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ABSTRACT

Training on disjoint fixed-length segments, Transformers successfully transform
static word embeddings into contextualized word representations. However, they
often restrict the context of a token to the segment it resides in and hence neglect
the flow of contextual information across segments, failing to capture longer-term
dependencies beyond the predefined segment length. This paper uses a probabilis-
tic deep topic model to provide contextualized embeddings at both the token and
segment levels. It also introduces a contextual next-word embedding guided topic
attention module, injecting contextualized topic information into Transformer-
based architectures. The proposed method not only captures global semantic
coherence of all segments and word concurrence patterns, but also enriches the rep-
resentation of each token by adapting it to its local context, which goes beyond the
segment it resides in and can be flexibly defined according to the target task while
maintaining control over memory footprint and computational time. Experiments
on various corpora show that adding only a few extra parameters, the proposed
topic-aware contextualized transformers consistently outperform their conventional
counterparts, and can be used to generate coherent sentences and paragraphs.

1 INTRODUCTION

Language models (LMs) play an important role across a range of natural language processing tasks,
such as text summarization (Rush et al., 2015; Gehrmann et al., 2018), neural machine translation
(NMT) (Sutskever et al., 2014; Cho et al., 2014a), and image captioning (Herdade et al., 2019;
Anderson et al., 2018; Xu et al., 2015). Existing neural LMs are often built on either recurrent
units, as used in recurrent neural networks (RNNs) (Cho et al., 2014b; Hochreiter and Schmidhuber,
1997), or purely the attention mechanism based modules, as used in the Transformer and its various
generalizations (Vaswani et al., 2017; Dai et al., 2019; Radford et al., 2019). Moving beyond
traditional recurrent units, Transformers mainly rely on attention mechanisms, in which the direct
connections between long-distance word pairs might ease optimization and enable the learning of long-
range dependency (Dai et al., 2019), and have recently demonstrated state-of-the-art performances on
a wide range of sequence modeling tasks.

Rather than representing a token using a predefined word embedding vector, each Transformer layer
creates a contextualized representation of each token by attending to different parts of the input
segment (Ethayarajh, 2019), allowing the same word to take different representations depending on
its context. However, Transformers are usually trained on disjoint fixed-length segments, without any
information flow across segments (Dai et al., 2019), limiting the contextualization within the current
segment. Therefore, they often fail to take full advantage of many other rich contextual information,
such as longer-range word dependencies beyond the segment length and semantic relationships
between neighboring segments. While a naive solution to explore richer contextual information is
to increase the segment length, in practice, it is usually infeasible due to limited resources, which
requires O

�
N2

�
for the window N of inputs at each layer.

Some long-range transformer variants (Dai et al., 2019; Rae et al., 2020; Rae and Razavi, 2020) aim
to extend context via compression, which use compressed memory cells for preserving the previous
segments’ information. The Transformer-XL (Dai et al., 2019) builds up recurrent connections
between segments, concatenating the past activations with a memory cell of size M � N, which
results in an attention cost of O (N(M +N)). However the memory cell still requires a considerable
space L ⇥M ⇥ dmodel in a L-layer transformer with embedding size of dmodel, which consumes
a non-negligible cost (Rae and Razavi, 2020). Rae et al. (2020) shorten the range of attention
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for Transformers by compressing the past memories into fine-grained and coarser compressed
memory slots, while still suffering from memory consuming as the memory size is quiet large
(> 1000). In addition, some efficient versions focusing on Transformer model’s self-attention
mechanism have also recently been explored. These models reduce memory requirements by
leveraging sparsity in the attention layers (Sukhbaatar et al., 2019), exploiting a factorized sparse
representation(Child et al., 2019), replacing dot-product attention with locality-sensitive hashing
to decrease complexity (Kitaev et al., 2020), or using product-key attention to increase the key
space (Lample et al., 2019). Besides, Chen et al. (2019) represent sentence-level context as latent
topic representations by using a convolution neural network, and utilize the context representations
to improve translation. However, leveraging the contextualized topic information by capturing
semantic coherence via a deep probabilistic topic model, to our knowledge, has not been directly
applied to Transformer before. Furthermore, compared with pre-training, fine-tuning is relatively
inexpensive (Devlin et al., 2019). Nevertheless, most of the current contextualized models are trained
independently on different datasets, without making good use of the publicly released pre-trained
models (Radford et al., 2019; Devlin et al., 2019; Radford et al., 2018; Brown et al., 2020; Peters
et al., 2018; Yang et al., 2019), paired with unsupervised pre-training on a large amount of training
data. This motivates us to explore a general intervention based on those predecessors for performance
gain with little computation cost, providing longer-range dependencies through a deep topic model.

