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Abstract

We study the problem of sequentially testing individuals for a binary disease1

outcome whose true risk is governed by an unknown logistic regression model. At2

each round, a patient arrives with feature vector xt, and the decision maker may3

either pay to administer a (noiseless) diagnostic test—revealing the true label—or4

skip testing and predict the patient’s disease status based on prior observations.5

Our goal is to minimize the total number of costly tests while guaranteeing that the6

fraction of misclassifications does not exceed a prespecified error tolerance α, with7

high probability. To address this, we develop a novel algorithm that (i) maintains8

a confidence ellipsoid for the unknown logistic parameter θ⋆, (ii) interleaves9

label-collection and distribution-estimation to estimate both θ⋆ and the context10

distribution, and (iii) computes a conservative, data-driven threshold τt on the11

logistic score |x⊤
t θ| over θ in the confidence set to decide when testing is necessary.12

We prove that, with probability at least 1 − δ, our procedure never exceeds the13

target misclassification rate and incurs only Õ(
√
T ) excess tests compared to14

the oracle baseline that knows both θ⋆ and the patient feature distribution. This15

establishes the first no-regret guarantees for error-constrained logistic testing, with16

direct applications to cost-sensitive medical screening. Simulations corroborate our17

theoretical guarantees, showing that in practice our procedure efficiently estimates18

θ⋆ while retaining safety guarantees, and does not require too many excess tests.19

1 Introduction20

Modern machine learning has recently provided solutions to real-world automated decision-making21

systems in various fields such as drug discovery [46, 9], recommendation systems [2, 49], online22

ad-allocation [43], and portfolio selection [37]. Bandit algorithms [30] and reinforcement learning23

[44] play a significant role in building interactive decision-making systems that collect feedback24

from users and improve their performance with each interaction. Two primary challenges exist25

in the aforementioned applications: the first is the learning challenge, determining which problem26

parameters are vital for decision-making; the second is the decision-making challenge, where effective27

performance is required concurrently with learning.28

Although machine learning systems perform exceptionally well in practice, sometimes even sur-29

passing human performance, when applied in human-centric scenarios safety constraints are30

paramount [21, 19]. Many mathematical formulations have been proposed to characterize what31

safety means in sequential decision making settings. The first one is based on satisfying cost con-32

straints and is characterized by the requirement of playing actions that belong to a safe set as specified33

by a cost signal [34, 48, 18]. The second one, also known as conservative bandits, requires the learner34

to play actions that achieve a reward level comparable or superior to a fixed baseline [28]. In sequen-35

tial decision making problems learning while satisfying a safety criterion typically makes reward36
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acquisition more challenging. Thus the main challenge in these scenarios remains to understand how37

to optimally manage these tradeoffs.38

Inspired by the COVID-19 pandemic, and more broadly medical triage application, we study an39

online learning problem with a different type of safety constraint. In our setting, patients sequentially40

arrive with an associated feature vector (fever, loss of smell, fatigue, blood oxygen saturation), and a41

latent unobserved disease state (whether they have COVID or not). The hospital has limited COVID42

tests due to resource constraints, and wants to minimize their usage. However, they want to ensure43

that they properly quarantine sick patients. Here, we posit a latent (unknown) logistic model between44

the patient’s feature vector and their disease status; as more patients are observed, the hospital can45

learn that a low blood oxygen saturation and a high fever correspond to a high likelihood of COVID,46

and so the patient does not need to be tested but can immediately be classified as sick. Thus, the47

hospital must, as the data is being collected, learn a) the distribution of patients, b) the parameters of48

the logistic model, and c) the rule of when to test.49

More generally, the objective is to produce accurate guesses of the disease status of an incoming50

stream of patients while minimizing the number of tests required. This problem belongs to the51

rich tradition of the active learning and selective sampling literature [41, 23, 33, 6, 17, 42]. These52

study settings where context information may be abundant but the labels are hard to come by [13].53

More formally, in the active learning or online selective sampling literature at the start of every54

round the learner observes a context vector Xt ∈ Rd and has the option to query or not the label55

Zt ∈ {0, 1}. The goal is to build a statistical learning algorithm that achieves similar performance56

(i.e., generalization error) to one that observes all the labels while minimizing the expected number57

of queries used.58

By focusing on the classification task and changing the objective from minimizing the generalization59

error to minimizing the cumulative pseudo regret (with respect to the optimal labeling policy),60

various algorithms have been developed in the online selective sampling literature, such as [33,61

40], by considering both stochastic and adversarial contexts. The objective in these works is to62

achieve sublinear regret while minimizing the expected number of queries made. However, in63

real-world scenarios like the one in [5], it makes sense to ask that the training error remain under64

a safety threshold with high probability while minimizing the number of queries. For example in65

the streaming patient scenario we described above, where patients arrive one by one and the medical66

provider needs to classify them as sick or not. In this problem due to the sensitive nature of making67

misclassification mistakes the objective is to devise a selective testing procedure that can guarantee68

the total misclassification error remains below a safety threshold α ∈ [0, 1]. Since testing every69

patient is expensive, the goal is to minimize the number of tests subject to a misclassification error70

bound. These objectives can be formalized as:71

Is it possible to design a classifier that minimizes the expected number of tests while maintaining a72

misclassification error below a specified safety threshold?73

Contributions: In this work, we provide a logistic bandit algorithm to tackle the aforementioned74

problem with a regret guarantee of O(
√

dT log(T/δ)) 1 For a more detailed analysis about the75

constants in Theorem 1 we refer the reader to the appendix. We validate our theoretical results76

through comprehensive experiments.77

2 Preliminaries78

Notation We adopt the following notation throughout the paper. The inner product between two79

vectors x, y ∈ Rn will be denoted either as x⊤y or as ⟨x, y⟩. We denote the ℓ2 norm of a vector80

x ∈ Rd as ∥x∥2 =
√
⟨x, x⟩ and ∥x∥A =

√
x⊤Ax for any positive semi-definite matrix A ∈ Rn×n81

The minimum eigenvalue of a matrix A ∈ Rn×n will be denoted as λmin(A). The set {1, 2, . . . , n}82

is denoted as [n]. µ(z) = 1
1+exp(z) is the logistic function. 1 denotes the indicator function of an83

1In Theorem 1 we show that the regret is upper bounded by Õ(
√

dT
λ0

) where λ0 is the minimum eigenvalue
of the covariance matrix of the optimal policy. In case of the uniform distribution over the unit sphere, this
quantity is equal to 1/

√
d. It is known that in Linear Bandits the dependency on the dimension is linear, so we do

not miss any
√
d factor.
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event. For two functions f, g we say that f(x) ≼ g(x) when there exists a constant c > 0 such that84

f(x) ≤ cg(x).85

2.1 Problem Definition86

We consider the following repeated game scenario between the learner and the environment. At every87

round t ∈ [T ], the environment generates a context Xt ∈ Rd such that ∥Xt∥2 ≤ 1. These contexts88

are identically distributed, and are drawn independently from an unknown distribution with density P .89

Every patient-context has an unseen random label Yt ∈ {0, 1} that represents their disease status. We90

assume that Yt ∼ Ber(µ(X⊤
t θ⋆)), independent from all other Xt′ and Yt′ . Here, θ⋆ ∈ Rd is some91

fixed parameter vector unknown to the learner, such that ∥θ⋆∥2 ≤ 1.92

At each round, the learner observes the patient’s context Xt and must decide whether or not to test93

the patient, denoted by Zt ∈ {0, 1}. Then, the learner must predict whether the patient is healthy or94

sick, denoted by Ŷt ∈ {0, 1}. If Zt = 1, the patient is tested, and the learner observes the true label95

Yt, and so can predict Ŷt = Yt. The random variable Zt can depend on information obtained prior96

to that decision, i.e. Ht = {X1, Z1Y1, X2, Z2Y2, . . . , Xt} and possibly on internal randomization97

of the learner. Similarly, Ŷt must be Ft = σ{X1, Z1Y1, X2, Z2Y2, · · · , Xt, ZtYt} measurable. The98

goal of the learner is to minimize the expected number of tests applied, while guaranteeing that the99

misclassification rate is less than a desired threshold α with high probability. This can be summarized100

as the safe learning objective below:101

min
{Ŷt},{Zt}

T∑
t=1

EZt s.t. P

(
1

T

T∑
t=1

1{Ŷt ̸= Yt} ≤ α

)
≥ 1− δ. (1)

2.2 Optimal baseline102

First, let us consider the case where the feature distribution P and optimal discriminator θ⋆ are known103

a priori to the learner. In this case, we can easily devise a threshold decision rule τ that is a function104

of P , θ⋆ and α. More analytically,105

Zt = 1{|X⊤
t θ⋆| ≤ τ} Ŷt =


0 if X⊤

t θ⋆ < −τ,

Yt if |X⊤
t θ⋆| ≤ τ,

1 if X⊤
t θ⋆ > τ.

(2)

A threshold policy proves to be optimal when the constraint is only required to be met in expectation,106

as encapsulated in the following proposition.107

Proposition 1. Consider the following variation of our problem where the constraint holds in108

expectation, and both the batch of contexts {Xt}Tt=1 and the parameter vector θ⋆ are known. The109

optimal policy for this problem is a threshold rule:110

min
{Ŷt}

T∑
t=1

EZt s.t. E

(
1

T

T∑
t=1

1{Ŷt ̸= Yt}

)
≤ α.

