizes two estimators. First, the
regularized maximum likelihood estimator θ̂t = argmaxθ∈Rd Lt(θ), where Lt(θ) is the regularized
log-likelihood. Second, for analysis purposes, a projection of this estimator, θLt , is defined in
Equation (6). This projection is in practice unneeded, and so we simply utilize θ̂t as our θ estimate.

In addition, we reduce the leading constants e.g. in the Bt bound. These adjustments allowed the
algorithm to run efficiently while retaining the core principles of SCOUT. The empirical results,
which demonstrate sublinear regret and adherence to the safety constraint, validate that these practical
simplifications do not compromise the algorithm’s performance in our simulated environments.
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Figure 1: Simulation results. Plots in the first and second row correspond tod = 2, where the first
row shows α = 0.05, and the second α = 0.1. Third row shows d = 8, α = 0.1. In each row, the
left plot shows the cumulative test rate as a function of round, where blue shows the performance
of SCOUT (10-90%) quantiles shaded, with the oracle test rate shown in orange at p⋆ (empirical
test rate for optimal threshold policy plotted in green). The middle plots show the excess number of
tests, demonstrating the sublinear regret of SCOUT. The right plots show the misclassification rate of
SCOUT, where we see that while the optimal baseline policy fluctuates around the desired threshold
α, SCOUT starts far below, then learns to be more aggressive and increases its guessing, eventually
approaching misclassification rate α. However, it never exceeds it (small δ chosen).

E Discussion

In this work we introduced SCOUT, the first algorithm that provably balances no-regret learning
with a high-probability safety guarantee on the empirical misclassification rate in logistic bandits.
Our analysis shows that a simple, efficiently-computable testing rule suffices to achieve the order
optimal Õ

(√
dT/λ0

)
excess-test rate. The empirical results confirm that these bounds translate to

practice on moderately large horizons.
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In medical triage — our motivating use-case — SCOUT can be viewed as a “test-or-treat” policy that
automatically calibrates how aggressively to screen as new evidence accrues. Because the policy is
pessimistic by design, it never tests less than an oracle baseline that knows both the patient distribution
and the ground-truth regression coefficients. This property is attractive in any high-stakes domain
where misclassifications are costly (e.g. credit risk, fraud detection, or industrial quality control).

There are several straightforward theoretical extensions. First is anytime guarantees: replacing
the fixed-horizon union bounds with stitched confidence sequences yields an anytime variant with
identical regret up to log factors. Second is unequal Type-I / Type-II control. The threshold-selection
step can be split to cap false positives and false negatives separately by using two one-sided versions
of (2). Finally, here we utilized simple confidence bounds for our logistic bandits. Plugging the
recent radius-free concentration results of [37] into Lemma 1 removes the κ factor in Bt.

There are several exciting directions of future work that are motivated by this work. First, we have the
setting where the optimal baseline does not need to test, i.e. p⋆ = 0. If the optimal policy never tests,
can one detect fast enough that screening is unnecessary while still retaining the high-probability
safety constraint? The second. is adversarial contexts, or any nonstationary context distribution. Can
the ideas behind SCOUT be combined with online calibration tools to handle non-stationary or even
adversarial Xt? Another consideration is to follow the line of work of conservative bandits [34]
and, given a fixed baseline policy as input to our problem that satisfies the constraints, to compute a
feasible policy for the problem that is competitive with the baseline policy.

F Baseline policy

Here we provide some discussion and proofs regarding the optimal baseline we compare to.

F.1 Proof of Proposition 1

Proof. When the value of the parameter θ⋆ and the collection of the contexts {Xt}Tt=1 are known,
we can equivalently write the problem as follows. Let pt = µ(X⊤

t θ⋆), the labels Yt ∼ Ber(pt)
independently across t.

To compute the expected error, that is E(Et) ≜ E(1{Ŷt ̸= Yt}), we only need to examine the case
where we do not test. When we do test, we observe the true label and incur zero error. For Zt = 0
then, the expected error is

1. If Ŷt = 1 then E(1{Ŷt ̸= Yt} | Ŷt = 1) = 1− pt.

2. Else if Ŷt = 0 then E(1{Ŷt ̸= Yt} | Ŷt = 0) = pt.

The optimal policy then is to output the prediction with the smallest error. The expected error then is
equal to

E(1{Ŷt ̸= Yt}) ≜ min{1− pt, pt}.

We denote P(Zt = 0) = ηt. The optimal policy choice is reduced to the following optimization
problem.

min
{Zt}

T∑
t=1

1− ηt s.t.
1

T

T∑
t=1

min{1− pt, pt}ηt ≤ α, 0 ≤ ηt ≤ 1. (20)

Or equivalently can be written as.

max
{Zt}

T∑
t=1

ηt s.t.
1

T

T∑
t=1

min{1− pt, pt}ηt ≤ α, 0 ≤ ηt ≤ 1. (21)

The solution of this Linear Program is the solution of the Fractional Knapsack problem with budget
α. Solving optimally this problem, requires applying a greedy strategy that is to sort the coefficients
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min{1− pt, pt} in an non-increasing order and assign η = 1 to the lowest "error" contexts until we
do not violate the budget constraint α. This strategy is clearly a threshold strategy that depends on a.

F.2 Discussion of Assumption 3

Assumption 3 requires the covariance matrix of contexts selected by the optimal policy to be positive
definite. We now demonstrate that under the distributional assumption in Assumption 2, this positive
definiteness condition is indeed satisfied. While this result does not directly imply Assumption 3,
it establishes that even a uniform testing policy would fulfill this eigenvalue requirement. That is
summarized in the following lemma.

