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Abstract

In this paper, we present the first explicit and non-asymptotic global convergence
rates of the BFGS method when implemented with an inexact line search scheme
satisfying the Armijo-Wolfe conditions. We show that BFGS achieves a global
linear convergence rate of (1− 1

κ )
t for µ-strongly convex functions with L-Lipschitz

gradients, where κ = L
µ represents the condition number. Additionally, if the

objective function’s Hessian is Lipschitz, BFGS with the Armijo-Wolfe line search
achieves a linear convergence rate that depends solely on the line search parameters,
independent of the condition number. We also establish a global superlinear
convergence rate of O(( 1t )

t). These global bounds are all valid for any starting
point x0 and any symmetric positive definite initial Hessian approximation matrix
B0, though the choice of B0 impacts the number of iterations needed to achieve
these rates. By synthesizing these results, we outline the first global complexity
characterization of BFGS with the Armijo-Wolfe line search. Additionally, we
clearly define a mechanism for selecting the step size to satisfy the Armijo-Wolfe
conditions and characterize its overall complexity.

1 Introduction

In this paper, we focus on solving the following unconstrained convex minimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is strongly convex and twice differentiable. Quasi-Newton methods are among the
most popular algorithms for solving this class of problems due to their simplicity and fast convergence.
Like gradient descent-type methods, they require only gradient information for implementation, while
they aim to mimic the behavior of Newton’s method by using gradient information to approximate
the curvature of the objective function. There are several variations of quasi-Newton methods,
primarily distinguished by their update rules for the Hessian approximation matrices. The most
well-known among these include the Davidon-Fletcher-Powell (DFP) method [1, 2], the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [3–6], the Symmetric Rank-One (SR1) method [7, 8], and
the Broyden method [9]. Apart from these classical methods, other variants have also been proposed
in the literature, including randomized quasi-Newton methods [10–14], greedy quasi-Newton methods
[13–16], and those based on online learning techniques [17, 18]. In this paper, we mainly focus on the
global analysis of the BFGS method, arguably the most successful quasi-Newton method in practice.

The classic analyses of BFGS, including [19–28], primarily focused on demonstrating local asymp-
totic superlinear convergence without addressing an explicit global convergence rate when BFGS is
deployed with a line-search scheme. While attempts have been made to establish global convergence
for quasi-Newton methods using line search or trust-region techniques in previous studies [8, 29–33],
these efforts provided only asymptotic convergence guarantees without explicit global convergence
rates, thus not fully characterizing the global convergence rate of classical quasi-Newton methods.
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In recent years, there have been efforts to characterize the explicit convergence rate of BFGS within a
local neighborhood of the solution, establishing a superlinear convergence rate of the form ( 1√

t
)t;

see, for example, [34–37]. However, these results focus solely on local convergence analysis of
BFGS under conditions where the stepsize is consistently set to one, the iterate remains close to the
optimal solution, and the initial Hessian approximation matrix meets certain necessary conditions.
Consequently, these analyses do not extend to providing a global convergence guarantee. For more
details on this subject, we refer the reader to the discussion section in [38].

To the best of our knowledge, only few papers are closely related to our work and establish a global
non-asymptotic guarantee for BFGS. In [39], it was shown that BFGS with exact line search achieves
a global linear rate of (1− 2µ3

L3 (1 +
µTr(B−1

0 )
t )−1(1 + Tr(B0)

Lt )−1)t, where µ is the strong convexity
parameter, L is the Lipschitz constant of the gradient, B0 is the initial Hessian approximation matrix,
and Tr(·) denotes the trace of a matrix. After t = O(d) iterations, this rate approaches (1− 2µ3

L3 )
t,

which is significantly slower than the convergence rate of gradient descent. Additionally, a recent
draft in [40] studied the global convergence of BFGS under an inexact line search. While this work
establishes a local superlinear rate, it only shows a global linear rate of the form (1− µ2

L2 )
t. Hence,

both these results fail to prove any global advantage for BFGS over gradient descent. In [38], the
authors improved upon [39] by showing a better global linear convergence rate and a faster superlinear
rate for BFGS with exact line search. Specifically, for an L-Lipschitz and µ-strongly convex function,
BFGS initialized with B0 = LI achieves a global linear rate of (1− µ3/2

L3/2 )
t for t ≥ 1, while BFGS

with B0 = µI achieves the same rate after d log κ iterations. With the additional assumption that the
objective’s Hessian is Lipschitz, an improved linear rate of (1− µ

L )
t is achieved after O(κ) iterations

when B0 = LI and after O(d log κ+ κ) when B0 = µI , matching the rate of gradient descent. A
superlinear rate of (1/√t)t was also shown when the number of iterations exceeds specific thresholds.

Contributions. In this paper, we analyze the BFGS method combined with the Armijo-Wolfe line
search, the most commonly used line search criteria in practical BFGS applications; see, e.g., [41].
For minimizing an L-smooth and µ-strongly convex function, we present a global convergence rate of
(1− µ

L )
t. To the best of our knowledge, this is the first result demonstrating a global linear convergence

rate for BFGS that matches the rate of gradient descent under these assumptions. Furthermore, we
show that if the objective function’s Hessian is Lipschitz continuous, BFGS with the Armijo-Wolfe
line search converges at a linear rate determined solely by the line search parameters and not the
problem’s condition number, κ = L/µ, when the number of iterations is sufficiently large. Finally,
we prove a global non-asymptotic superlinear convergence rate of (h(d,κ,C0)/t)t, where h(d, κ, C0)
depends on the condition number κ, the dimension d, and the weighted distance between the initial
point x0 and the optimal solution x∗, denoted by C0. We summarize our results in Table 1. By
combining these convergence results, we establish the total iteration complexity of BFGS with the
Armijo-Wolfe line search. We also specify the line search complexity by investigating a bisection
algorithm for choosing the step size that satisfies the Armijo-Wolfe conditions. Our result is one
of the first non-asymptotic analysis characterizing the global convergence complexity of the BFGS
quasi-Newton method with an inexact line search.

Notation. We denote the ℓ2-norm by ∥ · ∥, the set of d× d symmetric positive definite matrices by
Sd++, and use A ⪯ B to mean B −A is symmetric positive semi-definite. The trace and determinant
of a matrix A are represented as Tr(A) and Det(A), respectively.

2 Preliminaries

In this section, we present the assumptions, notations, and intermediate results useful for the global
convergence analysis. First, we state the following assumptions on the objective function f .
Assumption 2.1. The function f is twice differentiable and strongly convex with parameter µ > 0.
Assumption 2.2. The gradient of f is Lipschitz continuous with parameter L > 0.
These assumptions are common in the convergence analysis of quasi-Newton methods. Under these,
we show a global linear convergence rate of O((1− µ

L )
t). To achieve a faster linear convergence rate

that is independent of the problem condition number, and a global superlinear rate, we require an
additional assumption that the objective function Hessian is Lipschitz continuous, as stated next.
Assumption 2.3. The Hessian of f is Lipschitz continuous with parameter M > 0, i.e., for x, y ∈ Rd,
we have ∥∇2f(x)−∇2f(y)∥ ≤ M∥x− y∥.
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Initial Matrix Convergence Phase Convergence Rate Starting moment

B0 Linear phase I
(
1− 1

κ

)t
Ψ(B̄0)

B0 Linear phase II
(
1− 1

3

)t
Ψ(B̃0) + C0Ψ(B̄0) + C0κ

B0 Superlinear phase
(

Ψ(B̃0)+C0Ψ(B̄0)+C0κ
t

)t
Ψ(B̃0) + C0Ψ(B̄0) + C0κ

LI Linear phase I
(
1− 1

κ

)t
1

LI Linear phase II
(
1− 1

3

)t
dκ+ C0κ

LI Superlinear phase
(
dκ+C0κ

t

)t
dκ+ C0κ

µI Linear phase I
(
1− 1

κ

)t
d log κ

µI Linear phase II
(
1− 1

3

)t
(1 + C0)d log κ+ C0κ

µI Superlinear phase
(

(1+C0)d log κ+C0κ
t

)t
(1 + C0)d log κ+ C0κ

Table 1: Summary of our results for (i) an arbitrary positive definite B0, (ii) B0 = LI , and (iii) B0 =

µI . Here, Ψ(A) := Tr(A) − d − logDet(A), B̄0 = 1
LB0 and B̃0 = ∇2f(x∗)

− 1
2B0∇2f(x∗)

− 1
2 .

The last column shows the number of iterations required to achieve the corresponding linear or
superlinear convergence phase. For brevity, the absolute constants are dropped.

Note that the above regularity condition on the Hessian assumption is also common for establishing
the superlinear convergence rate of quasi-Newton methods [19–28].

BFGS Update. Next, we state the general update rule of BFGS. If we denote xt as the iterate at
time t, the vector gt = ∇f(xt) as the objective function gradient at xt, and Bt as the Hessian
approximation matrix at step t, then the update is given by

xt+1 = xt + ηtdt, dt = −B−1
t gt, (2)

where ηt > 0 is the step size and dt is the descent direction. By defining the variable difference
st := xt+1 − xt and the gradient difference yt := ∇f(xt+1)−∇f(xt), we can present the Hessian
approximation matrix update for BFGS as follows:

Bt+1 = Bt −
Btsts

⊤
t Bt

s⊤t Btst
+

yty
⊤
t

s⊤t yt
. (3)

To avoid the costly operation of inverting the matrix Bt, one can define the inverse Hessian approxi-
mation matrix as Ht := B−1

t and apply the Sherman-Morrison-Woodbury formula to obtain

Ht+1 :=

(
I − sty

⊤
t

y⊤t st

)
Ht

(
I − yts

⊤
t

s⊤t yt

)
+

sts
⊤
t

y⊤t st
. (4)

It is well-known that for a strongly convex objective function, the Hessian approximation matrices
Bt remain symmetric and positive definite if the initial matrix B0 is symmetric positive definite [41].
Therefore, all matrices Bt and Ht are symmetric positive definite throughout this paper.

As mentioned earlier, establishing a global convergence guarantee for BFGS requires pairing it with
a line search scheme to select the stepsize ηt. This paper focuses on implementing BFGS with the
Armijo-Wolfe line search, detailed in the following subsection.

Armijo-Wolfe Line Search. We consider a stepsize ηt>0 that satisfies the Armijo-Wolfe conditions

f(xt + ηtdt) ≤ f(xt) + αηt∇f(xt)
⊤
dt, (5)

∇f(xt + ηtdt)
⊤
dt ≥ β∇f(xt)

⊤
dt, (6)

where α and β are the line search parameters, satisfying 0 < α < β < 1 and 0 < α < 1
2 . The

condition in (5) is the Armijo condition, ensuring that the step size ηt provides a sufficient decrease
in the objective function f . The condition in (6) is the curvature condition, which guarantees that
the slope ∇f(xt + ηtdt)

⊤
dt at ηt is not strongly negative, indicating that further movement along dt

would significantly decrease the function value. These conditions provide upper and lower bounds on
the admissible step size ηt. In some references, the Armijo-Wolfe line search conditions are known
as the weak Wolfe conditions [42, 43]. The procedure for finding ηt that satisfies these conditions is
described in Section 7. Next lemma presents key properties of the Armijo-Wolfe conditions.

3



Lemma 2.1. Consider the BFGS method with Armijo-Wolfe inexact line search, where the step size
satisfies the conditions in (5) and (6). Then, for any initial point x0 and any symmetric positive
definite initial Hessian approximation matrix B0, the following results hold for all t ≥ 0:

f(xt)− f(xt+1)

−g⊤t st
≥ α,

y⊤t st
−g⊤t st

≥ 1− β, and f(xt+1) ≤ f(xt). (7)

Remark 2.1. While in this paper we only focus on the Armijo-Wolfe line search, our results are also
valid for some other line search schemes that require stricter conditions. For instance, in the strong
Wolfe line search, given 0 < α < β < 1 and 0 < α < 1

2 , the required conditions for the step size are

f(xt + ηtdt) ≤ f(xt) + αηt∇f(xt)
⊤
dt, |∇f(xt + ηtdt)

⊤
dt| ≤ β∇f(xt)

⊤
dt,

Indeed, if ηt satisfies the strong Wolfe conditions, it also satisfies the Armijo-Wolfe conditions.

Another commonly employed line search scheme is Armijo–Goldstein, which imposes the conditions

−c1ηt∇f(xt)
⊤
dt ≤ f(xt)− f(xt + ηtdt) ≤ −c2ηt∇f(xt)

⊤
dt,

with 0 < c1 ≤ c2 < 1. The lower bound on f(xt) − f(xt + ηtdt) in the Armijo–Goldstein line
search indicates that ηt satisfies the sufficient decrease condition in (5) required for the Armijo-Wolfe
conditions, with α = c1. Moreover, given the convexity of f , the upper bound on f(xt)−f(xt+ηtdt)
in the Armijo–Goldstein line search suggests −ηt∇f(xt + ηtdt)

⊤dt ≤ f(xt) − f(xt + ηtdt) ≤
−c2ηt∇f(xt)

⊤
dt. Thus, ηt also meets the curvature condition in (6) required in the Armijo-Wolfe

conditions with β = c2. Hence, all our results derived under the Armijo-Wolfe line search are also
valid for both the strong Wolfe line search and the Armijo–Goldstein line search.

3 Convergence Analysis

In this section, we present our theoretical framework for analyzing the global linear convergence
rates of BFGS with the Armijo-Wolfe line search scheme. To start, we introduce some necessary
definitions and notations. We define the average Hessian matrices Jt and Gt as

Jt :=

∫ 1

0

∇2f(xt + τ(xt+1 − xt))dτ, Gt :=

∫ 1

0

∇2f(xt + τ(x∗ − xt))dτ. (8)

Further, for measuring the suboptimality of the iterates we define the sequence Ct as

Ct :=
M

µ
3
2

√
2(f(xt)− f(x∗)), ∀t ≥ 0, (9)

where M is the Lipschitz constant of the Hessian defined in Assumption 2.3 and µ is the strong con-
vexity parameter introduced in Assumption 2.1.To analyze the dynamics of the Hessian approximation
matrices {Bt}+∞

t=0 , we use the function Ψ(A)

Ψ(A) := Tr(A)− d− logDet(A), (10)

well-defined for any A ∈ Sd++. It was introduced in [32] to capture the discrepancy between A and
the identity matrix I . Note that Ψ(A) ≥ 0 for any A ∈ Sd++ and Ψ(A) = 0 if and only if A = I .

Before we start convergence analysis, given any weight matrix P ∈ Sd++, we define the weighted
versions of the vectors gt, st, yt, dt and the matrix Bt, Jt as

ĝt = P− 1
2 gt, ŝt = P

1
2 st, ŷt = P− 1

2 yt, d̂t = P
1
2 dt. (11)

B̂t = P− 1
2BtP

− 1
2 , Ĵt = P− 1

2 JtP
− 1

2 . (12)
Note that these weighted matrices and vectors preserve many properties of their unweighted coun-
terparts. For instance, two of these main properties are ĝ⊤t ŝt = g⊤t st and ŷ⊤t ŝt = y⊤t st. Similarly,
the update for the weighted version of Hessian approximation matrices closely mirrors the update of
their unweighted counterparts, as noted in the following expression:

B̂t+1 = B̂t −
B̂tŝtŝ

⊤
t B̂t

ŝ⊤t B̂tŝt
+

ŷtŷ
⊤
t

ŝ⊤t ŷt
, ∀t ≥ 0. (13)

Finally, we define a crucial quantity, θ̂t, which measures the angle between the weighted descent
direction and the negative of the weighted gradient direction, satisfying

cos(θ̂t) =
−ĝ⊤t ŝt
∥ĝt∥∥ŝt∥

. (14)
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3.1 Intermediate Results

In this section, we present our framework for analyzing the convergence of BFGS with an inexact line
search. We first characterize the relationship between the function value decrease at each iteration
and key quantities, including the angle θ̂t defined in (14).

