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ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods have become essential for adapt-
ing large pretrained models to downstream tasks, with Low-Rank Adaptation
(LoRA) emerging as one of the most widely adopted solutions. However, there
remain several key limitations in current LoRA-based PEFT methods: (1) the low-
rank feature space in LoRA is rigid, reducing its capacity for dynamic adaptation;
(2) the restricted dimensionality, coupled with dense and entangled representations,
constrains the model’s capacity to generalize across multiple domains; and (3) the
compression process limits the extent to which model behavior can be understood
from the learned representations, making it difficult to interpret the functional role
of task-relevant features. In this paper, we argue that sparse adaptation offers a
principled and more flexible alternative to low-rank adaptation, with the added
benefit of enhancing interpretability. Instead of compressing information into a low-
rank subspace, sparse adaptation focuses on identifying and selectively activating
a small subset of high-dimensional latent features, enabling a more decomposed
and dynamic fine-tuning process. Building on this paradigm, we propose STAN
(Sparse adapTAtioN), a novel method that actualizes sparse adaptation by integrat-
ing dedicated Sparse Autoencoder (SAE) modules into frozen pretrained models.
STAN learns to encode task-specific adaptations through sparse activations within
the SAEs, thereby using sparse features as the mechanism for dynamic and robust
adaptation. Beyond the flexibility offered by input-dependent sparse combinations,
the large latent space of the SAEs provides scalable capacity for cross-domain
adaptation, while their inherent semantic decomposition structure supports more
interpretable representations. Through extensive experiments, we demonstrate that
STAN outperforms state-of-the-art PEFT baselines across a range of benchmarks,
while uniquely enabling inspection and analysis of the learned sparse activations.
Our findings position sparse adaptation as a promising new direction in PEFT,
advancing both the expressivity and interpretability of model adaptation.

1 INTRODUCTION

Large-scale pretrained models have demonstrated strong generalization across a wide range of
modalities, including language, vision, and multimodal tasks. Representative examples include large
language models (LLMs) (Bai et al., 2023; Brown et al., 2020; Guo et al., 2025), vision-language
models (VLMs) (Liu et al., 2023b), diffusion-based image generators (Ho et al., 2020; Rombach et al.,
2022), and large vision transformers (Dosovitskiy et al., 2020), which have achieved state-of-the-art
zero-shot and few-shot performance in a wide range of downstream tasks (Kojima et al., 2022). These
capabilities are largely attributed to pretraining on massive and heterogeneous datasets, enabling
models to internalize broad statistical regularities and encode diverse semantic knowledge. Despite
their versatility, adapting such large foundation models, often containing billions of parameters, to new
tasks or domains requires substantial computational resources and specialized expertise. Full model
fine-tuning typically requires extensive task-specific supervision, incurs significant computational
cost, and can lead to undesirable side effects such as catastrophic forgetting (Luo et al., 2023)
and memorization of sensitive data (Carlini et al., 2019). These challenges have motivated the
development of parameter-efficient fine-tuning (PEFT) methods (Houlsby et al., 2019; Hu et al.,
2022; Li & Liang, 2021; Xu et al., 2023), which aim to adapt models by modifying only a small
subset of parameters while maintaining performance.
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Among PEFT methods (Houlsby et al., 2019; Hu et al., 2022; Li & Liang, 2021; Xu et al., 2023),
Low-Rank Adaptation (LoRA) (Hu et al., 2022) has gained widespread adoption due to its simplicity
and strong empirical performance. By inserting trainable low-rank matrices into frozen pretrained
layers, LoRA enables efficient adaptation with minimal overhead, often achieving results comparable
to full model fine-tuning across a range of downstream tasks. However, LoRA’s adaptation mecha-
nism introduces several key limitations: (1) The low-rank feature space inherent in LoRA (Hu et al.,
2022) imposes structural rigidity, significantly limiting the model’s capacity for dynamic adaptation
to diverse data distributions (Wang & Zhao, 2025). This inflexibility hinders the alignment of adapted
features with the specific and evolving demands of heterogeneous tasks and data characteristics. (2)
The restricted dimensionality, often coupled with the emergence of dense and entangled representa-
tions, substantially constrains the model’s ability to generalize across distinct domains (Zhang et al.,
2025). The lack of clear separability in these compressed features diminishes the model’s capacity to
learn domain-specific nuances and adapt meaningfully in multi-domain or cross-distribution contexts.
(3) The inherent compression in LoRA’s mechanism reduces the interpretability of the learned
representations (Nijasure et al., 2025). This opacity makes it difficult to interpret the functional
roles of task-relevant features, limiting our ability to identify which components drive adaptation,
and thus posing a challenge to understanding model behaviors. These limitations collectively lead
to reduced adaptability, insufficient domain generalization, and limited capacity to revise, debug,
or exert fine-grained control over the adaptation process. In addition, the limited understanding of
model behavior (Chen et al., 2025) falls short of addressing the growing demand for interpretable

adaptation in large models – a need that has been increasingly emphasized in recent work (Mumuni
& Mumuni, 2025; Wang et al., 2025).
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Figure 1: Overview of STAN pipeline. x is the
dense forwarding and h denotes the adaptation
feature to the next layer. The layer block is a
frozen pretrained model layer. The neuron be-
tween the Encoder and Decoder is latent feature,
and only the topK activations (orange) are passed
to the decoder, while the rest are masked out.

To address the gap above, we propose a shift
from low-rank compression to sparse adaptation

– a framework grounded in sparse feature learn-
ing (Cunningham et al., 2023; Olshausen & Field,
1997). Rather than encoding adaptation into rigid,
dense, and polysemantic subspaces, STAN seeks
to dynamically activate a sparse subset of high-
dimensional, disentangled features that more di-
rectly reflect task-specific changes in model be-
havior. Sparse Autoencoders (SAEs) (Cunning-
ham et al., 2023; Makhzani & Frey, 2013) pro-
vide a natural mechanism for this goal, enabling
models to learn robust representations with spar-
sity constraints that promote structure separabil-
ity and semantic decoupling. Furthermore, the
broad representation capacity and the sparsity
rendered by SAEs can provide the adaptation
with more selection combinations, which not only
enhances the dynamics of fine-tuning but also
strengthens the model’s ability to generalize across diverse domains.

We instantiate this framework with STAN (Sparse adapTAtioN), a new PEFT method designed to
enhance the efficiency and dynamics of adaptation, expand the overall representational capacity,
and enable flexible, scalable adaptation with improved interpretability. Rather than projecting into
low-rank dense subspaces, STAN integrates lightweight SAE modules into selected layers of a frozen
pretrained model. These modules encode adaptation signals using sparsely activated high-dimensional
features, offering a richer representational space with only modest overhead addition. STAN achieves
adaptation efficiency comparable to LoRA while enabling more scale feasible feature space selection
and more broad representation capacity over the adaptation process, facilitating the adaptation process
to capture the diverse decomposed information in multi-space combination. We validate STAN across
a diverse range of tasks and architectures, demonstrating that it achieves competitive performance
with strong PEFT baselines. Moreover, besides the reasoning tasks, we extend STAN to diffusion-
based generative models (Ho et al., 2020; Rombach et al., 2022), where we show that the learned
sparse features support qualitative and quantitative analysis, enabling structured interventions such
as multi-style alignment and interpretability with disentangled features. An overview of STAN’s
architecture is provided in Figure 1. We summarize our main contributions as follows:
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• We introduce STAN, a novel PEFT method that instantiates the Sparse Adaptation paradigm
using Sparse Autoencoders, offering a conceptually distinct alternative to low-rank adapta-
tion methods such as LoRA, and enabling a more dynamic and flexible fine-tuning process.

• We demonstrate the effectiveness of STAN across a range of tasks and model architectures
spanning multiple modalities, showing that it achieves performance superior to state-of-the-
art baselines. Empirical analysis further reveals that STAN retains adaptation stability while
improving the dynamics of the fine-tuning process through the aid of sparsity.

• We extend STAN to a state-of-the-art diffusion-based generative model (Rombach et al.,
2022) in the context of a style alignment task, showcasing its versatility and further high-
lighting its large representational capacity to capture and isolate diverse styles. We aim to
enhance interpretability by dynamically decomposing dense features into sparse, disentan-
gled components. By understanding the semantics of each component and their interactions,
we hope to be able to reason about the behavior of the entire adaptation mechanism.

