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Abstract

Drug recommendation systems aim to identify optimal drug combinations for
patient care, balancing therapeutic efficacy and safety. Advances in large-scale
longitudinal EHRs have enabled learning-based approaches that leverage patient
histories such as diagnoses, procedures, and previously prescribed drugs, to model
complex patient-drug relationships. Yet, many existing solutions overlook stan-
dard clinical practices that favor certain drugs for specific conditions and fail
to fully integrate the influence of molecular substructures on drug efficacy and
safety. In response, we propose SubRec, a unified framework that integrates rep-
resentation learning across both patient and drug spaces. Specifically, SubRec
introduces a conditional information bottleneck to extract core drug substructures
most relevant to patient conditions, thereby enhancing interpretability and clinical
alignment. Meanwhile, an adaptive vector quantization mechanism is designed to
generate patient–drug interaction patterns into a condition-aware codebook which
reuses clinically meaningful patterns, reduces training overhead, and provides a
controllable latent space for recommendation. Crucially, the synergy between
condition-specific substructure learning and discrete patient prototypes allows
SubRec to make accurate and personalized drug recommendations. Experimental
results on the real-world MIMIC III and IV demonstrate our model’s advantages.
The source code is available at https://DrugRecommendation/.

1 Introduction

Drug recommendation is a pivotal task in healthcare, focused on identifying the optimal combination
of drugs to address a patient’s diagnosed conditions [26, 40, 8]. This task aligns conceptually with
sequential recommendation systems, where decisions are made iteratively across a patient’s series
of clinical visits. With the increasing availability of individual medical data, such as longitudinal
electronic health records (EHRs) [11, 18]—which capture patients’ historical visit sequences, includ-
ing diagnoses, procedures, and prescribed medications—there is a rich foundation for developing
learning-based predictive models. In this context, drug recommendation emerges as a critical data
mining challenge. It leverages advanced machine learning techniques, particularly deep neural
networks, to analyze complex clinical event sequences. By integrating a patient’s current clinical
events with their historical records, these systems aim to generate personalized drug plans while
minimizing drug-drug interactions (DDIs) to satisfy safety principles [28, 7, 19].
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Building upon this, EHRs serve as a crucial basis for the recommendations made by the model.
Early works typically focused on a patient’s individual EHRs, using deep learning models to uncover
the intrinsic relationships between a patient’s health conditions and prescribed medications. For
example, 4SDrug [27] constructed historical visit sets and proposed measuring the similarity between
symptom and drug sets for drug recommendation. COGNet [35] developed a novel copy-or-predict
mechanism, predicting whether a drug should be copied from historical recommendations or a new
drug combination should be suggested. However, from a healthcare provider’s perspective, the primary
focus is often on the clinical case rather than individual differences [35]. For instance, in the case of
alcohol dependence, doctors typically prescribe Naltrexone, whereas for pneumonia, Amoxicillin
is commonly prescribed, without the need to consider personal variations, as shown in Figure 1 (a).
Therefore, similarity in current patient visits is more common than similarity in the complete medical
histories of patients [35, 33]. Representations of patient cases would aid in drug recommendation
outcomes, accelerating the process of drug identification [9, 21, 44]. However, directly modeling
full patient histories would significantly increase memory and computation costs due to the vast and
diverse nature of clinical records. Therefore, adopting a condensed and reusable reference paradigm
during the recommendation process is a worthwhile consideration in real applications.

Figure 1: Doctor’s Diagnosis and Prescribing Pro-
cess. (a) Doctors often prescribe Naltrexone for
Alcohol Dependence and Amoxicillin for Pneumo-
nia, even for different patients. This is guided by
professional medical knowledge. (b) 3D molecular
structure of Amoxicillin. (c) The five molecular
scaffolds of Amoxicillin, derived using the BRICS
method [3]. (d) The β-lactam ring, the active in-
gredient of Amoxicillin.

