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Abstract1

Large Language Models (LLMs) have achieved remarkable success but remain2

data-inefficient, especially when learning from small, specialized corpora with3

limited and proprietary data. Existing synthetic data generation methods for con-4

tinue pre-training focus on intra-document content and overlook cross-document5

knowledge associations, limiting content diversity and depth. We propose6

Synthetic-on-Graph (SoG), a synthetic data generation framework that incorpo-7

rates cross-document knowledge associations for efficient corpus expansion. SoG8

constructs a context graph by extracting entities and concepts from the original9

corpus, representing cross-document associations, and employing a graph walk10

strategy for knowledge-associated sampling. This enhances synthetic data diver-11

sity and coherence, enabling models to learn complex knowledge structures and12

handle rare knowledge. To further improve the quality of synthetic data, we inte-13

grate two complementary strategies, Chain-of-Thought (CoT) and Contrastive14

Clarifying (CC), to enhance both reasoning capability and discriminative power.15

Extensive experiments demonstrate that SoG surpasses state-of-the-art (SOTA)16

methods on multi-hop and domain-specific question answering, while achieving17

competitive performance on long-context reading comprehension. These results18

highlight the superior generalization ability of SoG. Our work advances the19

paradigm of synthetic data generation and offers practical solutions for efficient20

knowledge acquisition in LLMs, particularly for downstream tasks and domains21

with limited training data.22

1 Introduction23

In recent years, Large Language Models (LLMs) have achieved groundbreaking advancements in the24

field of Natural Language Processing (NLP), demonstrating the ability to acquire knowledge from25

unstructured text and perform complex, knowledge-intensive tasks [1]. These models have exhibited26

exceptional performance across various applications, including question-answering systems, machine27

translation, and conversational agents. This success is largely attributed to the next-word prediction28

objective [2] combined with vast amounts of internet data [3]. However, despite these achievements,29

there remains a significant inefficiency in data utilization [4].30

This data inefficiency becomes particularly pronounced when models need to learn from small-scale,31

high-value corpora. With the increasing demand for proprietary domain knowledge, models are32

required to efficiently acquire information from limited data sources. For instance, in specialized33

fields such as medicine, law, or specific technological domains, the available data is not only limited34

but often proprietary. In such cases, traditional large-scale pretraining methods are inapplicable due35

to the unavailability of sufficient training data [5].36

Moreover, recent studies have revealed limitations in the current pretraining paradigm. For example,37

models struggle when learning simple relations and require a large number of repeated instances to38
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effectively learn facts [6]. These issues become more acute when dealing with long-tail data or rare39

knowledge, as such information appears with extremely low frequency in large-scale corpora [5].40

: Chunk : Text : Entity : Document

... In 2023, Company X reported a positive net cash flow from operating activities, mainly driven by increased sales collections due to the surge 
in commodity prices. Also, accounts receivable increased by 35% year-over-year ...
In light of the improved cash flow performance, Company X stated that it would allocate additional resources to research and development, with a 
particular focus on enhancing production efficiency and exploring new product lines to diversify its revenue streams ...

By the second half of 2023, the metal smelting industry 
faced a widespread surge in accounts receivable. Some 
companies experienced significant bad debt risks, 
particularly those with an accounts receivable growth 
exceeding 30%, indicating increasing pressure on cash 
flow recovery.

... On one hand, Company X’s strong operating cash 
flow, driven by booming commodity prices, reflects 
effective capital generation that supports expansion 
plans. On the other hand, the rising accounts receivable
exposes the company to potential credit risk and future 
cash flow volatility, the 35% (exceeding 30%) increase 
in accounts receivable, combined with industry-wide risk 
signals, indicates potential bad debt risks and future 
cash flow pressure in 2024. ... QA: ...Graph Contextual Connection

Reasoning Composition

b. EntiGraph

Extract & Summary

Disscussions: 
... The article highlights Company X's strategic response to favorable market conditions. Benefiting from a surge 
in commodity prices, Company X achieved a positive net cash flow from operating activities, largely driven by 
increased sales collections. Building on this solid financial footing, Company X plans to invest additional resources 
into research and development. This investment will prioritize enhancing production efficiency and exploring new 
product lines, signaling the company's forward-looking strategy to diversify revenue streams and strengthen its market 
position ... The 35% year-over-year increase in accounts receivable highlights Company X’s expanded sales 
volume and increased customer transactions, primarily driven by the surge in commodity prices.
QA: ...

In-doc Contexrt

a. Context Graph

c. Traditional strategies
Entity Description & Relation Analysis.

Paraphrase
Template Filling
Knowledge Injection

... In 2023, Company X achieved positive operating cash flow as rising commodity prices 
boosted sales collections. The company also saw a 35% increase in accounts receivable ...

...... No addition info.Generation

Limited view of
addition info.

Figure 1: Comparison of the Proposed Context Graph for Synthetic Generation with Other Generation
Strategies: a. Context Graph in SoG. b. Intra-document graph in EntiGraph, where the knowledge
view is confined within a single document. c. Traditional synthetic generation methods, which
struggle to incorporate extra knowledge.