2 RELATED WORK

Parameter-Efficient Fine-Tuning Methods. Parameter-Efficient Fine-Tuning has emerged as
an effective strategy for adapting large pretrained models to downstream tasks through dedicated
modifications (Houlsby et al., 2019). Rather than updating all model parameters, PEFT focuses
on adjusting a small subset, significantly reducing computational and data requirements. PEFT
methods can be broadly categorized into three classes (Prottasha et al., 2025): prompt tuning, adapter
modules, and low-rank decomposition adaptation methods: (i) prompt tuning (Lester et al., 2021; Liu
et al., 2023b; 2024a; Shen et al., 2024a) steers the model outputs by optimizing either continuous
or discrete prompts while keeping the backbone frozen. These prompts are typically injected into
the input or intermediate layers and act as virtual tokens that guide the model’s predictions. A
prominent example is Prefix-Tuning (Li & Liang, 2021), which prepends trainable vectors into the
attention mechanism, enabling effective task adaptation with minimal parameter updates; (ii) Adapter
modules (Houlsby et al., 2019; He et al., 2021; Hu et al., 2023) introduce additional lightweight
layers within pretrained architectures. These modules are often structured as bottlenecks, comprising
a down-projection, non-linear activation, and an up-projection, allowing the core model to remain
untouched. AdapterHub (Pfeiffer et al., 2020) exemplifies this modularity, supporting plug-and-play
adapters across tasks; (iii) Low-rank decomposition adaptation methods (Hu et al., 2022; Liu et al.,
2023c; Tian et al., 2024; Xia et al., 2024) take a different approach by approximating weight updates
using low-rank matrices. LoRA (Hu et al., 2022) is the canonical method, freezes the base model and
injects trainable low-rank matrices into specific layers. Several extensions have since been proposed:
AdaLoRA (Zhang et al., 2023) dynamically allocates parameter budgets based on learned importance
scores; SoRA (Ding et al., 2023) modulates the intrinsic rank during fine-tuning through proximal
gradient-based gating; and HydraLoRA (Tian et al., 2024) introduces an asymmetric architecture that
removes the need for task-specific tuning expertise in complex scenarios. Other works like (He et al.,
2023a; Zhang et al., 2024b; Fu et al., 2022; Shen et al., 2024b), they focus on selecting or sparsifying
subsets of existing parameters rather than learning sparse latent features.

Despite their efficiency, current PEFT approaches, whether using auxiliary modules as in prompt
tuning and adapters, or low-rank approximations as in LoRA, share a common drawback: they
encode adaptations in dense and entangled representations. This results in insufficient dynamics
during the fine-tuning process, constrained representational capacity for multi-domain adaptation, and
limited interpretability. As a result, there is growing interest in developing advanced PEFT methods
that retain strong adaptation performance while introducing structured sparsity, with the goal of
enhancing fine-tuning dynamics, representational flexibility, and interpretability.

Sparse Autoencoder. Sparse autoencoders (SAEs) (Ng et al., 2011; Makhzani & Frey, 2013)
provide a scalable, unsupervised framework for learning compact and disentangled representations
by imposing sparsity constraints on hidden activations. This methodology has recently gained
substantial attention for its ability to enhance the interpretability of foundation models, including
large language models (LLMs) (Cunningham et al., 2023; Templeton et al., 2024), vision-language
models (VLMs) (Zhang et al., 2024a), and CLIP-style architectures (Lim et al., 2024). A core idea
of SAEs lies in learning to reconstruct inputs using a sparse set of features in a higher-dimensional
space, effectively disentangling superposed features (Bricken et al., 2023; Shi et al., 2025).
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Specifically, given a data input x → Rn, encoder E → Rl→n, and decoder D → Rn→l, the autoencoding
process of a topk SAE (Gao et al., 2024) can be formulated as:

zk := topk(Ex), x̂ := Dzk,

where topk(·) selects the top k (k ↑ l) largest elements of the input and zeroes out the remaining
values. This enforced sparsity constraint facilitates the emergence of semantically meaningful
representations zk, effectively disentangling the complex, superposed features within large models.

Alongside interpretability, the potential of SAEs in other areas has also been explored. In efficiency
optimization, SAEs demonstrate remarkable versatility by addressing both retrieval and computational
constraints through sparse coding. Recent works (Kim et al., 2024; Wen et al., 2025) exemplify
this capability: the former optimizes the tradeoff between retrieval accuracy and efficiency through
sparse contrastive learning and sparse matrix factorization, while the latter compresses LLM key-
value caches using universal dictionaries. These approaches transform dense, high-dimensional
representations into sparse, efficient formats that preserve essential information while largely reducing
computational overheads.

In the context of safety alignment and controllable generation in diffusion models (Cywiński &
Deja, 2025; Kim & Ghadiyaram, 2025; Shi et al., 2025; Surkov et al., 2024; Tian et al., 2025),
SAEs are implemented as zero-shot concept detectors, enabling precise identification of both desired
and undesired features during the generative process. By isolating specific semantic features in the
model’s latent space, SAEs facilitate targeted interventions while maintaining the overall quality
of generation. Although SAEs have been adapted to a wide range of tasks and domains, their
benefits have been largely overlooked in the context of PEFT. This presents a significant research
gap: integrating the representational capabilities of SAEs with PEFT techniques can not only expand
the adaptation space, but also enable more flexible feature selection and improve interpretability.
In addition, the sparse structure of SAEs introduces greater dynamism into the adaptation process,
mitigating the rigidity typically associated with the low-rank spaces.

3 METHODOLOGY

Background. Parameter-efficient fine-tuning has become a key paradigm for adapting large-scale
pretrained foundation models to downstream tasks without incurring the full computational cost of
end-to-end fine-tuning (Xu et al., 2023). Among various PEFT methods, LoRA (Hu et al., 2022) has
emerged as one of the most widely used due to its simplicity and empirical effectiveness. Instead of
modifying the original weights directly, LoRA introduces a low-rank trainable update that captures
task-specific information.

Specifically, given a layer with a pretrained weight matrix W0 → Rm→n, LoRA models the task-
specific adaptation as a low-rank update to the weights:

!W =
ω

r
BA, (1)

where A → Rr→n and B → Rm→r are low-rank matrices with r ↑ min(m,n), and ω is a scaling
factor. The forward pass through the adapted layer, receiving input x → Rn and producing output
h → Rm, is then modified as follows:

h = W0x+!Wx. (2)

Here, W0 remains frozen, and only the components representing !W are updated during training.
The core idea of LoRA lies in constraining the update matrix !W to possess a low intrinsic rank,
denoted by r. While this low-rank adaptation strategy is highly effective in terms of performance
and efficiency, compression of the task adaptation into dense, low-dimensional subspace defined by
matrices A and B inherently leads to the entanglement of potentially distinct underlying concepts,
posing significant challenges for interpretability and mechanistic understanding of learned adaptation.

However, while effective, LoRA has inherent limitations rooted in its architectural constraints. The
low-rank structure of the matrices A and B severely restricts the representation capacity of the
model (Wang & Zhao, 2025; Zhang et al., 2025), and the compression nature of LoRA reduces its
ability to capture dynamic patterns during parameter updates. This lack of adaptability may lead
to information obfuscation and hinders the model’s capacity to generalize across heterogeneous or
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multidisciplinary domains. Furthermore, prior studies (Ding et al., 2023; He et al., 2025; Liu et al.,
2023c; Mao et al., 2025; Zhang et al., 2023) have noted that compressing adaptations into a rigid
low-rank subspace can result in a representational bottleneck, limiting the expressivity required for
complex task-specific transformations. In addition, the dense structure of the low-rank projections
often entangles distinct adaptation features, making it difficult to assign functional meaning to
individual components within the update matrix !W . These limitations underscore the necessity
for a new PEFT paradigm that enables more adaptive and flexible representations while enabling
dynamic, structured, and interpretable adaptation.