Furthermore, researchers have gradually realized that
the biochemical activities of a drug are often linked to
a few privileged molecular substructures [14, 17, 45].
Therefore, the active ingredient of a drug can be
associated with the function of specific substruc-
tures within the drug molecules, and making pre-
scriptions based on molecular substructure awareness
may lead to more desirable efficacy and explainabil-
ity [4, 17, 15]. For example, MoleRec [40] adopts the
Break Retrosynthetically Interesting Chemical Sub-
structures (BRICS) method [3] to decompose drug
molecules into substructures. SafeDrug also employs
the BRICS method to split chemical substructures
and is equipped with a global message passing neu-
ral network and a local bipartite learning module to
fully capture the connectivity and functionality of
drug molecules. These methods decompose drugs
into several substructures to learn the relationships
between case representations. However, directly us-
ing rule-based decomposition may disrupt the effec-
tive substructure connectivity in drugs, as shown in
Figure 1 (b)-(d). Drug activity is typically achieved
through the combination of multiple substructures
rather than a single one. Moreover, the extraction of

substructures should consider the patient’s health condition, as other comorbidities may also influence
prescription decisions, which is a crucial prerequisite.

In light of this, we propose SubRec, a deep learning framework that integrates drug substructures
with longitudinal electronic health records (EHRs) for precise and interpretable drug recommendation.
SubRec is designed to address two key challenges in personalized medicine: (1) the complexity and
sparsity of patient historical records, and (2) extracting patient-specific core substructures. To handle
the vast and diverse nature of patient cases, we extend the idea of vector quantization (VQ) [31, 23]
by constructing an adaptive codebook that clusters heterogeneous patient–drug interactions into a
compact set of prototypes. This quantized representation avoids the instability of variational modeling
in high-dimensional latent spaces, and yields a lightweight, discrete structure that supports efficient
similarity matching across patient representations. On the drug side, SubRec improves conditional
information bottleneck (CIB) to extract condition-specific core substructures by treating the patient
health context as a conditional variable and the molecular graph as the prediction target. This
results in concise, interpretable drug embeddings that capture substructures most relevant to a given
clinical state. These representations are then aligned with the patient’s prototype for personalized
drug recommendation. The quantization process avoids the complexity and instability of modeling
variational distributions in high-dimensional latent spaces, making the model lighter and more stable
during training [37, 46]. The discrete structure of the latent space naturally supports the CIB principle
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by enforcing a compact representation [34]. Through the joint modeling of condition-aware drug
substructures and quantized patient states, SubRec effectively balances predictive accuracy and
interpretability. This synergy represents a novel mechanism for learning discrete, clinically grounded
representations, enabling reliable and safe decision-making in drug recommendation tasks.

2 Preliminaries

2.1 Problem Formulation

Based on the patient’s visit history, the model aims to predict the optimal drug combination for the
current visit, balancing both accuracy and safety. Accuracy is defined as the alignment between the
predicted medications and those prescribed by the doctor. Safety is assessed by the DDI rate.

Electronic Health Records (EHRs). EHRs of a patient x are represented as a sequence of visit
records: V =

[
v(1),v(2), . . . ,v(Nx)

]
, where v(i) corresponds to the i-th visit, and Nx is the total

number of visits for patient x. Each visit v(i) contains diagnosis, procedure (e.g., surgery), and drug
information, encoded as: v(i) =

[
v
(i)
d ,v

(i)
p ,v

(i)
m

]
, where v

(i)
d ∈ {0, 1}|D|, v(i)

p ∈ {0, 1}|P|, and

v
(i)
m ∈ {0, 1}|M| are multi-hot encoded vectors representing diagnosis, procedure, and medication,

respectively. And D,P , and M are corresponding code sets.

Graph Representation. Let G = (X,A) denote a graph [6], where X ∈ RN×F is the node feature
matrix, with N and F denoting the number of nodes and feature dimensions, and A ∈ RN×N is the
adjacency matrix, with Aij = 1 if an edge exists between nodes i and j, and otherwise, Aij = 0.