To address the challenge of efficiently acquiring knowledge from small-scale corpora, synthetic data41

generation methods have been proposed for continued pretraining of models. They aim to expand the42

original limited data by generating diverse synthetic corpora, thereby improving the learning efficiency43

and performance of the models. For instance, the EntiGraph method decomposes the text corpus44

into a list of entities and generates descriptions about the relationships between entities, attempting45

to populate the underlying knowledge graph of the corpus [7]. However, as shown in Figure 1b46

this approach primarily focuses on intra-document content, neglecting inter-document knowledge47

associations. This leads to limitations in the content diversity and knowledge depth of the synthetic48

data. In reality, knowledge is often interconnected across documents and domains. Relying solely49

on entity combinations within a single document fails to capture the full spectrum of knowledge.50

Additionally, the lack of cross-document synthetic data constrains the model’s ability to handle51

complex, multi-hop problems that require integrating information from multiple documents to derive52

an answer. For instance, in the context graph in Figure 1a, the first encountered literature primarily53

describes Company X’s positive financial report and active market plans in 2023. However, relying54

on the across-document information associated with the entity "accounts receivable" —"companies55

with accounts receivable growth exceeding 30% face a special risk of bad debt" —we can derive a56

broader understanding of the literature: despite the positive net cash flow, people are suggested to be57

particularly cautious about the potential bad debt risk associated with Company X’s 35% accounts58

receivable growth. Cross-document information can integrate multi-dimensional perspectives on a59

topic (both positive and negative), build a progressive chain of information, and uncover implicit60

phenomena — integrating knowledge in a way that uncovers more than what each document alone61

can offer, where "1+1>2".62

To this end, we propose the Synthesize-on-Graph (SoG) framework—a context-graph-enhanced63

synthetic data generation method designed to provide an efficient solution for continued pretraining of64

LLMs. The core idea of SoG is to incorporate cross-document knowledge associations by constructing65

and leveraging a context graph to expand the original corpus effectively.66
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Specifically, SoG comprises two key components: (1) Context Graph Construction and Cross-67

Document Sampling: We build a context graph from entities and concepts extracted from the68

original corpus, representing cross-document knowledge associations. Using this graph, we apply69

a two-stage cross-document sampling strategy: first, random walks guided by document retrieval70

to achieve cross-document exploration, enhancing data diversity while preserving coherence and71

knowledge associations. This helps the model learn complex knowledge structures, especially for72

long-tail entities. Second, Secondary Sampling and Controlled Allocation help balance the knowledge73

distribution and support flexible data customization. (2)Combined Chain-of-Thought and Contrastive74

Clarifying Synthesize: We combine Chain-of-Thought and Contrastive Clarifying to enhance synthetic75

data quality. CoT guides the model to generate logical chains, improving depth and interpretability,76

while contrastive generation boosts the discriminative knowledge in the synthetic data.77

Through extensive experiments, our approach outperforms existing state-of-the-art (SOTA) methods78

on multi-hop document and domain-specific question answering tasks, while achieving comparable79

results on long-context reading comprehension. Also, we demonstrate better generalization capability80

over the SOTA method. The introduction of the SoG framework marks a significant advancement81

in synthetic data generation and continued pertaining (CPT) for LLMs, providing new directions82

and possibilities for future research. Our work not only drives the development of synthetic data83

techniques but also offers new perspectives for optimizing the training of LLMs.84

2 Related Work85

This section presents an overview of recent developments in synthetic data generation for the86

pretraining of large language models (LLMs). Synthetic data generation has emerged as a crucial area87

of research, with various strategies proposed to enhance the diversity and effectiveness of training88

datasets. A significant trend in this domain is the adoption of hierarchical prompting to generate89

targeted synthetic content. For instance, [8] utilize API-based LLMs to create children’s stories90

driven by specific keywords, illustrating that even smaller language models can yield fluent narratives91

when pre-trained on such datasets. [9] achieve automatic analysis and annotation on complex data92

in the legal domain by using a modular multi-process pipeline, along with the injection of expert93

knowledge in the form of few-shot learning into each submodule. This approach was used for both94

pretraining and fine-tuning. This underscores the potential of hierarchical prompting in producing95

effective and relevant training data.96

In another vein, [10] generate diverse educational content, such as textbooks and coding exercises,97

by conditioning on attributes like topic, audience, and function names. The datasets generated from98

this method have supported the development of robust LLMs, as further explored in subsequent99

studies [11, 12]. However, these approaches are often hindered by a lack of public accessibility to the100

datasets and prompt strategies, limiting reproducibility and broader community progress. Similarly,101

[13] focus on rephrasing existing documents to generate new training data, reporting enhancements102

in training efficiency through these modified versions.103

While these efforts have significantly advanced the field, they primarily focus on generating intra-104

document content, thereby overlooking the importance of cross-document knowledge associations.105

This oversight limits the diversity and depth of the synthetic content, which is crucial for developing106

LLMs capable of understanding and integrating complex knowledge structures. The prevailing focus107

on intra-document generation underscores the need for novel methodologies that can address these108

gaps by synthesizing data that not only maintains coherence but also captures broader, interconnected109

knowledge domains.110

Current efforts [14, 15] explore synthetic QA generation for task-specific finetuning, reflecting an111

emerging interest in incorporating knowledge-aware strategies into data generation. Although such112

strategies have demonstrated benefits for specific QA tasks, their applicability remains limited for113

more general-purpose tasks, indicating a gap that could potentially be filled by new data generation114

approaches that are untethered to any particular downstream application.115

Moreover, [16] explore continued pretraining of Llama 2 models using synthetic paraphrases of116

Wikipedia articles, with mixed results regarding performance improvements. This suggests limitations117

in relying solely on paraphrasing techniques to enhance model knowledge and underscores the need118

for research into more robust methods that can generate synthetic data with greater diversity and119

depth.120
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3 Methodology121

We propose the SoG framework, a context-graph-enhanced synthetic data generation method designed122

to address limitations in content diversity and knowledge association found in existing approaches.123