Lemma 11. Let λ0 the minimum eigenvalue of Ex∼Pxx
⊤, then it is true that λ0 > 0.

Proof. We have assumed that all contexts lie on the unit sphere with ∥x∥2 = 1. Then by Assumption 2,
defining B ≜ Sd−1:

Lemma 12. Let Σ = Ex∼Pxx
⊤ and Σtr =

∫
B xx⊤mdx. For any arbitrary v ∈ Rd it holds that

v⊤Σv ≥ v⊤Σtrv.

Proof. We can write v⊤Σv as follows

v⊤Σv = Ex∼Pv
⊤xx⊤v (22)

= Ex∼P (x
⊤v)2, (23)

and analogously v⊤Σtrv as

v⊤Σtrv =

∫
B
v⊤xx⊤vmdx (24)

= m

∫
B
(x⊤v)2dx. (25)

By using our assumption that p(x) ≥ m > 0 we derive that for all x ∈ B

(x⊤v)2p(x) ≥ (x⊤v)2m. (26)

Integrating over the entire domain yields that:

=⇒
∫
x∈B

(x⊤v)2p(x)dx ≥
∫
x∈B

(x⊤v)2mdx (27)

v⊤Σv ≥ v⊤Σtrv (28)

The previous lemma applies for any arbitrary vector v, so Σ ⪰ Σtr. Let (λ0,v0) the eigen-pair of
the corresponding minimum eigenvalue of Σ. Let us apply the previous result for v0. Then:

λ0 ∥v0∥22 ≥ m

∫
B
(x⊤v0)

2dx (29)

Let Vd(r) the volume of the d-dimensional ball with radius r. The density of the uniform distribution
of a d-dimensional ball with radius r is 1/Vd(r) in the interior of the ball and zero outside. By
multiplying and dividing on the right hand side of the previous inequality with Vd(1) we derive that
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λ0 ∥v0∥22 ≥ mVd(1)

∫
B

(x⊤v0)
2

Vd(1)
dx (30)

= mVd(1)

∫
∥x∥2

2≤1

(x⊤v0)
2

Vd(1)
dx (31)

The quantity
∫
∥x∥2

2≤1
(x⊤v0)

2

Vd(1)
dx is equal to E[⟨x,v0⟩2] when x is uniformly distributed over the unit

d-dimensional ball. This quantity can equivalently be written as

E[⟨x,v0⟩2] = E[v⊤
0 xx

⊤v0]

= v⊤
0 E[xx

⊤]v0

The quantity E[xx⊤] is the covariance matrix of the uniform over the unit d-dimensional ball. This
matrix can be written as aId due to spherical symmetry.

This is because, by a change of variables, we can obtain thatE[xixj ] = −E[xixj ] for i ̸= j, implying
that E[xixj ] = 0.

To compute the diagonal entries:

E[x2
i ] =

1

d
E[x2]

=
1

d

∫
∥x∥2

2≤1

x2

Vd(1)
dx

=
1

dVd(1)

∫
Sd−1

∫
0≤r≤1

r2rd−1drdσ(ω)

=
Sd(1)

Vd(1)

1

d(d+ 2)
,

where Sd(1) is the surface of the unit sphere and dσ any surface measure.

By combining them all we derive

λ0 ∥v0∥22 ≥ mVd(1)Sd(1)

d(d+ 2)Vd(1)
∥v0∥22 (32)

λ0 ≥ mSd(1)

d(d+ 2)
> 0. (33)

G Stability analysis of perr(θ, ρ, τ)

G.1 Stability of τ⋆ with respect to P̂t

G.1.1 Proof of Lemma 2

Proof. First, we collect a context as a sample at every odd round, so at round t it holds that
|St

P | = ⌈t/2⌉. Indexing these samples as xi, we can write the empirical error perr(θ, P̂T , τ) as
follows:

perr(θ, P̂T , τ)− perr(θ, P, τ) =

∫
(1 + exp(|x⊤θ|))−11

{
|x⊤θ| > τ

}
P̂t(dx)− perr(θ, P, τ)

=
1

⌈t/2⌉

⌈t/2⌉∑
i=1

(
(1 + exp(|x⊤

i θ|))−11
{
|x⊤

i θ| > τ
}
− perr(θ, P, τ)

)
(34)
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As 0 ≤ (1 + exp(z))−1 ≤ 1
2 , the summands are i.i.d. [0,1/2] random variables with mean 0, so we

can apply Hoeffding’s inequality [54]:

P

∣∣∣∣∣∣ 1

⌈t/2⌉

⌈t/2⌉∑
i=1

(
(1 + exp(|x⊤

i θ|))−11
{
|x⊤

i θ| > τ
}
− perr(θ, P, τ)

)∣∣∣∣∣∣ ≥
√

log(2/δ′)

4t

 ≤ δ′.

By taking the union bound over all rounds t ≥ 1 and setting δ′ ≜ 6δ
π2t2 we derive:

P

∣∣∣∣∣∣ 1

⌈t/2⌉

⌈t/2⌉∑
i=1

(
(1 + exp(|x⊤

i θ|))−11
{
|x⊤

i θ| > τ
}
− perr(θ, P, τ)

)∣∣∣∣∣∣ ≤
√

log
(
π2t2

3δ

)
4t

,∀t : t ≥ 1

 ≥ 1− δ.