Proposition 3.1. Let {xt}t≥0 be the iterates generated by BFGS. Recall the definitions of weighted
vectors in (11). Then, for any weight matrix P and for all t ≥ 1, we have

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1−

( t−1∏
i=0

p̂iq̂in̂i
cos2(θ̂i)

m̂i

) 1
t
)t

. (15)

where p̂t, q̂t, m̂t and n̂t are defined as

p̂t :=
f(xt)− f(xt+1)

−ĝ⊤t ŝt
, q̂t :=

∥ĝt∥2

f(xt)− f(x∗)
, m̂t :=

ŷ⊤t ŝt
∥ŝt∥2

, n̂t =
ŷ⊤t ŝt
−ĝ⊤t ŝt

. (16)

This result shows the convergence rate of BFGS with Armijo-Wolfe line search depends on four
products:

∏t−1
i=0 p̂i,

∏t−1
i=0 q̂i,

∏t−1
i=0 n̂i, and

∏t−1
i=0

cos2(θ̂i)
m̂i

. To establish an explicit rate, we need
lower bounds on these products. Lemma 2.1 shows that the lower bounds for

∏t−1
i=0 p̂i and

∏t−1
i=0 n̂i

depend on the inexact line search parameters α and β. We will further prove that if the unit step size
ηt = 1 satisfies the Armijo-Wolfe conditions, better lower bounds can be obtained for these products.
The lower bounds for

∏t−1
i=0 q̂i and

∏t−1
i=0

cos2(θ̂i)
m̂i

were established in previous work [38] as presented
in Appendix D. Specifically, the bounds for

∏t−1
i=0 q̂i depend on the choice of the weight matrix,

which varies in different sections of the paper, requiring separate bounds for each case. However,
the bound for

∏t−1
i=0

cos2(θ̂i)
m̂i

does not require separate treatment. This is explicitly established in
Proposition D.1, a classical result, as discussed in [41, Section 6.4]. We build all our linear and
superlinear results by establishing different bounds on the terms in (15).

4 Global Linear Convergence Rates

Building on the tools introduced in Section 3, we establish explicit global linear convergence rates for
BFGS with the Armijo-Wolfe line search, requiring only the strong convexity and gradient Lipschitz
conditions from Assumptions 2.1 and 2.2. Our proof leverages the fundamental inequality in (15)
from Proposition 3.1 and lower bounds on the terms that appear in the contraction factor. Here, we
set the weight matrix P to P = LI and hence define the initial weighted matrix B̄0 as B̄0 = 1

LB0.
The following theorem presents our first global linear convergence rate of BFGS for any B0 ∈ Sd++.

Theorem 4.1. Suppose Assumptions 2.1 and 2.2 hold. Let {xt}t≥0 be the iterates generated by
BFGS, where the step size satisfies the Armijo-Wolfe conditions in (5) and (6). For any initial point
x0 ∈ Rd and any initial Hessian approximation matrix B0 ∈ Sd++, we have

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− e−

Ψ(B̄0)
t

2α(1− β)

κ

)t

, ∀t ≥ 1. (17)

Remark 4.1. In [38], the authors analyzed BFGS with exact line search and established a global
linear rate of (1 − e−

Ψ(B̄0)
t

1
κ(1+

√
κ)
)t. In comparison, our result in (17) achieves a faster linear

rate by eliminating the
√
κ factor in the denominator. This improvement arises from using the

Armijo-Wolfe conditions. Specifically, under these conditions, we show f(xt)−f(xt+1)

−g⊤
t st

≥ α as shown
in Lemma 2.1, where α ∈ (0, 1/2) is a line search parameter. In contrast, using exact line search, the
authors in [38] proved that f(xt)−f(xt+1)

−g⊤
t st

≥ 2√
κ+1

, thus leading to the extra
√
κ factor in their rate.

From Theorem 4.1, we observe that the linear convergence rate is determined by the quantity Ψ(B̄0)
Thus, to simplify our bounds, we consider two different initializations: B0 = LI and B0 = µI .

Corollary 4.2. Suppose Assumptions 2.1 and 2.2 hold, {xt}t≥0 are generated by BFGS with step
size satisfying the Armijo-Wolfe conditions in (5) and (6), and x0 ∈ Rd is an arbitrary initial point.
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• If the initial Hessian approximation matrix is set as B0 = LI , then for any t ≥ 1

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− 2α(1− β)

κ

)t

. (18)

• If the initial Hessian approximation matrix is set as B0 = µI , then for any t ≥ 1 we have
f(xt)−f(x∗)
f(x0)−f(x∗)

≤ (1− e−
d log κ

t
2α(1−β)

κ )t. Moreover, for t ≥ d log κ, we have
f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− 2α(1− β)

3κ

)t

. (19)

Corollary 4.2 shows that when initialized with B0 = LI , BFGS achieves a linear rate of O((1− 1
κ )

t)
from the first iteration, matching the rate of gradient descent. It also indicates that initializing with
B0 = µI achieves a similar rate but after d log κ iterations. While this suggests a preference for
initializing with B0 = LI , subsequent analysis reveals that with enough iterations, BFGS with either
initialization can attain a faster linear rate independent of κ. In some cases, starting with B0 = µI
may lead to fewer total iterations to achieve this faster rate. We will explore this trade-off later.

5 Condition Number Independent Linear Convergence Rates
In this section, we improve the previous results and establish a non-asymptotic, condition number-
free global linear convergence rate for BFGS with the Armijo-Wolfe line search. This requires the
additional assumption that the Hessian is Lipschitz continuous. Our analysis builds on the previous
methodology but uses P = ∇2f(x∗) instead of P = LI to prove the condition number-independent
global linear rate. Thus, the weighted initial matrix B̃0 is ∇2f(x∗)

− 1
2B0∇2f(x∗)

− 1
2 . Next, we

present a general global convergence bound for any initial Hessian approximation B0 ∈ Sd++.
Proposition 5.1. Suppose Assumptions 2.1, 2.2 and 2.3 hold. Let {xt}t≥0 be the iterates generated
by BFGS with the step size satisfying the Armijo-Wolfe conditions in (5) and (6). Recall the definition
of Ct in (9) and Ψ(·) in (10). For any initial point x0 ∈ Rd and any initial Hessian approximation
matrix B0 ∈ Sd++, the following result holds:

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− 2α(1− β)e−

Ψ(B̃0)+3
∑t−1

i=0
Ci

t

)t

, ∀t ≥ 1.

Proposition 5.1 demonstrates that the convergence rate of BFGS with the Armijo-Wolfe line search is
influenced by Ψ(B̃0) and the sum

∑t−1
i=0 Ci. The first term Ψ(B̃0) is a constant that depends on our

choice of the initial Hessian approximation matrix B0. The second term
∑t−1

i=0 Ci can also be upper
bounded using the non-asymptotic global linear convergence rate provided in Theorem 4.1.
Theorem 5.2. Suppose Assumptions 2.1, 2.2 and 2.3 hold, and let {xt}t≥0 be the iterates generated
by BFGS with the Armijo-Wolfe line search in (5) and (6). Then, for any initial point x0 ∈ Rd and
any initial Hessian approximation B0 ∈ Sd++, if t ≥ Ψ(B̃0) + 3C0Ψ(B̄0) +

9
α(1−β)C0κ, we have

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− 2α(1− β)

3

)t

. (20)

This result shows that when the number of iterations meets t ≥ Ψ(B̃0) + 3C0Ψ(B̄0) +
9

α(1−β)C0κ,
BFGS with Armijo-Wolfe conditions achieves a condition number-independent linear rate. The choice
of B0 is critical as it influences the required iterations through B̃0 = ∇2f(x∗)

− 1
2B0∇2f(x∗)

− 1
2 and

B̄0 = 1
LB0. Different choices of B0 affect Ψ(B̃0) + 3C0Ψ(B̄0) and thus the number of iterations

needed for condition-free linear convergence. While optimizing B0 to minimize Ψ(B̃0)+ 3C0Ψ(B̄0)
is possible, we focus on two practical initialization schemes: B0 = LI and B0 = µI .
Corollary 5.3. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Let {xt}t≥0 be the iterates generated
by the BFGS method, where the step size satisfies the Armijo-Wolfe conditions in (5) and (6), and
x0 ∈ Rd as an arbitrary initial point. Then, given the result in Theorem 5.2, we have

• If we set B0 = LI , the rate in (20) holds for t ≥ dκ+ 9
α(1−β)C0κ,

• If we set B0 = µI , the rate in (20) holds for t ≥ (1 + 3C0)d log κ+ 9
α(1−β)C0κ.

Based on Corollary 5.3, if C0 ≪ κ, or equivalently f(x0)−f(x∗) ≪ L2µ
M2 , then BFGS with B0 = µI

requires less iterations to achieve the condition number-independent linear convergence rate.
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6 Global Superlinear Convergence Rates

In this section, we present our global superlinear result. Consider the definition B̃0 =

∇2f(x∗)
− 1

2B0∇2f(x∗)
− 1

2 as well as the definition of ρt which is given by

ρt :=
−g⊤t dt

∥d̃t∥2
, d̃t := ∇2f(x∗)

1
2 dt, ∀t ≥ 0. (21)

To motivate, let us briefly discuss why we are only able to show a linear convergence rate instead
of a superlinear rate in Theorem 5.2. By inspecting the proof, we observe that the bottleneck is due
to the lower bounds on p̂t and n̂t: we used p̂t ≥ α and n̂t ≥ 1− β from Lemma 2.1, which leads
to the constant factor α(1− β) in the final linear rate in Theorem 5.2. Thus, to show a superlinear
convergence rate, we need to establish tighter lower bounds for p̂t and n̂t. In the following lemma,
we show that if the step size ηt = 1, we are able to establish such tighter lower bounds.

Lemma 6.1. Recall p̂t =
f(xt)−f(xt+1)

−ĝ⊤
t ŝt

and n̂t =
ŷ⊤
t ŝt

−ĝ⊤
t ŝt

defined in (16). If the unit step size ηt = 1

satisfies the Armijo-Wolfe conditions (5) and (6), then we have

p̂t ≥ 1− 1 + Ct

2ρt
, n̂t ≥

1

(1 + Ct)ρt
. (22)

In contrast to the constant lower bounds in Lemma 2.1, the lower bounds in (22) depend on Ct and ρt.
Later, we show Ct → 0 and ρt → 1. Hence, the lower bounds in (22) approach 1 as the number of
iterations increases, enabling us to prove a superlinear rate. That said, the lower bounds in Lemma 6.1
hold only when ηt = 1. To complete the picture, we need to quantify when and how often the unit
step size is selected during BFGS execution. This is addressed in the next lemmas.
Lemma 6.2. Suppose Assumptions 2.1, 2.2, and 2.3 hold and define the constants

δ1 :=min

{
1

6
,
√
2(1− α)−1,

1√
1− β

−1

}
, δ2 := max{7

8
,

1√
2(1− α)

}, δ3 :=
1√

1− β
, (23)

which satisfy 0 < δ1 < δ2 < 1 < δ3. If Ct ≤ δ1 and δ2 ≤ ρt ≤ δ3, then ηt = 1 satisfies the
Armijo-Wolfe conditions (5) and (6).

Lemma 6.2 shows that when Ct ≤ δ1 and ρt falls within the interval [δ2, δ3], the step size ηt = 1
is admissible and meets the Armijo-Wolfe conditions. Note that by the linear convergence result
in Theorem 4.1, the first condition on Ct will be satisfied when t is sufficiently large. Additionally,
using Proposition G.2 in the Appendix, we can show that the second condition on ρt is violated only
for a finite number of iterations. These observations are formally presented in the following lemma.
Lemma 6.3. Suppose Assumptions 2.1, 2.2, and 2.3 hold and the iterates {xt}t≥0 are generated
by the BFGS method with step size satisfying the Armijo-Wolfe conditions in (5) and (6). Recall Ct

defined in (9), Ψ(·) defined in (10), {δi}3i=1 defined in (23) and B̄0 = 1
LB0. We have Ct ≤ δ1 when

t ≥ t0 := max

{
Ψ(B̄0),

3κ

α(1− β)
log

C0

δ1

}
. (24)

Moreover, if we define ω(x) = x− log(1 + x), the size of the set I = {t : ρt /∈ [δ2, δ3]} is at most

|I| ≤ δ4

(
Ψ(B̃0) + 2C0Ψ(B̄0) +

6C0κ

α(1− β)

)
, where δ4 :=

1

min{ω(δ2 − 1), ω(δ3 − 1)}
. (25)

Lemma 6.3 implies that conditions Ct ≤ δ1 and ρt ∈ [δ2, δ3] will be satisfied for all but a finite
number of iterations. Thus, if the line search always starts by testing the unit step size (as shown
in Section 7), we will choose ηt = 1, and accordingly, the tighter lower bound in Lemma 6.1 will
apply for all but a finite number of iterations. By applying these lower bounds along with (15) from
Proposition 3.1, we can prove a global superlinear convergence rate, as presented next.
Remark 6.1. Lemmas 6.2 and 6.3 are inspired by the analysis in [40]. Specifically, Lemma 5.10 of
[40] characterized the conditions on Ct and ρt under which η = 1 satisfies the Armijo condition (5),
and further bounded the number of iterations where these conditions are violated. However, our
Lemma 6.2 addresses both the Armijo condition in (5) and the curvature condition in (6), and the
arguments appear simpler. Additionally, our proof for the superlinear convergence rate differs from
[40]. Their approach analyzed the Dennis-Moré ratio and measured “local” superlinear convergence
using the distance ∥∇f(x∗)

1
2 (xt − x∗)∥. In contrast, our “global” result is based on the unified

framework in Proposition 3.1 and uses the function value gap as a measure of convergence.
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Theorem 6.4. Suppose Assumptions 2.1, 2.2, and 2.3 hold and the iterates {xt}t≥0 are generated
by BFGS with step size satisfying the Armijo-Wolfe conditions in (5) and (6). Recall the definition
of Ct in (9), Ψ(·) in (10), B̄0 := 1

LB0, B̃0 := ∇2f(x∗)
− 1

2B0∇2f(x∗)
− 1

2 , and δ1, δ2, δ3, δ4 in (23)
and (25). Then, for any x0 ∈ Rd and any B0 ∈ Sd++, the following global superlinear result holds:

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

(
δ7Ψ(B̃0) + (δ6 + δ8C0)Ψ(B̄0) + ( 3δ6

α(1−β) log
C0

δ1
+ 3δ8

α(1−β)C0)κ

t

)t

, (26)

where {δi}8i=5 defined below are constants that only depend on line search parameters α and β,

δ5 :=
max{2 + 2

δ2
, 4δ3}

2δ2 − 1− δ1
, δ6 :=log

1

2α(1−β)
, δ7 :=1+δ4δ6+δ5, δ8 :=1+2δ7+

2δ2−δ1−log δ2
2δ2−1−δ1

.

The above result shows a global superlinear convergence rate of the form O((C
′

t )t), where C ′ depends
on the condition number κ, the initial weighted distance C0, and the initial Hessian approximation
matrix B0. To simplify the expression, we report the above bound for B0 = LI and B0 = µI .
Corollary 6.5. Suppose Assumptions 2.1, 2.2, and 2.3 hold and the iterates {xt}t≥0 are generated by
the BFGS method with step size satisfying the Armijo-Wolfe conditions in (5) and (6), and x0 ∈ Rd

as an arbitrary initial point. Then, given the result in Theorem 6.4, the following results hold:

• If we set B0 = LI , then we have

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

(
δ7dκ+ ( 3δ6

α(1−β) log
C0

δ1
+ 3δ8

α(1−β)C0)κ

t

)t

. (27)

• If we set B0 = µI , then we have
f(xt)− f(x∗)

f(x0)− f(x∗)
≤

(
(δ6 + δ7 + δ8C0)d log κ+ ( 3δ6

α(1−β) log
C0

δ1
+ 3δ8

α(1−β)C0)κ

t

)t

. (28)

This result shows that BFGS with B0 = LI achieves a global superlinear rate of O((dκ+C0κ
t )t), while

BFGS with the initialization B0 = µI converges at a global superlinear rate of O((C0d log κ+C0κ
t )t).