The proof of this proposition follows by relating this to the fractional knapsack problem, which we111

detail in the appendix.112

To analyze the performance of a selected threshold τ , we define the function perr as the probability113

of misclassification incurred by the the threshold τ , if the true underlying θ⋆ was θ, where the114

expectation is taken with respect to P :115

perr(θ, P, τ) =

∫
(1 + exp(|x⊤θ|))−11

{
|x⊤θ| > τ

}
P (dx). (3)

The term (1+ exp(|x⊤θ|))−1 = min
{

1
1+exp(x⊤θ)

, 1− 1
1+exp(x⊤θ)

}
is the optimal misclassification116

error for fixed x, θ. The term 1
{
|x⊤θ| > τ

}
takes the value of one only if we use a threshold rule117

and we predict the label ŷ without observing the real label y of the context x.118
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From this, we can naturally define the optimal τ⋆ for a given α as the minimum value of τ (thus119

minimizing the number of rejections) that satisfies the α-fraction misclassification constraint. Observe120

that both perr and τ⋆ can also be evaluated with respect to observed empirical distributions P̂ , not121

just the true distribution P . This gives an oracle baseline where any algorithm requires an expected122

number of tests p⋆T , where123

τ⋆(θ, P, α) = min{τ : perr(θ, P, τ) ≤ α} (4)

p⋆ ≜ P
(
x : |x⊤θ⋆| ≤ τ⋆(θ⋆, P, α)

)
. (5)

This lets us define the “safe regret” of an algorithm as the number of excess tests it takes over this124

oracle baseline. An algorithm could trivially sample at each time step and satisfy the misclassification125

criterion; the question is, for a given misclassification rate α, and error probability δ, can a learner126

achieve sublinear safe regret in T , as defined in Equation (6)?127

E

[
T∑

t=1

Zt − p⋆

]
s.t. P

(
1

T

T∑
t=1

1{Ŷt ̸= Yt} ≤ α

)
≥ 1− δ. (6)

To analyze this quantity, we make a few natural assumptions.128

Assumption 1. The optimal baseline tests a nonzero fraction of the time, i.e. p⋆ > 0.129

In previous related works, [33], [40], p⋆ is a quantity analogous to Tε that describes the number of130

times the Bayes optimal classifier outputs a label with confidence less than a fixed parameter ε > 0.131

This serves as a measure to quantify the inherent difficulty of the problem instance.132

We additionally make two assumptions regarding the density of the contexts P , which are reasonable133

for patient data with continuous valued features.134

Assumption 2. We assume that the density P is upper and lower bounded by constants [m,M ],135

where 0 < m ≤ P (x) ≤ M < ∞, for all x such that ∥x∥2 ≤ 1.136

Assumption 3. There exists a constant λ0 > 0:137

λmin

(
EX∼P :|X⊤θ⋆|≤τ⋆ [XX⊤]

)
≥ λ0.

Past adaptive sampling works [40, 23], and those tackling learning halfspaces, commonly assume138

the Tsybakov noise condition [45, 11]. The Tsybakov noise condition with parameters (α,A) states139

that for any 0 < t ≤ 1/2, where η(x) = P(Y (x) = 1), that Px∼P [η(x) ≥ 1/2− t] ≤ At
α

1−α . This140

implies that, around the value of 1/2 where the Bayes Optimal classifier is uncertain, the density of the141

contexts decays rapidly at a rate controlled by the parameters (α,A). In our setting, this assumption142

is not necessary or helpful, as near the uncertainty boundary the learner will simply test the patient.143

Another assumption in the literature is that the contexts are uniformly distributed over the surface144

of the unit sphere (Theorem 2 in [10]). Our assumption is much less stringent, and encompasses145

standard distributions such as smooth densities of the form f(x) = g(∥x∥), or a truncated Gaussian.146

2.3 Logistic Bandits tools147

For our algorithm, we leverage existing methods to provide confidence intervals for θ⋆. [14] provides148

two methods (Appendix B.3): the first produces a confidence ellipsoid, while the second provides a149

tighter but non-convex confidence set. The advantage of the non-convex one is the lack of dependence150

on the quantity κ ≜ sup(X,θ)∈(X ,Θ)
1

µ̇(⟨X,θ⟩) that characterizes the non-linearity of the logistic151

function over the decision set (X ,Θ) and scales exponentially with the size of the decision set. In152

our setting, we will choose the first method to keep both the analysis and the algorithm simple.153

Moreover, we can compute the value of κ = 1
µ(1)(1−µ(1)) ≤ 6 as ⟨X, θ⋆⟩ ≤ 1 by Cauchy-Schwarz154

and boundedness assumptions for ∥X∥ , ∥θ⋆∥. Recently, tighter confidence intervals for the logistic155

bandit setting were proven by [31], but the results of [14] are sufficient for our needs. Before stating156

our algorithm, we introduce some necessary notation from [14]. Since in our work we only collect a157

paired (Xt, Yt) sample if we test in a given round, we denote the samples collected by the algorithm158

prior to round t as St
θ, where |St

θ| = N t
θ .159
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We define the regularized log-likelihood as Lλ
t (θ), the maximum (regularized) likelihood estimator160

as θ̂t, the design matrix as Vt, and the objective gt(θ). The projection of θ̂t to the parameter space161

is defined as θLt in Equation (7). The confidence ellipsoid for θ⋆ is Ct in Equation (8) (implicitly a162

function of δ), which we use solely for the theoretical analysis of our algorithm.163

Lλ
t (θ) =

∑
s∈St

θ

[
Ys logµ(x

T
s θ) + (1− Ys) log(1− µ(xT

s θ))
]
− λ

2
∥θ∥22

θ̂t = argmax
θ∈Rd

Lλ
t (θ)

Vt =
∑
s∈St

θ

XsX
⊤
s + κλId

gt(θ) =
∑
s∈St

θ

µ(⟨Xs, θ⟩)Xs + λθ

θLt ≜ argmin
θ∈Θ

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥
V −1
t

(7)

Ct ≜
{
θ ∈ Θ,

∥∥θ − θLt
∥∥
Vt

≤ Bt

}
, (8)

Bt ≜ 2κ

(
√
λ+

√
log(1/δ) + 2d log

(
1 +

N t
θ

κλd

))
(9)

Any choice of the regularizer λ = Θ(1) yields the same results up to constants, so for simplicity we164

choose λ = 1 for our analysis. This form of confidence interval was studied by [14], which provides165

anytime, high probability guarantees:166

Lemma 1. [Lemma 12 of [14].] For any fixed choice of λ, δ, the confidence intervals defined in167

Equation (8) are valid:168

P
(
∀t ≥ 1, θ⋆ ∈ Ct

)
≥ 1− δ.

3 Algorithm design169

With these logistic bandit preliminaries, we are now able to define and analyze our algorithm, SCOUT170

(Safe Contextual Online Understanding with Thresholds) in Algorithm 1. At every time step, SCOUT171

tests the patient if the inner product between their context and the estimated θ⋆ is too close to 0, based172

on an estimation of the true threshold τ⋆. To iteratively refine the estimates of θ⋆ and τ⋆, SCOUT173

employs a classical sample-splitting trick to avoid dependencies, utilizing data from odd samples for174

estimation of the context distribution P (which is used to estimate τ ), and data from even samples175

where a test was performed for θ⋆ estimation.176

The testing condition Zt = 1{ct ≤ 0} can be computed as follows: we defer the derivation and177

details to Appendix C.1.178

c⋆t ≜ |⟨Xt, θ
⋆⟩| − τ⋆(θ⋆, P, α), (10)

ct ≜ |⟨Xt, θ
L
t ⟩| − τ⋆(θLt , P̂t, α− ζt − 2Bt ∥Xt∥V −1

t
)− 2Bt ∥Xt∥V −1

t
− εQ. (11)

This can be compared to the optimal rule Z⋆
t = 1{c⋆t ≤ 0}, where we see that the two matches179

except for the use of the estimated quantities θLt , P̂t, as opposed to the true unknown quantities, and180

the use of some confidence buffers. ζt arises from confidence intervals on our estimates, i.e. that we181

only have P̂t and not P , and Bt ∥Xt∥V −1
t

arises from the fact that we only have the estimate θLt and182

not θ⋆. εQ is a quantization parameter that shows up in our analysis, and should be thought of as183

some small quantity like 1/T 2.184

ζt ≜

√
d log (3/εQ) + log(π

2t2

3δ )

2t
. (12)
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Algorithm 1 SCOUT algorithm

1: Input: Number of rounds T , target error rate α, confidence level δ
2: Initialize: SP = ∅, Sθ = ∅. Maintain NP = |SP |, Nθ = |Sθ|
3: for t = 1, 2, . . . , T do
4: Observe context Xt

5: if t ≤ 2 then
6: Set Zt = 1
7: else
8: Compute θLt using (7) and ct as in equation 10
9: Set Zt = 1{ct ≤ 0}

10: end if
11: if Zt = 1 then
12: Observe Yt

13: Predict Ŷt = Yt

14: else
15: Predict Ŷt = 1{⟨Xt, θ

L
t ⟩ > 0}

16: end if
17: if Zt = 1 and t is even then
18: Set Sθ = Sθ ∪ {(Xt, Yt)}
19: end if
20: if t is odd then
21: Set SP = SP ∪ {Xt}
22: end if
23: end for

4 Regret Analysis185

To derive a regret bound, we begin by analyzing the regret at an arbitrary round t > T0, where T0 is a186

constant. For more details we refer the reader to Appendix D.187

Lemma 2. For every round t > T0, conditioned on the good event G, the regret is bounded as:188