Different from RNN or Transformer-based LMs, topic models (Blei et al., 2003; Teh et al., 2006; Zhou
and Carin, 2015; Gan et al., 2015; Zhou et al., 2016; Zhao et al., 2018) are well suited for capturing
global semantic coherency by extracting word concurrence patterns into semantically meaningful
topics, which can be viewed as the contextualized word representations of the entire target corpus
including all segments. Since topic models are appropriate to capture long-range dependencies, some
approaches attract significant recent interest by leveraging topic models to improve RNN-based
language models (Dieng et al., 2017; Ahn et al., 2016; Lau et al., 2017; Wang et al., 2018a; Guo et al.,
2019). Dieng et al. (2017) and Ahn et al. (2016) integrate the syntactic dependencies of RNNs and
semantic topics of latent topic models. Lau et al. (2017) introduce an attention based convolutional
neural network to extract semantic topics for extending the RNN cell. Wang et al. (2018a) learn the
global semantic coherence of a document via a neural topic model and use the learned latent topics to
build a mixture-of-experts language model. Guo et al. (2019) extract recurrent hierarchical semantic
structure via a dynamic deep topic model to guide natural language generation. Motivated by recent
successes on integrating topic information into RNN-based LMs, here we focus on using topic model
to provide richer contextual information for improving the Transformer. In particular, we consider
using Poisson gamma belief network (PGBN) (Zhou et al., 2016; Zhang et al., 2018), a state-of-the-art
probabilistic topic model which can be equivalently represented as a multi-stochastic-layer deep
generalization of vanilla topic models (Blei et al., 2003; Zhou et al., 2012), to extract globally shared
semantical topic representations of user-defined contexts.

To this end, three different types of contextual topic information are provided to introduce long-range
semantic dependencies into Transformers. (i) We first introduce the contextual token embedding
(TE) guided by topic model to enrich the representation of each token, which not only extracts global
semantics from the corpus, but also provides localized representation of a token given either its
preceding or surrounding context (which one to use is task-dependent). (ii) To utilize contextual
information of a segment, we develop the contextual segment embedding (SE) to construct a set
of virtual words, which is placed before the word sequence of the current segment and fed into
Transformer. As such, the generation of any token in one segment depends on semantic context from
the previous segments. (iii) After that, we further develop a multi-head topic attention (TA) module
into the Transformer, selecting semantically related topics for generating each token, a design inspired
by how a token is generated by a topic model given the topics and corresponding topic proportion. To
encourage topic select-attention to focus on the topics where the predicting token is more likely to be
assigned to by the topic model, during training, we add a restriction between the attention weights and
the latent representation of the predicting word. Besides, a sparse penalty is employed on the topic
select-attention, encouraging the network to focus on only a small subset of extracted topics. Moving
beyond conventional transformers, our model can not only utilize longer-range word dependencies
beyond the segment length and semantic relationships across all segments, but also generalize easily
to any pre-trained Transformer-based model by jointly fine-tuning on the target corpus. It only adds
minor memory and computation overhead comparing with fine-tuning the Transformer-based model
alone. We demonstrate the effectiveness of our method both quantitatively and qualitatively.
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2 PRELIMINARIES

To train Transformer-based LMs, the underlying word sequence of a corpus is usually broken into
fixed-length non-overlapping segments, without any information flow across segments. We denote
sn = (sn1, . . . , snI) as the n-th segment of I consecutive tokens, where sni 2 {1, . . . , V } and V is
the vocabulary size. The segment length I is chosen to balance the ability to model long-range word
dependencies with the memory and computation cost. Note the segments fed into Transformers no
longer respect natural document boundaries, which means a segment could consist of the tokens from
more than one document. Below we provide a brief overview of Transformers (Vaswani et al., 2017)
and PGBN (Zhou et al., 2016), a multi-stochastic-layer deep topic model. To make them compatible
with each other, each segment is fed into Transformer as a document analyzed in PGBN.