3.1 SPARSE ADAPTATION

To this end, we propose STAN, a high-dimensional, dynamic sparse adaptation framework, inspired
by Sparse Autoencoders (Cunningham et al., 2023). It is designed to provide broader representational
capacity and dynamic feature selection throughout the adaptation process. By introducing sparsity,
STAN enhances the dynamics of the adaptation process, equipping the model with the capability to
generalize across multiple domains and offering improved potential for interpretability.

Similar to LoRA, STAN modifies the forward pass by adding a learned adaptation !Wx to the
frozen pretrained output W0x, as in Eq. 2, but changes how this adaptation is computed. Specifically,
STAN introduces an encoder matrix E → Rl→n and a decoder matrix D → Rm→l, where l defines the
dimension of a high-dimensional latent space. The input x is first projected into this space via E, and
sparsity is enforced using a topk operator that selects only the top k activations, zeroing out the rest.
The sparse code is then decoded by D to produce the adaptation signal:

!Wx =
1

k
D · topk(Ex). (3)

The complete forward pass becomes:

h = W0x+
1

k
D · topk(Ex), (4)

where k ↑ l is a sparsity-controlling hyperparameter. Only E and D are updated during training,
while W0 remains frozen.

3.2 STAN AS A NON-LINEAR COMBINATION OF SUBSPACES

A key distinction between STAN and LoRA lies in the fact that STAN’s adaptation !Wx is
a nonlinear, input-dependent function. This nonlinearity stems from the topk operator, which
dynamically selects a different subset of latent dimensions depending on x.

Let I(x) ↓ 1, . . . , l denote the indices of the top-k activations for a given input x. We define an
input-dependent selection matrix S(x) → 0, 1l→l as a diagonal matrix with S(x)ii = 1 if i → I(x) and
0 otherwise. This allows the sparsity operation to be expressed as topk(Ax) = S(x)Ax. Substituting
into Equation 3 yields:

!Wx = DS(x)Ex. (5)
Equivalently, let EI(x) → Rk→n denote the submatrix of E consisting of the rows indexed by I(x),
and let DI(x) → Rm→k denote the submatrix of D consisting of the corresponding columns. Then,
for a given input x, the adaptation is equivalent to a projection onto a k-dimensional subspace defined
by the selected latent features:

!Wx = DI(x)EI(x)x. (6)
Since the index set I(x) varies with the input x, STAN effectively operates over a mixture of input-
dependent k-dimensional subspaces, each spanned by a distinct subset of the l-dimensional latent
feature space. The topk operator functions as a dynamic, non-linear router, selecting the most relevant
features for each input. This mechanism enables STAN to model a richer class of adaptation functions
than LoRA, which is confined to a single, fixed low-rank subspace. By dynamically composing basis
vectors from a larger representational space, STAN offers greater expressivity while maintaining
sparsity. Furthermore, in contrast to LoRA, where increasing the rank results in an exponential growth
in trainable parameters, the large representational capacity offered by STAN allows for flexible scaling

of feature selection without increasing the overall number of training parameters. For more discussion
with related methods, see Appendix B.
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In summary, the core of STAN is to leverage a non-linear, input-dependent sparse activation mecha-
nism within a high-dimensional latent space to dynamically compose multiple adaptation subspaces,
aiming for both representational flexibility and interpretability through sparsity. For more comprehen-
sive discussion towards the interpretability and identifiability of STAN, please refer to Appendix A.

Model Method Accuracy ↔ Matthew’s Corr. ↔
MNLI SST-2 QNLI QQP CoLA

RoBERTa-base

LoRA 0.8514 0.9177 0.9177 0.8627 0.5981
AdaLoRA 0.8429 0.9358 0.9225 0.8812 0.6132

SoRA 0.7657 0.9220 0.8380 0.8420 0.5485
STAN (Ours) 0.9303 0.9495 0.9408 0.9242 0.6191

RoBERTa-large

LoRA 0.8812 0.9553 0.9131 0.8842 0.6749
AdaLoRA 0.8857 0.9472 0.9400 0.8883 0.6314

SoRA 0.8769 0.9280 0.4860 0.8450 0.3470
STAN (Ours) 0.8919 0.9610 0.9489 0.8957 0.7400

DeBERTaV3-base

LoRA 0.8857 0.9438 0.9371 0.9163 0.6729
AdaLoRA 0.8637 0.9553 0.9440 0.8952 0.6864

SoRA 0.8095 0.9564 0.9322 0.8540 0.6698
STAN (Ours) 0.8974 0.9622 0.9477 0.9230 0.6904

DeBERTaV3-large

LoRA 0.8879 0.9599 0.9503 0.8923 0.7237
AdaLoRA 0.9021 0.9587 0.9552 0.8899 0.7008

SoRA 0.9056 0.9370 0.9440 0.8640 0.6829
STAN (Ours) 0.9145 0.9622 0.9590 0.9058 0.7528

Table 1: Performance comparison on language understanding tasks across four large pretrained
language models using five tasks from the GLUE benchmark. ↔ indicates that higher values are better.
The best results are highlighted in bold .

Method QNLI MNLI SST-2 QQP MRPC RTE STSB
LoRA 0.9371 0.8857 0.9438 0.9163 0.8995 0.8520 0.9160

AdaLoRA 0.9440 0.8637 0.9553 0.8952 0.9069 0.8736 0.9163
SoRA 0.9322 0.8095 0.9564 0.8540 0.8734 0.8777 0.9222
PiSSA 0.9443 0.8729 0.9621 0.9230 0.9150 0.8869 0.9200
BOFT 0.9423 0.9025 0.9644 0.9210 0.9016 0.8881 0.9192

SVFT(P) 0.9427 0.8969 0.9541 0.9016 0.8877 0.8724 0.9180
SVFT(R) 0.9390 0.8805 0.9002 0.9150 0.8899 0.8809 0.9173

VeRA 0.9324 0.8993 0.9553 0.9040 0.8794 0.8700 0.8871
LoRA-XS 0.8475 0.7802 0.9243 0.8038 0.8132 0.8065 0.8231
LS-LoRA 0.9235 0.8736 0.9427 0.8757 0.8382 0.6751 0.8767
LoRETTA 0.9325 0.8680 0.9553 0.8920 0.8873 0.7581 0.9066

STAN (Ours) 0.9477 0.8974 0.9622 0.9230 0.9166 0.9114 0.9277

Table 2: Results with DeBERTaV3-base across more baseline methods. The best results are high-
lighted in bold , and the second best results are underlined . All are measured by accuracy.

4 EXPERIMENTS

In this section, we conduct a series of experiments to validate the effectiveness of our proposed
method, STAN. In Section 4.1, we evaluate its task performance across a range of benchmarks
and model architectures, comparing it against state-of-the-art and representative PEFT methods to
demonstrate its efficacy. In Section 4.2, we further explore the applicability of STAN to the Stable
Diffusion 3 (SD3) model by fine-tuning it on a style alignment task, assessing its impact on both
generation quality and adaptation flexibility. We also present qualitative visualizations that highlight
the disentangled features learned by STAN, offering insight into its representational behavior. And
we place more experiments related to interpretability in Appendix H. Finally, Section 4.3 presents
ablation studies examining the role of sparsity levels and their influence on both performance and
representation quality and in Section 4.4 we studies about the catastrophic forgetting phenomena
comparing to LoRA. Appendix D analyzes the training dynamics and convergence behavior of STAN,
focusing on its stability and efficiency during fine-tuning. All results are reproduced by us in a unified
training environment using official implementations.
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Dataset LLaVA-1.5-7B LLaVA-1.5-13B LLaVA-1.6-Vicuna-13B
LoRA STAN (Ours) LoRA STAN (Ours) LoRA STAN (Ours)

GQA 80.60 82.36 81.49 83.16 82.29 83.77
ScienceQA 89.17 90.25 91.34 92.96 92.06 92.49

Table 3: Performance comparison on multimodal (vision-language) tasks across three LLaVA model
variants using the GQA and ScienceQA benchmarks. The best results are highlighted in bold .

Method GSM8K MATH Avg.
LoRA 60.6 10.8 35.7
PiSSA 58.2 10.4 34.3

STAN (Ours) 60.7 11.6 36.15

Table 4: Performance on math & code bench-
marks on LLaMA-2-7B. Best is in bold .