E[Zt−Z⋆
t |Gt] ≤ 2πM arccos(τ⋆(α))

(
1 +

1 + e

2mπ arccos(τ⋆(α))

)(
λ⋆

(
2ζt + 2

Bt√
tλ0

)
+ 2εQ

)
,

where λ⋆(γ) ≤ (γ + ζt)
1+e

2mπ arccos(τ⋆(α))189

Theorem 1. With probability at least 1− δ, the algorithm 1 does not exceed error rate α, and has190

expected number of excess tests Õ
(√

dT
λ0

)
.191

Note that δ can even scale exponentially in T and the algorithm will still have sublinear regret. We192

need to notice that in linear bandits literature, the dependency in the dimension is O(d). In our193

analysis, this extra O(
√
d) is hidden inside the 1√

λ0
term where in the case that the distribution of the194

contexts is the uniform over the unit sphere then this term is equal to 1√
d

.195

For a more detailed discussion about future directions we refer the reader to Appendix I.196

5 Numerical results197

We corroborate our theoretical guarantees with numerical simulations, to show that our algorithm198

is able to efficiently compute the testing rule, and converge to the optimal error rate. We generate199

simulations varying the dimensionality and the target error rate α, showing the rapid convergence200

of our method when p⋆ is large. We see that in all instances our algorithm maintains the desired201

error rate, and has sublinear regret. Experiments were run on a 2023 Macbook Pro, and took under 5202

minutes.203

For our simulations we made some slight modifications with respect to the written algorithm. Chiefly,204

we do not recompute θLt in every iteration, but rather cache its computation, and that of the τ̂ , so that205
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at each iteration we simply compute whether the inner product of the context with our estimated θ is206

above or below a stored threshold.207
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(a) d = 2 simulation, α = 0.05.
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Figure 1: Simulation results
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A Baseline policy320

A.1 Proof of Proposition 1321

Proof. When the value of the parameter θ∗ and the collection of the contexts {Xt}Tt=1 are known, we322

can equivalently write the problem as follows. Let pt = µ(X⊤
t θ⋆), the labels Yt then are following323

the Bernoulli distribution with parameters pt, i.e. Yt ∼ Ber(pt).324

To compute the expected error, that is E(Et) = E(1{Ŷt ̸= Yt}), we need to examine the case where325

we do not test. Otherwise, when we test, we observe the real label and we occur zero error. For326

Zt = 0 then, the expected error is327

1. If Ŷt = 1 then E(1{Ŷt ̸= Yt} | Ŷt = 1) = 1− pt.328

2. Else if Ŷt = 0 then E(1{Ŷt ̸= Yt} | Ŷt = 0) = pt.329

The optimal policy then is to compute the prediction with the least error. The expected error then is
equal to

E(1{Ŷt ̸= Yt}) ≜ min{1− pt, pt}.

We denote P(Zt = 0) = ηt. The optimal policy choice is reduced to the following optimization330

problem.331

min
{Zt}

T∑
t=1

1− ηt s.t.
1

T

T∑
t=1

min{1− pt, pt}ηt ≤ α, 0 ≤ ηt ≤ 1. (13)

Or equivalently can be written as.332

max
{Zt}

T∑
t=1

ηt s.t.
1

T

T∑
t=1

min{1− pt, pt}ηt ≤ α, 0 ≤ ηt ≤ 1. (14)

The solution of this Linear Program is the solution of the Fractional Knapsack problem with budget α.333

In order to solve optimally this problem, we must apply a greedy strategy that is to sort the coefficients334

min{1− pt, pt} in an non-increasing order and assign η = 1 to the lowest "error" contexts until we335

do not violate the budget constraint α. This strategy is clearly a threshold strategy that depends on a.336

337
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A.2 Discussion of Assumption 3338

Assumption 3 requires that the covariance matrix of contexts selected by the optimal policy is positive339

definite. We now demonstrate that under the distributional assumption in Assumption 2, this positive340

definiteness condition is indeed satisfied. While this result does not directly imply Assumption 3, it341

establishes that even a uniform testing policy would fulfill this eigenvalue requirement.342

Proof. We have assumed that all contexts have bounded L2 norm, ∥x∥2 ≤ B. Let B = {x ∈343

Rd s.t. ∥x∥2 ≤ 1}.344

Lemma 3. Let Σ = Ex∼Pxx
⊤ and Σtr =

∫
B xx⊤mdx. For any arbitrary v ∈ Rd it holds that

v⊤Σv ≥ v⊤Σtrv.

Proof. We can write v⊤Σv as follows345

v⊤Σv = Ex∼Pv
⊤xx⊤v (15)

= Ex∼P (x
⊤v)2, (16)

and analogously v⊤Σtrv as346

v⊤Σtrv =

∫
B
v⊤xx⊤vmdx (17)

= m

∫
B
(x⊤v)2dx. (18)

By using our assumption that p(x) ≥ m > 0 we derive that for all x ∈ B347

(x⊤v)2p(x) ≥ (x⊤v)2m (19)

that implies by integrating all over the domain that348

=⇒
∫
x∈B

(x⊤v)2p(x)dx ≥
∫
x∈B

(x⊤v)2mdx (20)

v⊤Σv ≥ v⊤Σtrv (21)

349

The previous lemma applies for any arbitrary vector v, so Σ ⪰ Σtr. Let (λmin,vmin) the eigen-pair350

of the corresponding minimum eigenvalue of Σ. Let us apply the previous lemma for vmin. Then, we351

derive that352

λmin ∥vmin∥22 ≥ m

∫
B
(x⊤vmin)

2dx (22)

Let Vd(r) the volume of the d-dimensional ball with radius r. The density of the uniform distribution353

of a d-dimensional ball with radius r is 1/Vd(r) in the interior of the ball and zero outside. My354

multiplying and dividing on the right hand side of the previous inequality with Vd(1) we derive that355

λmin ∥vmin∥22 ≥ mVd(1)

∫
B
(x⊤vmin)

2 1

Vd(1)
dx (23)

= mVd(1)

∫
∥x∥2

2≤1

(x⊤vmin)
2 1

Vd(1)
dx (24)
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The quantity
∫
∥x∥2

2≤1
(x⊤vmin)

2 1
Vd(1)

dx is equal to E[⟨x,vmin⟩2] when x is uniformly distributed356

over the unit d-dimensional ball. This quantity can equivalently be written as357

E[⟨x,vmin⟩2] = E[v⊤
minxx

⊤vmin]

= v⊤
minE[xx

⊤]vmin

The quantity E[xx⊤] is the covariance matrix of the uniform over the unit d-dimensional ball. This358

matrix can be written as aId due to spherical symmetry.359

To see why, consider the E[xixj ] for i ̸= j.360

E[xixj ] =
1

Vd(1)

∫ x1=1

x1=−1

∫ x2=
√

1−x2
1

x2=−
√

1−x2
1

· · ·
∫ xd=

√
1−x2

1−···−x2
d−1

xd=−
√

1−x2
1−···−x2

d−1

xixjdxd · · · dx2dx1. (25)

By a change of variable xi 7→ −xi:361

E[xixj ] = − 1

Vd(1)

∫ x1=1

x1=−1

∫ x2=
√

1−x2
1

x2=−
√

1−x2
1

· · ·
∫ xd=

√
1−x2

1−···−x2
d−1

xd=−
√

1−x2
1−···−x2

d−1

(−xi)xjdxd · · · d(−xi) · · · dx2dx1

(26)
= −E[xixj ] (27)

As a result we get E[xixj ] = 0 for i ̸= j.362

To compute the diagonal entries:363

E[x2
i ] =

1

d
E[x2]

=
1

d

∫
∥x∥2

2≤1

x2 1

Vd(1)
dx

=
1

dVd(1)

∫
Sd−1

∫
0≤r≤1

r2rd−1drdσ(ω)

=
Sd(1)

Vd(1)

1

d(d+ 2)
,

where Sd(1) is the surface of the unit sphere and dσ a surface measure.364

By combining them all we derive365

λmin ∥vmin∥22 ≥ mVd(1)Sd(1)

d(d+ 2)Vd(1)
∥vmin∥22 (28)

λmin ≥ mSd(1)

d(d+ 2)
> 0. (29)

366

B Stability of error estimates367

To analyze our algorithm, we first study the concentration properties of perr. Concretely, the learner368

does not a priori know P , θ⋆, and by extension τ⋆. Thus, we must show that, as we gradually learn369

these quantities, our estimates of the error probabilities they induce are not too far off.370
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B.1 Stability with respect to context sampling P̂t371

Analyzing Equation (3), we note that we do not know the true distribution P , but only have access to372

samples from it. For any fixed θ, τ , (3) becomes a sum of i.i.d. [0, 1/2] bounded random variables,373

enabling us to use standard concentration bounds.374

Lemma 4. Let P̂t be the empirical distribution of constructed from ⌊t/2⌋ i.i.d. samples from P .375

Then, for any fixed θ and τ , with probability at least 1− δ over the randomness in P̂t:376 ∣∣∣perr(θ, P̂t, τ)− perr(θ, P, τ)
∣∣∣ ≤

√
log
(
π2t2

3δ

)
4t

.