Vanilla Transformer networks: Like a standard LM, Transformers are trained by maximizing
the likelihood of all segments L =

P
n L(sn), L(sn) =

P
i logP⌦ (sni | sn,<i) , where sn,<i

consists of the preceding tokens of sni within the nth segment, and ⌦ the parameters for modeling
the conditional probability. Our proposed method can be applied to improve both Transformer
encoder and decoder architectures (Vaswani et al., 2017; Dai et al., 2019; Radford et al., 2019; Devlin
et al., 2019; Radford et al., 2018). For brevity, we will mainly show how to use PGBN to better
contextualize through the Transformer decoder, which consists of L layers as

Z0 = WE+PE, Zl = TransformerBlock
�
Zl�1�, P (u) = softmax

�
ZLWT

e

�
, (1)

where WE and PE are the word and position embeddings of sn,i�1 when predicting the i-th token
of the segment, We 2 RV⇥dmodel the embedding matrix, and Z1:L the outputs of all L layers, each
of which consists of a multi-head self-attention block followed by a feed-forward neural network
(Vaswani et al., 2017). To facilitate these connections, all layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel. See previous works (Vaswani et al., 2017; Devlin et al.,
2019) for more details on Transformers.

Deep topic model: PGBN is used to provide semantically meaningful contextual representations to
guide Transformers. We represent segment sn as a bag-of-words (BoW) count vector dn 2 ZV

+ , the
v-th element of which counts how many times term v in the vocabulary of size V appears at the n-th
segment. The generative model of PGBN with T hidden layers, from top to bottom, is expressed as

✓Tn ⇠ Gamma
�
r, ⌧T+1

n

�
, ...,✓tn ⇠ Gamma

�
�t+1✓t+1

n , ⌧ t+1
n

�
,

✓1n ⇠ Gamma
�
�2✓2n, ⌧

2
n

�
,dn ⇠ Poisson(�1✓1n),

(2)

where the shape parameters of gamma distributed hidden units ✓tn 2 RMt
+ are factorized into the

product of connection weight matrix �t+1 2 RMt⇥Mt+1
+ and hidden units ✓t+1

n of the next layer. The
global semantics of entire training corpus are compressed into �1:T , representing topic relations of T
layers. ✓tn denotes a local semantic representation of input dn, indicating its topic proportion at t-th
layers. See Zhou et al. (2016) for more details on PGBN.

3 CONTEXTUALIZED TRANSFORMERS

In a Transformer-based model, an essential step is to introduce a word embedding matrix We 2

RV⇥dmodel , the v-th row of which provides a dmodel-dimensional representation of the v-th token of
the vocabulary. This matrix is often pre-trained on large corpora and fine-tuned afterwards on target
corpus, where each token is simply represented with its corresponding embedding vector in We.
Given We, the Transformer architecture itself can be considered as transforming each input segment,
represented as a sequence of static word embedding vectors, into a sequence of contextualized word
representations (Ethayarajh, 2019), which allow the same word to take different representations
depending on its context. However, the contextualization is often limited to the segment itself of a
fixed length, neglecting the longer-range word dependencies beyond segment length and semantic
relationships between neighboring segments. To advance the longer-context information, we consider
providing richer contextual information to guide the Transformer with PGBN, which is good at
extracting globally semantic topics and localized feature representation of a context. Fig. 1 (a) shows
the overall architecture of the proposed model, where a basic Transformer block is in conjunction
with a multi-layer topic model. Firstly, the topic model extracts the contextual representation of each
token as TE, directly adding to the embedding space, and the contextual representation on segment
level as SE, which is placed in front of the current segment. Then an additional multi-head topic
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Figure 1: (a) The over-
all architecture of the
proposed model, where
the TE, SE and TA mod-
ules are highlighted in
yellow color. (b) Visu-
alization of the proposed
contextual token embed-
ding (TE) for token u,
where WE and PE denote
word embedding and po-
sition embedding. (c)
Visualization of segment
embedding (SE), analo-
gized as virtual tokens
and placed before the
word sequence. (d) Vi-
sualization of the topic
select-attention module,
interleaved into trans-
formers as shown in (a).

attention module is used to attend to different semantic topics as keys and values, according to the
query calculated from the Transformers. Furthermore, the sparse regularization and a next-word
prediction guidance are employed.