Method VizWiz POPE MMBench Avg.
LoRA 0.5021 0.8549 0.5403 0.6324

STAN (Ours) 0.5109 0.8611 0.5416 0.6379

Table 5: Performance on multimodal benchmarks on LLaVA-
1.5-7B. The best results are highlighted in bold .

4.1 QUANTITATIVE COMPARISON

In this section, we compare our method against baseline approaches on single-modality (language),
reasoning (math & code) and multi-modality (vision-language) benchmarks to demonstrate the
validity and advantages of STAN. For language tasks, we compare STAN with LoRA (Hu et al.,
2022), AdaLoRA (Zhang et al., 2023), and SoRA (Ding et al., 2023), using four pretrained large
language models: RoBERTa-base/large (Liu et al., 2019) and DeBERTaV3-base/large (He et al.,
2023b). These models are evaluated on five tasks from the GLUE benchmark (Wang et al., 2018).
We report accuracy for MNLI, SST-2, QNLI, and QQP, and use Matthew’s correlation for CoLA.
Further, we present a more comprehensive comparison experiment with wider range of baseline
methods (Hu et al., 2022; Zhang et al., 2023; Ding et al., 2023; Meng et al., 2024; Liu et al., 2023d;
Lingam et al., 2024; Kopiczko et al., 2023; Ba!azy et al., 2024; He et al., 2022; Yang et al., 2024) on
DeBERTaV3-base (He et al., 2023b) with GLUE benchmark (Wang et al., 2018). The results are
summarized in Table 1 and Table 2. For multimodal tasks, we evaluate STAN against LoRA on three
variants of the LLaVA model (Liu et al., 2023a), using the GQA (Hudson & Manning, 2019) and
ScienceQA (Lu et al., 2022) benchmarks. Moreover, we compare STAN against LoRA using more
complex benchmarks, VizWiz (Gurari et al., 2018), POPE (Li et al., 2023) and MMBench (Liu et al.,
2024b), on LLaVA-1.5-7b (Liu et al., 2023a), to further demonstrate the robustness of our method. All
benchmarks are evaluated using accuracy and the results are summarized in Table 3 and Table 5. As
for the reasoning task, we compare our STAN method with LoRA (Hu et al., 2022) and PiSSA (Meng
et al., 2024) on GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) benchmarks using
LLaMA-2-7B (Touvron et al., 2023). The results are shown on Table 4. Experimental settings and
runtime analysis are detailed in Appendix C.

As shown in the above Tables, the experimental results consistently demonstrate the superior perfor-
mance and stability of our proposed method across a diverse range of tasks and model architectures.
On language understanding benchmarks, STAN frequently achieves the highest scores across all
five datasets when applied to different models of varying sizes and structures, often outperforming
established PEFT methods by a noticeable margin. Notably, although SoRA (Ding et al., 2023) also
incorporates sparsity, it exhibits significant instability during fine-tuning, whereas STAN delivers
consistently strong performance (See more details in Appendix D). This pattern of performance
extends to reasoning and vision-language tasks, where STAN consistently outperforms other methods
across all benchmarks with different models. The consistent top-tier results across modalities, model
types, model scales, and benchmarks highlight not only the enhanced performance of STAN, but also
its robust stability and generalizability.

4.2 STYLE ALIGNMENT

In this section, we evaluate the capability of STAN to perform style alignment in the context of image
generation. Our experiments are conducted on Stable Diffusion 3 (SD3) (Rombach et al., 2022), with
a mixed dataset comprising images from WikiArt (Saleh & Elgammal, 2015) and the DualStyleGAN
dataset (Yang et al., 2022), offering a diverse range of artistic styles.

We compare the performance of three approaches: the pretrained SD3 model without any fine-tuning
(denoted as None), the SD3 model fine-tuned using LoRA, and the SD3 model fine-tuned using
our proposed STAN method. To quantitatively evaluate style alignment, we employ two metrics:
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None
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STAN

Abstract Cartoon Fantasy Illustration Realism Impression

Abstract Cartoon Fantasy Illustration Realism Impression

None

LoRA

STAN

Figure 2: Qualitative demonstration of style alignment results across different methods using SD3.
None denotes the pretrained model without fine-tuning.
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Figure 3: Qualitative demonstration of the sparse representations learned by STAN. (i) Distribution of
sparsely activated intermediate features across four distinct styles. (ii) Visualizations corresponding
to each style: (a) Cartoon, (b) Anime, (c) Rococo, and (d) Post Impressionism.

CLIP-Score (Radford et al., 2021) and DINO-Score (Caron et al., 2021), both of which measure
the semantic similarity between the generated image and the corresponding textual style prompt,
but rely on different pretrained vision-language models. As shown in Table 6, STAN achieves the
highest performance on both metrics, with a CLIP-Score of 0.6694 and a DINO-Score of 0.4283,
outperforming both the baseline and the LoRA-fine-tuned variant.

Methods CLIP-Score↔
None 0.5572
LoRA 0.6509

STAN (Ours) 0.6694
Methods DINO-Score↔

None 0.3383
LoRA 0.4142

STAN (Ours) 0.4283

Table 6: Quantitative compari-
son of style alignment results
using SD3. Best in bold .

To ensure that the observed quantitative improvements are also
perceptually meaningful, we conducted an additional human user
study focusing on both style alignment fidelity and overall visual
quality in the SD3 experiments. We randomly sampled 20 distinct
style prompts, and for each prompt, participants were presented with
three images generated by the None, LoRA, and STAN methods
with randomized orders. Users were asked to answer the question:
Which image best matches the target style and has the highest overall
visual quality?

The aggregated win rates, detailed in Table 7, strongly corroborate
the preceding CLIP and DINO scores. STAN is preferred in over
90% of the comparisons, demonstrating a significant superiority
in both style alignment and perceived image quality over the pretrained baseline and the LoRA-
finetuned model. These results validate that the performance gains achieved by STAN are not merely
numerical artifacts but translate to substantial enhancements in the human perception of the generated
content. Combined with the disentanglement analysis in our style experiments, these findings further
strengthen the claim that STAN learns disentangled, style-specific sparse features, supporting more
precise and controllable generation.
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Method Wins Total Win Rate (%)
None 6 501 1.20
LoRA 39 501 7.78
Ours 456 501 91.02

Table 7: Human Evaluation
of Style Alignment and Im-
age Quality.

The superior quantitative results of STAN are further supported by vi-
sual evidence, as illustrated in Figure 2. The sparse latent space induced
by STAN facilitates more effective disentanglement and encoding of
stylistic elements, enabling more accurate alignment with the intended
artistic styles. Visualizations show that the pretrained model often fails
to capture or render the specified styles, while LoRA improves align-
ment but may still result in stylistic confusion. For example, blending
characteristics of Realism and Impressionism, or generate inconsistent outputs in styles such as
Cartoon or Illustration. In contrast, images produced by the STAN-fine-tuned model exhibit the most
faithful and distinct adherence to the target styles, demonstrating its improved ability to isolate and
apply diverse artistic features. These results highlight not only the enhanced representational capacity
of STAN, but also its ability to decouple semantically similar yet stylistically distinct information.
Additional visual examples are provided in Appendix E.

Furthermore, to highlight disentangled features learned by STAN, we present a statistical analysis in
Figure 3. Part (i) illustrates activation frequency statistics of sparsely activated intermediate features
when the model is prompted with four distinct artistic styles, i.e., Cartoon, Anime, Rococo, and Post
Impressionism, using 300 generated samples per style. The y-axis represents log10 mean activation
value, and the x-axis indicates log10 activation frequency. Each point is colored according to its label
entropy, which reflects the degree of style specificity associated with that neuron: lower entropy
values indicate specialization (i.e., the neuron is primarily activated by one style), while higher
entropy suggests activation by a broader mix of styles. Details on the formulation of this analysis
can be found in Appendix F. Part (ii) presents corresponding visual examples, illustrating that the
images activating a given neuron are consistently aligned with its associated artistic style. The results
reveal that different styles tend to activate distinct, often non-overlapping, subsets of sparse latent
features. A small number of shared neurons appear to capture common generative priors, while the
majority remain style-specific. This separation in feature activations suggests that STAN is effectively
associating specific sparse components with semantically coherent stylistic concepts. Moreover, it
demonstrates the expressive capacity of subspace combinations in the sparse latent space. To better
demonstrate the interpretability of STAN, we did the similar experiments on the language task as
well. Please refer to Appendix H for more details.