Here, we apply the well-known result for the Basel series:
∑∞

t=1
1
t2 = π2

6 .

G.2 Stability of τ⋆ with respect to θ

G.2.1 Proof of Lemma 3

Proof. Here, we use x as a dummy variable for integration:

perr(θ, ρ, τ) =

∫
(1 + exp(|x⊤θ|))−11

{
|x⊤θ| > τ

}
ρ(dx)

=

∫
(1 + exp(|x⊤θ′ + x⊤(θ − θ′)|))−11

{
|x⊤θ′ + x⊤(θ − θ′)| > τ

}
ρ(dx)

≤
∫
(1 + exp(|x⊤θ′| − |x⊤(θ − θ′)|))−11

{
|x⊤θ′| > τ − |x⊤(θ − θ′)|

}
ρ(dx)

≤
∫ (

(1 + exp(|x⊤θ′|))−1 + |x⊤(θ − θ′)|
)
1
{
|x⊤θ′| > τ − |x⊤(θ − θ′)|

}
ρ(dx)

≤ max
x′∈X

∫ (
(1 + exp(|x⊤θ′|))−1 + |x′⊤(θ − θ′)|

)
1
{
|x⊤θ′| > τ − |x′⊤(θ − θ′)|

}
ρ(dx)

= max
x′∈X

perr(θ
′, ρ, τ − |x′⊤(θ − θ′)|) +

∫
|x⊤(θ − θ′)|1

{
|x⊤θ′| > τ − |x′⊤(θ − θ′)|

}
ρ(dx)

≤ max
x′∈X

perr(θ
′, ρ, τ − ∥θ − θ′∥Vt∥x′∥V −1

t
) + ∥θ − θ′∥Vt∥x′∥V −1

t
Pρ

(
|x⊤θ′| > τ − |x⊤(θ − θ′)|

)
≤ max

x′∈X
perr(θ

′, ρ, τ − ∥θ − θ′∥Vt∥x′∥V −1
t

) + ∥θ − θ′∥Vt∥x′∥V −1
t

= perr(θ
′, ρ, τ − ∥θ − θ′∥Vt√

λt
min

) +
∥θ − θ′∥Vt√

λt
min

The first inequality follows from the triangle inequality, and the second inequality follows from the
fact that 1/(1 + exp(z)) is 1/4-Lipschitz (coarsely upper bounded as 1). The third bounds by looking
at the worst case context x′. The fourth inequality utilizes Hölder’s inequality, on the worst case
context x′, and that perr is monotone in τ . The second to last inequality follows from the fact that a
probability is always less than or equal to 1. Finally, we apply the following bound for any x′ ∈ X ;
∥x′∥V −1

t
≤ 1√

λt
min

, where we have implicitly used that ∥x′∥ ≤ 1,∀x′ ∈ X .

G.2.2 Proof of Lemma 4

Proof. To extend Lemma 2 to hold simultaneously for all θQ ∈ Qθ and τQ ∈ Qτ , we define an
εQ-net for each, and union bound over their cartesian product. By Lemma 2 we know that for any
fixed θ, τ :

P

∣∣∣perr(θ, P̂t, τ)− perr(θ, P, τ)
∣∣∣ ≤

√
log(π

2t2

3δ )

4t
,∀t ≥ 1

 ≥ 1− δ.
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Let Qθ = N (Sd−1, εθ) an εQ-cover of the unit sphere Sd−1. By Corollary 4.2.13 at [53] we have
that the covering numbers of Sd−1 satisfy for any εQ > 0;(

1

εQ

)d

≤ |Qθ| ≤
(

2

εQ
+ 1

)d

.

For any εQ < 1 it is true that |Qθ| ≤ ( 3
εQ

)d. Further, as τ lives in [0, 1], an ε-net of the unit segment
in the real line is {ϵ, 2ϵ, . . . , ⌊ 1

ϵ ⌋ϵ}, and so |Qτ | ≤ 1
ετ

. By taking the union bound over all τQ ∈ Qτ

and all θQ ∈ Qθ, i.e. taking δ′ = δ/(|Qθ| · |Qτ |), we have

P
(∣∣∣perr(θQ, P̂t, τQ)− perr(θQ, P, τQ)

∣∣∣ ≤ ζt,∀t ≥ 1, θQ ∈ Qθ, τQ ∈ Qτ

)
≥ 1− δ.

Recall that ζt is defined in Equation (10) as

ζt ≜

√
d log (3/εQ) + log(π

2t2

3δ )

4t
.

We choose εQ to be sufficiently small with respect to T , any εQ = o(1/T ) suffices. For concreteness,
we choose εQ = 1/T 2 as this simplifies the analysis in Theorem 2, but anytime choices like
εtQ = 1/t2 work as well.

G.3 Proof of Lemma 5

Proof. Conditioning on the good event Gperr , we have that

τ⋆Q(θQ, P̂t, α) = min{τQ ∈ Qτ : perr(θQ, P̂t, τQ) ≤ α}
(a)

≤ min {τQ ∈ Qτ : perr(θQ, P, τQ) ≤ α− ζt}
(b)

≤ min

{
τQ ∈ Qτ : perr(θ, P, τQ) ≤ α− ζt −

∥θQ − θ∥Vt√
λt
min

}
+

∥θQ − θ∥Vt√
λt
min

≤ min

{
τ ∈ [0, 1] : perr(θ, P, τ) ≤ α− ζt −

∥θQ − θ∥Vt√
λt
min

}
+

∥θQ − θ∥Vt√
λt
min

+ εQ

= τ⋆

(
θ, P, α− ζt −

∥θQ − θ∥Vt√
λt
min

)
+

∥θQ − θ∥Vt√
λt
min

+ εQ (35)

Where inequality (a) follows from conditioning on the good event Gperr , and (b) follows from the
Lemma 3.