3.1 MULTI-LAYER TOPIC-AWARE CONTEXTUALIZATIONS

In this section, we will show how to integrate the hierarchical topic semantics learned with a T -
stochastic-layer PGBN (2) into existing Transformer-based models. The topic matrix of t-th layer
extracted from the target corpus is represented as  t =

Qt
t0=1�

t0 2 RV ⇥Mt
+ , containing Mt topics,

which tend to be more semantically specific in lower layers and become more general when moving
upwards. The normalized topic proportion vector ✓t = (✓t1, . . . , ✓

t
Mt

)0 over  t summarizes the
representation of the local context of a token. Besides, we define ✓̃t over  t as the contextual
representation at the segment-level, which represents the first several segments preceding the current
one, shared within the current segment.

Contextual token embedding (TE): To enrich the representation of each token by adapting it to
both the target corpus and the local context it resides in, our first key idea is to introduce a contextual
token embedding guided by a multi-stochastic-layer topic model. More specifically, we first need to
define the local context of token u depending on the learning task, which is composed of its preceding
tokens (e.g. for text generation) or both its preceding and following ones (e.g. for text classification),
going beyond the current segment u resides in. We summarize the user-defined local context of u
into a BoW vector d 2 ZV

+ . As shown in Fig.1 (b), given the topic matrix  t shared globally by
all segments, we use an inference network to project d to ✓t that represents the topic proportions
of d under  t. We then define a localized contextual feature vector as  t

u: � (✓t)0 2 RMt
+ , where

 t
u: 2 RMt

+ denotes u-th row of  t and � denotes an element-wise product. In other words, the
local context topic proportion ✓t is used to re-weight topic vector  t

u:. Thus the m-th element of
 t

u: � (✓t)0/k t
u: � (✓t)0k1 represents the probability of assigning token u to topic m at layer t. Since

topics at different layers reveal hierarchical aspects of the context, we fuse the topic information from
all layers together as the contextual token embedding vector, expressed as

TE =
PT

t=1[ 
t
u: � (✓t)0/k t

u: � (✓t)0k1]W t
TE , (3)

where W t
TE 2 RMt⇥dmodel is a projection matrix mapping the Mt-dimensional feature vector to a

dmodel-dimensional contextual token embedding vector. Note the contextualized token embedding
depends on not only its position in the vocabulary, but also its local context that determines the
proportions of different topics, which reflect the underlying semantics of the local context. For
each token, we modify its fixed embedding vector from We by adding its topic-guided contextual
embedding and the position embedding, i.e., E = WE+TE+PE.
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Contextual segment embedding (SE): The second key idea of the paper is to provide a localized
representation of each segment given its local context, which is defined as the first several preceding
segments for text generation. More specifically, we summarize these preceding segments into a BoW
vector d̃ 2 ZV

+ . Given the topic matrix  t at layer t, we infer the topic proportion vector of d̃ 2 ZV
+

as ✓̃t, which serves as a contextualized embedding vector for the current segment. As shown in Fig.1
(c), the contextual segment embedding matrix with hierarchical topic information is constructed as

SE = Concat[SE1, ..., SEt, ..., SET ], SEt = ( t diag(✓̃t))0We (4)

where SEt
2 RMt⇥dmodel denotes the segment embedding at layer t, each row of  t is element-

wisely reweighted by ✓̃t, which is then further projected by We into the input embedding space.
Each row of this contextual segment embedding matrix is considered as a localized embedding of
a topic (i.e., a column in  t) and here analogized as a contextual virtual token. By concatenating
segment embeddings across all layers, SE contains

PT
t=1 Mt virtual tokens and can be placed before

the word sequence of the current segment, as shown in Fig.1 (a). In order to distinguish the virtual
token from original input token, we further add embedding {EA, EB 2 Rdmodel} respectively to help
discriminate them. As these virtual words are not ordered, their embedding vectors are not combined
with any position embedding. By integrating the contextual semantic information into the input space
of Transformer by those virtual tokens, all real tokens in the original segment can relate to all topics
with standard self-attention in the Transformer blocks. More specifically, each token in the segment
is accessible to all the virtual tokens (segment embeddings) from specific to general perspective.