Drug Combination Recommendation. Given the longitudinal diagnosis sequence vt
d =[

v
(1)
d ,v

(2)
d , . . . ,v

(t)
d

]
and procedure sequence : vt

p =
[
v
(1)
p ,v

(2)
p , . . . ,v

(t)
p

]
, up to time t, as well as

the DDI relation matrix D, our objective is to learn a drug combination recommendation function
f(·) that generates a multi-label output ŷ(t) ∈ {0, 1}|M|. Specifically, ŷ(t) = f(vt

d,v
t
p).

2.2 Graph Information Bottleneck (GIB)

The Information Bottleneck (IB) principle [29] aims to extract a compact representation that retains
maximal predictive information about the labels. Graph IB [36] extends this idea to irregular graph
data, addressing the challenge of substructure recognition. Given a graph G and its label Y, the
optimal substructure GIB = (XIB,AIB) is obtained by optimizing the following objective:

GIB = argmin
Gsub

− I (Y;Gsub) + βI (G;Gsub) , (1)

where XIB and AIB denote the task-relevant feature set and the adjacency matrix of G. I(·) is the
mutual information term.

3 Methodology

As shown in Figure 2, SubRec consists of four components, which will be detailed below:

3.1 Patient Representation Module

We represent the patient’s health status using diagnosis and procedure information, and define two
learnable embedding matrices: the diagnosis embedding table Ed ∈ R|D|×F and the procedure
embedding table Ep ∈ R|P|×F The embeddings are extracted via dot product between the multi-hot
vectors and the embedding tables, and the resulting embeddings are summed as follows:

e
(i)
d = v

(i)
d · Ed, e(i)p = v(i)

p · Ep, (2)

where (·) indicates matrix multiplication between two matrices. We use a single-layer Transformer
Encoder [32] to model the historical diagnosis and procedure information, processing the entire
sequence of embeddings up to the i-th visit. Given the sequences of diagnosis and procedure
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Figure 2: Overview of SubRec. First, diagnosis and procedure sequences are independently encoded by a
Transformer-Encoder and concatenated to generate the patient representation e(i) at the i-th visit. Then, based on
the GIB theory, drugs d undergo core substructure extraction using e(i) as a conditional variable. The extracted
core substructure vectors are pooled to form the drug substructure representation zd, and collectively, these
representations constitute Z(i)

m . Simultaneously, e(i) is recorded as a codebook vector, and its corresponding drug
recommendation result vk is stored. During the prediction phase, e(i), Z(i)

m , and vk are utilized and combined to
generate the final drug recommendation.

embeddings {e(1)d , e
(2)
d , . . . , e

(i)
d } and {e(1)p , e

(2)
p , . . . , e

(i)
p }, the Transformer Encoder generates the

corresponding output embeddings:

h
(i)
d = Encoderd({e(1)d , e

(2)
d , . . . , e

(i)
d }), h(i)

p = Encoderp({e(1)p , e(2)p , . . . , e(i)p }). (3)

Next, we concatenate the diagnosis embedding h
(i)
d and procedure embedding h

(i)
p to form the final

patient representation:
e(i) = h

(i)
d ∥h(i)

p . (4)

3.2 Drug Representation and Substructure Capture Module

3.2.1 Graph Encoding

We adopt GIN [38] to encode the molecular graph as E = GIN(X,A), where E = {Ej}Nj=1 denotes
the node embeddings. To model interactions between nodes and a drug-level feature vector e(i), we
concatenate each Ej with e(i) and feed the result into a multi-layer perceptron (MLP). The resulting
interaction features are denoted as H:

H = MLP([E; e(i)]), (5)

where [E; e(i)] represents the concatenation of the E ∈ RN×F and the vector e(i) ∈ RF along the
feature dimension, resulting in a matrix of size RN×(2F ). The MLP operates independently on each
row of the concatenated matrix, producing the interaction features H ∈ RN×F .

3.2.2 Conditional Core Substructure Discovery

We focus on learning the core substructure GCIB = (XCIB,ACIB) of the input graph G, conditioned
on the paired patient representation e(i).