The lower bound for τ⋆Q(θQ, P̂t, α) follows more simply:

τ⋆Q(θQ, P̂t, α) = min{τQ ∈ Qτ : perr(θQ, P̂t, τQ) ≤ α}
(a)

≥ min{τQ ∈ Qτ : perr(θQ, P, τQ) ≤ α+ ζt}
= τ⋆Q(θQ, P, α+ ζt)

≥ τ⋆(θQ, P, α+ ζt),

where (a) follows by the good event Gperr . Now, we will lower bound τ⋆(θQ, P, α) in terms of τ⋆.

τ⋆(θQ, P, α) = min{τ ∈ [0, 1] : perr(θQ, P, τ) ≤ α}
(a)

≥ min

{
τ ∈ [0, 1] : perr

(
θ, P, τ +

∥θQ − θ∥Vt√
λt
min

)
− ∥θQ − θ∥Vt√

λt
min

≤ α

}

≥ min

{
τ ∈ [0, 1] : perr(θ, P, τ) ≤ α+

∥θQ − θ∥Vt√
λt
min

}
− ∥θQ − θ∥Vt√

λt
min

= τ⋆

(
θ, P, α+

∥θQ − θ⋆∥Vt√
λt
min

)
− ∥θQ − θ∥Vt√

λt
min

,
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where (a) follows from Lemma 3, where we lower bound perr(θQ, P, τ) ≥ perr(θ, P, τ+
∥θQ−θ∥Vt√

λt
min

)−
∥θQ−θ∥Vt√

λt
min

.

Putting all together we have that on Gperr , Gθ, evaluating at θ = θ⋆,

τ̂(θQ, P̂t, α) = τ⋆Q

(
θQ, P̂t, α− ζt − 2Bt/

√
λt
min

)
+ 2Bt/

√
λt
min

(a)

≥ τ⋆(θ⋆, P, α).

where (a) leverages Lemma 5.

G.4 Stability of τ⋆ with respect to α

We begin by proving a lemma bounding the probability in the annulus τ < |X⊤θ⋆| ≤ τ + λ. With
our pessimistic policy, we want to always test when the optimal baseline tests (at τ ), and need to
ensure that with a slightly larger threshold (at τ + λ) we do not test that much more.
Lemma 13. Under Assumption 2, for all λ > 0 we have that

m · 2π arccos(min(1, τ + λ))λ ≤ P
(
τ < |X⊤θ⋆| ≤ τ + λ

)
≤ M · 2π arccos(τ)λ

where τouter = min(τ + λ, 1).

Proof. Since the contexts are in Rd and the density is bounded between m and M , we simply need
to upper and lower bound

Vol
(
τ < |X⊤θ⋆| ≤ τ + λ

)
= Vol

(
|X⊤θ⋆| > τ

)
− Vol

(
|X⊤θ⋆| ≥ τ + λ

)
(36)

where ∥θ⋆∥ = 1, and X lives on the unit sphere. If λ+ τ > 1, then the outer edge of the annulus is
exactly at 1. While we proceed with the analysis assuming that λ < 1− τ , we concretely take the
outer edge of the annulus to be τouter = min(τ + λ, 1).

Geometrically, this probability is the difference between two sphere caps: one with radius arccos(τ)
and one with arccos(τouter). Using the fact that the density is bounded between m and M , we
can upper bound the surface area of the annulus by the rectangular strip with height λ and width
2π arccos(τ), or lower bound by 2π arccos(τouter).

Thus, we have that
m · 2π arccos(τouter)λ ≤ P

(
τ < |X⊤θ⋆| ≤ τ + λ

)
≤ M · 2π arccos(τ)λ (37)

G.4.1 Proof of Lemma 6

Restating the lemma:
Lemma (Restating Lemma 6). Under Assumptions 1 and 2,

τ⋆(θ⋆, P, α− γ) ≤ τ⋆(θ⋆, P, α) +Kmaxγ + εQ, (38)
for γ ≤ γmax (defined in Equation (41)), where Kmax is defined in Equation (42).

Proof. We begin by studying the difference between perr evaluated at thresholds τ and τ − λ for
arbitrary τ < 1.

perr(θ
⋆, P, τ − λ)− perr(θ

⋆, P, τ)

=

∫
(1 + exp(|x⊤θ⋆|))−11

{
τ − λ < |x⊤θ⋆| ≤ τ

}
P (dx)

≥ (1 + exp(τ))−1P
(
τ − λ < |X⊤θ⋆| ≤ τ

)
≥ 2mπ(1 + exp(τ))−1 arccos(τ)λ (39)
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where the last inequality follows from Lemma 13.

To show that only a small λ is necessary, we note that τ is a continuous function of α when evaluated
at the true distribution P . Since τ⋆(θ⋆, P, α) < 1 by Assumption 1 we have that τ⋆(θ⋆, P, α− γ) <

(1 + τ⋆)/2 ≜ τmax < 1 for all γ ≤ γmax. This lets us define the maximum proportionality constant
K(τ), which maximizes (1+exp(τ))

2mπ arccos(τ) over τ ∈ [0, τmax]. Concretely:

τmax ≜ (1 + τ⋆)/2 (40)

γmax ≜ argmax
γ<α

{γ : τ⋆(θ⋆, P, α− γ) ≤ τmax} (41)

Kmax ≜
(1 + e)

2mπ arccos(τmax)
(42)

With the proportionality constant K(τ), we show that τ⋆Q(θ
⋆, P, α−γ) ≤ τ⋆(θ⋆, P, α)+K(τ)γ+εQ.