Figure 4: Inter-
pretablity experi-
ment using LoRA.

We also conduct additional experiments where we apply LoRA under the
same setup and probe its latent directions using the same attribution and
activation-frequency analysis. As demonstrated in Figure 4, The dense low-
rank adaptations lead to more entangled features compared to STAN’s sparse
latent units, and we can not separate styles according to the middle features
like we did to STAN.

The ability of STAN to map these diverse styles to separable sparse feature
activations is a strong indication of its capacity for learning disentangled
features. Compared to LoRA, this broader representational capacity is essential
for achieving fine-grained control in generative modeling.

4.3 ABLATION STUDY

In this section, we conduct the ablations to investigate the impact of the TopK parameter along with
the middle latent dimension l on the performance of our STAN method. The evaluation is based
on accuracy on a subset of the MNLI dataset (Wang et al., 2018). We control the size of the latent
space using an expansion factor, which scales the dimensionality of the intermediate representation
by multiplying it with the input feature dimension. The TopK parameter controls the sparsity level by
selecting the K most active features in this latent space. In our experiments, we vary the expansion
factor across 1, 1.5, 2 and TopK across 1, 4, 8, 16, 32, 64, along with a setting denoted as n-latents,
where all intermediate features are retained (i.e., no sparsification is applied). The full results of the
ablation study are presented in Table 8.

As in Table 8, we can see a nuanced interplay between these two hyperparameters. For all three
expansion factors, accuracy peaks at K=8 or K=16, which indicates that as the latent space capacity
increases, a slightly larger number of active features might be beneficial, but it does not mean the
elevation of active feature size will bring the better performance.
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TopK Expansion Factor
1 1.5 2

1 0.8139 0.8088 0.8131
4 0.8158 0.8122 0.8149
8 0.8192 0.8206 0.8177

16 0.8171 0.8180 0.8213
32 0.8173 0.8170 0.8169
64 0.8162 0.8155 0.8161

n-latents 0.8158 0.8262 0.8286

Table 8: Ablation study on
expansion factor and TopK.
Best is in bold , and second
is in underlined .

Another finding emerges when comparing the sparse TopK config-
urations with the n-latents baseline. Even when the it configuration
utilizes a substantially larger, high-rank intermediate dimension,
with expansion factors equal to 1.5 and 2, achieving accuracies
of 0.8262 and 0.8286 respectively, STAN configurations with a
small TopK value can achieve remarkably comparable results. This
implies that a significant portion of the features within the larger,
unsparsified latent space may be redundant for the given task. The
superior performance of STAN with small K values, even when
the potential latent dimension is large, underscores the efficacy of
sparsity, it allows the model to achieve competitive results by iden-
tifying a compact set of the most salient features, thereby alleviating
the need for an excessively large number of active parameters and demonstrating that sparsity is a
sensible and efficient approach to parameter utilization.

4.4 CATASTROPHIC FORGETTING

To directly evaluate the catastrophic forgetting, we conducted additional bidirectional sequential
finetuning experiments on two tasks: SST-2 and MNLI. We perform sequential finetuning in two
directions: SST-2 → MNLI: Finetune using STAN on SST-2 first, then continue training on MNLI
while monitoring SST-2 accuracy. MNLI → SST-2: Finetune on MNLI, then finetune on SST-2 while
monitoring MNLI accuracy. This setup directly measures forgetting of the first task during learning
of the second. Table 9 demonstrates the experiment results.

method Accuracy (%) at Epoch
1 5 10 15 20

SST-2 85.00 84.03 82.83 81.62 80.41
MNLI 80.00 78.62 76.90 75.17 73.45

Table 9: Catastrophic forgetting study
using STAN. The first row is the accu-
racy change of SST-2 in SST-2 → MNLI
setting the the second row is the accuracy
change of MNLI in MNLI → SST-2.

We can see that for SST-2 → MNLI, only a 4.6-point drop
after 20 epochs, and for MNLI → SST-2, it’s a moderate
6.5-point decline. The retults indicate a very mild forget-
ting. We also performed LoRA based experiments utlizing
the same bidirection setting, its drop for SST-2 → MNLI
is 14.2 points after 20 epochs and for MNLI → SST-2 the
drop is 17.8 points. That is because STAN’s architecture
naturally mitigates forgetting due to (1) sparse latent ac-
tivations that localize task-specific updates, (2) minimal
interference across tasks, since only a small subset of neu-
rons is modified. (3) disentangled and interpretable features, allowing different tasks to occupy
different sparse subspaces. This is fundamentally different from LoRA’s dense low-rank updates,
which modify shared directions and are more prone to overwriting previous knowledge.

5 CONCLUSION AND FUTURE WORKS

In this paper, we introduced STAN, a novel parameter-efficient fine-tuning method designed to
support dynamic feature selection and address key limitations of existing methods – particularly the
restricted representational capacity inherent in low-rank adaptation paradigms such as LoRA. By
leveraging a sparse autoencoder architecture, STAN dynamically encodes task-specific adaptations
through a high-dimensional yet sparse set of features. This enables a more flexible and expressive
adaptation mechanism compared to rigid low-rank projections. For future work, STAN can be
extended to a broader range of tasks and modalities, including more complex reasoning and multi-
step decision-making settings. In addition, further direction can be explored, such as investigating
alternative sparsity-inducing mechanisms beyond the current TopK selection strategy. For the use of
large language models, please refer to Appendix I.

Ethics statement. We have adhered to the ICLR Code of Ethics. Our research primarily utilizes
publicly available datasets and pretrained models, and we do not foresee any direct negative societal
impacts or ethical concerns arising from our methodology.

Reproducibility statement. We are committed to ensuring the full reproducibility of our research.
To facilitate this, the complete source code to replicate experiments presented in this paper will be
made publicly available upon publication.
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Appendix to
The Chosen Few: Sparse Adaptation for Fine-Tuning Large

Models

section A Sufficient Conditions for STAN Interpretability and Identifiability.
section B More discussion on related methods.
section C Experimental Setting and Runtime Analysis.
section D Additional training loss comparisons.
section E Additional qualitative results for diffusion models.
section F Statistical analysis of sparse latent representations.
section G More visualizations for different STAN injections.
section H Interpreting Disentangled Features in LLM.
section I The Use of Large Language Models.

A SUFFICIENT CONDITIONS FOR STAN INTERPRETABILITY AND
IDENTIFIABILITY

Notation. Let E → Rl→n and D → Rm→l. For any input x → Rn, define

z(x) := Ex, I(x) := Tk

(
|z(x)|

)
, S(x)ii = {i → I(x)}. (7)

The STAN adaptation operator and output are

A(x) := DS(x)E, !W x = A(x)x. (8)

For a standard basis vector ep with p → [n], write |(Eep)i| for the singleton response at latent row i.

Assumptions used below. They are sufficient, not necessary.

1. Singleton margin:

iω(p) := argmax
i↑[l]

|(Eep)i|, εp := |(Eep)iω(p)|↗ max
j ↓=iω(p)

|(Eep)j | > 0 for all p → [n]. (9)

2. Blockwise identity on singletons:

D{iω(p)} E{iω(p)} ep = ep for all p → [n]. (10)

3. Row orthonormality for identifiability:

EE↔ = Il. (11)
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Theorem 1. Singleton exact recovery implies monosemanticity. Under Assumptions 1 and 2, for
every p → [n] and every ω > 0,

iω(p) → I(ωep), (12)
!W (ωep) = DS(ωep)E (ωep) = D{iω(p)} E{iω(p)} (ωep) = ωep. (13)

Moreover, for any x with p /→ supp(x), one has iω(p) /→ I(x), hence latent iω(p) is monosemantic
for coordinate p.

Proof. One line. Since εp > 0, Top - k on |E(ωep)| selects iω(p); substituting the blockwise identity
yields the claim.