Topic Attention (TA): The third key idea of this paper is to add topic attention (TA) into Transformer
layers, which is implemented with a topic select-attention block. As shown in Fig.1 (a), for each
layer of all T topic layers, the topic matrix  t 2 RV ⇥Mt (containing Mt topics) is first projected
through the word embedding matrix We, reducing the dimension of each topic from V to dmodel.
Then the projected topic vectors are then fed into a layernorm layer, following the implementation of
Vaswani et al. (2017), calculated as

 ̂
t
= LayerNorm(( t)0We) 2 RMt⇥dmodel . (5)

Then we build a multi-head topic select-attention to explore the relation between the query qi of
standard Transformer and the Mt topics  ̂t, which is desired to select semantically related topics
given a token. As shown in Fig. 1 (d), with transforming matrices Wt

K ,Wt
V 2 Rdmodel⇥dmodel , this

 ̂
t can be projected as keys Kt =  ̂

t
Wt

K 2 RMt⇥dmodel and values Vt =  ̂
t
Wt

V 2 RMt⇥dmodel .
Thus, we attend qi into Mt keys to obtain attention weights as

ai = softmax(qi(K
t)0/

p
dmodel) 2 R1⇥Mt

+ , (6)

which are then used to aggregate the values into topic attention output as aiV
t 2 R1⇥dmodel

+ . This
provides a natural way to leverage global semantic topics into Transformers.

(i) Regularization of contextual next-word embedding: For language generation, a common goal of
learning the attention output of ai in (6) is to better predict token ui given previous tokens u<i. Note

in a topic model, token ui chooses the m-th topic with probability pi,m =
 t

ui,m
✓tmP

m0  t
ui,m

0✓
t
m0

. Hence, in

order to guide the topic select-attention with next-word embedding, we can regularize the attention
weights with a loss function as Li,predict = kai � pik22, where pi = (pi,1, . . . , pi,M ), and the indices
of heads and layers are omitted for brevity. Intuitively, we want query qi to attend on topics where
the predicting token ui is more likely to be assigned to. In addition, the attention weight vector ai

is also encouraged to be sparse with L1-norm as Li,sparse = kaik1/kaik2. The intuition behind this
regularization is that a token is often only strongly associated with a small subset of topics.

(ii) Integration of TM into LM: Considering the multi-layer topics, it is reasonable to integrate them
into Transformers in a hierarchical way. As Rae and Razavi (2020) remark that it is not necessary to
use long-range memories at each model layer, placing them in the latter layers and interleaved across
the network with equal spacing result in good performances. Sukhbaatar et al. (2019) also observe
that transformers converge to using smaller attention spans for lower layers in the network, which is
corresponding to the concrete topics of bottom topic layers. Thus we interleave the multi-layer topics
into transformers with equal spacing from the bottom to up layers. Take a three-layer topic model as
an example, the topics from layers 1, 2, 3 are integrated into layers 4, 8, 12 of the transformer (12
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layers in total), respectively, through the topic select-attention module. In other words, the query at
lower layers of Transformer attends to more specific topics captured by the bottom layer of PGBN,
and the query at higher layers focuses on those general topics from upper layers.

Based on the proposed contextualized token and segment embeddings and a novel topic attention
module, we construct topic-aware contextualized Transformers under a multi-layer topic model
to capture longer-range word dependencies beyond the segment length and semantic relationships
between neighboring segments. Note those three modules can extend as long context as you wish,
which can be set flexibly depending on tasks, without more computation consume. Afterwards, we
will describe how to jointly fine-tune the contextualized transformers with those topic interventions.