Hence, the superlinear result for B0 = µI outperforms the rate for B0 = LI when C0 log κ ≪ κ.
Remark 6.2. We chose B0 = LI and B0 = µI as two specific cases since they lead to explicit upper
bounds in terms of the dimension d and the condition number κ in various theorems, simplifying
the interpretation of our results. In practice, however, we often set B0 = cI , where c = s⊤y

∥s∥2 , with
s = x2 − x1, y = ∇f(x2) − ∇f(x1), and x1, x2 as two randomly selected vectors. This choice
ensures c ∈ [µ,L], and in the following numerical experiments, the performance of B0 = cI is
similar to that of B0 = µI . The complexity of BFGS with this initialization is reported in Appendix H.

7 Complexity Analysis

Discussions on the iteration complexity. Using the three established convergence results in The-
orems 4.1, 5.2 and 6.4, we can characterize the total number of iterations required for the BFGS
method with the Armijo-Wolfe line search to find a solution with function suboptimality less than ϵ.
However, as discussed above, the choice of the initial Hessian approximation B0 heavily influences
the number of iterations required to observe these rates. To simplify our discussion, we focus on two
specific initializations: B0 = LI and B0 = µI .

The case of B0 = LI: The overall iteration complexity of BFGS with B0 = LI is given by

O

min

κ log
1

ϵ
, (d+ C0)κ+ log

1

ϵ
,

log 1
ϵ

log
(

1
2 +

√
1
4 + 1

dκ+C0κ
log 1

ϵ

)

 .

The case of B0 = µI: The overall iteration complexity of BFGS with B0 = µI is given by

O

min

d log κ+ κ log
1

ϵ
, C0(d log κ+ κ) + log

1

ϵ
,

log 1
ϵ

log
(

1
2+
√

1
4+

1
C0(d log κ+κ) log

1
ϵ

)

 .
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We remark that the comparison between these two complexity bounds depends on the relative values
of κ, d, C0, and ϵ, and neither is uniformly better than the other. It is worth noting that for BFGS
with B0 = LI , we achieve a complexity that is consistently superior to the O

(
κ log 1

ϵ

)
complexity

of gradient descent. Moreover, in scenarios where C0 = O(1) and d ≪ κ, BFGS with B0 = µI
could result in an iteration complexity of O

(
κ+ log 1

ϵ

)
, which is much more favorable than that of

gradient descent. The proof of these complexity bounds can be found in Appendix I.

Discussions on the line search complexity. We present the log bisection algorithm to choose
the step size ηt at iteration t satisfying the Armijo-Wolfe conditions (5) and (6) in Algorithm 1
in Appendix J. We define ηmin and ηmax as the lower and upper bounds of the “slicing window”
containing the trial step size ηt, respectively. We start with the initial trial step size ηt = 1 and
keep enlarging or decreasing it depending on whether the Armijo condition (5) or the curvature
condition (6) is satisfied. Then, we dynamically update ηmin, ηmax and shrink the size of this “slicing
window” (ηmin, ηmax). We pick the trial step size η as the geometric mean of ηmin and ηmax, i.e.,
log η = (log ηmax + log ηmax)/2, which is the reason why we call this algorithm “log bisection”.
Note that in each loop of Algorithm 1, we query the function value and gradient at most once to check
the Armijo-Wolfe conditions at Lines 2 and 9. The next theorem characterizes the average number of
function value and gradient evaluations per iteration in Algorithm 1 after t iterations, denoted by Λt,
which is equivalent to the average number of loops per iterations.
Theorem 7.1. Suppose Assumptions 2.1, 2.2 and 2.3 hold. Let {xt}t≥0 be generated by BFGS
with step size satisfying the Armijo-Wolfe conditions in (5) and (6) and is chosen by Algorithm 1.
If we define σ := (Ψ(B̄0) +

3
α(1−β)κ)C0, then for any initial point x0 ∈ Rd and initial Hessian

approximation B0 ∈Sd++, the average number of the function value and gradient evaluations per
iteration in Algorithm 1 after t iterations satisfies

Λt ≤ 2+log2

(
1+

1− β

β − α
+
2(1− β)

β − α

σ

t

)
+2 log2

(
log2 16(1−α)+log2

(
1+

σ

t
)+

6Ψ(B̃0) + 12σ

t

)
.

The above result shows that when we run BFGS for N iterations, the total number of function and
gradient evaluations is O

(
N +N log(1 + σ

N ) +N log(1 + Ψ(B̃0)+σ
N )

)
. Thus, the total line search

complexity can always be bounded by O(N log(Ψ(B̃0) + σ)) = O(N max{log d, log κ, logC0}).
Furthermore, notice that when N is sufficiently large such that we reach the superlinear convergence
stage, i.e., N = Ω(Ψ(B̃0) + σ), the total line search complexity becomes O(N), which means the
average number of function and gradient evaluations per iteration is a constant O(1). We report the
line search complexity results of different B0 = LI and B0 = µI in Appendix K.4.

8 Numerical Experiments

We conduct numerical experiments on a cubic objective function defined as

f(x) =
α

12

(
d−1∑
i=1

g(v⊤i x− v⊤i+1x)− βv⊤1 x

)
+

λ

2
∥x∥2, (29)

and g : R → R is defined as

g(w) =

{
1
3 |w|

3 |w| ≤ ∆,

∆w2 −∆2|w|+ 1
3∆

3 |w| > ∆,
(30)

where α, β, λ,∆ ∈ R are hyper-parameters and {vi}ni=1 are standard orthogonal unit vectors in Rd.
We focus on this objective function because it is used in [26] to establish a tight lower bound for
second-order methods. We compare the convergence paths of BFGS with an inexact line search step
size ηt that satisfies the Armijo-Wolfe conditions (5) and (6) for various initialization matrices B0:
specifically, B0 = LI , B0 = µI , B0 = I , and B0 = cI where c is defined in Remark 6.2. It is easily
verified that c ∈ [µ,L]. We also compare the performance of BFGS methods to the gradient descent
(GD) method with backtracking line search, using α = 0.1 in condition (5) and β = 0.9 in condition
(6). Step size ηt is chosen at each iteration via log bisection in Algorithm 1. Empirical results are
compared across various dimensions d and condition numbers κ, with the x-axis representing the
number of iterations t and the y-axis showing the ratio f(xt)−f(x∗)

f(x0)−f(x∗)
.
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(f) d = 600, κ = 1000.

Figure 1: Convergence curves of BFGS with inexact line search of different B0 and gradeint descent
with backtracking line search.

First, we observe that BFGS with B0 = LI initially converges faster than BFGS with B0 = µI
in most plots, aligning with our theoretical findings that the linear convergence rate of BFGS with
B0 = LI surpasses that of B0 = µI in Corollary 4.2. In Corollary 4.2, we show that BFGS
with B0 = LI could achieve the linear rate of (1− 1/κ) from the first iteration while BFGS with
B0 = µI needs to run d log κ to reach the same linear rate. Second, the transition to superlinear
convergence for BFGS with B0 = µI typically occurs around t ≈ d, as predicted by our theoretical
analysis. Although BFGS with B0 = LI initially converges faster, its transition to superlinear
convergence consistently occurs later than for B0 = µI . Notably, for a fixed dimension d = 600, the
transition to superlinear convergence for B0 = LI occurs increasingly later as the problem condition
number rises, an effect not observed for B0 = µI . This phenomenon indicates that the superlinear
rate for B0 = LI is more sensitive to the condition number κ, which corroborates our results in
Corollary 6.5. In Corollary 6.5, we present that BFGS with B0 = LI needs dκ steps to reach the
superlinear convergence stage while this is improved to d log κ for BFGS with B0 = µI . Moreover,
the performance of BFGS with B0 = I and B0 = cI is similar to BFGS with B0 = µI . Notice that
the initializations of B0 = I and B0 = cI are two commonly-used practical choices of the initial
Hessian approximation matrix B0.

9 Conclusions, Limitations, and Future Directions

In this paper, we analyzed the global non-asymptotic convergence rates of BFGS with Armijo-
Wolfe line search. We showed for an objective function that is µ-strongly convex with an L-
Lipschitz gradient, BFGS achieves a global convergence rate of (1 − 1/κ)t, where κ = L/µ.
Additionally, assuming the Hessian is M -Lipschitz, we showed BFGS achieves a linear convergence
rate determined solely by the line search parameters, independent of the condition number. Under
similar assumptions, we also established a global superlinear convergence rate. Given these bounds,
we determined the overall iteration complexity of BFGS with the Armijo-Wolfe line search and
specified this complexity for initial Hessian approximations B0 = LI and B0 = µI .

One limitation of this paper is that the analysis only applies to strongly convex functions. Developing
an analysis for the general convex setting is still unsolved. Another drawback is that we focus solely
on the BFGS method. Extending our theoretical results to the entire convex Broyden’s class of
quasi-Newton methods, including both BFGS and DFP, is a natural next step.
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Appendix

A Some Results on the Connections between Different Hessian Matrices

Lemma A.1. Suppose Assumptions 2.1, 2.2, and 2.3 hold, and recall the definitions of the matrices
Jt and Gt in (8), and the quantity Ct in (9). Then, the following statements hold:

(a) Suppose that f(xt+1) ≤ f(xt) for any t ≥ 0, we have that

1

1 + Ct
∇2f(x∗) ⪯ Jt ⪯ (1 + Ct)∇2f(x∗). (31)

(b) Suppose that f(xt+1) ≤ f(xt) for any t ≥ 0 and τ̂ ∈ [0, 1], we have that

1

1 + Ct
∇2f(x∗) ⪯ ∇2f(xt + τ̂(xt+1 − xt)) ⪯ (1 + Ct)∇2f(x∗). (32)

(c) For any t ≥ 0, we have that
1

1 + Ct
∇2f(x∗) ⪯ ∇2f(xt) ⪯ (1 + Ct)∇2f(x∗). (33)

(d) For any t ≥ 0, we have that
1

1 + Ct
∇2f(x∗) ⪯ Gt ⪯ (1 + Ct)∇2f(x∗). (34)

(e) For any t ≥ 0 and τ̃ ∈ [0, 1], we have that

1

1 + Ct
Gt ⪯ ∇2f(xt + τ̃(x∗ − xt)) ⪯ (1 + Ct)Gt. (35)

(f) For any t ≥ 0 and τ̃ , τ̂ ∈ [0, 1], suppose that f(xt+1) ≤ f(xt). Then, we have that

1

1 + 2Ct
∇2f(xt + τ̂ st) ⪯ ∇2f(xt + τ̃ st) ⪯ (1 + 2Ct)∇2f(xt + τ̂ st). (36)

Proof. (a) Recall the definition of Jt in (8). Using the triangle inequality, we have that

∥∇2f(x∗)− Jt∥ =

∥∥∥∥∫ 1

0

(
∇2f(x∗)−∇2f(xt + τ(xt+1 − xt))

)
dτ

∥∥∥∥
≤
∫ 1

0

∥∇2f(x∗)−∇2f(xt + τ(xt+1 − xt))∥dτ.

Moreover, it follows from Assumption 2.3 that ∥∇2f(x∗)−∇2f(xt + τ(xt+1 − xt))∥ ≤
M∥(1− τ)(x∗ − xt) + τ(x∗ − xt+1)∥ for any τ ∈ [0, 1]. Thus, we can further apply the
triangle inequality to obtain

∥∇2f(x∗)− Jt∥ ≤
∫ 1

0

M∥(1− τ)(x∗ − xt) + τ(x∗ − xt+1)∥dτ

≤ M∥xt − x∗∥
∫ 1

0

(1− τ)dτ +M∥xt+1 − x∗∥
∫ 1

0

τdτ

=
M

2
(∥xt − x∗∥+ ∥xt+1 − x∗∥).

Since f is strongly convex, by Assumption 2.1 and f(xt+1) ≤ f(xt), we have µ
2 ∥xt −

x∗∥2 ≤ f(xt)− f(x∗), which implies that ∥xt − x∗∥ ≤
√
2(f(xt)− f(x∗))/µ. Similarly,

since f(xt+1) ≤ f(xt), it also holds that ∥xt+1 − x∗∥ ≤
√
2(f(xt+1)− f(x∗))/µ ≤√

2(f(xt)− f(x∗))/µ. Hence, we obtain that

∥∇2f(x∗)− Jt∥ ≤ M
√
µ

√
2(f(xt)− f(x∗)). (37)
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Moreover, notice that by Assumption 2.1, we also have Jt ⪰ µI and ∇2f(x∗) ⪰ µI . Hence,
(37) implies that

∇2f(x∗)− Jt ⪯ ∥∇2f(x∗)− Jt∥I ⪯ M

µ
3
2

√
2(f(xt)− f(x∗))Jt = CtJt,

Jt −∇2f(x∗) ⪯ ∥Jt −∇2f(x∗)∥I ⪯ M

µ
3
2

√
2(f(xt)− f(x∗))∇2f(x∗) = Ct∇2f(x∗).

where we used the definition of Ct in (9). By rearranging the terms, we obtain (31).

(b) Similar to the arguments in (a), for any τ̂ ∈ [0, 1], we have that∥∥∇2f(xt + τ̂(xt+1 − xt))−∇2f(x∗)
∥∥

≤ M∥(1− τ̂)(xt − x∗) + τ̂(xt+1 − x∗)∥

≤ M
(
(1− τ̂)∥xt − x∗∥+ τ̂∥xt+1 − x∗∥

)
≤ M

(
(1− τ̂)

√
2

µ
(f(xt)− f(x∗)) + τ̂

√
2

µ
(f(xt+1)− f(x∗))

)
≤ M

√
2

µ
(f(xt)− f(x∗))

Moreover, notice that by Assumption 2.1, we also have ∇2f(xt + τ̂(xt+1 − xt)) ⪰ µI and
∇2f(x∗) ⪰ µI . The rest follows similarly as in the proof of (a) and we prove (32).

(c) Similar to the arguments in (a), we have that∥∥∇2f(x∗)−∇2f(xt)
∥∥ ≤ M∥xt − x∗∥ ≤ M

√
µ

√
2(f(xt)− f(x∗)).

Moreover, notice that by Assumption 2.1 we also have ∇2f(xt) ⪰ µI and ∇2f(x∗) ⪰ µI .
The rest follows similarly as in the proof of (a) and we prove (33).

(d) Recall the definition of Gt in (8). Similar to the arguments in (a), we have that

∥∇2f(x∗)−Gt∥ =

∥∥∥∥∫ 1

0

(
∇2f(x∗)−∇2f(xt + τ(x∗ − xt))

)
dτ

∥∥∥∥
≤
∫ 1

0

∥∇2f(x∗)−∇2f(xt + τ(x∗ − xt))∥dτ

≤ M

∫ 1

0

∥(1− τ)(x∗ − xt)∥dτ = M∥xt − x∗∥
∫ 1

0

(1− τ)dτ

=
M

2
∥xt − x∗∥ ≤ M

√
µ

√
2(f(xt)− f(x∗)).

Moreover, notice that by Assumption 2.1 we also have Gt ⪰ µI and ∇2f(x∗) ⪰ µI . The
rest follows similarly as in the proof of (a) and we prove (34).