Theorem 2. Identifiability up to permutation and positive scaling. Assume Assumptions 1 and
2 for all p → [n], and also assume Assumption 3. If another parameter pair (D̃, Ẽ) satisfies the same
singleton conditions, then there exist a permutation matrix P and a positive diagonal matrix ” such
that

Ẽ = ”P E, D̃ = DP↔ ”↗1. (14)
In particular, the set of singleton carriers {iω(p) : p → [n]} is unique up to permutation and positive
rescaling, which means STAN is identifiable modulo permutation and scale.

Remark. The three assumptions above describe a sufficient regime for interpretability and identifia-
bility. They can be checked post hoc by inspecting singleton margins, testing the singleton blockwise
identity, and measuring ↘EE↔ ↗ Il↘F .

B MORE DISCUSSION ON RELATED METHODS

In this section, we differentiate our proposed STAN from other proposed PEFT methods, including
AdaLoRA (Zhang et al., 2023), and SoRA (Ding et al., 2023).

• AdaLoRA (Zhang et al., 2023):
AdaLoRA parameterizes the weight update in an SVD-like form !W = P”Q, where ” contains
trainable singular values that are adaptively pruned based on sensitivity scores. This allows the
model to adjust the effective rank of the update matrix during training:

W = W (0) +!W = W (0) + P”Q, (15)

In contrast, our STAN operates in a high-dimensional latent space and performs adaptation by
dynamically selecting a sparse subset of features for each input using the non-linear topk operator,
rather than adjusting the overall rank during training. While AdaLoRA seeks a low-rank approxima-
tion constrained by a parameter budget, STAN focuses on sparse, input-dependent feature selection.
As a result, STAN enables a more flexible and adaptive mechanism, whereas AdaLoRA offers a
more static and structured approach.

• SoRA (Ding et al., 2023):
SoRA extends the standard LoRA decomposition by introducing a learnable sparse gating vector
g → Rrmax between the down- and up-projection matrices. This gating mechanism allows the
model to adaptively select its effective rank during training. Given an input feature x → Rq, the
forward pass of a single SoRA block is defined as:

z = Wu

(
g ≃ (Wdx)

)
, (16)

where Wd → Rrmax→q and Wu → Rp→rmax are the projection matrices and ≃ denotes element-
wise multiplication. The gating is regularized toward sparsity through a proximal-gradient soft-
thresholding update:

g t+1 = Tεtϑ

(
g t ↗ ϑt⇐gL0(!

t)
)
, Tϖ(x) =






x↗ ϖ, x > ϖ,

0, |x| ⇒ ϖ,

x+ ϖ, x < ↗ϖ,

(17)

where L0 is the original task loss, ϑt is the learning rate, and ϱ controls sparsity.
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SoRA performs static, global pruning of entire rank components. In contrast, STAN adopts a
dynamic, input-dependent feature selection mechanism using the topk operator, activating different
k-dimensional subspaces for different inputs without permanently pruning features during training.
This design offers greater flexibility while maintaining training stability, as evidenced by the results
shown in Figure 7.

• LS-LoRA (He et al., 2022):
While both methods leverage sparsity, they are fundamentally different in their approach and
philosophy. LS-LoRA employs a static pruning strategy, using an algorithm like SNIP to remove
a fixed set of weights once at initialization. Consequently, its sparse pattern is predetermined
and remains unchanged throughout the entire training process. In contrast, STAN operates on
the principle of dynamic feature selection. Its sparsity is not static but is instead flexible and
input-dependent, emerging from the data representations during training. This core difference
reflects their distinct goals: LS-LoRA focuses on effective compression, whereas STAN is designed
for conceptual decomposition and representation selection, allowing the model to dynamically
activate features relevant to a given input.

C EXPERIMENTAL SETTING AND RUNTIME ANALYSIS

In this section, we perform a runtime analysis and detail the experimental settings used throughout our
evaluations, spanning three task categories: (1) natural language understanding, (2) vision-language
reasoning, and (3) text-to-image generation.

C.1 RUNTIME ANALYSIS

To provide a comprehensive evaluation of STAN’s practical efficiency, we analyze its performance in
terms of both training throughput and inference latency.

First, we compare STAN against other adaptive sparse fine-tuning methods, namely AdaLoRA and
SoRA, under the same experimental settings: 3 epochs toy training for SST-2 dataset with 1 A100
GPU with batch size equals to 32 and sequence length equals to 256 on RoBERTa-base. The results,
presented in Table 10, demonstrate that STAN achieves superior training throughput compared to both
baselines. For instance, it processes nearly 50% more tokens per second than AdaLoRA. Crucially,
this training acceleration is achieved while maintaining an inference latency that is on par with these
methods, showcasing its superior training efficiency without compromising inference speed.

Method Inference Latency (ms) Train Tokens/sec GPU-hours (3 ep)
STAN 23.16 19815 0.01
AdaLoRA 23.29 13721 0.01
SoRA 25.17 14451 0.015

Table 10: Efficiency comparison with adaptive sparse methods AdaLoRA and SoRA. STAN shows
significantly higher training throughput while maintaining comparable inference latency.

Method Avg. Inference
Latency/sample (s) Train Tokens/sec GPU-hours (3 ep) Peak GPU

Memory (GB)
STAN 0.419 2359.42 0.01 39.62
LoRA 0.404 1533.81 0.02 33.53

Table 11: Efficiency comparison with LoRA on the LLaVA-1.5-13B model. STAN demonstrates
superior training efficiency with only a minor trade-off in peak memory.

To further assess the scalability and practical benefits of our approach, we conduct an additional
experiment on a larger model, LLaVA-1.5-13B, comparing STAN directly with the widely-used
LoRA. As detailed in Table 11, STAN maintains a significant advantage in training efficiency over
LoRA even on this larger scale. Specifically, STAN achieves a higher training throughput and requires
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approximately half the GPU-hours to complete the same training task. While inference latency is
comparable to LoRA, STAN incurs only a modest increase in peak GPU memory usage.

To provide a rigorous evaluation of the trade-off between computational cost and task performance,
we visualize the training trajectories of STAN against baselines.

Figure 5: Cost-Performance curve on
LLaMA-3-8B.

Figure 6: Robustness analysis across parame-
ter budgets on SST-2.

As illustrated in Figure 5, on the large-scale LLaMA-3-8B benchmark, STAN exhibits superior
convergence dynamics. It achieves a significantly higher peak accuracy of 84.0% while requiring
less total wall-clock training time (21.96 GPU hours) compared to LoRA (80.7% accuracy in 22.67
hours) and AdaLoRA. This empirical evidence highlights that the sparse high-dimensional features in
STAN facilitate faster learning of task-relevant concepts, effectively offsetting the storage overhead.

Furthermore, Figure 6 investigates the method’s robustness under varying parameter budgets. We
observe distinct trends in runtime cost: increasing the Expansion Factor (which scales total trainable
parameters) leads to a proportional increase in GPU hours (shifting curves to the right), while increas-
ing K introduces a minor additional sorting overhead. Despite these variations in computational cost,
STAN maintains consistently high performance across different configurations. Notably, efficient
settings with lower Expansion Factors (e.g., 1.0) yield optimal accuracy with minimal runtime,
confirming that the performance gains stem from the sparse adaptation mechanism itself rather than
mere parameter scaling.

C.2 NATURAL LANGUAGE UNDERSTANDING

Models and Benchmarks. We evaluate on five representative tasks from the GLUE bench-
mark (Wang et al., 2018): MNLI, QNLI, SST-2, CoLA, and QQP. For each task, we follow the
official train/test splits. Our experiments are conducted using four pretrained language models:
RoBERTa-base, RoBERTa-large(Liu et al., 2019), DeBERTaV3-base, and DeBERTaV3-large(He
et al., 2023b).

We attribute this compelling performance profile to our design. On large-scale models, the benefits
of our dynamic sparsity for accelerating training become more pronounced. During inference, the
substantial computational overhead of the base model itself diminishes the relative impact of the
small overhead introduced by STAN’s mechanism. These results underscore STAN’s scalability and
its practical advantages in large-model scenarios, making it a strong choice for efficient fine-tuning
and deployment.