3.2 MODEL INFERENCE

The proposed contextualized Transformer learns topic model and language model jointly, whose
loss functions are denoted as LTM and LLM , respectively. For training PGBN, all segments of the
target corpus are treated as BoW vectors (d1, ...,dN ), ignoring word order. We introduce a Weibull
hybrid autoencoding inference (WHAI) network (encoder) (Zhang et al., 2018) for PGBN (decoder).
Denoting Q =

QT
t=1

QN
n=1 q(✓

t
n |dn), the negative ELBO of PGBN can be expressed as

LTM = �
NX

n=1

EQ

⇥
lnP

�
dn | �1✓1n

�⇤
+

NX

n=1

TX

t=1

EQ

"
ln

q
�
✓tn |dn

�

P
�
✓tn |�t+1✓t+1

n , ⌧ t+1
n

�
#
, (7)

where the weight matrices {�t}Tt=1 are updated with SG-MCMC as in Cong et al. (2017), and
the parameters of the inference network are denoted as WI . By integrating the proposed topic
information into an existing Transformer-based LM and adding the restrictions on attention weights
ai, the loss LLM over a set of training examples U = {u1, ..., uI} is defined as

LLM = �
X

i

[logP
⇣
ui|u<i;⌦, {�t,✓t, ✓̃t}Tt=1

⌘
�Li,sparse�Li,predict], (8)

where ⌦ represents the Transformer-related parameters. Therefore, the final training objective is a
linear combination of LTM from the PGBN based topic model and LLM from the Transformer-based
LM, which is minimized to estimate {⌦,WI , {�t}Tt=1}. More details are included in Appendix A.

4 EXPERIMENTAL RESULTS
We first provide quantitative comparisons on two different natural language processing tasks, and
then qualitative analysis to illustrate how the proposed contextualizations help improve Transformers.
To verify the effectiveness of our method, we integrate topic-based token embedding (TE), segment
embedding (SE), and topic attention (TA) into existing pre-trained Transformer models, fine-tuning
from the released checkpoints. For each task, our method shares the same model architecture as the
baseline. All models are optimized and evaluated on a single 2080Ti GPU within a few hours. We
use the Adam optimizer (Kingma and Ba, 2015), where the experimental settings remain the same
as baseline models provided by the authors. We use [M1,M2,M3] = [100, 80, 50] as the number
of topics in a three-layer PGBN, and set the hyper-parameters as r = 1, ⌧ t

n = 1. Python code is
provided in the Supplement.

4.1 QUANTITATIVE COMPARISON

Language generation We choose GPT-2 (Radford et al., 2019) and Transformer-XL (Dai et al.,
2019) as baseline LMs. GPT-2 is realized by pre-training a Transformer decoder and then fine-tuning
on each specific task. Transformer-XL introduces a segment-level recurrence mechanism to learn
dependency beyond a fixed length without disrupting temporal coherence. We use perplexity as the
evaluation metric and consider three publicly available corpora, including WikiText-103 (WT103)
(Merity et al., 2017), WikiText2 (WT2) (Merity et al., 2017), and Penn Treebank (PTB) (Mikolov
and Zweig, 2012). WT103 and WT2 contain 103M and 2M training tokens from Wikipedia articles,
respectively, and word-level PTB has only 1M training tokens. Given the pre-trained GPT-2, we
fine-tune contextualized GPT-2 on each of these three datasets, with the same vocabulary, tokenizer
and experimenting settings as used in GPT-2. Different from GPT-2, Transformer-XL is trained on
each dataset respectively, where the authors only provide a pre-trained model on WT103 but not on
PTB and WT2. Since WT103 is the largest available word-level language modeling benchmark with
long-term dependency (Dai et al., 2019), it is feasible to use the pre-trained model on WT103 as our
baseline to fine-tune on three datasets. Both the preceding segment window sizes of TE and SE are
set as 4 for text generation. We conduct ablation studies to examine the effects of three proposed
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Table 1: Perplexity of different models (lower is better ).

Model
GPT-2-base Transformer-XL-Large

# Param WT103 WT2 PTB # Param WT103 WT2 PTB
baseline + fine-tune 117M 16.33 14.66 15.22 257M 18.30 17.86 33.71

+ Token embedding (TE) 117+5.24M 16.15 13.98 15.08 257+1.07M 17.87 16.26 32.67
+Segment embedding (SE) 117+5.07M 16.10 13.92 14.98 257+0.83M 17.90 16.83 32.65

+Topic attention (TA) 117+5.81M 16.01 13.92 15.00 257+2.07M 17.86 16.30 32.64
+ TE + SE + TA 117+5.98M 15.82 13.67 14.92 257+2.31M 17.84 16.23 32.60