(e) Recall the definition of gt in (8). Similar to the arguments in (a), for any τ̃ ∈ [0, 1], we have
that ∥∥∇2f(xt + τ̃(x∗ − xt))−Gt

∥∥
=

∥∥∥∥∫ 1

0

(
∇2f(xt + τ̃(x∗ − xt))−∇2f(xt + τ(x∗ − xt))

)
dτ

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(xt + τ̃(x∗ − xt))−∇2f(xt + τ(x∗ − xt))
∥∥ dτ

≤
∫ 1

0

M |τ̃ − τ |∥xt − x∗∥dτ ≤ 1

2
M∥xt − x∗∥ ≤ M

√
µ

√
2(f(xt)− f(x∗)).

Moreover, notice that by Assumption 2.1, we also have ∇2f(xt + τ̃(x∗ − xt)) ⪰ µI and
Gt ⪰ µI . The rest follows similarly as in the proof of (a) and we prove (35).
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(f) Similar to the arguments in (a), for any τ̃ , τ̂ ∈ [0, 1], we have that∥∥∇2f(xt + τ̃ st)−∇2f(xt + τ̂ st)
∥∥

≤ M |τ̃ − τ̂ |∥st∥ ≤ M∥st∥ ≤ M(∥xt+1 − x∗∥+ ∥xt − x∗∥)

≤ M
(√ 2

µ
(f(xt)− f(x∗)) +

√
2

µ
(f(xt+1)− f(x∗))

)
≤ 2M

√
2

µ
(f(xt)− f(x∗))

Moreover, notice that by Assumption 2.1, we also have ∇2f(xt + τ̃ st) ⪰ µI and
∇2f(xt + τ̂ st) ⪰ µI . The rest follows similarly as in the proof of (a) and we prove
(36).

B Proof of Lemma 2.1

Recall that gt = ∇f(xt). Given the condition in (5) and the fact that st = ηtdt, we have

f(xt+1) ≤ f(xt) + αg⊤t st.

Moreover, since Bt is symmetric positive definite, we have −g⊤t st = ηtg
⊤
t B

−1
t gt > 0 (unless gt = 0

and we are at the optimal solution). This further leads to the first claim, which is

f(xt)− f(xt+1)

−g⊤t st
≥ α.

Similarly, the above argument implies that αg⊤t st < 0 and as a result f(xt+1) ≤ f(xt) and the last
claim also follows.

To prove the second claim, we leverage the condition in (6). Specifically, if we subtract g⊤t dt from
both sides of that condition, we obtain that

(gt+1 − gt)
⊤dt ≥ (β − 1)g⊤t dt

Next, using the fact that st = ηtdt, by multiplying both sides by ηt and use the simplification
yt = gt+1 − gt we obtain that

y⊤t st ≥ (β − 1)g⊤t st = −g⊤t st(1− β).

Again using the argument that −g⊤t st is positive (if we are not at the optimal solution), we can divide
both sides of the above inequality by −g⊤t st, leading to the second claim.

C Proof of Proposition 3.1

First, we note that ĝ⊤t ŝt = g⊤t st and ŷ⊤t ŝt = y⊤t st. Using the definition of p̂t in (16), we have that

f(xt)− f(xt+1) = p̂t
−ĝ⊤t ŝt
∥ĝt∥2

∥ĝt∥2. (38)

Hence, using the definition of θ̂t in (14) and the definition of m̂t, n̂t in (16), it follows that

−ĝ⊤t ŝt
∥ĝt∥2

=
(ĝ⊤t ŝt)

2

∥ĝt∥2∥ŝt∥2
∥ŝt∥2

−ĝ⊤t ŝt
=

(ĝ⊤t ŝt)
2

∥ĝt∥2∥ŝt∥2
∥ŝt∥2

ŷ⊤t ŝt

ŷ⊤t ŝt
−ĝ⊤t ŝt

= n̂t
cos2(θ̂t)

m̂t
.

Furthermore, we have ∥ĝt∥2 = q̂t(f(xt)−f(x∗)) from the definition of q̂t in (16). Thus, the equality
in (38) can be rewritten as

f(xt)− f(xt+1) = p̂tq̂tn̂t
cos2(θ̂t)

m̂t
(f(xt)− f(x∗)).
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By rearranging the term in the above equality, we obtain

f(xt+1)− f(x∗) =
(
1− p̂tq̂tn̂t

cos2(θ̂t)

m̂t

)
(f(xt)− f(x∗)), (39)

To prove the inequality in (15), note that for any t ≥ 1, we have

f(xt)− f(x∗)

f(x0)− f(x∗)
=

t−1∏
i=0

f(xi+1)− f(x∗)

f(xi)− f(x∗)
=

t−1∏
i=0

(
1− p̂iq̂in̂i

cos2(θ̂i)

m̂i

)
,

where the last equality is due to (39). Note that all the terms of the form 1 − p̂iq̂in̂i
cos2(θ̂i)

m̂i
are

non-negative, for any i ≥ 0. Thus, by applying the inequality of arithmetic and geometric means
twice, we obtain

t−1∏
i=0

(
1− p̂iq̂in̂i

cos2(θ̂i)

m̂i

)
≤

[
1

t

t−1∑
i=0

(
1− p̂iq̂in̂i

cos2(θ̂i)

m̂i

)]t

=

[
1− 1

t

t−1∑
i=0

p̂iq̂in̂i
cos2(θ̂i)

m̂i

]t
≤

1−(t−1∏
i=0

p̂iq̂in̂i
cos2(θ̂i)

m̂i

) 1
t

t

.

This completes the proof.

D Results from [38]

In this section, we summarize some results that we use from [38] to establish a lower bound on∏t−1
i=0

cos2(θ̂i)
m̂i

and q̂t.

Proposition D.1 ([38, Proposition 2]). Let {Bt}t≥0 be the Hessian approximation matrices generated
by the BFGS update in (3). For a given weight matrix P ∈ Sd++, recall the weighted vectors defined
in (11) and the weighted matrix in (12). Then, we have

Ψ(B̂t+1) ≤ Ψ(B̂t) +
∥ŷt∥2

ŷ⊤t ŝt
− 1 + log

cos2 θ̂t
m̂t

, ∀t ≥ 0,

where m̂t is defined in (16) and cos(θ̂t) is defined in (14). As a corollary, we have,
t−1∑
i=0

log
cos2(θ̂i)

m̂i
≥ −Ψ(B̂0) +

t−1∑
i=0

(
1− ∥ŷi∥2

ŷ⊤i ŝi

)
, ∀t ≥ 1. (40)

If we take exponentiation on both sides of the above inequality (40) in Proposition D.1, we can obtain
a lower bound for the product

∏t−1
i=0

cos2(θ̂i)
m̂i

with the sum
∑t−1

i=0
∥ŷi∥2

ŝ⊤i ŷi
and Ψ(B̂0). This classical

inequality describing the relationship between the ratio cos2(θ̂t)
m̂t

and the potential function Ψ(.) plays
a critical role in the following convergence analysis.

In the following two lemmas, we provide bounds on the quantities q̂t and ∥ŷt∥2/ŝ⊤t ŷt respectively by
directly citing results from Lemma 4 and Lemma 5 in [38] again. Notice that both q̂t and ∥ŷt∥2/ŝ⊤t ŷt
depend on different choices of the weight matrix P .

Lemma D.2 ([38, Lemma 4]). Recall the definition q̂t = ∥ĝt∥2

f(xt)−f(x∗)
in (16). Suppose Assump-

tions 2.1, 2.2, and 2.3 hold. Then we have the following results:

(a) If we choose P = LI , then q̂t ≥ 2/κ.

(b) If we choose P = ∇2f(x∗), then q̂t ≥ 2/(1 + Ct)
2.

Lemma D.3 ([38, Lemma 5]). Let {xt}t≥0 be the iterates generated by the BFGS algorithm with
inexact line search satisfying (5) and (6). Suppose Assumptions 2.1, 2.2, and 2.3 hold. Then we have
the following results:

(a) If we choose P = LI , then ∥ŷt∥2

ŝ⊤t ŷt
≤ 1.

(b) If we choose P = ∇2f(x∗), then ∥ŷt∥2

ŝ⊤t ŷt
≤ 1 + Ct.
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E Proofs in Section 4

E.1 Proof of Theorem 4.1

Recall that we choose P = LI throughout the proof. Note that given this weight matrix, it can
be easily verified that ∥ŷt∥2

ŝ⊤t ŷt
≤ 1 for any t ≥ 0 by using Lemma D.3 (a). Hence, we use (40) in

Proposition D.1 to obtain

t−1∑
i=0

log
cos2(θ̂i)

m̂i
≥ −Ψ(B̄0) +

t−1∑
i=0

(
1− ∥ŷi∥2

ŝ⊤i ŷi

)
≥ −Ψ(B̄0),

which further implies that
t−1∏
i=0

cos2(θ̂i)

m̂i
≥ e−Ψ(B̄0).

Moreover, for the choice P = LI , it can be shown that q̂t =
∥gt∥2

L(f(xt)−f(x∗))
≥ 2

κ by using Lemma D.2
(a). From Lemma 2.1, we know p̂t ≥ α and n̂t ≥ 1− β, which lead to

t−1∏
i=0

p̂in̂iq̂i
m̂i

cos2(θ̂i) ≥
t−1∏
i=0

p̂i

t−1∏
i=0

q̂i

t−1∏
i=0

n̂i

t−1∏
i=0

cos2(θ̂i)

m̂i
≥
(
2α(1− β)

κ

)t

e−Ψ(B̄0).

Thus, it follows from Proposition 3.1 that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

1−(t−1∏
i=0

p̂iq̂in̂i

m̂i
cos2(θ̂i)

) 1
t

t

≤
(
1− e−

Ψ(B̄0)
t

2α(1− β)

κ

)t

.

This completes the proof.

E.2 Proof of Corollary 4.2

Notice that in the first case where B0 = LI , we have Ψ(B̄0) = 0 and thus it achieves the best
linear convergence results according to Theorem 4.1. On the other hand, for B0 = µI , we have
Ψ(B̄0) = Ψ( µLI) = d( 1κ − 1 + log κ) ≤ d log κ. We complete the proof by combining these
conditions with the inequality (17) in Theorem 4.1. Notice that e−x ≥ e−1 ≥ 1

3 for x ≤ 1.

F Proofs in Section 5

F.1 Proof of Proposition 5.1

Recall that we choose the weight matrix as P = ∇2f(x∗) throughout the proof. Similar to the proof
of Theorem 4.1, we start from the key inequality in (15), but we apply different bounds on the q̂t and
cos2(θ̂t)

m̂t
. Specifically, by using Lemma D.3 (b), we have ∥ŷt∥2

ŝ⊤t ŷt
≤ 1 + Ct for any t ≥ 0. Hence, we

use (40) in Proposition D.1 to obtain

t−1∑
i=0

log
cos2(θ̂i)

m̂i
≥ −Ψ(B̃0) +

t−1∑
i=0

(
1− ∥ŷi∥2

ŝ⊤i ŷi

)
≥ −Ψ(B̃0)−

t−1∑
i=0

Ci,

which further implies that
t−1∏
i=0

cos2(θ̂i)

m̂i
≥ e−Ψ(B̃0)−

∑t−1
i=0 Ci . (41)

Moreover, since q̂t ≥ 2
(1+Ct)2

for any t ≥ 0 by using Lemma D.2 (b), we get

t−1∏
i=0

q̂i ≥
t−1∏
i=0

2

(1 + Ci)2
≥ 2t

t−1∏
i=0

e−2Ci = 2te−2
∑t−1

i=0 Ci , (42)
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where we use the inequality 1 + x ≤ ex for any x ∈ R. From Lemma 2.1, we know p̂t ≥ α and
n̂t ≥ 1− β, which lead to

t−1∏
i=0

p̂in̂i ≥ αt(1− β)t. (43)

Combining (41), (42), (43) and (15) from Proposition 3.1, we prove that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

1−(t−1∏
i=0

p̂iq̂in̂i

m̂i
cos2(θ̂i)

) 1
t

t

≤
(
1− 2α(1− β)e−

Ψ(B̃0)+3
∑t−1

i=0
Ci

t

)t

.

This completes the proof.

F.2 Proof of Theorem 5.2

When we have t ≥ Ψ(B̃0) + 3
∑t−1

i=0 Ci, Proposition 5.1 implies the condition that f(xt)−f(x∗)
f(x0)−f(x∗)

≤(
1− 2α(1−β)

e

)t
≤
(
1− 2α(1−β)

3

)t
, which leads to the linear rate in (20). Hence, it is sufficient

to establish an upper bound on
∑t−1

i=0 Ci. Recall that Ci =
M

µ
3
2

√
2(f(xi)− f(x∗)) defined in (9).

We decompose the sum into two parts:
∑⌈Ψ(B̄0)⌉−1

i=0 Ci and
∑t

i=⌈Ψ(B̄0)⌉ Ci. For the first part, note
that since f(xi+1) ≤ f(xi) by Lemma 2.1, we also have Ci+1 ≤ Ci for i ≥ 0. Hence, we have∑⌈Ψ(B̄0)⌉−1

i=0 Ci ≤ C0⌈Ψ(B̄0)⌉ ≤ C0(Ψ(B̄0) + 1). Moreover, by Theorem 4.1, when t ≥ Ψ(B̄0)
we have

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− e−

Ψ(B̄0)
t

2α(1− β)

κ

)t

≤
(
1− 2α(1− β)

eκ

)t

≤
(
1− 2α(1− β)

3κ

)t

.

Hence, this further implies that

t∑
i=⌈Ψ(B̄0)⌉

Ci = C0

t∑
i=⌈Ψ(B̄0)⌉

√
f(xi)− f(x∗)

f(x0)− f(x∗)
≤ C0

t∑
i=⌈Ψ(B̄0)⌉

(
1− 2α(1− β)

3κ

) i
2

≤ C0

∞∑
i=1

(
1− 2α(1− β)

3κ

) i
2

≤ C0

(
3κ

α(1− β)
− 1

)
,

where we used the fact that
∑∞

i=1(1 − ρ)
i
2 =

√
1−ρ

1−
√
1−ρ

=
√
1−ρ+1−ρ

ρ ≤ 2
ρ − 1 for any ρ ∈ (0, 1).

Hence, by combining both inequalities, we have

t−1∑
i=0

Ci =

⌈Ψ(B̄0)⌉−1∑
i=0

Ci +

t∑
i=⌈Ψ(B̄0)⌉

Ci ≤ C0Ψ(B̄0) +
3C0κ

α(1− β)
. (44)

Hence, this proves that (20) is satisfied when t ≥ Ψ(B̃0) + 3C0Ψ(B̄0) +
9C0κ

α(1−β) .

F.3 Proof of Corollary 5.3

For B0 = LI , we have B̄0 = 1
LB0 = I and B̃0 = ∇2f(x∗)

− 1
2B0∇2f(x∗)

− 1
2 = L∇2f(x∗)

−1.
Thus, it holds that Ψ(B̄0) = Ψ(I) = 0. Moreover, by Assumptions 2.1 and 2.2, we have 1

LI ⪯
∇2f(x∗)

−1 ⪯ 1
µI , which implies that I ⪯ B̃0 ⪯ κI . Thus, we further have

Ψ(B̃0) ≤ Tr(κI)− d− logDet(I) = dκ− d ≤ dκ.

Combining these two results, the threshold for transition time can be bounded by Ψ(B̃0) +
3C0Ψ(B̄0) +

9
α(1−β)C0κ ≤ dκ + 9

α(1−β)C0κ. Hence, by Theorem 5.2, the linear rate in (20)
is achieved when t ≥ dκ+ 9

α(1−β)C0κ.
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For B0 = µI , we have B̄0 = 1
LB0 = 1

κI and B̃0 = ∇2f(x∗)
− 1

2B0∇2f(x∗)
− 1

2 = µ∇2f(x∗)
−1.