Implementation Details. During fine-tuning, we apply a weight decay of 0.1 and set the warmup
ratio to 0.06. Optimization is performed using the AdamW optimizer with a linear learning rate
scheduler. All experiments are conducted with a fixed random seed of 0 for reproducibility. The
detailed training hyperparameters for all methods are summarized in Table 12.
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Method Model Epochs Batch Size LR r / k ω Lambda Lambda2

AdaLoRA

RoBERTa-base 15 32 5e-4 2 32 – –
RoBERTa-large 15 32 5e-4 2 32 – –

DeBERTaV3-base 15 32 5e-4 2 32 – –
DeBERTaV3-large 15 32 5e-4 2 32 – –

SORA

RoBERTa-base 15 32 8e-4 8 16 10 3e-4
RoBERTa-large 15 32 8e-4 8 16 10 3e-4

DeBERTaV3-base 15 32 8e-4 8 16 10 3e-4
DeBERTaV3-large 15 32 8e-4 8 16 10 3e-4

LoRA

RoBERTa-base 15 32 5e-4 8 16 – –
RoBERTa-large 15 32 5e-4 8 16 – –

DeBERTaV3-base 15 32 5e-4 8 16 – –
DeBERTaV3-large 15 32 5e-4 8 16 – –

STAN (Ours)

RoBERTa-base 15 32 5e-4 8 – – –
RoBERTa-large 15 32 5e-4 8 – – –

DeBERTaV3-base 15 32 5e-4 8 – – –
DeBERTaV3-large 15 32 5e-4 8 – – –

Table 12: Summary of training hyperparameters used for each method and backbone model. Parame-
ters not applicable to a given method are indicated with -.

C.3 VISION-LANGUAGE REASONING

Models and Benchmarks. We conduct our experiments using three versions of the LLaVA (Liu
et al., 2023a) model: LLaVA 1.5 7B, LLaVA 1.5 13B, and LLaVA 1.6 Vicuna 13B. We fine-tune
these models on two benchmarks, GQA (Hudson & Manning, 2019) and ScienceQA (Lu et al., 2022),
for each task we follow the official train/test splits provided.

Implementation Details. For fine-tuning the LLaVA models, we use the LLaVA 1.5 13B check-
point equipped with the CLIP-ViT-L/14-336 vision encoder and an MLP-based projector. Training
is conducted using DeepSpeed ZeRO-3 for efficient large-scale optimization. Detailed training
hyperparameters for all LLaVA models and methods are provided in Table 13.

Method Model Epochs Batch Size LR r / k ω Num Latents Warmup Ratio

LoRA
LLaVA 1.5 7B 15 16 2e-4 128 256 – 0.03

LLaVA 1.5 13B 15 16 2e-4 128 256 – 0.03
LLaVA 1.6 Vicuna-13B 15 16 2e-4 128 256 – 0.03

STAN (Ours)
LLaVA 1.5 7B 15 16 2e-4 128 – 512 0.03

LLaVA 1.5 13B 15 16 2e-4 128 – 512 0.03
LLaVA 1.6 Vicuna-13B 15 16 2e-4 128 – 512 0.03

Table 13: Summary of training hyperparameters for each method and backbone model. Parameters
not applicable to a given method are indicated with -.

C.4 TEXT-TO-IMAGE GENERATION

Models and Benchmarks. Experiments are conducted using the publicly available Stable Diffusion
3 (SD3) (Rombach et al., 2022) released by Stability AI, trained on a composite dataset comprising
images from WikiArt(Saleh & Elgammal, 2015) and the DualStyleGAN dataset(Yang et al., 2022).
The WikiArt dataset contains a broad collection of real-world artworks spanning diverse styles and
historical periods, while DualStyleGAN provides synthetically generated images with fine-grained,
diverse, controllable stylistic attributes.

Implementation Details. The training hyperparameters corresponding to all diffusion models and
methods are summarized in Table 14.
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Method Model Resolution Steps Batch Size Grad Accum. LR r / k ω Num Latents
LoRA SD3 1024 3000 1 1 4e-4 32 1 –

STAN (Ours) SD3 1024 3000 1 1 4e-4 96 – 512

Table 14: Summary of training hyperparameters for each method and backbone model. Parameters
not applicable to a given method are indicated with -.

D ADDITIONAL TRAINING LOSS COMPARISONS

Beyond performance, the stability of the fine-tuning process is a critical indicator of a PEFT method’s
robustness and reliability. As previously highlighted in Table 1, although methods such as SoRA (Ding
et al., 2023) incorporate sparsity, their practical utility is often limited by unstable training dynamics.

In this section, we present additional loss curves for comparison. Across all demonstrations, STAN
consistently exhibits stable convergence, whereas other methods display either significant oscillations
or fail to converge effectively. Notably, in some cases, the loss for SoRA and LoRA approaches
zero, suggesting potential overfitting during the fine-tuning process. This indicates a limitation
in representational capacity, highlighting the challenges of capturing task-relevant features under
constrained adaptation schemes.

To further investigate this, The following Figures present training loss curves on the different datasets
for STAN, compared against three other PEFT methods across different base models. Across all
model architectures, STAN exhibits remarkably stable and smooth convergence. The training loss
decreases consistently, without significant oscillations, and generally reaches or surpasses the final
loss values achieved by LoRA and AdaLoRA. In contrast, the loss curves for SoRA display notable
volatility and often plateau at higher values or even diverge – corroborating earlier observations of
its instability. This erratic behavior during training likely contributes to SoRA’s inconsistent and
sometimes suboptimal task performance. By comparison, the stable convergence of STAN not only
strengthens confidence in its training dynamics but also underpins the consistent, high performance
reported in prior sections. These findings suggest that STAN’s approach to sparse adaptation is
inherently more robust, making it a more reliable and effective choice for parameter-efficient fine-
tuning.

Figure 7: Training loss comparison on SST-2 using DeBERTaV3-base/large (He et al., 2023b). STAN
consistently achieves the lowest loss, demonstrating greater stability compared to other methods.
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Figure 8: Loss comparison on SST-2 using RoBERTa-base and RoBERTa-large (Liu et al., 2019).
STAN exhibits the lowest and most stable loss curve, while LoRA and AdaLoRA show smooth but
slightly higher loss trajectories. In contrast, SoRA demonstrates instability and fails to converge
effectively.

Figure 9: Loss comparison on QNLI using RoBERTa-base and RoBERTa-large (Liu et al., 2019).
STAN achieves the lowest and most stable loss curve. LoRA exhibits more oscillations and signs
of overfitting toward the end of training. In contrast, both AdaLoRA and SoRA show unstable
convergence and fail to reach optimal performance.

Figure 10: Loss comparison on QNLI using DeBERTaV3-base and DeBERTaV3-large (He et al.,
2023b). STAN achieves the lowest and most stable loss trajectory. LoRA exhibits greater oscillation
during training, while AdaLoRA shows signs of overfitting early on. SoRA remains unstable
throughout and also displays indications of overfitting.
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E ADDITIONAL QUALITATIVE RESULTS FOR DIFFUSION MODELS
In this section, we present additional images generated by SD3, fine-tuned using different methods
and conditioned on different prompts.