Definition 1. (Conditional Information Bottleneck, CIB) Given random variables V 1, V 2, and Y ,
the CIB principle compresses V 1 into a bottleneck variable T 1, while preserving information relevant
to predicting Y conditioned on V 2. The objective is optimized as:

min
T 1

−I(Y ;T 1 | V 2) + βI(X1;T 1 | V 2), (6)
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where β is a hyperparameter balancing trade-off between two conditional mutual information terms.

Definition 2. (CIB-Graph) Given a drug graph and patient representation (G, e(i)) and their la-
bel information Y, the optimal graph GCIB = (XCIB,ACIB) discovered under the Conditional
Information Bottleneck (CIB) principle is referred to as the CIB-Graph. It is defined as:

GCIB = argmin
Gsub

−I(Y;Gsub | e(i)) + βI(G;Gsub | e(i)), (7)

By focusing on essential substructure information and reducing redundancy, GCIB offers a more
efficient, task-specific way to address complexities of personalized medicine modeling.

Minimizing −I
(
Y;Gsub | e(i)

)
. It ensures that the optimal substructure Gsub retains sufficient

information to predict Y, conditioned on the patient representation e(i). According to the chain rule
of mutual information, the first term −I

(
Y;Gsub | e(i)

)
can be expanded as follows:

−I
(
Y;Gsub | e(i)

)
= −I

(
Y;Gsub, e

(i)
)
+ I

(
Y; e(i)

)
, (8)

For the term −I
(
Y;Gsub, e

(i)
)
, introducing a variational approximation pθ

(
Y | Gsub, e

(i)
)

for the
intractable distribution p

(
Y | Gsub, e

(i)
)
, we can derive the following result based on the non-

negativity property of the Kullback-Leibler (KL) divergence:

−I
(
Y;Gsub, e

(i)
)
= −EY,Gsub,e(i)

[
log

p
(
Y | Gsub, e

(i)
)

p(Y)

]
≤ −EY,Gsub,e(i)

[
log

pθ
(
Y | Gsub, e

(i)
)

p(Y)

]
= −EY,Gsub,e(i)

[
log pθ

(
Y | Gsub, e

(i)
)]

−H(Y).

(9)
Here, H(Y) represents the entropy of Y Consequently, the upper bound of −I

(
Y;Gsub, e

(i)
)

is
calculated by minimizing the prediction loss Lpred

(
Y,Gsub, e

(i)
)
.

Lpred

(
Y,Gsub , e

(i)
)
= L(f(z),Y), (10)

where z = pool(Hsub) is the graph-level embedding of G, obtained from Hsub of the subgraph Gsub,
and f denotes the prediction head. Details on extracting Gsub are provided in Equation (13). The term
I
(
Y; e(i)

)
is omitted, as minimizing it has been empirically shown to impair performance.

Minimizing I
(
G;Gsub | e(i)

)
. We decompose it into:

I
(
G;Gsub | e(i)

)
= I

(
Gsub ;G, e(i)

)
− I

(
Gsub ; e

(i)
)
. (11)

To address the inefficiency and instability in the optimization process caused by mutual information
estimation, we introduce a method called noise injection. The core idea is to allow the model to inject
noise into less informative substructures while introducing minimal noise into more informative ones.
Specifically, given the node embedding H, we compute a probability p using a neural network P:

p = P (H) , (12)

Based on the calculated p, we replace the node representation H with noise ϵ ∼ N
(
µH, σ2

H

)
as:

Ĥ = λH+ (1− λ) ϵ, (13)

where λ ∼ Bernoulli (Sigmoid (p)), and µH and σ2
H are the mean and variance of H, respectively.

To ensure the differentiability of the sampling process, we utilize the Gumbel-Sigmoid [20] function
for the discrete random variable λ, defined as: λ = Sigmoid

(
1
t log

[
p

1−p

]
+ log

[
u

1−u

])
, where

u ∼ Uniform(0, 1), and t is the temperature parameter and 1.0 is chose. We minimize the upper
bound of I

(
Gsub;G, e(i)

)
as follows:

I
(
Gsub;G, e(i)

)
≤ EG,e(i)

[
−1

2
logB +

1

2N1
B +

1

2N1
C2

]
,

−I
(
Gsub; e

(i)
)
≤ EGsub,e(i)

[
− log pξ

(
e(i) | Gsub

)]
,

(14)
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where B =
∑N1

j=1 (1− λj)
2 and C =

∑N1

j=1 λj(Hj−µH)

σH
, pξ

(
e(i) | Gsub

)
is the variational approxi-

mation of p
(
e(i) | Gsub

)
. The final Lcomp is optimized by refining the two variational upper bounds.