This enables a uniform bound as:

K(τ) =
(1 + exp(τ))

2mπ arccos(τ)
≤ Kmax

This means that, leveraging Equation (39) with λ = Kmaxγ, we have that for all γ ≤ γmax:

τ⋆Q(θ
⋆, P, α− γ) = min{τQ ∈ Qτ : perr(θ

⋆, P, τQ) ≤ α− γ}
(a)

≤ min{τQ ∈ Qτ : perr(θ, P, τQ −Kmaxγ) ≤ α− γ + 2mπ(1 + exp(τQ))
−1 arccos(τQ)Kmaxγ}

(b)

≤ min{τQ ∈ Qτ : perr(θ, P, τQ −Kmaxγ) ≤ α}
≤ min(1,min{τQ ∈ Qτ : perr(θ, P, τQ) ≤ α}+Kmaxγ + εQ)

= min(1, τ⋆Q(θ, P, α) +Kmaxγ + εQ).

In (a) we leveraged the perr difference bound derived in Equation (39). (b) follows from the definition
of Kmax in Equation (42), and the monotonicity of τ in α. This expression can be further bounded
using that arccos(τmax) ≥

√
2(1− τmax).

H Other proofs

H.1 Proof of Lemma 8

Proof. Lower bounding the threshold τt we use:

τt = τ̂(θLt , P̂t, αt) +Bt/
√

λt
min ≥ τ⋆ (θ⋆, P, α) +Bt/

√
λt
min

where we use the monotonicity of τ⋆ with respect to α, and that αt < α, in addition to Lemma 5.
Then, we upper bound the inner product computed:

|⟨Xt, θ
L
t ⟩| ≤ |⟨Xt, θ

⋆⟩|+ ∥θLt − θ⋆∥Vt
∥Xt∥V −1

t
≤ |⟨Xt, θ

⋆⟩|+Bt/
√

λt
min

By Holder. Combining these together yields:

|⟨Xt, θ
⋆⟩| ≤ τ⋆ =⇒ |⟨Xt, θ

L
t ⟩| ≤ τt. (43)

H.2 Proof of Lemma 9

Proof. When Zt = 0 on Gperr it holds that for all θ ∈ Ct ∩Qθ:

|⟨Xt, θ⟩| − τ̂(θ, P̂t, α) > εQ
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Using Lemma 4, we know that when Gperr , Gθ holds, then for all θ ∈ Ct ∩Qθ:

τ̂(θ, P̂t, α) ≥ τ⋆(θ⋆, P, α)

=⇒ |⟨Xt, θ⟩| ≥ τ⋆(θ⋆, P, α) + εQ.

For any θ ∈ Ct ∩ Qθ there exists a θ′ ∈ Ct such that ∥θ′ − θ∥ ≤ εQ. Similarly to the previous proof,
we can bound then |⟨Xt, θ̃⟩| ≤ |⟨Xt, θ

′⟩|+ εQ by the triangle inequality and Cauchy-Schwarz.

Then, it is true that for any θ ∈ Ct
|⟨Xt, θ⟩| ≥ τ⋆(θ⋆, P, α) > 0.

Under Gθ we have that θ⋆ ∈ Ct,∀t, and as a consequence.
|⟨Xt, θ

⋆⟩| ≥ τ⋆(θ⋆, P, α) > 0.

H.3 Proof of lemma 10

Proof. We analyze the four possible outcomes of the binary random variables (Z⋆
t , Zt), under the

good event G.

Case 1: (Z⋆
t , Zt) = (1, 1). In this case, both our policy and the oracle baseline observe the true label

and ξt = ξ⋆t = 0, i.e. neither method makes an error.

Case 2: (Z⋆
t , Zt) = (1, 0). Under the good event G, by Lemma 8 this cannot occur.

Case 3: (Z⋆
t , Zt) = (0, 1). When, Z⋆

t = 0 and Zt = 1, our policy tests and observes the true label
while the optimal baseline predicts Ŷ ⋆

t , in which case 0 = ξt ≤ ξ⋆t a.s.

Case 4: (Z⋆
t , Zt) = (0, 0). When, Z⋆

t = 0 and Zt = 0, from Lemma 9 it holds that Ŷt = Ŷ ⋆
t a.s.,

and so ξt = ξ⋆t a.s.

Combining these 4 cases together, we have shown that ξt ≤ ξ⋆t a.s. Utilizing this, we have that for
any γ > 0

P

(
1

T

T∑
t=1

ξt ≥ α+ γ

)
≤ P

(
1

T

T∑
t=1

ξt ≥ α+ γ

∣∣∣∣∣ G
)

+ P(Ḡ)

≤ P

(
1

T

T∑
t=1

ξ⋆t ≥ α+ γ

∣∣∣∣∣ G
)

+ P(Ḡ)

To bound P
(

1
T

∑T
t=1 ξ

⋆
t ≥ α+ γ

∣∣∣ G) we will use P(X|G) = P(X ∩ G)/P(G). P(X ∩ G) ≤

P(X), and P(G) ≥ 1/2. Thus, P
(

1
T

∑T
t=1 ξ

⋆
t ≥ α+ γ

∣∣∣ G) ≤ 2P
(

1
T

∑T
t=1 ξ

⋆
t ≥ α+ γ

)
. Now,

ξ⋆t are binary i.i.d. random variables with E(ξ⋆t ) ≤ α. Let µξ = E
[∑T

t=1 ξ
⋆
t

]
, then at any time

T̃ ≤ T :

P

 1

T̃

T̃∑
t=1

ξ⋆t ≥ α+ γ

 ≤ P

 1

T̃

T̃∑
t=1

(ξ⋆t − Eξ⋆t ) ≥ γ


≤ exp(−2T̃ γ2).