(a) Attention weights(b) (c)

Figure 2: (a) (b) Comparisons of test perplexity as a function of fine-tuning time on WT2 based on GPT-2 and
Transformer-XL (T-XL). (c) Visualizing of attention weights with different regularization.

modules: TE, SE and TA. As shown in Table 1, all three contextualization techniques improve both
GPT-2 (BPE token-level perplexity) and Transformer-XL (word-level perplexity), combining the
three techniques together leads to the best performance for both GPT-2 and Transformer-XL, only
adding slightly more parameters. More evaluation on model varieties are shown in Appendix B.

We further display in Fig. 2 (a)(b) how GPT-2, Transformer-XL, and their contextualized versions
behave during fine-tuning, by showing the perplexity on the WT2 test set over time. Obviously, while
GPT-2 and Transformer-XL behave well during the early stage of training, both of them show a
clear trend of overfitting as the training progresses. This overfitting trend is especially concerning in
Transformer-XL, although it is designed to utilize the contextual information across segments. Using
the proposed contextualization methods, it takes much less time to fit data well and exhibit strong
resistance against overfitting.
GLUE The General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018b)
is a collection of diverse natural language understanding tasks. To validate the efficiency of integrating
semantic topics, we finetune the pre-trained 12-layer-Bert model on each dataset. For Glue tasks,
we integrate topic semantics extracted from each input sentence. Thus SE and the next-word guided
regularization Lpredict can be neglected. We use batch sizes 2 {16, 32}, fine-tune for 10 epochs and
perform early stopping based on each task’s evaluation metric on the dev set. The rest parameters
remain the same as pre-training.

Table 2: GLUE Development and Test results, scored by the evaluation server.
Data System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

acc 392k F1 363k acc 108k acc 67k mc 8.5k pc 5.7k F1 3.5k acc 2.5k

Dev Bert-base 84.7/83.4 70.2 88.4 93.0 52.3 78.7 86.5 66.4 78.2
+TE+TA 84.3/83.6 70.6 88.7 93.6 52.3 79.0 87.5 68.2 78.6

Test Bert-base 84.5/83.4 69.6 90.4 93.4 52.1 83.1 88.9 66.4 79.1
+TE+TA 84.6/83.8 70.0 90.8 93.7 53.1 83.8 89.1 69.6 79.8

Both the dev and test results are shown in Table 2. It is clear that adding token embedding (TE)
and topic attention (TA) into Bert outperforms baseline on different tasks, especially on small
datasets. Take the RTE (2.5k) for example, there is 3.2% accuracy improvement over baseline,
alleviating instability on small datasets. In a word, the tasks of GLUE benefit from the contextualized
Transformer architecture, extracting globally shared semantic topics of input sentences and localized
feature representations for each token.

4.2 QUALITATIVE ANALYSIS

Efficiency of the regularization To verify the efficiency of our proposed regularization, we visual-
ize the topic attention weights of a randomly sampled word with different regularization terms. Shown
in Fig. 2 (c), compared with the unconstrained example (the bottom row), sparse regularization leads
sparsity into the attention vector. We also find the learned attention vector would focus on some
formerly unnoticed topics by applying next-word topic guidance regularization. In the top row, it
is clear that the learned attention vector attend to the topics related with the predicted word and its
context, while preserving sparsity. This underscores the effectiveness of our introduced regularization.
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Generated  sequences guided by topics : 

Generated sequences given preceding context : 

Topic-Layer3 : million securities director investors franc trust year earnings marketing cents
Topic-Layer2 : securities director investors trust office marketing owns receive worth live
Topic-Layer1 : investment director university course situation live values contributions futures

A good place to invest is anywhere when you have more money. It usually comes to being able to use all the tools available to you, whether it's your
skills, your experience, your experience or your skills for long term investment. When you have enough money, investing can help you to do a lot.
You must be able to spend the money the best you can, to do that, even if your investment will have to be a few times more important than your
ability to reinvest. Most investors believe that they are at their greatest power once investments become much smaller, however that opinion is wrong
because at best you're able to invest when you're just starting out. Sometimes that power is very strong, and at worst it just doesn't exist.