The framework achieves this by leveraging cross-document, knowledge-associated sampling, enabling124

the integration of information across multiple sources. Additionally, it conducts a combined data125

synthesis approach based on Chain-of-Thought reasoning and Contrastive Clarifying analysis, which126

enhance generation models’ ability to reason and distinguish between complex knowledge. The127

following sections provide a detailed overview of the SoG framework, highlighting three core128

components: Context Graph Construction, Cross-Document Sampling, and Generation Strategies.129

Corpus Construction−−−−−−→ Context Graph
Context-graph Traversal−−−−−−−−−−−−→ Path Set P

Secondary Sampling−−−−−−−−−−→ Balanced Path Set P∗ Generation Strategies−−−−−−−−−−−→ Synthetic Data
(1)

The overall generation process and context graph building of SoG is shown in Figure 1a and Figure 2.130

3.1 Context Graph Construction131

3.1.1 Entity Extraction132

First, given a corpus C = {di}, i ∈ [0, N), each document di is divided into several paragraphs pi,j ,133

where j denotes the j-th paragraph of document i. Subsequently, we prompt the LLM to identify134

key entities within each paragraph as Ei,j ∈ E , where E denote the extracted entities from the entire135

corpus C.136

3.1.2 Entity-Context Mapping137

For each entity ek ∈ E , we collect all paragraphs in which it appears, denoted as Pk = {pi,j | ek ∈138

Ei,j ,∀i, j}. This forms an entity-paragraph mapping M : ek 7→ Pk, where M associates each entity139

ek with its corresponding set of paragraphs Pk.140

3.1.3 Context Graph141

We define a context graph G = (E , E), where E denotes the set of nodes corresponding to all142

identified entities. The edge set is given by143

E = {(ex, ey) | ∃i, j s.t. ex, ey ∈ Ei,j},

where Ei,j represents the subset of entities co-occurring within a bounded textual unit (e.g., a144

paragraph or sentence). Thus, an edge between ex and ey is induced whenever the two entities are145

observed to co-occur within the same discourse context. In this way, the graph topology captures146

implicit contextual associations among entities, with co-occurrence serving as a distributional proxy147

for semantic relatedness.148

3.2 Cross-Document Sampling149

3.2.1 Initialization150
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chunk1
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Figure 2: Context Graph Construction
and Sampling

To enhance content diversity and knowledge association151

across multiple documents, we implement a cross-document152

sampling strategy that traverses the constructed context153

graph G = (G,R). Starting from a root entity eroot ∈ E ,154

we perform a breadth-first search (BFS) traversal to collect155

multi-hop paths that link related entities and their associated156

text paragraphs across documents. We will traverse all nodes157

in G as a root entity.158

In addition, for each eroot, we traverse all its paragraphs us-159

ing the entity-context mapping M , which associates entities160

with the paragraphs in which they appear. If an entity occurs161

in a large number of paragraphs, we limit the number of162
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starting paragraphs by randomly sampling up to S, a prede-163

fined hyperparameter. This step is crucial, as the selected starting paragraphs p(0) serve as references164

for computing embedding similarities during the traversal process.165

Briefly, each entity serves as the root eroot. Then a graph traversal is performed up to a maximum of166

S steps according to the number of paragraphs Proot from the mapping M .167

3.2.2 Context-graph Traversal168

At each traversal, step up to a specified depth D, we explore neighboring entities of the current entity169

e. The neighbors are defined as:170

N(e) = {e′ | (e, e′) ∈ E},

where (e, e′) indicates an edge in the context graph signifying a contextual connection between171

entities e and e′.172

To prioritize neighboring entities with relevant contexts, we introduce a similarity-based selection173

mechanism. For each neighboring entity e′, we compute a similarity score Fsim(q(0), c) between174

the root paragraph q(0) associated with eroot and candidate paragraphs c associated with e′. Using175

the average node degree d as an upper bound, when traversing the neighbors of an entity whose176

degree exceeds d, we randomly sample only d neighbors for traversal. This way, the majority of177

sparse entities are unaffected, while high-frequency entities are effectively suppressed, and traversal178

efficiency is improved. The similarity function Fsim() can be based on semantic similarity measures179

such as the dot product of embeddings:180

Fsim(q(0), c) = dot(embed(q(0)), embed(c)).

We select the paragraph with the highest score, along with their corresponding entities, to include in181

the sampling paths.182

After D steps, every traversal results in multiple paths originating from (eroot, p
(0)), each path183

representing a sequence of contextually connected entities and their associated text paragraphs across184

different documents. Formally, for the root entity eroot, we construct a set of paths P = {P}, where185

each path P is defined as:186

P = [(eroot, q
(0)), (e1, c1), . . . , (en, cn)], n ≤ D,

with ei ∈ E and ci being the associated paragraph of ei.187

By aggregating the information from these cross-document paths, we achieve greater diversity188

through a richer and more varied combination of cross-document knowledge. Additionally, the189

paths effectively capture and reflect the implicit contextual association between knowledge elements190

spanning multiple documents.191

3.2.3 Secondary Sampling and Controlled Allocation192

Before proceeding to the generation phase, it is crucial to consider the utilization rate and coverage of193

the original corpus during generation to balance the knowledge distribution, reduce redundancy, and194