We would like this bound to hold over all θ ∈ Θ and τ ∈ [0, 1]. However, this would preclude using377

a union bound over our estimators. Thus, we utilize an ϵ-net for both τ ∈ [0, 1] and θ ∈ Θ.378

B.1.1 Quantization379

We define quantized versions of τ and θ, so that we can safely union bound the failure probability380

of our estimators over the countable quantized set. We take an εQ = T−2 covering, at every round381

t, of the unit interval for τ as Qτ ≜ N ([0, 1], εQ), denoting the quantized τ value as τQ ∈ Qτ .382

We additionally take an εQ covering of the d dimensional unit sphere for θ as Qθ ≜ N (Sd−1, εQ),383

denoting the quantized θ value as θQ ∈ Qθ. Then, |Qτ | = ε−1
Q and |Qθ| = O

(
ε
−(d−1)
Q

)
.384

To this end, we define the quantized optimized τ as:385

τ⋆Q(θ, P̂ , α) = min{τQ ∈ Qτ : perr(θ, P̂ , τQ) ≤ α} (30)

τ⋆(θ, P̂ , α) ≤ τ⋆Q(θ, P̂ , α) ≤ τ⋆(θ, P̂ , α) + εQ (31)

as perr is monotonic in τ .386

B.2 Stability of τ⋆ with respect to θ387

We now show that our estimate perr(θ, P̂ , τ) is close to perr(θ
⋆, P̂ , τ) when θ is close to θ⋆, for any388

distribution ρ and threshold τ .389

Lemma 5. For all θ, θ′ ∈ Θ, τ > ∥θ − θ′∥|Vt
∥x∥V −1

t
, and distribution ρ(x) on X :390

perr(θ, ρ, τ)− perr(θ
′, ρ, τ − ∥θ − θ′∥|Vt

∥x∥V −1
t

) ≤ ∥θ − θ′∥Vt
∥x∥V −1

t
.

This indicates that as our estimation of θ improves, so will our error probability estimates. To this391

end, we define the good event Gperr as:392

Gperr
=
{∣∣∣perr(θQ, P̂t, τQ)− perr(θQ, P, τQ)

∣∣∣ ≤ ζt : ∀t ∈ [T ],∀θQ ∈ Qθ,∀τQ ∈ Qτ

}
. (32)

The following lemma shows that this good event G happens with overwhelming probability.393

Lemma 6. The good event Gperr defined in (32) holds with high probability:394

P(Gperr
) ≥ 1− δ (33)

Conditioning on the good event Gperr
, τ⋆Q(θQ, P̂t, α) is close to τ⋆(θ⋆, P ) when θQ is close to θ⋆.395

τ⋆Q(θQ, P̂t, α) ≤ τ⋆
(
θ⋆, P, α− ζt − εQ − 2Bt ∥Xt∥V −1

t

)
+ 2Bt ∥Xt∥V −1

t
+ 2εQ, (34)

τ⋆Q(θQ, P̂t, α) ≥ τ⋆(θ⋆, P, α+ ζt + 2Bt ∥Xt∥V −1
t

). (35)

Thus, we can construct an estimator τ̂ as below, which satisfies for all t ≥ 1 :396

τ̂(θQ, P̂t, α) = τ⋆Q(θQ, P̂t, α) + ζt

τ̂(θQ, P̂t, α) ≤ τ⋆
(
θ⋆, P, α− ζt − 2Bt ∥Xt∥V −1

t

)
+ 2Bt ∥Xt∥V −1

t
+ ζt + 2εQ. (36)

τ̂(θQ, P̂t, α) ≥ τ⋆(θ⋆, P, α+ ζt + 2Bt ∥Xt∥V −1
t

) + ζt. (37)
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B.3 Smoothness of τ⋆ with respect to α397

As we have seen, we must be able to control τ not just for one α, but for similar α. We show that for398

small γ, τ⋆(θ⋆, P, α− γ) is not too much larger than τ⋆(θ⋆, P, α). Note that perr is not continuous399

with respect to α when evaluated at P̂ , due to the indicator function. However, utilizing Assumption 2,400

the distribution of contexts is upper and lower bounded by constants, and so perr which integrates the401

distribution will change at an upper and lower bounded rate.402

Lemma 7 (Stability of τ⋆ with respect to α). Under Assumptions 1 and 2,403

τ⋆(θ, P, α− γ) ≤ τ⋆(θ, P, α) + λ⋆(γ) + εQ, (38)

for all θ and α > γ, where λ⋆(γ) = γ(1+exp(τ))
2mπ arccos(τ) ≤ γ 1+e

2mπ arccos(τ⋆(α)) .404

With these stability arguments in hand, we can now analyze the performance of SCOUT.405

C From Stability Analysis to Algorithmic Rules406

C.1 Computing Zt407

We design our testing rule based on two main principles. First, our testing rule must be "pessimistic",408

in that when the baseline police tests, our policy does the same, even for the worst possible θ⋆.409

Second, our testing rule must be computationally efficient. Recall that the oracle policy is410

Z⋆
t = 1{|⟨Xt, θ

⋆⟩| ≤ τ(θ⋆, P, α)}. (39)

Our testing rule Zt must adapt to the data collected, that is Ct and P̂ . On the good event G when our411

estimates are accurate —an event that occurs with high probability— we want to design a policy such412

that Zt ≥ Z⋆
t . To prove so, we will define a dummy testing rule Z̃t which considers the worst possible413

θ in the confidence set Ct, up to the stability analysis terms. We can then show that Zt ≥ Z̃t ≥ Z⋆
t .414

Lemma 8. Let

Z̃t = min
θ∈Ct∩Qθ

1{|⟨X, θ⟩| − τ̂(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

) + ζt − εQ ≤ 0}.

Then, when G holds, Z⋆
t = 1 =⇒ Z̃t = 1, i.e. Z̃t ≥ Z⋆

t a.s.415

Another property of our testing rule is that it makes no additional errors beyond the baseline policy,416

on the good event. Concretely, our algorithm makes predictions identical to those of the oracle policy417

when it does not test.418

Lemma 9. Let Ŷt the prediction of our policy and Y ⋆
t the one of the oracle baseline policy. On the419

good event G, when Zt = 0 (which implies that Z⋆
t = 0) then Ŷt = Y ⋆

t .420

Now we have achieved the first desiderata of our testing rule (pessimism), but are left with a421

computationally intensive procedure. Naively, computing Z̃t is expensive, as even when we relax422

the optimization domain Ct ∩Qt to only the convex confidence set Ct we still need to compute the423

minimization:424

min
θ∈Ct

|⟨X, θ⟩| − τ̂(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

) + ζt + εQ. (40)

We simplify this in two steps. First, observe that the threshold τ̂(θ, P̂t, α) is not concave in θ, and so425

maximizing it is highly nontrivial. However, we do not need to precisely compute it: we can simply426

upper bound τ̂(θ, P̂t, α) for all θ, to yield a more conservative testing condition (testing more often),427

retaining correctness guarantees and enabling a computationally efficient implementation at the cost428

of some excess testing. Thus, for all θ ∈ Ct ∩Qθ, θ′ ∈ Ct, we have:429

τ̂(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

)

= τ⋆Q(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

) + ζt

≤ τ⋆(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

− εQ) + εQ + ζt

≤ τ⋆(θ′, P̂t, α− ζt − εQ − 4Bt ∥Xt∥V −1
t

) + 2Bt ∥Xt∥V −1
t

+ ζt + εQ (41)
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Now, the evaluation of τ⋆ is constant with respect to θ (only depending on θ′, e.g. the MLE). Then,430

the minimization is of |⟨X, θ⟩| (a convex function) over a convex set Ct. However, we can simplify431

this even further, by noting that432 ∣∣∣∣min
θ∈Ct

|⟨X, θ⟩| − |⟨X, θ′⟩|
∣∣∣∣ ≤ max

θ∈Ct

|⟨X, θ′ − θ⟩| ≤ 2Bt ∥Xt∥V −1
t

(42)

Since ∥Xt∥V −1
t

is decaying in t, as given by [31, 1], this allows us to simply utilize |⟨X, θ′⟩| as our433

statistic to threshold instead of the minimization problem described at Equation (40).434

To summarize, we have relaxed the testing condition, allowing for efficient computation at the expense435

of some additional tests. However, as we show in our regret analysis, this is very few additional tests,436

as we learn θ⋆, P , and τ⋆ sufficiently fast. As we lower bounded the Equation (40), under the good437

event G it holds that Zt = 1{ct ≤ 0} ≥ Z̃t and since Z̃t ≥ Z⋆
t , we see that Zt ≥ Z⋆

t .438

D The good event439

A common technique in Multi-Armed Bandit works is to define a "good event" under which all440

concentration arguments hold and to condition on this event for the remainder of the analysis. To441

implement this approach, we first define a collection of high-probability events under which our442

algorithm performs as anticipated.443

Our first goal is to prove that the confidence intervals Ct are valid, i.e., θ⋆ ∈ Ct for all t and prove that444

we have collected enough samples to form them. Although we cannot determine the exact distribution445

of context, label pair samples to estimate θ⋆, we can demonstrate that our policy is pessimistic and446

triggers testing whenever the optimal policy would do so. We remind that by the assumption 1 the447

probability that the optimal policy conducts testing at any given round is p⋆. Recall that N t
θ = |St

Θ|448

denotes the number of samples (Xs, Ys) collected to estimate θ⋆ up to round t, and N t
P = |St

P | for449

the contexts respectively. The good event comprises the following constituent events.450