Thus, it holds that Ψ(B̄0) = Ψ( 1κI) =
d
κ − d + d log κ ≤ d log κ. Moreover, by Assumptions 2.1

and 2.2, we have 1
κI ⪯ B̃0 ⪯ I . This implies that

Ψ(B̃0) = Tr(B̃0)− d− logDet(B̃0) ≤ Tr(I)− d− logDet(
1

κ
I) = d log κ.

Combining these two results, the threshold for the transition tume can be bounded by Ψ(B̃0) +
3C0Ψ(B̄0) +

9
α(1−β)C0κ ≤ (1 + 3C0)d log κ+ 9

α(1−β)C0κ. Hence, by Theorem 5.2, the linear rate
in (20) is satisfied when t ≥ (1 + 3C0)d log κ+ 9

α(1−β)C0κ.

G Intermediate Results and Proofs in Section 6

G.1 Intermediate Results

To present our result we first introduce the following function

ω(x) := x− log (x+ 1), (45)

which is defined for x > −1. Further In the next result, we present some basic properties of the
function ω(x) defined in (45).
Lemma G.1. Recall the definition of function ω(x) in (45), we have that

(a) ω(x) is increasing function for x > 0 and decreasing function for −1 < x < 0. Moreover,
ω(x) ≥ 0 for all x > −1.

(b) When x ≥ 0, we have that ω(x) ≥ x2

2(1+x) .

(c) When −1 < x ≤ 0, we have that ω(x) ≥ x2

2+x .

Proof. Notice that ω′(x) = x
1+x , we know that when x > 0, ω′(x) > 0 and when −1 < x < 0,

ω′(x) < 0, ω′(x) < 0. Therefore, ω(x) is increasing function for x > 0 and ω(x) is decreasing
function for −1 < x < 0. Hence, ω(x) ≥ ω(0) = 0 for all x > −1.

ω(x) ≥ x2

2(1+x) is equivalent to ω1(x) := 2(1 + x)ω(x) − x2 ≥ 0. Since ω′
1(x) = 2x −

2 log (1 + x) = 2ω(x) ≥ 0 for all x > −1, we know that ω1(x) is increasing function for x > −1
and hence, ω1(x) ≥ ω1(0) = 0 for x ≥ 0.

ω(x) ≥ x2

2+x is equivalent to ω2(x) := (2+x)ω(x)−x2 ≥ 0. Since ω′
2(x) =

x
1+x − log (1 + x) ≤ 0

for all x > −1, we know that ω2(x) is decreasing function for x > −1 and hence, ω2(x) ≥ ω2(0) = 0
for x ≤ 0.

Proposition G.2. Let {Bt}t≥0 be the Hessian approximation matrices generated by the BFGS update
in (3). Suppose Assumptions 2.1, 2.2, and 2.3 hold and f(xt+1) ≤ f(xt) for any t ≥ 0. Recall the
definition of Ψ(.) in (10) and Ct in (9), we have that

t−1∑
i=0

ω(ρi − 1) ≤ Ψ(B̃0) + 2

t−1∑
i=0

Ci, ∀t ≥ 1, (46)

Proof. First, taking the trace and determinant on both sides of the equation (13) for any weight matrix
P ∈ Sd++ and using results from Lemma 6.2 of [34], we show that

Tr(B̂t+1) = Tr(B̂t)−
∥B̂tŝt∥2

ŝ⊤t B̂tŝt
+

∥ŷt∥2

ŝ⊤t ŷt
, Det(B̂t+1) = Det(B̂t)

ŝ⊤t ŷt

ŝ⊤t B̂tŝt
.

Taking the logarithm on both sides of the second equation, we obtain that

log
ŝ⊤t ŷt

ŝ⊤t B̂tŝt
= logDet(B̂t+1)− logDet(B̂t).
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Thus, we obtain that

Ψ(B̂t+1)−Ψ(B̂t) = Tr(B̂t+1)−Tr(B̂t) + logDet(B̂t)− logDet(B̂t+1)

=
∥ŷt∥2

ŝ⊤t ŷt
− ∥B̂tŝt∥2

ŝ⊤t B̂tŝt
− log

ŝ⊤t ŷt

ŝ⊤t B̂tŝt
=

∥ŷt∥2

ŝ⊤t ŷt
− ∥B̂tŝt∥2

ŝ⊤t B̂tŝt
− log

ŝ⊤t ŷt
∥ŝt∥2

− log
∥ŝt∥2

ŝ⊤t B̂tŝt
,

which leads to

∥B̂tŝt∥2

ŝ⊤t B̂tŝt
− log

ŝ⊤t B̂tŝt
∥ŝt∥2

− 1 = Ψ(B̂t)−Ψ(B̂t+1) +
∥ŷt∥2

ŝ⊤t ŷt
− 1 + log

∥ŝt∥2

ŝ⊤t ŷt
.

Notice that B̂tŝt = −ηtĝt, ŝ⊤t B̂tŝt = −η2t ĝ
⊤
t d̂t and ∥ŝt∥2 = η2t ∥d̂t∥2, we have that

∥ĝt∥2

−ĝ⊤t d̂t
− log

−ĝ⊤t d̂t

∥d̂t∥2
− 1 = Ψ(B̂t)−Ψ(B̂t+1) +

∥ŷt∥2

ŝ⊤t ŷt
− 1 + log

∥ŝt∥2

ŝ⊤t ŷt
.

Note that given the fact that −ĝ⊤t d̂t = ĝ⊤t B̂
−1
t ĝt > 0, by using the Cauchy–Schwarz inequality we

obtain ∥ĝt∥2

−ĝ⊤
t d̂t

≥ −ĝ⊤
t d̂t

∥d̂t∥2
. Hence, we can write

−ĝ⊤t d̂t

∥d̂t∥2
− log

−ĝ⊤t d̂t

∥d̂t∥2
− 1 ≤ Ψ(B̂t)−Ψ(B̂t+1) +

∥ŷt∥2

ŝ⊤t ŷt
− 1 + log

∥ŝt∥2

ŝ⊤t ŷt
.

Now, by selecting the weight matrix as P = ∇2f(x∗), many expressions get simplified and we have
−ĝ⊤

t d̂t

∥d̂t∥2
=

−g⊤
t dt

∥d̃t∥2
= ρt, ρt − log ρt − 1 = ω(ρt − 1), and B̂t = B̃t = ∇2f(x∗)

− 1
2Bt∇2f(x∗)

− 1
2 .

Hence, we have

ω(ρt − 1) ≤ Ψ(B̃t)−Ψ(B̃t+1) +
∥ŷt∥2

ŝ⊤t ŷt
− 1 + log

∥ŝt∥2

ŝ⊤t ŷt
. (47)

Notice that ∥ŷt∥2

ŝ⊤t ŷt
≤ 1 + Ct for any t ≥ 0 by using Lemma D.3 (b) with P = ∇2f(x∗) and

log ∥ŝt∥2

ŝ⊤t ŷt
= log ∥ŝt∥2

ŝ⊤t Ĵtŝt
≤ log(1 + Ct) ≤ Ct for any t ≥ 0 by using (31) from Lemma A.1.

Leveraging these conditions with the inequality (47), we obtain that

ω(ρt − 1) ≤ Ψ(B̃t)−Ψ(B̃t+1) + 2Ct.

Summing both sides of the above inequality from i = 0 to t− 1, we prove the conclusion

t−1∑
i=0

ω(ρi − 1) ≤ Ψ(B̃0)−Ψ(B̃t) + 2

t−1∑
i=0

Ci ≤ Ψ(B̃0) + 2

t−1∑
i=0

Ci,

where the last inequality holds since Ψ(B̃t) ≥ 0.

Lemma G.3. Suppose Assumptions 2.1, 2.2, and 2.3 hold and Ct ≤ 1
6 and ρt ≥ 7

8 at iteration t,
then we have

f(xt + dt) ≤ f(xt). (48)

Proof. Since assumption 2.3 hold, using Lemma 1.2.4 in [44], we have that

|f(y)− f(x)−∇f(x)⊤(y − x)− 1

2
(y − x)⊤∇2f(x)(y − x)| ≤ M

6
∥y − x∥3, ∀x, y ∈ Rd.

Setting x = xt and y = xt + dt, we have that

f(xt + dt)− f(xt) ≤ g⊤t dt +
1

2
d⊤t ∇2f(xt)dt +

M

6
∥dt∥3. (49)

Notice that using (33) from Lemma A.1 and the definition of ρt in (21), we have that

d⊤t ∇2f(xt)dt ≤ (1 + Ct)d
⊤
t ∇2f(x∗)dt = −g⊤t dt(1 + Ct)

∥d̃t∥2

−g⊤t dt
= −g⊤t dt

1 + Ct

ρt
. (50)
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Applying Assumption 2.1 with the definition d̃t = ∇2f(x∗)
1
2 dt, we obtain that

∥dt∥3 ≤ 1

µ
3
2

∥d̃t∥3 =
−g⊤t dt

µ
3
2

∥d̃t∥2

−g⊤t dt
∥d̃t∥ =

−g⊤t dt

µ
3
2

1

ρt
∥d̃t∥.

Since −g̃⊤t d̃t ≤ ∥g̃t∥∥d̃t∥ by Cauchy–Schwarz inequality where g̃t = ∇2f(x∗)
− 1

2 gt, we obtain

∥d̃t∥ = ∥g̃t∥
∥d̃t∥
∥g̃t∥

≤ ∥g̃t∥
∥d̃t∥2

−g̃⊤t d̃t
=

1

ρt
∥g̃t∥,

which leads to

∥dt∥3 ≤ −g⊤t dt

µ
3
2

1

ρt
∥d̃t∥ ≤ −g⊤t dt

µ
3
2

1

ρ2t
∥g̃k∥. (51)

By applying Taylor’s theorem with Lagrange remainder, there exists τ̃t ∈ [0, 1] such that

f(xt) = f(x∗) +∇f(x∗)
⊤
(xt − x∗) +

1

2
(xt − x∗)

⊤∇2f(xt + τ̃t(x∗ − xt))(xt − x∗)

= f(x∗) +
1

2
(xt − x∗)

⊤∇2f(xt + τ̃t(x∗ − xt))(xt − x∗),

(52)

where we used the fact that ∇f(x∗) = 0 in the last equality. Moreover, by the fundamental theorem
of calculus, we have

∇f(xt)−∇f(x∗) =

∫ 1

0

∇2f(xt + τ(x∗ − xt))(xt − x∗) dτ = Gt(xt − x∗),

where we use the definition of Gt in (8). Since ∇f(x∗) = 0 and we denote gt = ∇f(xt), this further
implies that

xt − x∗ = G−1
t (∇f(xt)−∇f(x∗)) = G−1

t gt. (53)

Combining (52) and (53) leads to

f(xt)− f(x∗) =
1

2
g⊤t G

−1
t ∇2f(xt + τ̃t(x∗ − xt))G

−1
t gt. (54)

Based on (35) in Lemma A.1, we have ∇2f(xt + τ̃t(x∗ − xt)) ⪰ 1
1+Ct

Gt, which implies that

G−1
t ∇2f(xt + τ̃t(x∗ − xt))G

−1
t ⪰ 1

1 + Ct
G−1

t .

Moreover, it follows from (34) in Lemma A.1 that Gt ⪯ (1 + Ct)∇2f(x∗), which implies that

G−1
t ⪰ 1

1 + Ct
(∇2f(x∗))

−1.

Combining the above two conditions, we obtain that

G−1
t ∇2f(xt + τ̃t(x∗ − xt))G

−1
t ⪰ 1

(1 + Ct)2
(∇2f(x∗))

−1,

and hence

g⊤t G
−1
t ∇2f(xt + τ̃t(x∗ − xt))G

−1
t gt ≥

1

(1 + Ct)2
g⊤t (∇2f(x∗))

−1gt =
1

(1 + Ct)2
∥g̃t∥2. (55)

Combining (54) and (55) leads to

∥g̃k∥ ≤ (1 + Ct)
√

2(f(xt)− f(x∗)). (56)

Combining (51) and (56) leads to

∥dt∥3 ≤ −g⊤t dt

µ
3
2

1

ρ2t
∥g̃k∥ ≤ −g⊤t dt

µ
3
2

1

ρ2t
(1 + Ct)

√
2(f(xt)− f(x∗)). (57)
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Leveraging (49), (50) and (57) with the definition of Ct in (9), we have that

f(xt + dt)− f(xt) ≤ g⊤t dt +
1

2
d⊤t ∇2f(xt)dt +

M

6
∥dt∥3

= −g⊤t dt(−1 +
1 + Ct

2ρt
+

M

6

1

µ
3
2

1

ρ2t
(1 + Ct)

√
2(f(xt)− f(x∗)))

= −g⊤t dt(−1 +
1 + Ct

2ρt
+

Ct(1 + Ct)

6ρ2t
).

(58)

Notice that −g⊤t dt = −g⊤t B
−1
t gt > 0 and when Ct ≤ 1

6 and ρt ≥ 7
8 , we can verify that

1 + Ct

2ρt
+

Ct(1 + Ct)

6ρ2t
< 1.

Therefore, (58) implies the conclusion that

f(xt + dt)− f(xt) ≤ 0.

G.2 Proof of Lemma 6.1

Since ηt = 1 satisfies Armijo-Wolfe conditions, we know that ηt is chosen to be one at iteration t and
xt+1 = xt + dt. We have f(xt+1) ≤ f(xt) from Lemma 2.1. Using Taylor’s expansion, we have
that f(xt+1) = f(xt) + g⊤t dt +

1
2d

⊤
t ∇2f(xt + τ̂(xt+1 − xt))dt, where τ̂ ∈ [0, 1]. Hence, we have

that

p̂t =
f(xt)− f(xt+1)

−g⊤t dt
=

−g⊤t dt − 1
2d

⊤
t ∇2f(xt + τ̂(xt+1 − xt))dt

−g⊤t dt

= 1− 1

2

d⊤t ∇2f(xt + τ̂(xt+1 − xt))dt
−g⊤t dt

≥ 1− 1 + Ct

2

d⊤t ∇2f(x∗)dt
−g⊤t dt

= 1− 1 + Ct

2ρt
,

where we apply the (32) from Lemma A.1 since f(xt+1) ≤ f(xt) and recall the definition of ρt in
(21). Similarly, using (31) from Lemma A.1 since f(xt+1) ≤ f(xt), we have that

n̂t =
y⊤t st
−g⊤t st

=
s⊤t Jtst
−g⊤t st

=
d⊤t Jtdt
−g⊤t dt

≥ 1

1 + Ct

d⊤t ∇2f(x∗)dt
−g⊤t dt

=
1

(1 + Ct)ρt
,

where we use the fact that yt = Jtst with Jt defined in (8) and st = xt+1 − xt = dt. Therefore, we
prove the conclusions.