compensate for long-tail knowledge. Therefore, we apply secondary sampling on P to selectively195

collect paths for generation. Specifically, we prioritize the inclusion of paths containing entities that196

appear less frequently in the secondary sampled path set, by accounting for the sum of utilization rate197

in every path. This strategy ensures a more uniform distribution of knowledge occurrences, which198

mitigates biases and promotes diversity within the sampled paths, thereby enhancing the overall199

generation quality and efficiency.200

To further refine the control over synthetic data size, we iteratively allocate the secondary sampled201

paths into subsets according to the coverage of the original corpus, where each subset functions as an202

independent unit opted for the maximum corpus coverage (> r) and the most balanced paragraph203

frequency. This modular approach allows for seamless flexibility in data customization during204

the generation process: depending on the required volume of synthetic data, we can combine an205

appropriate number of subsets to support various experimental configurations. Specifically, due to206

the decreasing availability of sparse entities and associated texts as sampling iterations progress, the207

subset obtained in the first iteration should have the highest coverage r of the original corpus. As the208
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number of iterations increases, the coverage of subsequent subsets will gradually decrease under the209

fixed sampling size. We use the sample size of the first subset and corpus coverage r as references210

and, based on the difference between the current iteration’s sampling rate△r = r−r′

r , re-sample and211

re-use texts of entities with the lowest utilization rate to complete the current path subset.212

3.3 Generation Strategies213

Given a path, we design prompts to guide the LLM in generating diverse and reliable synthetic data214

based on the text chunk of the entities along the path.215

3.3.1 Generation Prompt216

To produce coherent and informative content from the aggregated cross-document paths, we design217

two generation strategies: Chain-of-Thought (CoT) and a complementary strategy Contrastive218

Clarifying (CC), which are shown in Figure 6 and Figure 7.219

We observed that the CoT generation method significantly improves training performance. CoT220

serves as a more general generation strategy, applicable to all entities with graph path connections.221

However, for entities with sparse graph connections—those lacking rich relationships within the222

graph—CoT’s effectiveness can be limited, as fewer paths are available and may not provide enough223

context to generate comprehensive relationships with other entities.224

To address this challenge, we apply CC synthetic to supplement CoT synthetic for these sparse225

entities. Unlike CoT, CC does not rely on graph path connections, enabling it to work effectively226

even with entities that have limited graph relationships. Specifically, in the secondary sampling227

process mentioned before, we continuously monitor the current corpus coverage rate r′. When the228

total number of samples exceeds a hyperparameter l and r′ does not reach r, CC is triggered for229

the △r least sampled entities based on their utilization rate. CC will randomly pair these entities230

without replacement. If there are N least sampled entities, then the N/2 path will be built for CC231

generations. By doing so, we enrich the generation process, helping balance the model bias caused232

by the long-tail distribution of entities. Furthermore, CC can explicitly clarify the differences and233

similarities between entities in terms of their attributes and background knowledge. This can improve234

the model’s discriminative power of sparse entities, providing deeper insights into their nuances.235

CoT generation: We prompt the LLM to fully utilize the key information from each text fragment236

and build a step-by-step narrative where each text fragment logically leads to the next, forming a237

clear flow of cause and effect. The primary goal is to synthesize information from various sources238

into a logically connected storyline, which ensures that the generated content is coherent and that the239

relationships among the fragments are explicitly articulated.240

Specifically, the narrative is structured into distinct phases—including initiation, development, turning241

points, and conclusion—with natural transitions that preserve the logical flow of causal relationships.242

Based on the constructed narrative, we prompt the LLM to formulate questions that require an243

understanding of the entire information chain to answer. The answers are provided in a chain-of-244

thought style, breaking down the reasoning process step by step to arrive at the final conclusion. This245

design can improve interpretability and provide deeper insight into the synthetic content.246

Contrastive Clarifying: We prompt the LLM to generate a comparative analysis that contrasts and247

compares multiple text fragments. This approach is designed to prompt the LLM to explicitly analyze248

and highlight the implicit nuances or lack of direct connections between pieces of information,249

ensuring that such contrasts are clearly reflected in the synthetic data. By conducting a detailed250

comparative analysis, the model can effectively uncover and present discriminative information,251

enriching the groundedness and diversity of the synthetic content.252

Specifically, the LLM is instructed to examine each entity or fragment individually, synthesize a253

thoughtful contrastive narrative, and summarize the comparative insights in a concluding section.254

When direct similarities are absent, the narrative shifts to highlighting the unique contributions or255

perspectives that each entity offers within its respective context. The generated output maintains an256

objective and analytical tone, avoiding any attempt to force connections between unrelated fragments.257
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4 Experiments258

To comprehensively evaluate the effectiveness and applicability of the proposed Synthesize-on-259

Graph (SoG) framework, this section explores its performance through a series of carefully designed260

experiments. The experiments aim to assess SoG’s contributions in four major aspects: First, to261

what extent does incorporating cross-document knowledge associations in SoG enhance the diversity262

and depth of synthetic data compared to intra-document-focused methods (RQ1)? Second, does263

SoG’s synthetic data provide consistent performance gains across language models of different sizes264

(RQ2)? Third, to what extent can SoG mitigate the long-tail knowledge problem in the original265

corpus (RQ3)? In what scenarios is SoG synthesis applicable? (RQ4)?266

4.1 Datasets267

To address our research questions, we evaluate on three representative datasets: MULTIHOP-RAG,268