Definition 1. At round t the good event Gt holds that451

1. G
(1)
t : The confidence sets Ct are valid, i.e. θ⋆ ∈ Ct for all t.452

2. G
(2)
t : The estimates τ̂(θ, P̂t, α) are valid, i.e. |τ⋆(θ, P, α) − τ⋆(θ, P̂t, α)| ≤ ζt for all453

θ ∈ Θ, τ⋆ ∈ Qτ , t ≥ 1.454

3. G
(3)
t : the confidence sets Ct gets enough samples, that is N t

θ ≥ p⋆t−
√

ln(πt2/3δ)t
2 .455

4. G
(4)
t : The minimum eigenvalue of the empirical covariance matrix formed by our testing456

policy grows linearly in t. Let λt
min ≜ λmin

(∑
s∈SP (t) XsX

⊤
s

)
. Then, for all t ≥ 1:457

λt
min ≥ 3

5
tλ0 −

√
t

2

(
d log

(
10

λ0
+ 1

)
+ log

(
2t2

δ

))

Let G(i) = ∩T
t=1G

(i)
t . The good event G is the intersection of G(i), i.e. G = G(1)∩G(2)∩G(3)∩G(4).458

The first event, P(G(1)) ≥ 1− δ, follows from Lemma 1, i.e. the concentration inequality proven by459

[14]. P(G(2)) ≥ 1− δ, is proved by Lemma 6. To prove that G(3) holds with high probability, we460

utilize the fact that when the optimal policy tests, then when G(1) and G(2) hold our policy does the461

same, as proved in Lemma 8. Observe that on G
(3)
t , we have that N t

θ ≥ p⋆t/2 for all t ≥ T0 for some462

constant T0 (only a function of δ). For the last event, P(G(4)) ≥ 1− δ we use a covering argument463

to bound the minimum eigenvalue of the covariance matrix. For sufficiently large constant T0 (only a464

function of δ) we have that for all T ≥ T0, that λt
min ≥ tλmin/4. We see that G occurs with high465

probability in the following Lemma.466

Lemma 10.
P(G) = P(G(1) ∩G(2) ∩G(3) ∩G(4)) ≥ 1− 5δ.
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E Safety Analysis467

Before moving to the regret guarantees of our algorithm we must first show it satisfies the safety468

constraints. Our primary tools to prove so are Lemma 8 and Lemma 9. In the first lemma, we proved469

that when the baseline policy tests our policy tests too. In the second one, we proved that when the470

baseline policy predicts, our policy outputs the same prediction.471

More formally, we define the Bernoulli random variable ξt = 1{Ŷt ̸= Yt}, that denotes whether472

the algorithm made a mistake at round t, and ξ⋆t = 1{Y ⋆
t ̸= Yt} respectively for the baseline473

policy. When the algorithm tests (i.e. Zt = 1) then we observe the label and it holds that ξt = 0.474

Conditioning on the good event, ξt ≤ ξ⋆t a.s. This implies a total error probabiltiy bound.475

Lemma 11. On the good event G, the total error probability of the algorithm is upper bounded by α476

with probability at least 1− δ.477

F Stability analysis of perr(θ, ρ, τ)478

F.1 Stability of τ⋆ with respect to P̂t479

We remind the reader that for a fixed value of θ, P̂t represents the empirical distribution of contexts480

selected from SP̂ to estimate the unknown distribution P , specifically its projection onto the vector θ.481

F.1.1 Proof of Lemma 4482

Proof. First, we collect a context as a sample at every odd round, so at round t it holds that483 ∣∣∣St
P̂

∣∣∣ = ⌈t/2⌉.484

perr(θ, P̂T , τ)− perr(θ, P, τ) =

∫
(1 + exp(|x⊤θ|))−11

{
|x⊤θ| > τ

}
P̂t(dx)− perr(θ, P, τ)

=
1

⌈t/2⌉

⌈t/2⌉∑
t=1

(
(1 + exp(|x⊤

i θ|))−11
{
|x⊤

i θ| > τ
}
− perr(θ, P, τ)

)
(43)

As, 0 ≤ (1 + exp(z))−1 ≤ 1
2 The summands are i.i.d. [0,1/2] random variables, so we can apply485

Hoeffding’s inequality.486

P

∣∣∣∣∣∣ 1

⌈t/2⌉

⌈t/2⌉∑
t=1

(
(1 + exp(|x⊤

i θ|))−11
{
|x⊤

i θ| > τ
}
− perr(θ, P, τ)

)∣∣∣∣∣∣ ≥
√

log( 2
δ′ )

4t

 ≤ δ′.

By taking the union bound over all rounds t ≥ 1 and setting δ′ ≜ 6δ
π2t2 we derive:487

P

∣∣∣∣∣∣ 1

⌈t/2⌉

⌈t/2⌉∑
t=1

(
(1 + exp(|x⊤

i θ|))−11
{
|x⊤

i θ| > τ
}
− perr(θ, P, τ)

)∣∣∣∣∣∣ ≤
√

log(π
2t2

3δ )

4t
,∀t : t ≥ 1

 ≥ 1− δ.

Here, we apply the well-known result for the Basel series:
∑∞

t=1
1
t2 = π2

6 .488

489
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F.2 Stability of τ⋆ with respect to θ490

F.2.1 Proof of Lemma 5491

Proof.

perr(θ, ρ, τ) =

∫
(1 + exp(|x⊤θ|))−11

{
|x⊤θ| > τ

}
ρ(dx)

=

∫
(1 + exp(|x⊤θ′ + x⊤(θ − θ′)|))−11

{
|x⊤θ′ + x⊤(θ − θ′)| > τ

}
ρ(dx)

≤
∫
(1 + exp(|x⊤θ′| − |x⊤(θ − θ′)|))−11

{
|x⊤θ′| > τ − |x⊤(θ − θ′)|

}
ρ(dx)

≤
∫ (

(1 + exp(|x⊤θ′|))−1 + |x⊤(θ − θ′)|
)
1
{
|x⊤θ′| > τ − |x⊤(θ − θ′)|

}
ρ(dx)

= perr(θ
′, ρ, τ − |x⊤(θ − θ′)|) +

∫
|x⊤(θ − θ′)|1

{
|x⊤θ′| > τ − |x⊤(θ − θ′)|

}
ρ(dx)

≤ perr(θ
′, ρ, τ − |x⊤(θ − θ′)|) + ∥θ − θ′∥Vt

∥x∥V −1
t
Pρ

(
|x⊤θ′| > τ − |x⊤(θ − θ′)|

)
≤ perr(θ

′, ρ, τ − ∥θ − θ′∥Vt∥x∥V −1
t

) + ∥θ − θ′∥Vt∥x∥V −1
t

492

F.2.2 Proof of lemma 6493

Proof. To extend Lemma 4 to hold universally for all θQ ∈ Qθ and τQ ∈ Qτ , we define two εQ-nets494

and union bound over them. We need to notice here that there is no need to study the stability of perr495

with respect to θ, τ now and complete the covering argument argument after taking a union bound.496

By Lemma 4 we know that for any fixed θ, τ497

P
{ ∣∣∣perr(θ, P̂t, τ)− perr(θ, P, τ)

∣∣∣ ≤
√

log(π
2t2

3δ )

4t
,∀t ≥ 1

}
≥ 1− δ.

Let Qθ = N (Sd−1, εθ) an εQ-cover of the unit sphere Sd−1. By Corollary 4.2.13 at [47] we have498

that the covering numbers of Sd−1 satisfy for any εQ > 0;499 (
1

εQ

)d

≤ |Qθ| ≤
(

2

εQ
+ 1

)d

.

For any εQ < 1 it is true that Qθ ≤ ( 3
εQ

)d. By taking the union bound over all θQ ∈ Qθ we have500

P
{ ∣∣∣perr(θQ, P̂t, τ)− perr(θQ, P, τ)

∣∣∣ ≤
√

d log( 3
εQ

) + log(π
2t2

3δ )

4t
,∀t ≥ 1, θQ ∈ Qθ

}
≥ 1− δ.

Now, it remains to union bound over τQ. As τ lives in [0, 1], an ε-net of the unit segment in the real501

line is {ϵ, 2ϵ, . . . , ⌊ 1
ϵ ⌋ϵ}. It holds that |Qτ | ≤ 1

ετ
. By taking the union bound over all τQ ∈ Qτ we502

have503

P
{ ∣∣∣perr(θQ, P̂t, τQ)− perr(θQ, P, τQ)

∣∣∣ ≤
√

d log( 3
εQ

) + log( 1
ϵQ

) + log(π
2t2

3δ )

4t
,∀t ≥ 1, θQ ∈ Qθ, τQ ∈ Qτ

}
≥ 1−δ.