By choosing γ =

√
log( 4π2T̃2

6δ )

2T̃
, we get that

2P

 1

T

T∑
t=1

(ξ⋆t − Eξ⋆t ) ≥

√
log( 4π

2T 2

6δ )

2T
,∀T

 ≤ δ/2.
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Here, taking α′ ≜ α −
√

log( 4π2T2

6δ )

2T yields the desired result, where we use Lemma 18 to get that
P(Ḡ) ≤ δ/2. This enables us to take:

αt = α−
√

log(7t2/δ)

2t

to satisfy this constraint.

H.4 Lemma 14

Lemma 14. For every round t > T0, conditioned on the good event G, the regret is bounded as:

E[Zt − Z⋆
t |G] ≤ 2πM

(
8Kmax

(
ζt +Bt(p

⋆tλ0/8)
−1/2

)
+ 2εQ

)
Proof of Lemma 14. For t ≤ T0 we can bound each term of the regret by one, E[Zt − Z] ≤ 1. For
t > T0 this requires analyzing E[Zt − Z]. We test whenever ct = |⟨Xt, θ

L
t ⟩| − τt ≤ 0. Thus, we

need to lower bound ct to show that we do not test too much in excess of the optimal baseline.

ct = |⟨Xt, θ
L
t ⟩| − τt

= |⟨Xt, θ
L
t ⟩| − τ̂(θLt , P̂t, αt)−Bt/

√
λt
min

= |⟨Xt, θ
L
t ⟩| − τ⋆Q

(
θLt , P̂t, αt − ζt − 2Bt/

√
λt
min

)
− 3Bt/

√
λt
min

≥ |⟨Xt, θ
⋆⟩| − τ⋆

(
θ⋆, P, α− 3ζt − 3Bt/

√
λt
min

)
− εQ − 5Bt/

√
λt
min

≥ |⟨Xt, θ
⋆⟩| − τ⋆ (θ⋆, P, α)− 3Kmax

(
ζt +Bt/

√
λt
min

)
− 2εQ − 5Bt/

√
λt
min

> |⟨Xt, θ
⋆⟩| − τ⋆ (θ⋆, P, α)− 8Kmax

(
ζt +Bt/

√
λt
min

)
− 2εQ

we use Lemma 5 and the fact that αt ≥ α− ζt. Additionally, |⟨Xt, θ
L
t ⟩| ≥ |⟨Xt, θ

⋆⟩| −Bt/
√

λt
min

on Gperr , Gθ. Then, in the final inequality, we apply Lemma 6. The last line is simply for constants.

ERt = E[Zt − Z|G]

= P ({ct ≤ 0} ∩ {|⟨Xt, θ
⋆⟩| ≥ τ⋆} |G)

a
≤ P

(
τ⋆ ≤ |⟨Xt, θ

⋆⟩| ≤ τ⋆ (θ⋆, P, α) + 8Kmax

(
ζt +Bt/

√
λt
min

)
+ 2εQ|G

)
b
≤ 2πM arccos(τ⋆)

(
8Kmax

(
ζt +Bt/

√
λt
min

)
+ 2εQ

)
c
≤ 2πM

(
8Kmax

(
ζt +Bt(p

⋆tλ0/8)
−1/2

)
+ 2εQ

)
. (44)

a) follows by the upper bounding of the thresholding condition, and b) follows from Lemma 13, and
c) from G that λt

min ≥ p⋆tλ0/8 and that arccos(τ⋆) ≤ 1.

An important technical detail in applying Lemma 6 is that γ ≤ γmax. As we discussed in the
Appendix G.4.1 p⋆ > 0 =⇒ τ⋆ < 1. As a consequence, it holds that γmax > 0. Finally,
γ ≜ γt = O( 1√

t
), as a result there exists a constant T0 such that for all t ≥ T0 we have that

γt ≤ γmax.
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H.5 Proof of Theorem 2

Proof of Theorem 2. By using the lemma 14, and by conditioning on the good event we have that
with probability at least 1− δ:

Regret(T ) ≤ T0 +

T∑
t=T0

ERt

= T0 + 2πM

(
T∑

t=T0

8Kmax

(
ζt +Bt(p

⋆tλ0/8)
−1/2

)
+ 2

T∑
t=T0

εQ

)

To control
∑T

t=1 εQ we can either choose εQ to be small, e.g. εQ = 1
T 2 . However, that requires the

knowledge of the horizon T . In order to surpass this obstacle, we can choose {εtQ}∞t=1 = {1/t2}∞t=1.