BIOASQ, and QUALITY. A detailed description of each dataset is provided in the Appendix A.1.269

4.2 Baselines and Metrics270

We choose Direct QA (directly answering by the base model), Rephrasing (back-translation and271

synonym replacement, following [17]) and the state-of-the-art methods EntiGraph [7] as baselines272

for evaluation. The evaluation metrics for MHRAG, BIOASQ and QUALITY are Exact Match273

(EM), model-based evaluation (MBE) approach using LLM-as-a-Judge[18], and Accuracy (Acc),274

respectively.275

4.3 Experiment Details276

In our generation setup, we used GPT-4o-mini as the generation model. The temperature was set at277

0.7. We utilize semantic chunking1 to split the long contexts. The semantic embedding was computed278

by bge-small-en-v1.5. In all experiments, we continued pretrain the LLMs with a context length279

of 2048 and a batch size of 64. We apply a linear learning rate warmup for 10% of the total steps,280

followed by a cosine decay with a peak learning rate of 5e-6. We perform full-parameter training for281

2 epochs in BF16 precision, using a per-device batch size of 2 and accumulating gradients over 4282

steps. In addition, within 4.5× of the original corpus size, the sampling paths for CoT are of one-hop283

length, while beyond that, the sampling paths are of two-hop length. For QUALITY, we followed284

the evaluation setup in EntiGraph. For MHRAG, we evaluate the CPT models with zero-shot285

prompting on a sample of 1,000 QA pairs. For BIOASQ, we constructed a hard subset consisting286

of 1,114 questions that Qwen3-8B failed to answer correctly in a single attempt. This sampling287

criterion ensures that the selected questions reflect genuine challenges for strong LLMs, thereby288

providing a more rigorous evaluation of knowledge-intensive reasoning. For entity ambiguity issue,289

we rely on surface-form string matching combined with simple heuristics, including normalization290

of singular/plural forms and letter casing, alias matching, and Wikipedia-style redirect mappings to291

partially address this issue.292

4.4 Main Experiment Results293

To answer RQ1 and RQ2, we compare the effectiveness of SoG, traditional Rephrasing augmentation294

and the intra-document-focused method EntiGraph in continued pre-training (CPT) with varying295

amounts of synthetic data on two datasets. The results are shown in Figure 3. For MHRAG and296

BIOASQ, model performance steadily improves as the amount of SoG synthetic data increases.297

In contrast, EntiGraph synthetic data provides limited gains. Especially in MHRAG, when the298

EntiGraph data size exceeds 1.5 times the original corpus, performance plateaus or even degrades due299

to its reliance on intra-document associations. This limitation prevents diverse and deeper generations,300

especially for complex tasks requiring cross-source knowledge integration. The sharp performance301

gap on MHRAG underscores the strength of SoG’s cross-document knowledge integration in the302

context graph, which uncovers implicit entity relationships and enables richer reasoning. In addition,303

the most significant performance boost from SoG occurs when the synthetic data volume is within 0304

to 1.5 times the original corpus, demonstrating that even a moderate amount of SoG data effectively305

enhances large model performance.306

1https://python.langchain.com/docs/how_to/semantic-chunker/
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Although SoG exhibits slightly weaker performance on the QUALITY dataset, its results remain307

largely comparable EntiGraph. This modest decline stems primarily from SoG’s design emphasis on308

flexibility and generalizability across tasks that rely on large, interconnected corpora. In contrast,309

QUALITY poses a distinct challenge: each document is an independent narrative with minimal310

shared knowledge or cross-document links. To better align with this task, we constrained SoG’s path311

sampling strategy to operate strictly within individual documents. To align with this characteristic, we312

constrained SoG’s sampling strictly within individual documents. Despite that SoG’s core strength,313

cross-document knowledge aggregation, was not fully utilized on this dataset, it still performed314

comparably with the SOTA method. This underscores the better generalization capability of our SoG.315

Moreover, the traditional Rephrasing augmentation method yields only marginal or negligible im-316

provements across all datasets, further highlighting the necessity of structurally informed synthetic317

data construction.318

Finally, another observation is that CPT solely on the original corpus yields at best limited gains and319

in some cases even degrades performance relative to the original model (see Raw CPT in Figure 3).320

We attribute this to the lack of diversity and distributional differences in the original corpus, which321

further emphasizes the critical role of Synthetic CPT.322

4.5 Ablation Study323

4.5.1 Influence Over Different Generation Strategy324
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Figure 3: Performance trends of SoG and Enti-
Graph across three benchmarks with rephrasing
and CPT baselines.

Distribution of Synthetic Data of Different325

Generation Strategy (RQ3): The long-tail is-326

sue of entities in the original corpus may result327

in insufficient learning, thereby affecting the328

model’s performance and accuracy. Addition-329

ally, the long-tail problem can cause the model330

to over-rely on high-frequency entities and fur-331

ther diminish its ability to recognize and under-332

stand rare entities. To investigate whether SoG333

synthetic data can alleviate the long-tail prob-334

lem of entities in the original documents, we335

analyzed the entity distributions in the original336

corpus and in SoG synthetic corpora of varying337

sizes.338

As illustrated in Figure 4b, 4a and 4c, entities339

in the original corpus exhibit a significant long-340

tail distribution. In the sampling process using341

only the CoT strategy (which selects paths by342

prioritizing entities with the lowest occurrence343

counts), the overall distribution becomes more344

concentrated. However, the long-tail trend still345

remains. When the Contrastive Clarifying (CC)346

strategy is introduced to supplement CoT (peri-347

odically enhancing long-tail knowledge based348

on sampling utilization rates), all long-tail en-349

tities are adequately covered, and the overall350

distribution begins to approximate a normal dis-351

tribution. This significantly alleviates the issue352

of insufficient occurrences for most entities and improves diversity, demonstrating that our SoG353