EG,e(i)

[
−1

2
logB +

1

2N
B +

1

2N
C2

]
+ EGsub,e(i)

[
− log pξ

(
e(i) | Gsub

)]
:= Lcomp (15)

Each drug d undergoes the above substructure extraction process with e(i) to obtain zd, Finally, all
representations of drug molecules are collected together and compose an embedding table Z

(i)
m ∈

R|M |×F , of which each row corresponds to a drug.

3.3 Vector Quantitation Module (VQ)

In this section, we introduce the VQ to enhance drug recommendations by utilizing all patients
information from the database. Specifically, for each visit i, we do not only record the prior visit
information of the current patient, but also store all visits from other patients up to the current patient
as auxiliary information, denoted as e(i) → v

(i)
m , where e(i) represents the health representation of

patient x at visit i, and v
(i)
m is the multi-hot encoded drug information at the corresponding visit.

However, directly storing all this information would result in excessive memory and time consumption,
as the dataset can grow very large. To address this issue, we introduce the concept of vector
quantization [30] to create a trainable, discrete codebook, which helps to compress the vast medical
history into a fixed number of prototypes. The codebook W is defined as follows:

W = {e1 : v1, e2 : v2, . . . , eS : vS}, (16)

where each pair (em, vm) corresponds to a discrete entry, with em being a patient’s health representa-
tion and vm being the associated drug recommendation. The parameter S represents the number of
distinct patient-drug combinations in the latent space.

For each test patient visit, we search for the most similar health representation in this latent space by
using a nearest-neighbor approach, indexed by k. This process serves as a non-linearity that maps the
latent vector e(i) to one of the M codebook entries. The selection process is as follows:

q(k | e(i)) =
{
1, if k = argminj ∥e(i) − ej∥22,
0, otherwise.

(17)

Once index k is identified, the corresponding drug recommendation vk is retrieved from the codebook.

To update the codebook and ensure that the encoder’s output remains close to the selected codebook
embedding, we define the vector quantization loss Lvq as follows, where sg[·] denotes the stop-
gradient operation and δ is a hyperparameter. This loss function consists of four terms:

Lvq = ∥sg[e(i)]− ek∥22 + δ∥e(i) − sg[ek]∥22 + ∥sg[v(i)m ]− vk∥22 + δ∥v(i)m − sg[vk]∥22. (18)

Here, v(i)m represents the actual drug prescribed to the patient at visit i, and vk is the drug associated
with the selected codebook entry ek. The last two terms in the loss function ensure the selected drug
vector vk is close to the actual prescribed drug v

(i)
m for accurate drug recommendations.

As Lvq gradually converge, we obtain a stable codebook W , which clusters the infinite possible
combinations of conditions and medications into a discretized set of M finite pairs, enabling efficient
and context-aware drug recommendations for new patients. The well-trained codebook provides
insights into potential patient-drug distributions.

3.4 Recommendation Prediction Module

In this module, we leverage the outputs from the previous three modules: the patient representation
e(i), the drug molecular representation Zm, and the recommended drug embedding vk retrieved via
codebook. Using these components, we apply attention based reading procedure calculate the output
o
(i)
m to retrieve the most relevant information with respect to the query e(i).

o(i)m = Softmax(e(i) ·
(
Z(i)
m

)T

) · Z(i)
m (19)
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Additionally, we can obtain prior drug category information from the codebook. To further refine the
drug recommendation, we calculate the output o(i)d as follows:

o
(i)
d = vk · Z(i)

m . (20)

The final step to utilize patient representation and memory output to predict the multi-label drug:

ŷ(i) = σ
([

e(i), o(i)m , o
(i)
d

])
, (21)

where σ is the sigmoid function, and ŷ(i) represents appearance probability of each drug in the
prescription. Then we can obtain a multi-hot prediction vector ô(i) by picking out the entries of ŷ(i)
whose value is greater than a predefined threshold value τ (in this work, τ is 0.5).