In any case,
∑T

t=1 εQ ≤
∑∞

t=1 1/t
2 = π2/6 = O(1). As ζt ≜

√
d log(3/εQ)+log(π2t2

3δ )

2t , we have that∑T
t=1 ζt = Õ(

√
dT ). Finally, for Bt, recall that Bt ≜ 2κ

(
1 +

√
log(1/δ) + 2d log

(
1 +

Nt
θ

κλd

))
=

O(κ
√
log(1/δ) + d log(p⋆T )). Thus,

∑T
t=T0

Bt(p
⋆tλ0/8)

−1/2 ≤ BT

∑T
t=T0

(p⋆tλ0/8)
−1/2 =

O
(
(p⋆λ0)

−1/2
√
log(1/δ)T + dT log(p⋆T )

)
.

By putting all together we have that RT = Õ
(
MKmax

√
(log(1/δ)+d log T

p⋆λ0

)
.

I Good event proof

In Lemma 8 we proved that, with high probability, our policy tests whenever the optimal one does,
that is N t

Θ ≥ N t
OPT when Gθ, Gperr hold. We must collect enough samples so as the confidence set

provide tight estimates about the value of θ⋆. Let define the following auxiliary good events.

• E1 = {∀t ≥ 1 : N t
Θ ≥ N t

OPT }.
• E2 = {∀t ≥ 1 : N t

OPT ≥ N(t, δ)}.

It is true that G(2) = {∀t ≥ 1 : N t
θ ≥ N(t, δ)} ⊇ E1 ∩ E2 when Gθ, Gperr hold, where N(t, δ) =

p⋆t−
√

ln(πt2/3δ)t
2 .

In Lemma 8 we proved that P(E1 | Gθ, Gperr) ≥ 1− δ due to pessimism. Now, it remains to prove
the same for the event E2. As the number of samples of the optimal policy follows the binomial
distribution with parameter p⋆ we can use standard concentration inequalities to derive such a bound.
Lemma 15. P(E2 | Gθ, Gperr) ≥ 1− δ.

Proof. As the contexts arrive in an i.i.d. fashion, then N t
OPT ∼ Binom(p⋆, t). By a Chernoff-

Hoeffding bound, for s > 0

P(|N t
OPT − p⋆t| ≥ s) ≤ 2 exp(−2s2

t
).

By choosing s ≜
√

ln(πt2/3δ)t
2 we derive

P(|N t
OPT − p⋆t| ≥

√
ln(πt2/3δ)t

2
) ≤ δ

6

π

1

t2
.

Now, by using the union bound for all t ≥ 1,

P
(
∀t ≥ 1 : |N t

OPT − p⋆t| ≥
√

ln(πt2/3δ)t

2

)
≤ δ

6

π

∞∑
t=1

1

t2
= δ.
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δ is a constant, we simply require that δ = Ω(T 2e−T ). Then, for some T0, we have that for all t ≥ T0

with probability at least 1− δ;
N t

OPT ≥ p⋆t/2. (45)
Lemma 16.

P(G(2) | Gθ, Gperr) ≥ 1− 2δ.

Proof. By taking the union bound

P(E1 ∩ E2 | Gθ, Gperr) ≥ 1− 2δ.

By using G(2) ⊇ E1 ∩ E2 when Gθ, Gperr hold we conclude the proof.

To show that P(G(3)) ≥ 1 − δ we will use a covering argument to derive a lower bound for the
minimum covariance matrix. Then, we will use Lemma 15 as a lower bound on the number of
samples collected to construct the empirical covariance matrix. Finally, we will union bound these
two events to complete the proof. We note some constants may have changes due to the union bound.
Lemma 17. Let δ ∈ (0, 1). Consider a random d× d dimensional matrix valued process {At}∞t=0

adapted to a filtration Ft = σ(Ak | k ≤ t), where each At ∈ Rd×d is symmetric (At = A⊤
t ),

positive semi-definite, satisfies ∥At∥op ≤ 1 almost surely and such that there is a constant λ0 > 0
satisfying

P (λmin(E[At|Ft−1]) ≥ λ0 ∀t ∈ N) ≥ 1− δ.

Let λt
min ≜ λmin

(∑t
s=0 As

)
. Then, for ε > 0, the following holds:

P

{
λt
min ≥ t(λ0 − 2ε)−

√
t

2

(
d log

(
2

ε
+ 1

)
+ log

(
2t2

δ

))
∀t ∈ N

}
≥ 1− δ.

The proof is in Appendix I.1.

We will apply this lemma for At = XtX
⊤
t . It is true that

∥∥XtX
⊤
t

∥∥
op

= ∥Xt∥2 = 1. We will make

again the same observation, by choosing the covering parameter as ε = λ0

5 , then we have that for all
t ≥ T0

λt
min ≥ N t

θλ0/4. (46)

In Lemma 15 we proved that with probability at least 1− δ, it holds that N t
θ ≥ p⋆t

2 . By taking the
union bound over the two events, we have that with probability at least 1− 2δ

λt
min ≥ p⋆t

λ0

8
.

Lemma 18.
P(G) = P(Gθ ∩G(2) ∩G(3) ∩Gperr) ≥ 1− 6δ.

Proof. By using the product rule we have that

P(Gθ ∩G(2) ∩Gperr) = P(G
(2) | Gθ ∩Gperr)P(Gθ ∩Gperr)

As P(Gθ) ≥ 1− δ from Lemma 1 and P(Gperr) ≥ 1− δ from Lemma 4, by using the union bound
we have P(Gθ ∩G(2)) ≥ 1− 2δ. By using also Lemma 16 we have

P(G(2) | Gθ ∩Gperr)P(Gθ ∩Gperr) ≥ (1− 2δ)2

≥ 1− 4δ.