framework can effectively balance the distribution of synthetic data.354

Training Performance of Different Generation Strategy: CC is designed to specifically enhance355

the LLM’s understanding of long-tail entities and is not suitable for standalone application to the entire356

corpus. As a result, synthetic data solely through CC tends to be of lower quality compared to that357

produced by CoT. CoT primarily focuses on generating additional useful information by integrating358

knowledge across documents. Therefore, CoT alone can already achieve sufficient synthetic data359

quality. However, due to their low frequency, long-tail entities often receive less attention from360

CoT. As shown in the MHRAG results in Table 1, combining both generation strategies can further361
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(a) Entity distribution: the original
corpus (1.5M).

(b) Entity distribution: 6M SoG
synthetic data with CoT generation.

(c) Entity distribution: 6M SoG
synthetic data with CoT and CC
generation.

Figure 4: Entity distributions for different data sets.

improves the effectiveness of synthetic data for CPT training. Interestingly, on the QUALITY dataset,362

using CoT alone outperforms the combined strategy. We believe this is because each QA pair in363

QUALITY is based on a single novel and does not involve cross-document knowledge. Such tasks364

tend to focus less on long-tail entities and more on the main plots and characters within the document.365

In this case, the CoT strategy naturally aligns with the primary content of the story. For different366

scenarios, our approach allows flexible adjustment of the sampling and synthesis strategies in SoG to367

better align with the feature of the original corpus and the specific task requirements. The specific368

SoG configuration adjustments for QUALITY are provided in the Appendix A.5.

Table 1: Performance of Different Approaches on
Llama-3-8B-Instruct

Dataset CoT + CC CoT CC Direct QA
MHRAG(X1.5) 70.9 70.6 63.7 55.3
MHRAG(X4.5) 74.1 72.9 62.6 55.3
QUALITY(X1.5) 44.0 44.7 38.9 37.4
QUALITY(X4.5) 46.2 47.5 42.8 37.4

Table 2: CPT vs. RAG results:
Base LLM denotes Llama-3-8B-
Instruct. CPT LLM denotes the
model CPT on the SoG data. Zero-
shot denotes directly answering
by the corresponding model. The
RAG corpus consists of the raw cor-
pus and the X3 synthetic data.

Model RAG Zero-shot
Base LLM 73.5 55.3
CPT LLM 70.7 73.2

369

4.6 CPT vs. RAG370

In this experiment, we aim to answer whether non-parametric external knowledge in retrieval-371

augmented generation (RAG) can be replaced by parametric knowledge acquired through SoG-based372

CPT. Specifically, we adopt Llama-3-8B-Instruct as the base model and evaluate its performance373

on the MHRAG task under three configurations: LLM with SoG CPT, LLM with RAG, and LLM374

with both SoG CPT and RAG. From the results in Table 2, both RAG and CPT individually bring375

significant and similar performance gains to the LLM. Interestingly, applying RAG on top of the376

LLM already enhanced by synthetic CPT does not lead to further improvements. In fact, this377

combined setting performs worse than using either method alone. We argue that although RAG still378

holds a marginal advantage in performance, this advantage is outweighed by the broader benefits of379

synthetic CPT—including eliminating the need for retrieval, enabling shorter input windows for higher380

efficiency, and saving considerable computational costs in long term (RQ4). Our findings highlight381

that incorporating SoG synthetic data into CPT enables parametric knowledge to streamline382

task adaptation and enhance output controllability, offering a more efficient alternative to383

reliance on inference-time retrieval.384

5 Conclusion385

We propose Synthesize-on-Graph (SoG) framework, a context-graph-enhanced synthetic data genera-386

tion method that effectively incorporates cross-document knowledge associations, which combine387
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balanced sampling with Chain-of-Thought and Contrastive Clarifying generation strategies. Experi-388

mental results show that SoG achieves SOTA performance on multi-hop QA tasks while showing389

better generalization capability. Our work highlights the potential of SoG as a scalable and efficient390

solution for continued pretraining, offering new directions for optimizing large language model391

training in knowledge-intensive domains.392
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A Appendix471

A.1 Datasets472

• MultiHop-RAG (MHRAG) [19] is specifically designed to challenge the multi-hop reasoning473

capabilities of LLMs. It consists of queries constructed from news articles published between474

September and December 2023, which include information beyond the training cutoff of existing475

LLMs, ensuring that synthetic data is required to fill knowledge gaps. In addition, each query476

requires models to integrate evidence from multiple documents, mimicking real-world scenarios477

where knowledge is dispersed across sources. Existing LLMs, even RAG systems, often struggle478

with such tasks, underperforming in tasks that demand integrating and reasoning over scattered479

evidence. This dataset serves as an ideal benchmark to evaluate how SoG-generated synthetic480

data equips LLMs to utilize their internal knowledge for handling complex multi-hop reasoning481

effectively.482

• BIOASQ [20]: The BIOASQ question answering (QA) benchmark dataset contains questions483

in English, along with golden standard (reference) answers and related material. The dataset has484

been designed to reflect real information needs of biomedical experts, assess the comprehensive485

understanding of professional knowledge, and is therefore more realistic and challenging than486

most existing datasets. We aim to explore challenging problems in professional domains that487

require highly specialized expertise, and investigate to what extent SoG can provide models488

with better learning corpora.489

• QUALITY [21] is a multiple-choice question-answering dataset for long document comprehen-490

sion. Unlike in prior work with passages, the questions are written and validated by contributors491

who have read the entire passage, rather than relying on summaries or excerpts. For a fair492
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comparison with the state-of-the-art CPT synthetic data method, EntiGraph, we also chose this493

dataset for evaluation.494

A.2 Long-tail Balance Analysis495
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Figure 5: Performance of different sampling strategies (Full, Half, Not).