STYLE : abstract expressionism

CONTENT : ladies with watermelons

(a) STAN (b) LoRA (c) None

STYLE : anime
CONTENT : two students walking home after school in spring

(a) STAN (b) LoRA (c) None
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STYLE : baroque
CONTENT : women in robes

(a) STAN (b) LoRA (c) None

STYLE : cartoon
CONTENT : two kids building a time machine in a garage

(a) STAN (b) LoRA (c) None

STYLE : ecole de paris

CONTENT : portrait

(a) STAN (b) LoRA (c) None
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STYLE : expressionism
CONTENT : snowy ground

(a) STAN (b) LoRA (c) None

STYLE : fantasy
CONTENT : a castle carved into a cliff glowing with runes

(a) STAN (b) LoRA (c) None

STYLE : illustration
CONTENT : a rainy day with two friends playing chess

(a) STAN (b) LoRA (c) None
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STYLE : impasto
CONTENT : a village with twisted trees and stars overhead

(a) STAN (b) LoRA (c) None

STYLE : impressionism
CONTENT : woman in the gardon

(a) STAN (b) LoRA (c) None

STYLE : naive art primitivism

CONTENT : blue eyed flowers

(a) STAN (b) LoRA (c) None
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STYLE : neo impressionism

CONTENT : a women

(a) STAN (b) LoRA (c) None

STYLE : neoclassicism
CONTENT : two women

(a) STAN (b) LoRA (c) None

STYLE : post impressionism

CONTENT : a portrait of a man inside a frame

(a) STAN (b) LoRA (c) None
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STYLE : pre raphaelite brotherhood

CONTENT : three female figures{dancing and playing

(a) STAN (b) LoRA (c) None

STYLE : realism
CONTENT : a woman

(a) STAN (b) LoRA (c) None

STYLE : rococo
CONTENT : a man

(a) STAN (b) LoRA (c) None
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STYLE : romanticism
CONTENT : a woman and a white horse

(a) STAN (b) LoRA (c) None

STYLE : surrealism
CONTENT : blancs

(a) STAN (b) LoRA (c) None

STYLE : symbolism
CONTENT : st-anthony

(a) STAN (b) LoRA (c) None
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STYLE : ukiyoe
CONTENT : Mount Fuji behind blooming cherry trees

(a) STAN (b) LoRA (c) None
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F STATISTICAL ANALYSIS OF SPARSE LATENT REPRESENTATIONS

In this section, we conduct a statistical analysis of the sparse latent representations learned by STAN,
as visualized in Figure 3. Our goal is to quantify the behavior and specialization of individual latent
units by measuring their activation patterns across different input samples and semantic classes.
Specifically, we evaluate three statistical properties for each latent unit: the frequency of activation
(x-axis), the mean activation value (y-axis), and the label entropy (color bar), which reflects the class
specificity of each latent.

Let {ai}Ni=1 denote the activation values of a given latent unit across N input samples. We consider a
latent unit to be active on sample i if ai > 0. Let I = {i | ai > 0} represent the index set of active
samples, and let N+ = |I| be the number of activations. Each input sample is associated with a
ground truth class label yi → C, where C denotes the set of all class labels.

(1) Mean Activation Frequency. We compute the mean frequency with which the latent unit is
activated across the dataset as:

MeanFreq =
1

N

N∑

i=1

1[ai > 0] =
N+

N
. (18)

This metric reflects how often the latent contributes non-zero activation to the representation.

(2) Mean Activation Value. For the subset of samples where the latent is active, we compute the
average activation magnitude:

MeanAct =
1

N+

∑

i↑I
ai. (19)

This value captures the typical strength of activation, conditioned on the latent being active.

(3) Label Entropy. To assess how class-specific the latent activation is, we compute a label-
weighted activation distribution. First, we define the activation proportion pc for each class c → C
as:

pc =

∑
i:,yi=c ai,1[ai > 0]

∑N
j=1 aj ,1[aj > 0]

. (20)

Then, we compute the entropy of this distribution:

Entropy = ↗
∑

c↑C
pc log pc. (21)

Lower entropy values indicate that the latent is primarily activated by a narrow set of classes, implying
class specialization. Conversely, higher entropy suggests that the latent is shared across multiple
classes, capturing more general or abstract features.

These three metrics together allow us to characterize both the usage pattern and semantic specificity
of each latent dimension in STAN. Additional examples and visualizations of these statistics are
provided in Appendix G.
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G MORE VISUALIZATIONS FOR DIFFERENT STAN INJECTIONS

In this section, we present additional visualizations consistent with those shown in Figure 3, con-
structed using the statistical analysis formulations described in Appendix F. These supplementary
results provide further evidence that both sparsity and broad representational capacity are consistently
exhibited across different injection layers within the model. This consistency indicates that the
behavior of STAN is not limited to a specific configuration, but instead reflects a generalizable
property of the method. The observed uniformity and stability across injections support the reliability
and robustness of STAN.

Lo
g1

0 
M

ea
n 

A
ct

iv
at

io
n 

V
al

ue

 -1.5     -1.0      -0.5      0.0   

1.0

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

-2.0

-3.0

Label 
Entropy

Lo
g1

0 
M

ea
n 

Ac
tiv

at
io

n 
Va

lu
e

 -1.5     -1.0      -0.5      0.0   

1.0

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

-2.0

-3.0

Label 
Entropy

2.0

Lo
g1

0 
M

ea
n 

Ac
tiv

at
io

n 
Va

lu
e

 -1.5     -1.0      -0.5      0.0   

1.0

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

-2.0

-3.0

Label 
Entropy

-4.0

Lo
g1

0 
M

ea
n 

Ac
tiv

at
io

n 
Va

lu
e

 -1.5     -1.0      -0.5      0.0   

1.0

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

-2.5

-3.0

Label 
Entropy

-2.0

-1.5

-0.5

0.5

Lo
g1

0 
M

ea
n 

Ac
tiv

at
io

n 
Va

lu
e

 -1.5     -1.0      -0.5      0.0   

1.0

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

-2.0

-3.0

Label 
Entropy

2.0

Lo
g1

0 
M

ea
n 

Ac
tiv

at
io

n 
Va

lu
e

 -1.5     -1.0      -0.5      0.0   

1.0

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

-2.0

-3.0

Label 
Entropy

-4.0

Lo
g1

0 
M

ea
n 

Ac
tiv

at
io

n 
Va

lu
e

 -1.5     -1.0      -0.5      0.0   

1.0

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

-2.0

-3.0

Label 
Entropy

Lo
g1

0 
M

ea
n 

Ac
tiv

at
io

n 
Va

lu
e

 -1.5     -1.0      -0.5      0.0   

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

-2.5

Label 
Entropy

-2.0

-1.5

-0.5

Lo
g1

0 
M

ea
n 

Ac
tiv

at
io

n 
Va

lu
e

 -1.5     -1.0      -0.5      0.0   

0.0

-1.0

0.0

0.7

0.3

Log10 Activated Frequency

0.5

Label 
Entropy

-2.0

-1.5

-0.5

1.5

1.0

Figure 32: Visualization examples of sparse representations across different STAN injection
layers. Each subplot presents the distribution of middle-layer feature activations, with both axes
scaled using log10 to improve visual clarity. The color bar denotes label entropy, where lower values
indicate class-specific activations and higher values reflect class-general behavior, as defined in
Appendix F. To the right of each plot, a yellow bar chart illustrates the average activation magnitude
for each unit, providing additional insight into the strength and distribution of sparsely activated
features.
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H INTERPRETING DISENTANGLED FEATURES IN LLM

In this section, we present additional interpretability experiment on language model utilizing the
similar setting shown in Figure 3 and Appendix F
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Figure 33: Qualitative demonstration of the sparse representations learned by STAN. (i) Distribution of
sparsely activated intermediate features across four distinct styles. (ii) Highlight of the corresponding
text concepts: (a) Materials & Places, (b) Quantities, (c) Energy Terms and (d) Pelations / Structure.

Part (i) illustrates activation frequency statistics of sparsely activated intermediate features when
model is fed with different texts. The y-axis represents log10 mean activation value, and the x-axis
indicates log10 activation frequency. Each point is colored according to its label entropy, which
reflects the degree of concept specificity associated with that neuron: lower entropy values indicate
specialization (i.e., the neuron is primarily activated by one concept), while higher entropy suggests
activation by a broader mix of styles. Details on the formulation of this analysis can be found in
Appendix F. Part (ii) presents corresponding visual examples, illustrating that the texts activating a
given neuron are consistently aligned with its associated concept. The results reveal that different
concepts tend to activate distinct, often non-overlapping, subsets of sparse latent features. A small
number of shared neurons appear to capture common generative priors, while the majority remain
concept-specific. It demonstrates the expressive capacity of subspace combinations in the sparse
latent space.

I THE USE OF LARGE LANGUAGE MODELS

In line with the ICLR policy, we disclose the use of Large Language Models during the preparation of
this manuscript. Our use of these tools was strictly limited to assistance with language and formatting.
Specifically, we employed an LLM for proofreading, correcting grammatical errors, and improving
the clarity and readability of sentences. The LLM had no role in the core scientific aspects of this
work, including research ideation, methodological design, experimental analysis, or the generation of
any results or conclusions. All intellectual contributions and the core content of this paper are solely
the work of the authors.
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