G.3 Proof of Lemma 6.2

Denote x̄t+1 = xt + dt and s̄t = x̄t+1 − xt = dt. Since δ1 ≤ 1
6 and δ2 ≥ 7

8 , we have f(x̄t+1) ≤
f(xt) from Lemma G.3. Using Taylor’s expansion, we have that f(x̄t+1) = f(xt) + g⊤t dt +
1
2d

⊤
t ∇2f(xt + τ̂(x̄t+1 − xt))dt, where τ̂ ∈ [0, 1]. Hence, we have

f(xt)− f(x̄k+1)

−g⊤t dt
=

−g⊤t dt − 1
2d

⊤
t ∇2f(xt + τ̂(x̄t+1 − xt))dt

−g⊤t dt

= 1− 1

2

d⊤t ∇2f(xt + τ̂(x̄t+1 − xt))dt
−g⊤t dt

≥ 1− 1 + Ct

2

d⊤t ∇2f(x∗)dt
−g⊤t dt

= 1− 1 + Ct

2ρt
,

where we apply the (32) from Lemma A.1 since f(x̄t+1) ≤ f(xt). Therefore, when Ct ≤ δ1 ≤√
2(1− α) − 1 and ρt ≥ δ2 ≥ 1√

2(1−α)
, we obtain that f(xt)−f(x̄k+1)

−g⊤
t dt

≥ 1 − 1+Ct

2ρt
≥ α and unit

step size ηt = 1 satisfies the sufficient condition (5).

Similarly, using (31) from Lemma A.1 since f(x̄t+1) ≤ f(xt) and denote ḡk+1 = ∇f(x̄t+1),
ȳt = ḡk+1 − gt, we have that

ȳ⊤t s̄t
−g⊤t s̄t

=
s̄⊤t Jts̄t
−g⊤t s̄t

=
d⊤t Jtdt
−g⊤t dt

≥ 1

1 + Ct

d⊤t ∇2f(x∗)dt
−g⊤t dt

=
1

(1 + Ct)ρt
.
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Therefore, when Ct ≤ δ1 ≤ 1√
1−β

− 1 and ρt ≤ δ3 = 1√
1−β

, we obtain that ȳ⊤
t s̄t

−g⊤
t s̄t

≥ 1
(1+Ct)ρt

≥
1− β, which indicates that ḡ⊤t+1dt = ḡ⊤t+1s̄t = ȳ⊤t s̄t + g⊤t s̄t ≥ −g⊤t s̄t(1− β) + g⊤t s̄t = βg⊤t s̄t =

βg⊤t dt. Hence, unit step size ηt = 1 satisfies the curvature condition (6). Therefore, we prove that
when Ct ≤ δ1 and δ2 ≤ ρt ≤ δ3, step size ηt = 1 satisfies the Armijo-Wolfe conditions (5) and (6).

G.4 Proof of Lemma 6.3

Since in Theorem 4.1, we already prove that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤
(
1− e−

Ψ(B̄0)
t

2α(1− β)

κ

)t

.

This implies that

Ct ≤
(
1− e−

Ψ(B̄0)
t

2α(1− β)

κ

) t
2

C0.

When t ≥ Ψ(B̄0), we obtain that

Ct ≤
(
1− 2α(1− β)

3κ

) t
2

C0.

When t ≥ 3κ
α(1−β) log

C0

δ1
, we obtain that

Ct ≤
(
1− 2α(1− β)

3κ

) t
2

C0 ≤ δ1.

Therefore, the first claim in (24) follows.

Now define I1 = {t : ρt < δ2} and I2 = {t : ρt > δ3}, we know that |I| = |I1| + |I2|.
Notice that for t ∈ I1, we have that ρt − 1 < δ2 − 1 < 0 since δ2 < 1 and the function ω(x)
defined in (45) is decreasing for −1 < x < 0 from (a) in Lemma G.1. Hence, we have that∑

i∈I1
ω(ρi − 1) ≥

∑
i∈I1

ω(δ2 − 1) = ω(δ2 − 1)|I1|. Similarly, we have that for t ∈ I2, we have
that ρi − 1 > δ3 − 1 > 0 since δ3 > 1 and the function ω(x) is increasing for x > 0 from (a) in
Lemma G.1. Hence, we have that

∑
i∈I2

ω(ρi − 1) ≥
∑

i∈I2
ω(δ3 − 1) = ω(δ3 − 1)|I2|. Using (46)

from Proposition G.2, we have that
∑t−1

i=0 ω(ρi − 1) ≤ Ψ(B̃0) + 2
∑t−1

i=0 Ci ≤ Ψ(B̃0) + 2
∑+∞

i=0 Ci

for any t ≥ 1. Therefore, we obtain that

Ψ(B̃0) + 2

+∞∑
i=0

Ci ≥
+∞∑
i=0

ω(ρi − 1) ≥
∑
i∈I1

ω(βi − 1) +
∑
i∈I2

ω(βi − 1)

≥ ω(δ2 − 1)|I1|+ ω(δ3 − 1)|I2| ≥ min{ω(δ2 − 1), ω(δ3 − 1)}(|I1|+ |I2|),

which leads to the result

|I| = |I1|+ |I2| ≤
Ψ(B̃0) + 2

∑+∞
i=0 Ci

min{ω(δ2 − 1), ω(δ3 − 1)}
= δ4

(
Ψ(B̃0) + 2

+∞∑
i=0

Ci

)
, (59)

where δ4 := 1
min{ω(δ2−1),ω(δ3−1)} . Using the upper bound of

∑+∞
i=0 Ci ≤ C0Ψ(B̄0) +

3C0κ
α(1−β) in

(44), we prove the second claim in (25).

G.5 Proof of Theorem 6.4

First, we prove that for any initial point x0 ∈ Rd and any initial Hessian approximation matrix
B0 ∈ Sd++, the following result holds:

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

(
δ6t0 + δ7Ψ(B̃0) + δ8

∑+∞
i=0 Ci

t

)t

, ∀t > t0,
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where t0 is defined in (24). We choose the weight matrix as P = ∇2f(x∗) throughout the proof.
Using results (41) and (42) from the proof of Proposition 5.1, we obtain that

t−1∏
i=0

cos2(θ̂i)

m̂i
≥ e−Ψ(B̃0)−

∑t−1
i=0 Ci ≥ e−Ψ(B̃0)−

∑+∞
i=0 Ci . (60)

t−1∏
i=0

q̂i ≥ 2te−2
∑t−1

i=0 Ci ≥ 2te−2
∑+∞

i=0 Ci . (61)

Recall the definition of the set I = {t : ρt /∈ [δ2, δ3]}. Notice that for t ≥ t0, define I3 = {t : t ≥
t0, ρt /∈ [δ2, δ3]} and I4 = {t : t ≥ t0, ρt ∈ [δ2, δ3]}. Then, we have that

t−1∏
i=0

p̂in̂i =

t0−1∏
i=0

p̂in̂i

t−1∏
i=t0

p̂in̂i =

t0−1∏
i=0

p̂in̂i

∏
i∈I3

p̂in̂i

∏
i∈I4

p̂in̂i. (62)

From Lemma 2.1, we know p̂t ≥ α and n̂t ≥ 1− β for any t ≥ 0, which lead to
t0−1∏
i=0

p̂in̂i ≥ αt0(1− β)t0 =
1

2t0
e−t0 log 1

2α(1−β) . (63)

∏
i∈I3

p̂in̂i ≥
∏
i∈I3

α(1− β) =
1

2|I3|
e−|I3| log 1

2α(1−β) ≥ 1

2|I3|
e−|I| log 1

2α(1−β)

≥ 1

2|I3|
e
−δ4

(
Ψ(B̃0)+2

∑+∞
i=0 Ci

)
log 1

2α(1−β)
,

(64)

where the second inequality holds since |I3| ≤ |I|, log 1
2α(1−β) > 0 and the last inequality holds

since (59) from the proof of Lemma 6.3 in Appendix G.4. Notice that when index i ∈ I4, we have
Ci ≤ δ1 from Lemma 6.3 and ρi ∈ [δ2, δ3]. Applying Lemma 6.1 and Lemma 6.2, we know that for
i ∈ I4, ηi = 1 satisfies the Armijo-Wolfe conditions (5), (6) and we have p̂i ≥ 1− 1+Ci

2ρi
> 0 (since

Ci ≤ δ1 ≤ 1
6 , ρi ≥ δ2 ≥ 7

8 ) and n̂i ≥ 1
(1+Ci)ρi

from (22). Hence, we obtain that∏
i∈I4

p̂in̂i ≥
1

2|I4|

∏
i∈I4

(2− 1 + Ci

ρi
)

1

(1 + Ci)ρi
≥ 1

2|I4|
e−

∑
i∈I4

Ci
∏
i∈I4

(2− 1 + Ci

ρi
)
1

ρi
, (65)

where the last inequality holds since 1
1+Ci

≥ e−Ci . Using the fact that log x ≥ 1− 1
x , we obtain∏

i∈I4

(2− 1 + Ci

ρi
)
1

ρi
=
∏
i∈I4

e
log (2− 1+Ci

ρi
)−log ρi ≥

∏
i∈I4

e
1− 1

2− 1+Ci
ρi

−log ρi

=
∏
i∈I4

e
ρi−1−Ci
2ρi−1−Ci

−log ρi =
∏
i∈I4

e
ρi−1−log ρi+2(1−ρi) log ρi−(1−log ρi)Ci

2ρi−1−Ci

=
∏
i∈I4

e
ω(ρi−1)+2(1−ρi) log ρi−(1−log ρi)Ci

2ρi−1−Ci ≥
∏
i∈I4

e
−2(ρi−1) log ρi−(1−log ρi)Ci

2ρi−1−Ci

=
∏
i∈I4

e
− 2(ρi−1) log ρi+(1−log ρi)Ci

2ρi−1−Ci ≥
∏
i∈I4

e−
2(ρi−1) log ρi+(1−log δ2)Ci

2δ2−1−δ1 ,

(66)

where the second inequality holds since ω(ρi − 1) ≥ 0 and the third inequality holds since ρi ≥ δ2
due to i ∈ I4 and Ci ≤ δ1 due to i ≥ t0 and Lemma 6.3. Notice that 2ρi−1−Ci ≥ 2δ2−1−δ1 > 0
for all i ∈ I4 since Ci ≤ δ1 ≤ 1

6 and ρi ≥ δ2 ≥ 7
8 .

When ρi ≥ 1, using log ρi ≤ ρi − 1, (b) in Lemma G.1 and ρi ≤ δ3 due to i ∈ I4, we have that

(ρi − 1) log ρi ≤ (ρi − 1)2 ≤ 2ρiω(ρi − 1) ≤ 2δ3ω(ρi − 1). (67)

Similarly, when ρi < 1, using log ρi ≥ 1− 1
ρi

, (c) in Lemma G.1 and ρi ≥ δ2 due to i ∈ I4, we have

(ρi − 1) log ρi ≤
(ρi − 1)2

ρi
≤ ρi + 1

ρi
ω(ρi − 1) ≤ (1 +

1

δ2
)ω(ρi − 1). (68)
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Combining (66), (67) and (68), we obtain that∏
i∈I4

(2− 1 + Ci

ρi
)
1

ρi

≥
∏
i∈I4

e−
2(ρi−1) log ρi+(1−log δ2)Ci

2δ2−1−δ1 =
∏
i∈I4

e−
2(ρi−1) log ρi

2δ2−1−δ1

∏
i∈I4

e−
(1−log δ2)Ci
2δ2−1−δ1

=
∏

i∈I4,ρi<1

e−
2(ρi−1) log ρi

2δ2−1−δ1

∏
i∈I4,ρi≥1

e−
2(ρi−1) log ρi

2δ2−1−δ1

∏
i∈I4

e−
(1−log δ2)Ci
2δ2−1−δ1

≥
∏

i∈I4,ρi<1

e−
2(1+ 1

δ2
)ω(ρi−1)

2δ2−1−δ1

∏
i∈I4,ρi≥1

e−
4δ3ω(ρi−1)

2δ2−1−δ1

∏
i∈I4

e−
(1−log δ2)Ci
2δ2−1−δ1

= e−
2+ 2

δ4
2δ2−1−δ1

∑
i∈I2,ρi<1 ω(ρi−1)− 4δ3

2δ2−1−δ1

∑
i∈I4,ρi≥1 ω(ρi−1)− 1−log δ2

2δ2−1−δ1

∑
i∈I4

Ci

≥ e
−δ5

(∑
i∈I4,ρi<1 ω(ρi−1)+

∑
i∈I4,ρi≥1 ω(ρi−1)

)
− 1−log δ2

2δ2−1−δ1

∑
i∈I4

Ci

= e−δ5
∑

i∈I4
ω(ρi−1)− 1−log δ2

2δ2−1−δ1

∑
i∈I4

Ci

(69)

where δ5 = max{
2+ 2

δ2

2δ2−1−δ1
, 4δ3
2δ2−1−δ1

}. Combining (65) and (69), we obtain that∏
i∈I4

p̂in̂i ≥
1

2|I4|
e−

∑
i∈I4

Ci
∏
i∈I4

(2− 1 + Ci

ρi
)
1

ρi

≥ 1

2|I4|
e−δ5

∑
i∈I4

ω(ρi−1)−(1+
1−log δ2

2δ2−1−δ1
)
∑

i∈I4
Ci

≥ 1

2|I4|
e−δ5

∑+∞
i=0 ω(ρi−1)− 2δ2−δ1−log δ2

2δ2−1−δ1

∑+∞
i=0 Ci

≥ 1

2|I4|
e
−δ5

(
Ψ(B̃0)+2

∑+∞
i=0 Ci

)
− 2δ2−δ1−log δ2

2δ2−1−δ1

∑+∞
i=0 Ci

,

(70)

where the last inequality is due to (46) from Lemma G.1. Combining (62), (63), (64) and (70), we
obtain that

t−1∏
i=0

p̂in̂i =

t0−1∏
i=0

p̂in̂i

∏
i∈I3

p̂in̂i

∏
i∈I4

p̂in̂i

≥ 1

2t
e
−
(
t0 log 1

2α(1−β)
+(δ4 log 1

2α(1−β)
+δ5)Ψ(B̃0)+(2δ4 log 1

2α(1−β)
+2δ5+

2δ2−δ1−log δ2
2δ2−1−δ1

)
∑+∞

i=0 Ci

)
.

(71)

Leveraging (60), (61), (71) with (15) from Proposition 3.1, we prove that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

1−(t−1∏
i=0

p̂iq̂in̂i
cos2(θ̂i)

m̂i

) 1
t

t

=

1−(t−1∏
i=0

p̂in̂i

t−1∏
i=0

q̂i

t−1∏
i=0

cos2(θ̂i)

m̂i

) 1
t

t

≤

(
1− e−

t0 log 1
2α(1−β)

+(1+δ4 log 1
2α(1−β)

+δ5)Ψ(B̃0)+(3+2δ4 log 1
2α(1−β)

+2δ5+
2δ2−δ1−log δ2

2δ2−1−δ1
)
∑+∞

i=0
Ci

t

)t

=

(
1− e−

δ6t0+δ7Ψ(B̃0)+δ8
∑+∞

i=0
Ci

t

)t

≤

(
δ6t0 + δ7Ψ(B̃0) + δ8

∑+∞
i=0 Ci

t

)t

,

where the inequality is due to the fact that 1− e−x ≤ x for any x ∈ R and δ6, δ7, δ8 are defined in
Theorem 6.4. Hence, we prove that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤

(
δ6t0 + δ7Ψ(B̃0) + δ8

∑+∞
i=0 Ci

t

)t

, ∀t > t0. (72)
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Using (44) from the proof of Theorem 5.2 in Appendix F.2, we have that

+∞∑
i=0

Ci ≤ C0Ψ(B̄0) +
3C0κ

α(1− β)
. (73)

Notice that from (24) in Lemma 6.3, we have that

t0 = max{Ψ(B̄0),
3κ

α(1− β)
log

C0

δ1
} ≤ Ψ(B̄0) +

3κ

α(1− β)
log

C0

δ1
. (74)

Leveraging (72), (73) and (74), we prove the conclusion.

G.6 Proof of Corollary 6.5

Using the fact that for B0 = LI , we have Ψ(B̄0) = 0 and Ψ(B̃0) ≤ dκ, and for the case that
B0 = µI , we have Ψ(B̄0) ≤ d log κ, and Ψ(B̃0) ≤ d log κ, we obtain the corresponding superlinear
results for these two conditions.