To evaluate the impact of secondary sampling in mitigating long-tail bias, we compare four strategies496

under different corpus scaling factors (0.7×, 3×, 6×). Not denotes random path selection from P497

without balancing; Half mixes random sampling with secondary sampling at a 1:1 ratio; Full applies498

secondary sampling for all synthetic data, enforcing explicit long-tail balancing;499

According to the results in Figure 5, without long-tail balancing (Not), the benefit of synthetic data500

to downstream models tends to degrade as the data scale increases, although it still outperforms501

EntiGraph. We argue that: a) Compared with EntiGraph, this again demonstrates that cross-document502

information aggregation is more valuable than intra-document synthesis alone. If the long-tail503

distribution is not balanced, the bias from the long-tail will gradually intensify as sampling grows,504

making the quality of synthetic data more prone to degradation.505

Furthermore, under the Half setting, the gains from synthetic data diminish rapidly as the scale506

increases. We believe this indicates that retaining half random sampling continues to accumulate the507

inherent long-tail bias of the corpus, thereby limiting the scalability of synthetic data.508

These observations show that secondary sampling with long-tail balancing is essential for scalable509

synthetic data generation. Without balancing, additional data may amplify corpus bias and even510

degrade quality, whereas Full secondary sampling consistently delivers stable improvements as the511

corpus scales.512

A.3 Performance on More Backbone Models513

Evaluating across more base models is crucial for assessing the robustness and generalizability514

of SoG. To this end, we have conducted additional experiments using Qwen2.5-7B-Instruct and515

Qwen2.5-32B-Instruct on the MHRAG dataset. The results, presented below, show that, with SoG516

CPT, smaller models tend to yield closer performance to the larger model:517

A.4 Influence of Path Length518

We conduct a comparison to assess the impact of different sampling path length choices on the519

performance of CPT training in Table 5. The 1-hop paths can generate up to 5× the data volume;520

therefore, only the 4.5× result is reported. In general, the 1-hop setting achieves the best performance.521
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Table 3: Performance of SoG on the MHRAG dataset across different backbone models.

Model Direct QA 3× 6×

Qwen2.5-3B-Instruct 46.7 67.1 (+43.7%) 73.0 (+56.4%)
Qwen3-8B 50.7 70.5 (+39.0%) 76.4 (+50.7%)
LLaMA-3-8B-Instruct 48.7 70.9 (+45.6%) 75.4 (+54.8%)
Qwen2.5-32B-Instruct 55.6 73.4 (+32.0%) 81.3 (+46.2%)

Table 4: Performance of SoG on the BIOASQ dataset across different backbone models.

Model Direct QA 3× 6×

Qwen2.5-3B-Instruct 11.8 21.7 (+83.9%) 29.4 (+149.2%)
Qwen3-8B 10.3 20.9 (+103.9%) 28.5 (+176.7%)
LLaMA-3-8B-Instruct 13.5 26.2 (+94.1%) 35.1 (+159.3%)
Qwen2.5-32B-Instruct 27.8 44.5 (+60.1%) 57.3 (+106.1%)

The data synthesized from 2-hop paths also show significant performance. However, the 3-hop paths522

perform considerably weaker. We believe that this may be related to the inherent difficulty of the523

dataset’s tasks. Furthermore, considering the challenges of constructing multi-hop reasoning tasks,524

most reasoning tasks are designed within two hops [22].525

Table 5: Impact of Sampling Path Length on CPT Training Performance

Scale 1-Hop 2-Hop 1+2-Hop (1 : 1) 3-Hop
4.5× 74.0 71.9 72.5 69.3
9× - 73.5 76.1 70.7

A.5 Configuration Adjustment Detail for QUALITY526

Since each question in QUALITY focuses on a single article, we impose a constraint during multi-527

hop path sampling: All entities along the sampled path must be mapped to the same article ID to528

ensure that the retrieved texts come from the same article. We prioritize sampling the 1-hop paths.529

Additionally, during synthesis, we explicitly inform the LLM of the article title to which each input530

chunk belongs.531

A.6 Implementation Cost532

Our method does not rely on the strongest or most expensive LLMs. All generations are conducted533

with GPT-4o-mini, a fast and cost-efficient model (pricing: $0.15 per 1M input tokens, $0.08 per534

1M cached input tokens, and $0.60 per 1M output tokens). In the synthetic generation stage, the535

average input and output token counts per instance are approximately 1,700 and 900, respectively.536

Based on our experiments, expanding the corpus by 3×–4.5× (i.e., ≈ 2–3M tokens for Enti-Graph)537

is already sufficient to yield substantial performance improvements. Consequently, the overall cost of538

SoG remains modest, making it a practical and accessible choice even under limited computational or539

financial resources.540

A.7 Limitations541

While our method shows promising results, several limitations remain. First, although we conducted542

experimental analysis on the setting of sampling path length in MHRAG, this setting is task-543

dependent, and determining an appropriate setting for different datasets may require empirical tuning.544