Preceding context : An anarchist was arrested last week on charges of attempting to commit murder of three people in a crowded bar in Cambridge, 
England. The murder has sparked widespread outrage and protests which in recent days have prompted an investigation into the incident.

It is thought that the gunman who stabbed three people and injured two others was radicalised by the group after attending an anti-capitalist rally in
Cambridge a week previously. Police and campaigners say there is mounting evidence that he had links to extremist Islam and had travelled to the
Middle East before joining the extremist movement. Two of the victims had been friends of Mr Corbyn and had been invited to join demonstrations
to demand the end of British. Mr Corbyn said he was not present at the time of the event, but is believed to have been at the scene. Police are
investigating the motive and motive of the man, said to be in his early 20s, who allegedly tried to commit murder.

Figure 3: The generated sequences guided by multi-layer topics and preceding context. Words in the same
color are semantic-consistent. The generated texts successfully capture both syntactic and semantics.

Text generation given topics or preceding context Given the learned contextualized Transformer
based on GPT-2, we can sample sentences conditioning on the topics from different layers. Shown in
Fig.3, the generated sequences are guided by a combination of topics at different layers, which is
highly related to the given topics in terms of their semantics. These observations indicate that the con-
textualized Transformer has successfully captured syntax and semantics simultaneously for language
generation. Besides, we visualize the generated sentences conditioning on the preceding context,
by integrating the encoded hierarchical topic representations of preceding context. Interestingly, we
find the generated sentences successfully capture semantics and generate semantically-related words,
which may not exist in the original document (highlighted with the same color). This phenomenon is
also observed in Guo et al. (2019), which might be attributed to the introduction of semantic topics.
More generated samples with longer preceding context are provided in the Appendix F, where we
find our proposed model can memorize longer-range context than baselines.
Topic attention between words and topics To further illustrate the relationship between a word
and its selected topics within the topic attention module, Fig. 4 takes the word "market" as an example
and visualize its attended topics of 12 heads at different layers. At each layer, we find the word is
aligned to different topics, where each attention head potentially focuses on different aspects of the
input word. Specifically, the attended topics of “market” are semantically related to the 34-th topic
("billion, $, bank") and the 26-th topic ("data, technology, stock") at layer 1 and so as in the upper
layers, suggesting the efficiency of our proposed topic select-attention. In addition, we also find
there are several heads attended to the same topics, indicating those topics might be more helpful
for predicting the target word. In other words, the regularization term of our topic select-attention
module encourages the model to attend on its corresponding topic while keeping its variety.

#3   8   17   22  25   26  27   28  34  40   42  44#1  6   23   25  26   34  40  52  76   82  92  95 #4  15   22   23  44  46  49   50  51   61  71  79

#4 sell computers food schools
#23 government congress declined manager 
#46 federal bonds law auction
#50 plan force order pound
#61 companies banks invest organization
#71 institute regime apartheid moral

Topic
Layer
3

#3 business financial computer political
#17 stock trading exchange investors
#27 tax international financing expenses
#40 economic oil assets takeover
#42 work insurance industry health
#44 corp trade work nation

M
ul
ti-
he
ad
s

#23 industry bill decision security
#26 data technology bought stock
#34 billion $ tons bank commercial
#76 export ban digital international
#82 total management controls Support
#92 goal failure community engineers 

Topic
Layer
1

Topic

Topic
Layer
2

Figure 4: Visualizing the attended topics of word "market" at layers 1, 2 and 3, respectively. X-axis denotes the
index of attended topics, and y-axis the index of heads. Each row denotes the most activate topic of corresponding
head and we omit the other inactivate topics. Several top words of corresponding topics are listed at the bottom.

5 CONCLUSION
We introduce contextualized embeddings at both the token and segment levels to enrich longer-
term dependencies beyond the fixed segment and semantic relationships across all segments of
Transformer-based language models. Furthermore, to inject contextualized topic information into
attention mechanism of Transformer-based architectures, a novel topic attention module, is further
introduced. Experiments conducted on publicly available corpora demonstrate that the proposed
topic-aware transformers outperform their conventional counterparts, providing better contextualized
word representations for downstream tasks, and can generate coherent sentences and paragraphs
conditioned on the designated multi-layer topics or preceding context.
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