We can choose the values of εθ, ετ to be arbitrarily small. In fact, any value of order o(1/T ) works,504

although choosing εQ = 1
T 2 requires the knowledge of the horizon T so we choose εQ = 1

t2 . At the505

analysis of Theorem 1 we will see why this choice works.506

As stated in the Lemma 6 we use ζt =

√
d log( 3

εQ
)+log( 1

ϵQ
)+log(π2t2

3δ )

4t .507
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Conditioning on the good event G, we have that508

τ⋆Q(θQ, P̂t, α) = min{τ ∈ Qτ : perr(θQ, P̂t, τQ) ≤ α}
(a)

≤ min {τ ∈ Qτ : perr(θQ, P, τ) ≤ α− ζt}
(b)

≤ min {τ ∈ Qτ : perr(θ, P, τ − εQ) ≤ α− ζt − εQ}
(c)

≤ min
{
τ ∈ Qτ : perr(θ

⋆, P, τ) ≤ α− ζt − εQ − ∥θ − θ⋆∥Vt ∥Xt∥V −1
t

}
+ ∥θ − θ⋆∥Vt ∥Xt∥V −1

t
+ εQ

≤ min
{
τ ∈ [0, 1] : perr(θ

⋆, P, τ) ≤ α− ζt − εQ − ∥θ − θ⋆∥Vt ∥Xt∥V −1
t

}
+ ∥θ − θ⋆∥Vt ∥Xt∥V −1

t
+ 2εQ

= τ⋆
(
θ⋆, P, α− ζt − εQ − ∥θ − θ⋆∥Vt ∥Xt∥V −1

t

)
+ ∥θ − θ⋆∥Vt ∥Xt∥V −1

t
+ 2εQ

(44)

Where inequality (a) follows from conditioning on the good event G and using the inequality.509

For (b) we used that for every θQ ∈ Qθ there exists a θ ∈ Θ such that ∥θQ − θ∥2 ≤ εQ, the510

stability in θ lemma (instead of Holder inequality we used Cauchy-Schwartz) perr(θQ, P, τ) ≤511

perr(θ, P, τ − ∥θQ − θ∥2 ∥X∥2) + ∥θQ − θ∥2 ∥X∥2 ≤ perr(θ, P, τ − ∥θQ − θ∥2) + ∥θQ − θ∥2 ≤512

perr(θ, P, τ − εQ) + εQ. Finally, (c) follows from the Lemma 5.513

Moreover, with a similar method we can derive a lower bound for τ⋆Q(θQ, P̂t, α).514

τ⋆Q(θQ, P̂t, α) = min{τ ∈ Qτ : perr(θ, P̂t, τ) ≤ α}
(a)

≥ min{τ ∈ Qτ : perr(θQ, P, τ) ≤ α+ ζt}
(b)

≥ min{τ ∈ Qτ : perr(θ, P, τ + εQ) ≤ α+ ζt}
≥ τ⋆Q(θ, P, a+ ζt) + εQ

≥ τ⋆(θ, P, a+ ζt),

where (a) follows by the good event G, and (b) by the covering argument and Lemma 5. Now, we515

will lower bound τ⋆(θ, P, α) in terms of τ⋆(θ⋆, P, α).516

τ⋆(θ, P, α) = min{τ ∈ [0, 1] : perr(θ, P, τ) ≤ α} (45)
(a)

≥ min{τ ∈ [0, 1] : perr(θ
⋆, P, τ − ∥θ − θ⋆∥Vt

∥Xt∥V −1
t

)− ∥θ − θ⋆∥Vt
∥Xt∥V −1

t
≤ α}
(46)

(b)

≥ min{τ ∈ [0, 1] : perr(θ
⋆, P, τ)− 2Bt ∥Xt∥V −1

t
≤ α} (47)

= τ⋆(θ⋆, P, α+ 2Bt ∥Xt∥V −1
t

), (48)

where (a) follows from Lemma 5, and (b) from monotonicity of perr with respect to τ and the fact517

that θ, θ⋆ ∈ Ct.518

Putting all together we have that for all θ ∈ Ct:519

τ̂(θ, P̂t, α) ≥ τ⋆(θ⋆, P, α+ ζt + 2Bt ∥Xt∥V −1
t

) + ζt.

520

F.3 Stability of τ⋆ with respect to α521

We begin by defining a lemma bounding the probability in the annulus:522

Lemma 12 (Probability in annulus). Under Assumption 2, for all τ ∈ [0, 1] we have that523

m · 2π arccos(τ + λ)λ ≤ P
(
τ < |X⊤θ⋆| ≤ τ + λ

)
≤ M · 2π arccos(τ)λ (49)
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Proof. Since the contexts are in Rd and the density is bounded between m and M , we simply need524

to upper and lower bound525

Vol
(
τ < |X⊤θ⋆| ≤ τ + λ

)
= Vol

(
|X⊤θ⋆| > τ

)
− Vol

(
|X⊤θ⋆| ≥ τ + λ

)
(50)

where ∥θ⋆∥ = 1, and X lives on the unit sphere.526

Geometrically, we see that this is simply the difference between two sphere caps: one with radius527

arccos(τ) and one with arccos(τ + λ).528

The annulus we are trying to study has inner radius arccos(τ) and outer radius arccos(τ + λ). Using529

the fact that the density is bounded between m and M , we have that we can also bound the surface area530

of the annulus by the rectangular strip with height λ and width 2π arccos(τ), or 2π arccos(τ + λ).531

Thus, we have that532

m · 2π arccos(τ + λ)λ ≤ P
(
τ < |X⊤θ⋆| ≤ τ + λ

)
≤ M · 2π arccos(τ)λ (51)

533

Proof of Lemma 7.534

Proof.

perr(θ
⋆, P, τ)− perr(θ

⋆, P, τ + λ)

=

∫
(1 + exp(|x⊤θ⋆|))−11

{
τ < |x⊤θ⋆| ≤ τ + λ

}
P (dx)

∈ [(1 + exp(τ + λ))−1, (1 + exp(τ))−1] · P
(
τ < |X⊤θ⋆| ≤ τ + λ

)
(52)

Relating this back to perr yields535

2mπ arccos(τ + λ)λ(1 + exp(τ + λ))−1 ≤ perr(θ
⋆, P, τ)− perr(θ

⋆, P, τ + λ)

≤ 2Mπ arccos(τ)λ(1 + exp(τ))−1

This means that for all θ,P̂ , and α, on the good event GT , we have that536

τ⋆(θ, P, α− γ) = min{τ ∈ N ([0, 1], εQ) : perr(θ, P, τ) ≤ α− γ}
≤ min{τ ∈ N ([0, 1], εQ) : perr(θ, P, τ − λ) ≤ α− γ + 2mπ arccos(τ)λ(1 + exp(τ))−1}
= min{τ ∈ N ([0, 1], εQ) : perr(θ, P, τ − λ⋆) ≤ α}
≤ τ⋆(θ, P, α) + λ⋆ + εQ.

where λ⋆ is chosen such that 2mπ arccos(τ)(1 + exp(τ))−1λ⋆ = γ, i.e.537

λ⋆ = λ⋆(γ) =
γ(1 + exp(τ))

2mπ arccos(τ)
(53)

538

G Other proofs539

G.1 Proof of Lemma 8540

Proof. Using Equation (37), we know that when G holds then for all θ ∈ Ct ∩Qθ and αt ∈ [0, 1]:541

τ̂(θQ, P̂t, αt) ≥ τ⋆(θ⋆, P, αt + ζt + 2Bt ∥Xt∥V −1
t

) + ζt.

By selecting αt ≜ α− ζt − 2Bt ∥Xt∥V −1
t

we have that for all θ ∈ Ct ∩Qθ:542

τ̂(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

)− ζt ≥ τ⋆(θ, P, α).
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Now, we can lower bound Zt as543

Zt = min
θ∈Ct∩Qθ

1{|⟨X, θ⟩| − τ̂(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

) + ζt − εQ ≤ 0}

≥ 1{|⟨X, θ⋆⟩| − τ̂(θ⋆, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

) + ζt ≤ 0}
≥ 1{|⟨X, θ⋆⟩| − τ⋆ (θ⋆, P, α) ≤ 0}
= Z⋆.

544

G.2 Proof of Lemma 9545

Proof. When Zt = 0 it holds that for all θ ∈ Ct ∩Qθ:546

|⟨Xt, θ⟩| − τ̂(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

) + ζt > εQ

Using Equation (37), we know that when G holds then for all θ ∈ Ct ∩Qθ:547

τ̂(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

)− ζt ≥ τ⋆(θ⋆, P, α)

=⇒ |⟨Xt, θ⟩| ≥ τ⋆(θ⋆, P, α) + εQ.

For any θ ∈ Ct ∩Qθ there exists a θ′ ∈ Ct such that ∥θ′ − θ∥ ≤ εQ. We can bound then |⟨Xt, θ̃⟩| ≤548

|⟨Xt, θ
′⟩|+ εQ.549

Then, it is true that for any θ ∈ Ct550

|⟨Xt, θ⟩| ≥ τ⋆(θ⋆, P, α),

|⟨Xt, θ
⋆⟩| ≥ τ⋆(θ⋆, P, α) > 0.

The prediction of our policy is Ŷt = 1{⟨Xt, θ
L
t ⟩ > 0} and Y ⋆

t = 1{⟨Xt, θ
⋆⟩ > 0}. In order to551

Ŷt ̸= Y ⋆
t it must hold ⟨X, θLt ⟩⟨X, θ⋆⟩ < 0. By the Intermediate Value Theorem, or more specifically552

Bolzano theorem, there exists a θ′ ∈ Ct such that ⟨X, θ′⟩ = 0. This is a contradiction as for all θ ∈ Ct553

we have that |⟨Xt, θ⟩| ≥ τ⋆(θ⋆, P, α) > 0.554

555

G.3 Proof of lemma 13556

Proof. As the contexts arrive in an i.i.d. fashion, then N t
OPT ∼ Binom(p⋆, t). By a Chernoff-

Hoeffding bound, for s > 0

P(|N t
OPT − p⋆t| ≥ s) ≤ 2 exp(−2s2

t
).

By choosing s ≜
√

ln(πt2/3δ)t
2 we derive

P(|N t
OPT − p⋆t| ≥

√
ln(πt2/3δ)t

2
) ≤ δ

6

π

1

t2
.

Now, by using the union bound for all t ≥ 1,

P
(
∀t ≥ 1 : |N t

OPT − p⋆t| ≥
√

ln(πt2/3δ)t

2

)
≤ δ

6

π

∞∑
t=1

1

t2
= δ.