G.7 Specific Values of {δi}8i=1

As we stated before, all the {δi}8i=1 are universal constants that only depend on line search parameters
α and β. We can choose specific values of α and β to make definitions of {δi}8i=1 more clear. If we
pick α = 1

4 and β = 3
4 , we have that

δ1 =
1

6
, δ2 =

7

8
, δ3 = 2, δ4 = 118, δ5 = 14, δ6 = log 8, δ7 = 260, δ8 = 524.

H Complexity of BFGS with the Initialization B0 = cI

Recall that c ∈ [µ,L] by our choice of c in Remark 6.2. If we choose B0 = cI , then Ψ(B̄0) =

Ψ( c
LI) =

c
Ld− d+ d log L

c . Moreover, we have Ψ(B̃0) = Ψ(c∇2f(x∗)
−1) = cTr(∇2f(x∗)

−1)−
d − logDet(c∇2f(x∗)

−1), which is determined by the Hessian matrix ∇2f(x∗)
−1. In this case,

one can use the upper bounds Ψ(B̄0) = d( c
L − 1 + log L

c ) and Ψ(B̃0) = Tr(c∇2f(x∗)
−1

)− d−
logDet(c∇2f(x∗)

−1
) ≤ d( c

µ − 1 + log L
c ) to simplify the expressions.

Applying these values of Ψ(B̄0) and Ψ(B̃0) to our linear convergence result in Theorem 4.1 and the
superlinear convergence result in Theorem 6.4, we can obtain the following convergence guarantees
for B0 = cI:

• For t ≥ d( c
L − 1 + log L

c ), we have f(xt)−f(x∗)
f(x0)−f(x∗)

≤
(
1− 2α(1−β)

3κ

)t
;

• For t = Ω(d( c
µ − 1 + log L

c ) + C0d(
c
L − 1 + log L

c ) + C0κ), we have f(xt)−f(x∗)
f(x0)−f(x∗)

≤(
O
(d( c

µ−1+log L
c )+C0d(

c
L−1+log L

c )+C0κ

t

))t
.

Moreover, we can derive similar iteration complexity bounds following the same arguments as in
Section I. We also include the performance of BFGS with B0 = cI in our numerical experiments as
presented in Figure 1. We observe that the performance of BFGS with B0 = cI is very similar to the
convergence curve of BFGS with B0 = µI in our numerical experiments.

I Proof of Iteration Complexity

When B0 = LI , if we regard the line search parameters α and β as absolute constants, the first result
established in Corollary 4.2 leads to a global complexity of O(κ log 1

ϵ ), which is on par with gradient
descent. Moreover, the first result in Corollary 5.3 implies a complexity of O

(
(d+ C0)κ+ log 1

ϵ

)
,

where the first term represents the number of iterations required to attain the linear rate in (20), and
the second term represents the additional number of iterations needed to achieve the desired accuracy
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ϵ from the condition number-independent linear rate. For the analysis of the superlinear convergence
rate, we denote that ΩL = dκ+ C0κ. From the first result in Corollary 6.5, we have that

f(xt)− f(x∗)

f(x0)− f(x∗)
≤ (

ΩL

t
)t

Let T∗ be the number such that the inequality (ΩL

t )t ≤ ϵ above becomes equality. we have

log
1

ϵ
= T∗ log

T∗

ΩL
≤ T∗(

T∗

ΩL
− 1),

T∗ ≥
ΩL +

√
Ω2

L + 4ΩL log 1
ϵ

2
.

Hence, we have that

log
1

ϵ
= T∗ log

T∗

ΩL
≥ T∗ log

ΩL +
√
Ω2

L + 4ΩL log 1
ϵ

2ΩL
≥ T∗ log

1

2
+

√
1

4
+

log 1
ϵ

ΩL

,

T∗ ≤
log 1

ϵ

log

(
1
2 +

√
1
4 +

log 1
ϵ

ΩL

) .

Hence, to reach the accuracy of ϵ, we need the number of iterations t to be at least

t ≥
log 1

ϵ

log
(

1
2 +

√
1
4 + 1

ΩL
log 1

ϵ

) .
Therefore, the iteration complexity for the case of B0 = LI is

O

min

κ log
1

ϵ
, (d+ C0)κ+ log

1

ϵ
,

log 1
ϵ

log
(

1
2 +

√
1
4 + 1

dκ+C0κ
log 1

ϵ

)

 .

Similarly, in this case of B0 = µI , the second result in Corollary 4.2 establishes a global complexity
of O

(
d log κ+ κ log 1

ϵ

)
, where the first term represents the number of iterations before the linear

convergence rate in (19) begins, and the second term arises from the linear rate itself. Addition-
ally, following the same argument, the second result in Corollary 5.3 indicates a complexity of
O(C0d log κ+ C0κ+ log 1

ϵ ). Here, the first term accounts for the wait time until the convergence
rate takes effect, and the second term is associated with the condition number-independent linear rate.
For the superlinear convergence rate, when B0 = µI , to reach the accuracy of ϵ, we need the number
of iterations t to be at least

t ≥
log 1

ϵ

log
(

1
2 +

√
1
4 + 1

Ωµ
log 1

ϵ

) ,
where Ωµ = C0d log κ+C0κ. The proof is the same as the proof for the case of B0 = LI . Therefore,
the iteration complexity for the case of B0 = µI is

O

min

d log κ+ κ log
1

ϵ
, C0(d log κ+ κ) + log

1

ϵ
,

log 1
ϵ

log
(

1
2+
√

1
4+

1
C0(d log κ+κ) log

1
ϵ

)

 .

J Log Bisection Algorithm for Weak Wolfe Conditions
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Algorithm 1 Log Bisection Algorithm for Weak Wolfe Conditions

Require: Initial step size η(0) = 1, η(0)min = 0, η(0)max = +∞
1: for i = 0, 1, 2, . . . do
2: if f(xt + η(i)dt) > f(xt) + αη(i)∇f(xt)

⊤dt then
3: Set η(i+1)

max = η(i) and η
(i+1)
min = η

(i)
min

4: if η(i)min = 0 then
5: η(i+1) = ( 12 )

2i+1−1

6: else
7: η(i+1) =

√
η
(i+1)
max η

(i+1)
min

8: end if
9: else if ∇f(xt + η(i)dt)

⊤dt < β∇f(xt)
⊤dt then

10: Set η(i+1)
max = η

(i)
max and η

(i+1)
min = η(i)

11: if η(i)max = +∞ then
12: η(i+1) = 2

2i+1−1

13: else
14: η(i+1) =

√
η
(i+1)
max η

(i+1)
min

15: end if
16: else
17: Return η(i)

18: end if
19: end for

K Results and Discussion on the Bisection Scheme for Line Search in
Section 7

K.1 Proof of Lemma K.1

First, we present major results concerning the complexity of the bisection method, which specifies a
range of values that meet the conditions in (5) and (6).
Lemma K.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Recall the definition of ρt in (21)
and Ct in (9). At iteration t, there is unique ηr > 0 such that the sufficient decrease condition (5) is
equity for ηr, i.e.,

f(xt + ηrdt) = f(xt) + αηr∇f(xt)
⊤
dt. (75)

Then, ηt satisfies the sufficient decrease condition (5) if and only if ηt ≤ ηr. We also have that

2(1− α)

1 + Ct
ρt ≤ ηr ≤ 2(1− α)(1 + Ct)ρt. (76)

Similarly, there is also unique ηl > 0 such that the curvature condition (6) is equity for ηl, i.e.,

∇f(xt + ηldt)
⊤
dt = β∇f(xt)

⊤
dt. (77)

Then, ηt satisfies the curvature condition (6) if and only if ηt ≥ ηl. Moreover, we have that
ηr
ηl

≥ 1 +
β − α

(1− β)(1 + 2Ct)
> 1. (78)

Proof. Notice that Assumption 2.1 indicates that the objective function f(x) is strongly convex.
Consider function h1(η) = f(xt + ηdt) − αη∇f(xt)

⊤
dt. We observe that this function h1(η)

is strongly convex and h1(0) = f(xt), h′
1(0) < 0. Hence, there is unique ηr > 0 such that

h1(ηr) = f(xt) and ηt ≤ ηr if and only if f(xt + ηtdt) ≤ f(xt) + αηt∇f(xt)
⊤
dt.

Denote that x̄t+1 = xt+ηrdt. We know that f(x̄t+1)−f(xt) = αηrg
⊤
t dt. Since f(x̄t+1)−f(xt) =

ηrg
⊤
t dt +

1
2η

2
rd

⊤
t ∇2f(xt + τ(x̄t+1 − xt))dt for τ ∈ (0, 1), we have that

ηrg
⊤
t dt +

1

2
η2rd

⊤
t ∇2f(xt + τ(x̄t+1 − xt))dt = αηrg

⊤
t dt,
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ηr = 2(1− α)
−g⊤t dt

d⊤t ∇2f(xt + τ(x̄t+1 − xt))dt
.

which leads to

ηr = 2(1− α)
−g⊤t dt

d⊤t ∇2f(xt + τ(x̄t+1 − xt))dt
≤ 2(1− α)(1 + Ct)

−g⊤t dt
d⊤t ∇2f(x∗)dt

= 2(1− α)(1 + Ct)
−g⊤t dt

∥d̃t∥2
= 2(1− α)(1 + Ct)ρt.

ηr = 2(1− α)
−g⊤t dt

d⊤t ∇2f(xt + τ(x̄t+1 − xt))dt
≥ 2(1− α)

1 + Ct

−g⊤t dt
d⊤t ∇2f(x∗)dt

=
2(1− α)

1 + Ct
ρt.

where we use the (32) from Lemma A.1 and the fact that f(x̄t+1) = f(xt) + αηrg
⊤
t dt ≤ f(xt).

Hence, we prove the results in (76).

Similarly, consider function h2(η) = ∇f(xt + ηdt)
⊤
dt. We observe that this function h2(η) is

strictly increasing function for η ≥ 0 and h2(0) = ∇f(xt)
⊤
dt < β∇f(xt)

⊤
dt, h2(ηexact) =

∇f(xt + ηexactdt)
⊤
dt = 0 > β∇f(xt)

⊤
dt where ηexact := argminη>0 f(xt + ηdt) is the exact

line search step size satisfying ∇f(xt + ηexactdt)
⊤
dt = 0. Hence, there is unique ηl ∈ (0, ηexact)

such that h2(ηl) = β∇f(xt)
⊤
dt and ηt ≥ ηl if and only if ∇f(xt + ηtdt)

⊤
dt ≥ β∇f(xt)

⊤
dt.

Notice that

f(xt + ηrdt) = f(xt) + αηr∇f(xt)
⊤
dt.

Using mean value theorem, we know there exists η̄ ∈ (0, ηr) such that

f(xt + ηrdt) = f(xt) + ηr∇f(xt + η̄dt)
⊤
dt.

The above two equities indicates that

∇f(xt + η̄dt)
⊤
dt = α∇f(xt)

⊤
dt.

Recall that

∇f(xt + ηldt)
⊤
dt = β∇f(xt)

⊤
dt.

Combing the above two equities, we obtain that

(∇f(xt + η̄dt)−∇f(xt + ηldt))
⊤dt = −∇f(xt)

⊤
dt(β − α).

Using mean value theorem again, we know there exists η̃ ∈ (ηl, η̄) such that

(∇f(xt + η̄dt)−∇f(xt + ηldt))
⊤dt = (η̄ − ηl)d

⊤
t ∇2f(xt + η̃dt)dt.

Leveraging the above two equities, we obtain that

η̄ − ηl = (β − α)
−∇f(xt)

⊤
dt

d⊤t ∇2f(xt + η̃dt)dt
.

Notice that η̄ ≤ ηr, we have that

ηr − ηl ≥ η̄ − ηl = (β − α)
−∇f(xt)

⊤
dt

d⊤t ∇2f(xt + η̃dt)dt
. (79)

Recall the definition of ηl in (77), we have that

(∇f(xt + ηldt)−∇f(xt))
⊤dt = −(1− β)∇f(xt)

⊤
dt.

Notice that there exists η̂ ∈ (0, ηl), such that

(∇f(xt + ηldt)−∇f(xt))
⊤dt = ηld

⊤
t ∇2f(xt + η̂dt)dt.

Combing the above two equities, we obtain that

ηl =
−(1− β)∇f(xt)

⊤
dt

d⊤t ∇2f(xt + η̂dt)dt
. (80)
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Leveraging (79) and (80), we have that

ηr
ηl

= 1 +
ηr − ηl

ηl
≥ 1 +

(β − α)d⊤t ∇2f(xt + η̂dt)dt
(1− β)d⊤t ∇2f(xt + η̃dt)dt

.

Recall that x̄t+1 = xt + ηrdt and notice that η̂ ≤ ηr, η̃ ≤ ηr. We have that xt + η̂dt = xt +

τ̂(x̄t+1 − xt) and xt + η̃dt = xt + τ̃(x̄t+1 − xt) with τ̂ = η̂
ηr

∈ (0, 1) and τ̃ = η̃
ηr

∈ (0, 1). Since

f(x̄t+1) = f(xt + ηrdt) = f(xt) + αηr∇f(xt)
⊤
dt ≤ f(xt), applying (36) in Lemma A.1, we

prove the conclusion that

ηr
ηl

≥ 1 +
(β − α)d⊤t ∇2f(xt + η̂dt)dt
(1− β)d⊤t ∇2f(xt + η̃dt)dt

= 1 +
(β − α)d⊤t ∇2f(xt + τ̂(x̄t+1 − xt))dt
(1− β)d⊤t ∇2f(xt + τ̃(x̄t+1 − xt))dt

≥ 1 +
β − α

(1− β)(1 + 2Ct)
.

K.2 Bound on the Number of Inner Loops

Proposition K.2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Consider the BFGS method with
inexact line search defined in (5) and (6) and we choose the step size ηt according to Algorithm 1. At
iteration t, denote λt as the number of loops in Algorithm 1 to terminate and return the ηt satisfying
the Wolfe conditions (5) and (6). Then λt is finite and upper bounded by

λt ≤ 2 + log2

(
1 +

(1− β)(1 + 2Ct)

β − α

)
+ 2 log2

(
1 + log2

(
2(1− α)(1 + Ct)

)
+max{log2 ρt, log2

1

ρt
}
)
.

(81)

Proof. At the first iteration, if η(0) = 1 satisfies the weak Wolfe conditions (5) and (6), the algorithm
terminates and returns the unit step size ηt = 1. In this case, we have that λt = 1.

Suppose that at the first iteration, η(0) = 1 doesn’t satisfy the sufficient decrease condition (5) but
satisfies the curvature condition (6), we have that η(1)max = +∞, η(1)min = 1 and η(1) = 2. Assume
that in the Algorithm 1, η(i)max is never set to a finite value and the algorithm never returns. This
means that the condition in line 2 is never satisfied, and as a result, we keep repeating steps in line
12. Thus, η(i) = 22

i−1 and since the condition in line 2 is never satisfied, we always have that
f(xt + η(i)dt) ≤ f(xt) + αη(i)∇f(xt)

⊤dt. Notice that limi→∞ η(i) → +∞ and ∇f(xt)
⊤dt < 0.

We obtain that limi→∞ f(xt + η(i)dt) → −∞, which is a contradiction since f is strongly convex.