3.5 Loss function

In this section, we summarize our loss function. We instantiate Lpred Equation (10), which includes
both binary cross-entropy loss Lbce and multi-label margin loss Lmulti. Specifically, Lbce is the binary
cross-entropy loss, while Lmulti is the multi-label margin loss, which ensures that the predicted
probability for ground truth labels is at least 1 margin larger than for other labels.

Lbce = −
|M|∑
j=1

[
o
(i)
j log(ŷ

(i)
j ) + (1− o

(i)
j ) log(1− ŷ

(i)
j )

]
,

Lmulti =
∑

p,q:o
(i)
p =1,o

(i)
q =0

max(0, 1− (ŷ
(i)
p − ŷ

(i)
q ))

|M|
,

Lpred = θ · Lbce + (1− θ) · Lmulti.

(22)

where the superscript i denotes the i-th entry of the vector.

DDI Loss. We define the DDI loss as [40]:

LDDI =
∑
i

|M |∑
p=1

|M |∑
q=1

(ŷ(i)p · ŷ(i)q ) ·Dpq, (23)

where (ŷ
(i)
p · ŷ(i)q ) ·Dpq gives the pairwise DDI probability. Subsequently, the final total loss is:

L = α · (Lpred + βLcomp + γLvq) + (1− α) · LDDI, (24)

where α, β, θ, and γ are hyperparameters that control the trade-offs between different losses. Lpred
and Lcomp compress G into a substructure Gsub while retaining the minimal information relevant
to the task, with β controlling the balance between prediction and compression. Lvq updates the
environment codebook, with γ governing the update process. To control DDI rates, we dynamically
adjust α during training to balance prediction and safety [40].

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following questions:
• RQ1: Can SubRec improve the accuracy of combinatorial drug recommendations?
• RQ2: To what extent do the proposed VQ and GIB modules enhance the performance?
• RQ3: What do the codebook vectors represent and learn within the model?

4.1 Experimental Settings

Here, we briefly introduce the dataset, baseline models, evaluation metrics, and configurations.

Dataset. We use the EHR data from MIMIC-III and MIMIC-IV [13]. These dataset include various
patients and clinical events. More detailed data analysis results can be found in Appendix B.
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Table 1: Performance of different methods on MIMIC-III and MIMIC-IV. (Underlined are the best baseline
results, while the top-performing method is highlighted in bold which is under t-tests, at the 95% confidence
level. The calculation method of DDI rate is consistent with previous studies [27, 40, 35].)

Method MIMIC-III MIMIC-IV
Jaccard (↑) PRAUC (↑) F1 (↑) DDI (↓) #MED Jaccard (↑) PRAUC (↑) F1 (↑) DDI (↓) #MED

General Methods
ECC 0.4935 (0.0021) 0.7634 (0.0020) 0.6512 (0.0018) 0.0788 (0.0009) 16.2579(0.0982) 0.4152 (0.0023) 0.6783 (0.0022) 0.5651 (0.0019) 0.0732 (0.0013) 9.8724(0.2078)
LEAP 0.4521 (0.0043) 0.6581 (0.0029) 0.6152 (0.0037) 0.0720 (0.0015) 18.6742(0.0658) 0.3909 (0.0039) 0.5542 (0.0014) 0.5439 (0.0023) 0.0550 (0.0014) 12.6265 (0.1263)
4SDrug 0.5210 (0.0025) 0.7780 (0.0028) 0.6762 (0.0021) 0.0781 (0.0007) 16.1684(0.0982) 0.4401 (0.0023) 0.6833 (0.0018) 0.5933 (0.0016) 0.0718 (0.0006) 12.8924 (0.2043)