557
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G.4 Proof of lemma 11558

Proof. We analyze the four possible outcomes of the binary random variables (Z⋆
t , Zt), under the559

good event G.560

Case 1: (Z⋆
t , Zt) = (1, 1). In this case, both our policy and the oracle baseline observe the true label561

and ξt = ξ⋆t = 0, i.e. neither method makes an error.562

Case 2: (Z⋆
t , Zt) = (1, 0). Under the good event G, by Lemma 8 this cannot occur.563

Case 3: (Z⋆
t , Zt) = (0, 1). When, Z⋆

t = 0 and Zt = 1, our policy tests and observes the true label564

while the optimal baseline predicts Ŷ ⋆
t , in which case 0 = ξt ≤ ξ⋆t a.s.565

Case 4: (Z⋆
t , Zt) = (0, 0). When, Z⋆

t = 0 and Zt = 0, from Lemma 9 it holds that Ŷt = Ŷ ⋆
t a.s.,566

and so ξt = ξ⋆t a.s.567

Combining these 4 cases together, we have shown that ξt ≤ ξ⋆t a.s. Utilizing this, we have that for568

any γ > 0569

P

(
1

T

T∑
t=1

ξt ≥ α+ γ

)
≤ P

(
1

T

T∑
t=1

ξt ≥ α+ γ

∣∣∣∣∣ G
)

+ P(Ḡ)

≤ P

(
1

T

T∑
t=1

ξ⋆t ≥ α+ γ

∣∣∣∣∣ G
)

+ P(Ḡ)

To bound P
(

1
T

∑T
t=1 ξ

⋆
t ≥ α+ γ

∣∣∣ G) we will use P(X|G) = P(X ∩ G)/P(G). P(X ∩ G) ≤570

P(X), and P(G) ≥ 1/2. Thus, P
(

1
T

∑T
t=1 ξ

⋆
t ≥ α+ γ

∣∣∣ G) ≤ 2P
(

1
T

∑T
t=1 ξ

⋆
t ≥ α+ γ

)
. Now,571

ξ⋆t are binary i.i.d. random variables with E(ξ⋆t ) ≤ α. Let µξ = E
[∑T

t=1 ξ
⋆
t

]
, it is true that572

P

(
1

T

T∑
t=1

ξ⋆t ≥ α+ γ

)
≤ P

(
1

T

T∑
t=1

(ξ⋆t − Eξ⋆t ) ≥ γ

)
≤ exp(−2Tγ2).

By choosing γ =
√

log(4/δ)
2T , we get that573

2P

(
1

T

T∑
t=1

(ξ⋆t − Eξ⋆t ) ≥
√

log(4/δ)

2T

)
≤ δ/2.

Here, taking α ≜ α −
√

log(4/δ)
2T yields the desired result, where we use Lemma 16 to get that574

P(Ḡ) ≤ δ/2.575

576

G.5 Proof of Lemma 15577

Proof of Lemma 15. Let the random variable Zυ
t ≜ υ⊤Atυ−E[υ⊤Atυ | Ft−1], such that υ ∈ Sd−1.578

Notice that Zυ
t is a martingale difference sequence as;579

1.

E[|Zυ
t ]] ≤ E[|υ⊤Atυ]] + E|E[υ⊤Atυ | Ft−1]|

≤ E[υ⊤Atυ] + EE[υ
⊤Atυ | Ft−1]

≤ 1 + 1 = 2 < ∞.
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2.

E[Zυ
t | Ft−1] = E[υ

⊤Atυ | Ft−1]− E[υ⊤Atυ | Ft−1] = 0.

By the Azuma-Hoeffding Inequality [7], as Zυ
t ∈ [0, 1] a.s., for a fixed t ∈ [T ] we have, c ≥ 0;580

P

{
t∑

s=0

(υ⊤Asυ − E[υ⊤Asυ | Fs−1]) ≤ −c

}
≤ exp

(
−2c2

t

)
.

Setting the error probability to δt,581

P


t∑

s=0

(υ⊤Asυ − E[υ⊤Asυ | Fs−1]) ≤ −

√
log( 1

δt
)t

2

 ≤ δt.

Thus, substituting δt =
δ

2t2 and using the union bound we get,582

P


t∑

s=0

(υ⊤Asυ − E[υ⊤Asυ | Fs−1]) ≤ −

√
log( 2t

2

δ )t

2
∀t ∈ N

 ≤
∞∑
t=1

δt ≤ δ.

Let N (Sd−1, ε) an ε-cover of Sd−1. By Corollary 4.2.13 at [47] we have that the covering numbers583

of Sd−1 satisfy for any ε > 0;584 (
1

ε

)d

≤ N (Sd−1, ε) ≤
(
2

ε
+ 1

)d

.

By taking the union bound over all υi ∈ N (Sd−1, ε) we have585

P

∃υi ∈ N (Sd−1, ε) :

t∑
s=0

(υ⊤
i Asυi − E[υ⊤

i Asυi | Fs−1]) ≤ −

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∀t ∈ N

 ≤ δ

(54)
Let υ⋆

t ≜ argminυ∈Sd−1 υ⊤∑t
s=0 Asυ, then there exists an υit ∈ N (Sd−1, ε) such that586

∥υit − υ⋆
t ∥2 ≤ ε We are going to bound |υ⋆

t
⊤∑t

s=0 Asυ
⋆
t − υ⊤

it

∑t
s=0 Asυit | by a function of587

ε.588

|υ⋆
t
⊤

t∑
s=0

Asυ
⋆
t − υ⊤

it

t∑
s=0

Asυit | = |υ⋆
t
⊤

t∑
s=0

Asυ
⋆
t − υ⋆

t
⊤

t∑
s=0

Asυit + υ⋆
t
⊤

t∑
s=0

Asυit − υ⊤
it

t∑
s=0

Asυit |

= |υ⋆
t
⊤

t∑
s=0

As(υ
⋆
t − υit) + (υ⋆

t − υit)
⊤

t∑
s=0

Asυit |

= |(υ⋆
t − υit)

⊤
t∑

s=0

As(υit + υ⋆
t )|

≤ ∥υ⋆
t − υit∥2

∥∥∥∥∥
t∑

s=0

As(υit + υ⋆
t )

∥∥∥∥∥
2

≤ ε

t∑
s=0

∥As∥op (∥υit∥2 + ∥υ⋆
t ∥2)

= 2tε. (55)

Using inequality 54 we have589

P


t∑

s=0

υ⊤
itAsυit ≥

t∑
s=0

E[υ⊤
itAsυit | Fs−1]−

√
[d log(2/ε+ 1) + log(2t

2

δ )]t

2
∀t ∈ N

 ≥ 1− δ
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where it is a point in the cover N (Sd−1, ε) such that ∥υit − υ⋆
t ∥2 ≤ ε. Equation 55 can be used to590

relate
∑t

s=0 υ
⊤
it
Asυit and λt

min,591

P


t∑

s=0

υ⋆
t
⊤Asυ

⋆
t︸ ︷︷ ︸

λt
min

+2tε ≥
t∑

s=0

E[υ⊤
itAsυit | Fs−1]−

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∀t ∈ N

 ≥ 1− δ.

Using the fact that E[υ⊤
it
Asυit | Fs−1] ≥ λmin(E[As | Fs−1]) we conclude that,592

P

λt
min + 2tε ≥

t∑
s=0

λmin(E[As | Fs−1])−

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∀t ∈ N

 ≥ 1− δ.

Finally, the assumption that P (λmin(E[At|Ft−1]) ≥ λmin ∀t ∈ N) ≥ 1 − δ and a union bound593

allows us to conclude that,594

P

λt
min ≥ t(λmin − 2ε)−

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∀t ∈ N


≥ P

λt
min + 2tε ≥

t∑
s=0

λmin(E[As | Fs−1])−

√
[d log(2/ε+ 1) + log( 2t

2

δ )]t

2
∀t ∈ N

 ∩ P (λmin(E[At|Ft−1]) ≥ λmin ∀t ∈ N)

≥ 1− δ.