Hence, at some point, either the algorithm finds an admissible step size and returns, or η(i)max must
become finite. Suppose that this happens at iteration K1 ≥ 1 of the loop in Algorithm 1. Then, we
know that η(K1) = 22

K1−1. In the first case that the algorithm finds an admissible step size and
returns ηK1 , ηK1 satisfies the Armijo-Wolfe conditions and therefore ηK1 ≤ ηr. Using the upper
bound result in (76) from Lemma K.1, we obtain that η(K1) = 22

K1−1 ≤ ηr ≤ 2(1− α)(1 + Ct)ρt,
which leads to

λt = K1 ≤ log2

(
1 + log2

(
2(1− α)(1 + Ct)ρt

))
. (82)

In the second case that η(i)max becomes finite but the algorithm does not terminate, we have that
η(K1−1) satisfies the sufficient condition (5) and η(K1−1) ≤ ηr. Similarly, this implies that

K1 ≤ 1 + log2

(
1 + log2

(
2(1− α)(1 + Ct)ρt

))
. (83)

Then, we further go through the log bisection process. Notice that for any iteration i > K1, the
sequence η

(i)
max is finite and non-increasing and the sequence η

(i)
min ≥ 1 and non-decreasing. The log

bisection process indicates that

log2
η
(i+1)
max

η
(i+1)
min

=
1

2
log2

η
(i)
max

η
(i)
min

, ∀i > K1. (84)
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The Algorithm 1 implies that for any i > K1, we have that

f(xt + η(i)maxdt) > f(xt) + αη(i)max∇f(xt)
⊤dt, ∇f(xt + η

(i)
mindt)

⊤dt < β∇f(xt)
⊤dt.

Hence, we know that for any i > K1, η(i)max ≥ ηr and η
(i)
min ≤ ηl where ηr, ηl are defined in (75),

(77) from Lemma K.1. Therefore, using result (78) from Lemma K.1, we have that for any j ≥ 1,

log2
η
(K1+j)
max

η
(K1+j)
min

≥ log2
ηr
ηl

> 0. (85)

Notice that (84) implies that

log2
η
(K1+j)
max

η
(K1+j)
min

=
1

2j−1
log2

η
(K1+1)
max

η
(K1+1)
min

, (86)

which leads to 0 = limj→+∞
1

2j−1 log2
η(K1+1)
max

η
(K1+1)
min

= limj→+∞ log2
η(K1+j)
max

η
(K1+j)
min

≥ log2
ηr

ηl
> 0. This is a

contradiction. Hence, Algorithm 1 must terminate after finite number of loops. Now suppose that
Algorithm 1 terminates after K1 + Γ1 iterations, (85) and (86) indicate that when Γ1 ≥ 1, we have

1

2Γ1−1
log2

η
(K1+1)
max

η
(K1+1)
min

= log2
η
(K1+Γ1)
max

η
(K1+Γ1)
min

≥ log2
ηr
ηl

> log2

(
1 +

β − α

(1− β)(1 + 2Ct)

)
(87)

where the last inequality holds since (78) in Lemma K.1. Notice that η(K1+1)
max = 22

K1−1 and
ηK1+1
min = 22

K1−1−1. Hence, we obtain that

log2
η
(K1+1)
max

η
(K1+1)
min

= 2K1−1 ≤ 1 + log2
(
2(1− α)(1 + Ct)ρt

)
. (88)

Combing (87), (88) and using log x ≥ 1− 1
x , we have that

Γ1 ≤ 1 + log2

(
1 + log2

(
2(1− α)(1 + Ct)ρt

))
− log2 log2

(
1 +

β − α

(1− β)(1 + 2Ct)

)
≤ 1 + log2

(
1 + log2

(
2(1− α)(1 + Ct)ρt

))
− log2 log

(
1 +

β − α

(1− β)(1 + 2Ct)

)
≤ 1 + log2

(
1 + log2

(
2(1− α)(1 + Ct)ρt

))
− log2

(
1− 1

1 + β−α
(1−β)(1+2Ct)

)
= 1 + log2

(
1 + log2

(
2(1− α)(1 + Ct)ρt

))
+ log2

(
1 +

(1− β)(1 + 2Ct)

β − α

)
.

(89)

Leveraging (83) and (89), we prove that

λt = K1 + Γ1

≤ 2 + 2 log2

(
1 + log2

(
2(1− α)(1 + Ct)ρt

))
+ log2

(
1 +

(1− β)(1 + 2Ct)

β − α

)
.

(90)

Similarly, suppose that at the first iteration, η(0) = 1 satisfies the sufficient decrease condition (5)
but doesn’t satisfy the curvature condition (6), we have that η(1)max = 1, η(1)min = 0 and η(1) = 1

2 .
Assume that in the Algorithm 1, η(i)min is never set to a positive value and the algorithm never returns.
This means that the condition in line 2 is always satisfied, and as a result, we keep repeating steps
in line 5. Thus, η(i) = ( 12 )

2i−1 and since the condition in line 2 is always satisfied, we have that
f(xt + η(i)dt) > f(xt) + αη(i)∇f(xt)

⊤dt. Therefore, we know that η(i) ≥ ηr where ηr > 0 is
defined in (75) from Lemma K.1. Notice that η(i) ≥ ηr > 0 for any i and limi→∞ η(i) = 0, this
leads to a contradiction.

Hence, at some point either the algorithm returns a step size satisfying the weak Wolfe conditions or
η
(i)
min must become positive. Suppose that this happens at iteration K2 ≥ 1 of the loop in Algorithm 1.

Then, we know that η(K2) = ( 12 )
2K2−1.
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In the first case that the algorithm finds an admissible step size and returns ηK2 , ηK2 satisfies
the Armijo-Wolfe conditions and therefore ηK2 ≤ ηr. Using the upper bound result in (76) from
Lemma K.1, we obtain that η(K2) = 22

K2−1 ≤ ηr ≤ 2(1− α)(1 + Ct)ρt, which leads to

λt = K2 ≤ log2

(
1 + log2

(
2(1− α)(1 + Ct)ρt

))
. (91)

In the second case that η(i)min becomes positive but the algorithm does not terminate, we have that
η(K2−1) doesn’t satisfy the sufficient condition (5) and η(K2−1) ≥ ηr. Using the lower bound result
in (76) from Lemma K.1, we obtain that η(K2−1) = ( 12 )

2K2−1−1 ≥ ηr ≥ 2(1−α)
1+Ct

ρt, which leads to

K2 ≤ 1 + log2

(
1 + log2

1 + Ct

2(1− α)ρt

)
. (92)

Then, we further go through the log bisection process. Using the same techniques, we can assume
that Algorithm 1 terminates after K2 + Γ2 iterations, where Γ2 ≥ 1 satisfies that

1

2Γ2−1
log2

η
(K2+1)
max

η
(K2+1)
min

= log2
η
(K2+Γ2)
max

η
(K2+Γ2)
min

≥ log2
ηr
ηl

> log2

(
1 +

β − α

(1− β)(1 + 2Ct)

)
(93)

where the last inequality holds since (78) in Lemma K.1. Notice that η(K2+1)
max = ( 12 )

2K2−1−1 and
ηK2+1
min = ( 12 )

2K2−1. Hence, we obtain that

log2
η
(K2+1)
max

η
(K2+1)
min

= 2K2−1 ≤ 1 + log2
1 + Ct

2(1− α)ρt
. (94)

Combing (93), (94) and using log x ≥ 1− 1
x , we have that

Γ2 ≤ 1 + log2

(
1 + log2

1 + Ct

2(1− α)ρt

)
− log2 log2

(
1 +

β − α

(1− β)(1 + 2Ct)

)
≤ 1 + log2

(
1 + log2

1 + Ct

2(1− α)ρt

)
− log2 log

(
1 +

β − α

(1− β)(1 + 2Ct)

)
≤ 1 + log2

(
1 + log2

1 + Ct

2(1− α)ρt

)
− log2

(
1− 1

1 + β−α
(1−β)(1+2Ct)

)
= 1 + log2

(
1 + log2

1 + Ct

2(1− α)ρt

)
+ log2

(
1 +

(1− β)(1 + 2Ct)

β − α

)
.

(95)

Leveraging (92) and (95), we prove that
λt = K2 + Γ2

≤ 2 + 2 log2

(
1 + log2

1 + Ct

2(1− α)ρt

)
+ log2

(
1 +

(1− β)(1 + 2Ct)

β − α

)
.

(96)

Notice that α < 1
2 and thus 1

2(1−α) < 2(1− α), combining (82), (90), (91) and (96), we prove the
final conclusion

λt ≤ 2 + log2

(
1 +

(1− β)(1 + 2Ct)

β − α

)
+ 2 log2

(
1 + log2

(
2(1− α)(1 + Ct)

)
+max{log2 ρt, log2

1

ρt
}
)
.

K.3 Proof of Theorem 7.1

Using result from Proposition K.2, we have that

Λt =
1

t

t−1∑
i=0

λi ≤ 2 +
1

t

t−1∑
i=0

log2

(
1 +

(1− β)(1 + 2Ci)

β − α

)
+

2

t

t−1∑
i=0

log2

(
1 + log2

(
2(1− α)(1 + Ci)

)
+max{log2 ρi, log2

1

ρi
}
)
.

(97)
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Using Jensen’s inequality, we have that

1

t

t−1∑
i=0

log2

(
1 +

(1− β)(1 + 2Ci)

β − α

)
≤ log2

(
1 +

1− β

β − α
+

2(1− β)

β − α

∑t−1
i=0 Ci

t

)
. (98)

1

t

t−1∑
i=0

log2

(
1 + log2

(
2(1− α)(1 + Ci)

)
+max{log2 ρi, log2

1

ρi
}
)

≤ log2

(
1 + log2 2(1− α) +

1

t

t−1∑
i=0

log2(1 + Ci) +
1

t

t−1∑
i=0

max{log2 ρi, log2
1

ρi
}
)

≤ log2

(
1 + log2 2(1− α) + log2

(
1 +

∑t−1
i=0 Ci

t
) +

1

t

t−1∑
i=0

max{log2 ρi, log2
1

ρi
}
)
.

(99)

We also have that

1

t

t−1∑
i=0

max{log2 ρi, log2
1

ρi
} =

1

t

t−1∑
i=0,ρi≥1

log2 ρi +
1

t

t−1∑
i=0,0≤ρi<1

log2
1

ρi

=
1

t

t−1∑
i=0,ρi≥2

log2 ρi +
1

t

t−1∑
i=0,1≤ρi<2

log2 ρi +
1

t

t−1∑
i=0, 12<ρi<1

log2
1

ρi
+

1

t

t−1∑
i=0,ρi≤ 1

2

log2
1

ρi

≤ 2 +
1

t

t−1∑
i=0,ρi≥2

log2 ρi +
1

t

t−1∑
i=0,ρi≤ 1

2

log2
1

ρi
,

(100)

where the inequality is due to log2 ρi ≤ 1 for ρi < 2 and log2
1
ρi

≤ 1 for ρi > 1
2 . Using the definition

of ω and (b) in Lemma G.1, we obtain that

1

t

t−1∑
i=0,ρi≥2

log2 ρi =
log2 e

t

t−1∑
i=0,ρi≥2

log ρi =
log2 e

t

t−1∑
i=0,ρi≥2

(ρi − 1− ω(ρi − 1))

≤ log2 e

t

t−1∑
i=0,ρi≥2

(
2ρi

ρi − 1
ω(ρi − 1)− ω(ρi − 1))
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log2 e

t

t−1∑
i=0,ρi≥2

ρi + 1

ρi − 1
ω(ρi − 1) ≤ 3 log2 e

t

t−1∑
i=0,ρi≥2

ω(ρi − 1).

(101)

Similarly, using (c) in Lemma G.1, we obtain that

1

t

t−1∑
i=0,ρi≤ 1

2

log2
1

ρi
=

log2 e

t
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2
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log2 e
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≤ log2 e
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2
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log2 e

t
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2

2
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ω(ρi − 1) ≤ 4 log2 e

t
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i=0,ρi≤ 1

2
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(102)

Combining (100), (101) and (102), we prove that

1

t
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max{log2 ρi, log2
1

ρi
} ≤ 2 +

1

t

t−1∑
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log2 ρi +
1

t
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2

log2
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≤ 2 +
4 log2 e

t
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6

t
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i=0

Ci

)
.

(103)
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where we use the fact that ω(ρi − 1) ≥ 0 for any i ≥ 0 and the last inequality is due to (46) in
Proposition G.2. Leveraging (97), (98), (99) and (103), we have that

Λt ≤ 2 + log2

(
1 +

1− β

β − α
+

2(1− β)

β − α

∑t−1
i=0 Ci

t

)
+ 2 log2
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3 + log2 2(1− α) + log2
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i=0 Ci

t
) +

6

t
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≤ 2 + log2
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1 +
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β − α
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2(1− β)

β − α
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i=0 Ci

t
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+ 2 log2
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log2 16(1− α) + log2

(
1 +
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i=0 Ci

t
) +

6Ψ(B̃0) + 12
∑t−1

i=0 Ci

t

)
.

We prove the final conclusion using (44) from the proof of Theorem 5.2 in Appendix F.2, i.e.,

t−1∑
i=0

Ci ≤ C0Ψ(B̄0) +
3C0κ

α(1− β)
.

K.4 Corollaries of Theorem 7.1 for B0 = LI and B0 = µI

Corollary K.3 (B0 = LI). Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Let {xt}t≥0 be the
iterates generated by the BFGS method, where the step size satisfies the Armijo-Wolfe conditions in
(5) and (6). For any initial point x0 ∈ Rd and the initial Hessian approximation matrix B0 = LI ,
the average complexity of line search Algorithm 1 Tk is upper bounded by

Λt ≤ 2 + log2

(
1 +

1− β

β − α
+

2(1− β)

β − α

3C0κ

α(1− β)t

)
+ 2 log2

(
log2 16(1− α) + log2

(
1 +

3C0κ

α(1− β)t

)
+

6dκ+ 36C0κ
α(1−β)

t

)
.

Moreover, when t ≥ 6dκ+ 36
α(1−β)C0κ, we have that

Λt ≤ 2 + log2
(
1 +

3(1− β)

β − α

)
+ 2 log2(5 + log2 2(1− α)). (104)

Proof. Since B0 = LI , we have B̄0 = 1
LB0 = I and B̃0 = ∇2f(x∗)

− 1
2B0∇2f(x∗)

− 1
2 =

L∇2f(x∗)
−1. Using results in the proof of Corollary 5.3, we have

Ψ(B̄0) = 0, Ψ(B̃0) ≤ dκ.

Combining these two results with the result in Theorem 7.1, we prove the conclusion.

Corollary K.4 (B0 = µI). Let {xt}t≥0 be the iterates generated by the BFGS method with inexact
line search (5), (6) and suppose that Assumptions 2.1, 2.2 and 2.3 hold. For any initial point x0 ∈ Rd

and the initial Hessian approximation matrix B0 = µI , the average complexity of line search
Algorithm 1 Tk is upper bounded by

Λt ≤ 2 + log2

(
1 +

1− β

β − α
+

2(1− β)

β − α

C0d log κ+ 3C0κ
α(1−β)

t

)
+ 2 log2

(
log2 16(1− α) + log2

(
1 +

C0d log κ+ 3C0κ
α(1−β)

t

)
+

6(1 + 2C0)d log κ+ 36C0κ
α(1−β)

t

)
.

Moreover, when t ≥ 6(1 + 2C0)d log κ+ 36C0κ
α(1−β) , we have that

Λt ≤ 2 + log2
(
1 +

3(1− β)

β − α

)
+ 2 log2(5 + log2 2(1− α)). (105)
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Proof. Since B0 = µI , we have B̄0 = 1
κB0 = I and B̃0 = ∇2f(x∗)

− 1
2B0∇2f(x∗)

− 1
2 =

µ∇2f(x∗)
−1. Using results in the proof of Corollary 4.2, we have

Ψ(B̄0) ≤ d log κ, Ψ(B̃0) ≤ d log κ.

Combining these two results with (26) in Theorem 6.4, we prove the conclusion.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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