As P(G(3)) ≥ 1− 2δ by Lemma 17, by taking the union bound again we have that

P(Gθ ∩G(2) ∩G(3) ∩Gperr) ≥ 1− 6δ.
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I.1 Proof of Lemma 17

Proof of Lemma 17. Let the random variable Zυ
t ≜ υ⊤Atυ−E[υ⊤Atυ | Ft−1], such that υ ∈ Sd−1.

Notice that Zυ
t is a martingale difference sequence as;

1.
E[|Zυ

t ]] ≤ E[|υ⊤Atυ]] + E|E[υ⊤Atυ | Ft−1]|
≤ E[υ⊤Atυ] + EE[υ

⊤Atυ | Ft−1]

≤ 1 + 1 = 2 < ∞.

2.
E[Zυ

t | Ft−1] = E[υ
⊤Atυ | Ft−1]− E[υ⊤Atυ | Ft−1] = 0.

By the Azuma-Hoeffding Inequality [9], as Zυ
t ∈ [0, 1] a.s., for a fixed t ∈ [T ] we have, c ≥ 0;

P

{
t∑

s=0

(υ⊤Asυ − E[υ⊤Asυ | Fs−1]) ≤ −c

}
≤ exp

(
−2c2

t

)
.

Setting the error probability to δt,

P


t∑

s=0

(υ⊤Asυ − E[υ⊤Asυ | Fs−1]) ≤ −

√
log( 1

δt
)t

2

 ≤ δt.

Thus, substituting δt =
δ

2t2 and using the union bound we get,

P


t∑

s=0

(υ⊤Asυ − E[υ⊤Asυ | Fs−1]) ≤ −

√
log( 2t

2

δ )t

2
∀t ∈ N

 ≤
∞∑
t=1

δt ≤ δ.

Let N (Sd−1, ε) an ε-cover of Sd−1. By Corollary 4.2.13 at [53] we have that the covering numbers
of Sd−1 satisfy for any ε > 0; (

1

ε

)d

≤ N (Sd−1, ε) ≤
(
2

ε
+ 1

)d

.

By taking the union bound over all υi ∈ N (Sd−1, ε) we have

P

∃υi ∈ N (Sd−1, ε) :

t∑
s=0

(υ⊤
i Asυi − E[υ⊤

i Asυi | Fs−1]) ≤ −

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∀t ∈ N

 ≤ δ

(47)
Let υ⋆

t ≜ argminυ∈Sd−1 υ⊤∑t
s=0 Asυ, then there exists an υit ∈ N (Sd−1, ε) such that

∥υit − υ⋆
t ∥2 ≤ ε We are going to bound |υ⋆

t
⊤∑t

s=0 Asυ
⋆
t − υ⊤

it

∑t
s=0 Asυit | by a function of

ε.

|υ⋆
t
⊤

t∑
s=0

Asυ
⋆
t − υ⊤

it

t∑
s=0

Asυit | = |υ⋆
t
⊤

t∑
s=0

Asυ
⋆
t − υ⋆

t
⊤

t∑
s=0

Asυit + υ⋆
t
⊤

t∑
s=0

Asυit − υ⊤
it

t∑
s=0

Asυit |

= |υ⋆
t
⊤

t∑
s=0

As(υ
⋆
t − υit) + (υ⋆

t − υit)
⊤

t∑
s=0

Asυit |

= |(υ⋆
t − υit)

⊤
t∑

s=0

As(υit + υ⋆
t )|

≤ ∥υ⋆
t − υit∥2

∥∥∥∥∥
t∑

s=0

As(υit + υ⋆
t )

∥∥∥∥∥
2

≤ ε

t∑
s=0

∥As∥op (∥υit∥2 + ∥υ⋆
t ∥2)

= 2tε. (48)
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Using inequality 47 we have

P


t∑

s=0

υ⊤
itAsυit ≥

t∑
s=0

E[υ⊤
itAsυit | Fs−1]−

√
[d log(2/ε+ 1) + log(2t

2

δ )]t

2
∀t ∈ N

 ≥ 1− δ

where it is a point in the cover N (Sd−1, ε) such that ∥υit − υ⋆
t ∥2 ≤ ε. Equation 48 can be used to

relate
∑t

s=0 υ
⊤
it
Asυit and λt

min,

P


t∑

s=0

υ⋆
t
⊤Asυ

⋆
t︸ ︷︷ ︸

λt
min

+2tε ≥
t∑

s=0

E[υ⊤
itAsυit | Fs−1]−

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∀t ∈ N

 ≥ 1− δ.

Using the fact that E[υ⊤
it
Asυit | Fs−1] ≥ λmin(E[As | Fs−1]) we conclude that,

P

λt
min + 2tε ≥

t∑
s=0

λmin(E[As | Fs−1])−

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∀t ∈ N

 ≥ 1− δ.

Finally, the assumption that P (λmin(E[At|Ft−1]) ≥ λ0 ∀t ∈ N) ≥ 1− δ and a union bound allows
us to conclude that,

P

λt
min ≥ t(λ0 − 2ε)−

√
[d log(2/ε+ 1) + log(2t

2

δ )]t

2
∀t ∈ N


≥ P

λt
min + 2tε ≥

t∑
s=0

λmin(E[As | Fs−1])−

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∩ λmin(E[At|Ft−1]) ≥ λ0 ∀t ∈ N


≥ 1− δ′.

This finalizes the result for δ′ = 2δ.
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