Second, continued pretraining may introduce unstable LLM output, which requires additional training545

techniques [23]. We leave these for future work.546
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A.8 Ablation on Balanced Sampling without Synthesis547

To address the concern that data synthesis could be avoided by directly sampling raw corpora and548

performing continued pre-training (CPT) to save LLM inference cost, we conducted an ablation549

on two benchmarks: MHRAG and BIOASQ. Specifically, we compared the following settings:550

(i) Zero-shot: direct answering without CPT; (ii) Raw CPT: CPT on the unprocessed raw corpus;551

(iii) Balanced Sample Only: long-tail balancing only, where sampled raw chunks are concatenated552

and used directly for CPT without synthesis; and (iv) SoG: our proposed synthesis with balanced553

sampling.554

Dataset Zero-shot Raw CPT Balanced Sample Only SoG

MHRAG 55.3 52.9 54.5 67.9
BioASQ 13.5 13.2 14.3 20.3

Table 6: Ablation on balancing without synthesis.

While our previous long-tail analysis showed that balancing helps, under the “balancing-only, no555

synthesis” setting we observe only marginal gains on BioASQ (13.5→ 14.3) and even a drop on556

MHRAG (55.3→ 54.5). This indicates that balancing alone, without synthesis, is insufficient.557

This phenomenon can be explained by two factors: (1) Distributional mismatch: the small domain-558

specific raw corpus departs significantly from the original pre-training distribution. Directly continu-559

ing pre-training on such a narrow corpus reduces generalization capability. (2) Lack of expression560

diversity: most facts in the raw corpus appear only a few times with narrow phrasing. Under the561

next-token prediction objective, the model suffers from the reversal curse (seeing “A is B” does not562

imply learning “B is A”), making knowledge injection highly inefficient.563

Why SoG Works: Unlike raw balancing, SoG does not fabricate new facts but leverages a context564

graph to rearrange the corpus into a balanced and learnable form. Through integration, the same565

facts are presented in more diverse, compositional expressions. This provides richer supervision566

under the next-token objective, leading to significantly better knowledge absorption. Overall, the567

results support our recipe: balanced sampling + necessary synthesis (SoG) is indispensable for568

effective knowledge injection.569

A.9 Balanced Secondary Sampling570

Algorithm 1 SECONDARYSAMPLING

1: Input: PathSet, target coverage rate r, standard length l, and entity to chunk index
EntityToChunk.

2: RemainingPaths← PathSet
3: SampledPathsCollections← ∅
4: INITIALIZE (EntityUtilizationDict) with default value 0
5: whileR ≠ ∅ do
6: P∗,R, EntityUtilizationDict←
7: BalancedSampling(R, r,EntityUtilizationDict, l,EntityToChunk)
8: ADD P∗ to SampledPathsCollections
9: end while

10: SAVE(SampledPathsCollections) for synthetic generation
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Algorithm 2 BALANCEDSAMPLING

1: Input: remaining paths set R = {P}, target coverage rate r, EntityUtilizationDict,
standard length l, and entity to chunk index EntityToChunk.

2: Output: sampled paths set P∗,R, EntityUtilizationDict
3: P∗ ← {“cot”: ∅, “cc”: ∅}
4: r′ ← 0
5: whileR ≠ ∅ do
6: R ← SORT(R, descending, by
7: PATHUTILIZATIONCOUNT(P ) =

∑
node∈P EntityUtilizationDict[node])

8: # In default, l = TotalNumberOfChunksInCorpus/(hop+ 1) and r = 100%
9: P ′ ← POP(R)

10: ADD P ′ to P∗[“cot”]
11: # Remove the path with the least node Utilization count.
12: UPDATE EntityUtilizationDict and r′ based on P ′

13: if r′ ≥ r then
14: BREAK
15: end if
16: if LEN(P∗[“cot”]) ≥ l then
17: △r ← r−r′

r
18: SORT EntityUtilizationDict in ascending order
19: k ← ⌊△r × l⌋
20: cut← ⌊(1−△r)× l⌋
21: ADD(P∗[“cot”][cut:]) back toR
22: REVERSE EntityUtilizationDict based on P∗[“cot”][cut:]
23: P∗[“cot”]← P∗[“cot”][0:cut]
24: SparseEntities← EntityUtilizationDict[0:k]
25: for each pair (ex, ey) ∈ SAMPLEPAIRS(SparseEntities) do
26: cx ← SAMPLECHUNKS(EntityToChunk[ex])
27: cy ← SAMPLECHUNKS(EntityToChunk[ey])
28: # SAMPLEPAIRS: Random combinations without replacement.
29: # SAMPLECHUNKS: Random sample one chunk.
30: ADD [(ex, cx), (ey, cy)] to P∗[“cc”]
31: end for
32: UPDATE EntityUtilizationDict based on P∗[“cc”]
33: BREAK
34: end if
35: end while
36: return P∗,R, EntityUtilizationDict

15



SoG

A.10 Prompt571

Figure 6: CoT Synthetic Prompt

Figure 7: CC Synthetic Prompt
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A.11 Cases572

Figure 8: CoT Case 1: 1-hop.

Figure 9: Brief View: CoT Case 1
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Figure 10: CoT Case 2: 2-hop.

Figure 11: Brief View: CoT Case 2

18



SoG

Figure 12: CC Case: 1-hop.
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