This finalizes the result595

596

G.6 Proof of Lemma 2.597

Proof of Lemma 2. For t ≤ T0 we can bound each term of the regret by one, E[Zt − Z] ≤ 1. For598

t > T0 this requires analyzing E[Zt − Z]. For this, we need to essentially lower bound c⋆t as a599

function of Xt. We see that600

ct = min
θ∈Ct

|⟨Xt, θ⟩| − τ̂(θ, P̂t, α− ζt − 2Bt ∥Xt∥V −1
t

) + ζt

≥ |⟨Xt, θ
⋆⟩| − τ̂(θ⋆, P̂t, α− ζt − 2Bt ∥Xt∥V −1

t
) + ζt

≥ |⟨Xt, θ
⋆⟩| − τ⋆(θ⋆, P, α− 2ζt − 2Bt ∥Xt∥V −1

t
)− εQ (56)

In the first line we used the definition of Zt as in Lemma 8, and in the last line we used Equation (36).601

We note that in our algorithm we use a relaxation of this minimization problem for computational602

feasibility, however in our bounds we use its exact definition as it is mathematically equivalent.603

ERt = E[Zt − Z|G]

= P ({c⋆t ≤ 0} ∩ {|⟨Xt, θ
⋆⟩| ≥ τ⋆(θ⋆, P )} |G)

a
≤ P

(
τ⋆(θ⋆, P, α) ≤ |⟨Xt, θ

⋆⟩| ≤ τ⋆(θ⋆, P, α− 2ζt − 2Bt ∥Xt∥V −1
t

) + εQ|G
)

b
≤ P

(
τ⋆(θ⋆, P, α) ≤ |⟨Xt, θ

⋆⟩| ≤ τ⋆(θ⋆, P, α− 2ζt − 2
Bt√
λt
min

) + εQ|G
)

c
≤ P

(
τ⋆(θ⋆, P, α) ≤ |⟨Xt, θ

⋆⟩| ≤ τ⋆(θ⋆, P, α− 2ζt − 2
Bt√
tλmin

) + εQ|G
)

d
≤ P

(
τ⋆(θ⋆, P, α) ≤ |⟨Xt, θ

⋆⟩| ≤ τ⋆(θ⋆, P, α) + λ⋆(2ζt + 2
Bt√
tλmin

) + 2εQ)|G
)

e
≤ 2πM arccos(τ⋆(α))

(
1 +

1 + e

2mπ arccos(τ⋆(α))

)(
λ⋆(2ζt + 2

Bt√
tλmin

) + 2εQ

)
(57)
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a) follows by the upper bounding of the thresholding condition. b) follows by using that ∥Xt∥V −1
t

≤604

1√
λt
min

∥Xt∥2 ≤ 1√
λt
min

, and the monotonicity of τ⋆. c) follows by the sub-event G(4) of the good605

event and the bound of lemma 15. d) follows using Lemma 7, with γ = 2ζt + 2 Bt√
tλmin

. e) follows606

from Lemma 12.607

608

G.7 Proof of Theorem 1.609

Proof of Theorem 1. Let A(m,M,α) ≜ 2πM arccos(τ⋆(α))
(
1 + 1+e

2mπ arccos(τ⋆(α))

)
. By using610

the lemma 2, and by conditioning on the good event we have that with probability at least 1− δ:611

Regret(T ) ≤ T0 +

T∑
t=T0

ERt

= T0 +A(m,M,α)

T∑
t=T0

λ⋆(2ζt + 2
Bt√
tλmin

) + 2A(m,M,α)

T∑
t=T0

εQ

≤ T0 +A(m,M,α)

T∑
t=1

λ⋆(2ζt + 2
Bt√
tλmin

) + 2A(m,M,α)

T∑
t=1

εQ.

To control
∑T

t=1 εQ we can either choose εQ to be small, e.g. εQ = 1
T 2 . However, that requires the612

knowledge of the horizon T . In order to surpass this obstacle, we can choose {εtQ}∞t=1 = {1/t2}∞t=1.613

In that case,
∑T

t=1 εQ ≤
∑∞

t=1 1/t
2 = π2/6 = o(T ).614

For
∑T

t=1 λ
⋆(2ζt + 2 Bt√

tλmin
) we have that:615

T∑
t=1

λ⋆(2ζt + 2
Bt√
tλmin

) =
2(1 + e)

2mπ arccos(τ⋆(α))

T∑
t=1

ζt +
2(1 + e)

2mπ arccos(τ⋆(α))

T∑
t=1

Bt√
tλmin

≼
T∑

t=1

ζt +
BT√
λmin

T∑
t=1

1
√
t.

We remind that ζt ≜

√
2d log(3T )+2 log(T )+log(π2t2

3δ )

4t + 2εQ. As a result
∑T

t=1 ζt = Õ(
√
dT ).616

On the other side, as Bt ≜ 2κ
(√

λ+
√
log(1/δ) + 2d log

(
1 + t

κλd

))
= Õ(κ

√
d) then617

BT√
λmin

∑T
t=1 1

√
t = Õ(κ

√
dT ), as

∑T
t=1 1

√
t = O(

√
T ).618

By putting all together we have that RT = Õ(κ
√

dT
λmin

).619

H Good event proof.620

In Lemma 8 we proved that , with high probability, our policy tests whenever the optimal one does,621

that is N t
Θ ≥ N t

OPT when G(1), G(2) hold. We must collect enough samples so as the confidence set622

provide tight estimates about the value of θ⋆. Let define the following auxiliary good events.623

• E1 = {∀t ≥ 1 : N t
Θ ≥ N t

OPT }.624

• E2 = {∀t ≥ 1 : N t
OPT ≥ N(t, δ)}.625

It is true that G(3) = {∀t ≥ 1 : N t
θ ≥ N(t, δ)}, where N(t, δ) = p⋆t −

√
ln(πt2/3δ)t

2 ⊇ E1 ∩ E2626

when G(1), G(2) hold.627
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In lemma Lemma 8 we proved that P(E1 | G(1), G(2)) ≥ 1− δ due to pessimism. Now, it remains to628

prove the same for the event E2. As the number of samples of the optimal policy follows the binomial629

distribution with parameter p⋆ we can use standard concentration inequalities to derive such a bound.630

Lemma 13. P(E2 | G(1), G(2)) ≥ 1− δ.631

This implies that, for some T0, we have that for all t ≥ T0632

N t
OPT ≥ p⋆t/2. (58)

Lemma 14.
P(G(3) | G(1), G(2)) ≥ 1− 2δ.

Proof. By taking the union bound633

P(E1 ∩ E2 | G(1), G(2)) ≥ 1− 2δ.

By using G(3) ⊇ E1 ∩ E2 when G(1), G(2) hold we conclude the proof.634

To show that P(G(4)) ≥ 1 − δ we will use a covering argument to derive a lower bound for the635

minimum covariance matrix.636

Lemma 15. Let δ ∈ (0, 1). Consider a random d× d dimensional matrix valued process {At}∞t=0637

adapted to a filtration Ft = σ(Ak | k ≤ t), where each At ∈ Rd×d is symmetric (At = A⊤
t ),638

positive semi-definite, satisfies ∥At∥op ≤ 1 almost surely and such that there is a constant λ0 > 0639

satisfying640

P (λmin(E[At|Ft−1]) ≥ λ0 ∀t ∈ N) ≥ 1− δ.

Let λt
min ≜ λmin

(∑t
s=0 As

)
. Then, for ε > 0, the following holds:641

P

{
λt
min ≥ t(λ0 − 2ε)−

√
t

2

(
d log

(
2

ε
+ 1

)
+ log

(
2t2

δ

))
∀t ∈ N

}
≥ 1− δ.

We will apply this lemma for At = XtX
⊤
t . It is true that

∥∥XtX
⊤
t

∥∥
op

≤ ∥Xt∥2 = 1. We will make642

again the same observation, by choosing the covering parameter as ε = λ0

5 , then that for some T ′
0 we643

have that for all T ≥ T ′
0644

λt
min ≥ tλmin/4. (59)

Lemma 16.
P(G) = P(G(1) ∩G(2) ∩G(3) ∩G(4)) ≥ 1− 5δ.

Proof. By using the product rule we have that645

P(G(1) ∩G(2) ∩G(3)) = P(G(3) | G(1) ∩G(2))P(G(1) ∩G(2))

As P(G(1)) ≥ 1− δ from Lemma 1 and P(G(2)) ≥ 1− δ from Lemma 6, by using the union bound646

we have P(G(1) ∩G(2)) ≥ 1− 2δ. By using also Lemma 14 we have647

P(G(3) | G(1) ∩G(2))P(G(1) ∩G(2)) ≥ (1− 2δ)2

≥ 1− 4δ.

As P(G(4)) ≥ 1− δ by Lemma 15, by taking the union bound again we have that648

P(G(1) ∩G(2) ∩G(3) ∩G(4)) ≥ 1− 5δ.

649
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I Discussion650

In this work we introduced SCOUT, the first algorithm that provably balances no-regret learning651

with a high-probability safety guarantee on the empirical misclassification rate in logistic bandits.652

Our analysis shows that a simple, efficiently-computable testing rule suffices to achieve the order653

optimal Õ
(√

dT/λ0

)
excess-test rate. The empirical results confirm that these bounds translate to654

practice on moderately large horizons.655

In medical triage — our motivating use-case — SCOUT can be viewed as a “test-or-treat” policy that656

automatically calibrates how aggressively to screen as new evidence accrues. Because the policy is657

pessimistic by design, it never tests less than an oracle baseline that knows both the patient distribution658

and the ground-truth regression coefficients. This property is attractive in any high-stakes domain659

where misclassifications are costly (e.g. credit risk, fraud detection, or industrial quality control).660

There are several straightforward theoretical extensions. First is anytime guarantees: replacing661

the fixed-horizon union bounds with stitched confidence sequences yields an anytime variant with662

identical regret up to log factors. Second is unequal Type-I / Type-II control. The threshold-selection663

step can be split to cap false positives and false negatives separately by using two one-sided versions664

of (3). Finally, here we utilized simple confidence bounds for our logistic bandits. Plugging the665

recent radius-free concentration results of [31] into Lemma 1 removes the κ factor in Bt.666

There are several exciting directions of future work that are motivated by this work. First, we have the667

setting where the optimal baseline does not need to test, i.e. p⋆ = 0. If the optimal policy never tests,668

can one detect fast enough that screening is unnecessary while still retaining the high-probability669

safety constraint? The second. is adversarial contexts, or any nonstationary context distribution. Can670

the ideas behind SCOUT be combined with online calibration tools to handle non-stationary or even671

adversarial Xt? Another consideration is to follow the line of work of conservative bandits [28]672

and, given a fixed baseline policy as input to our problem that satisfies the constraints, to compute a673

feasible policy for the problem that is competitive with the baseline policy.674
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