Longitudinal History Considered
COGNet 0.5231 (0.0019) 0.7608 (0.0012) 0.6676 (0.0014) 0.0737 (0.0007) 28.7450 (0.1152) 0.4483 (0.0001) 0.6512 (0.0015) 0.5950 (0.0013) 0.0866 (0.0009) 15.4624 (0.1245)
RETAIN 0.4868 (0.0034) 0.6472 (0.0032) 0.6523 (0.0026) 0.0759 (0.0035) 18.5941 (0.2186) 0.4387 (0.0013) 0.4518 (0.0027) 0.5023 (0.0025) 0.0825 (0.0025) 15.9743 (0.1537)
VITA 0.5412 (0.0018) 0.7720 (0.0012) 0.6838 (0.0005) 0.0630 (0.0006) 19.5941 (0.1929) 0.4420 (0.0016) 0.6995 (0.0011) 0.6002 (0.0014) 0.0510 (0.0006) 12.5123 (0.1527)

GAMENet 0.5119 (0.0029) 0.5190 (0.0023) 0.6676 (0.0027) 0.0610 (0.0009) 20.9423 (0.1646) 0.4495 (0.0031) 0.4353 (0.0034) 0.6033 (0.0023) 0.0502 (0.0007) 14.5024 (0.1542)

Substructure-Based Methods
SafeDrug 0.5167 (0.0030) 0.7681 (0.0028) 0.6724 (0.0027) 0.0628 (0.0005) 20.2601 (0.1079) 0.4483 (0.0033) 0.6858 (0.0030) 0.6098 (0.0029) 0.0609 (0.0007) 14.0723 (0.1064)

MoleRec 0.5303 (0.0032) 0.7795 (0.0030) 0.6844 (0.0026) 0.0692 (0.0008) 21.0893 (0.1788) 0.4580 (0.0035) 0.6867 (0.0031) 0.6040 (0.0033) 0.0699 (0.0007) 14.0525 (0.1583)

Our Method
SubRec 0.5585 (0.0035) 0.7927 (0.0025) 0.7016 (0.0030) 0.0623 (0.0008) 19.5040 (0.1357) 0.4635 (0.0025) 0.7023 (0.0014) 0.6216 (0.0025) 0.0674 (0.0005) 14.0634 (0.1357)

Baselines. In our comprehensive evaluation, our model is compared with nine SOTA baselines,
grouped into three categories. The first includes general methods based on patient representations, in-
cluding ECC [24], LEAP [43], and 4SDrug [27]. The second category includes experience/rule-based
methods that leverage longitudinal patient history, such as RETAIN [2], VITA [16], GAMENet [25],
and COGNet [35]. The third category consists of drug recommendation methods that consider
molecular substructures, including SafeDrug [39] and MoleRec [40]. Details are in Appendix C.

Evaluation Metrics. Four metrics are employed to evaluate model performance: DDI Rate, Jaccard
Similarity Score (Jaccard), F1-score, and Precision-Recall AUC (PRAUC). The Jaccard Similarity
Score measures the similarity between predicted and true drug sets, while the F1-score and PRAUC
are used to assess the model’s classification performance. The DDI Rate focuses on controlling the
occurrence of adverse drug interactions [12, 10, 47, 1]. The detailed definitions are in Appendix D.

4.2 Model performance

Similar to previous studies [25, 40], the longitudinal patient history is split into training, validation,
and test sets with a ratio of 4 : 1 : 1 for evaluating model performance. The experimental results are
recorded in Table 1 and Appendix F. Based on these outcomes, we delineate three key observations:

Obs.1: The drug recommendation results exhibit higher similarity when patient cases are
similar. We analyzed the MIMIC-III dataset, using a patient’s visit record as the reference point.
As shown in Appendix F.1, we randomly selected 10,000 samples and calculated the diagnosis and
drug similarity using the Jaccard index as the similarity measure. The Pearson correlation coefficient
between the two was found to be 0.53, indicating a relatively positive correlation between the patient
visit characteristics and the recommended drug combinations. This result is consistent with clinical
understanding, as similar diagnoses often lead to the prescription of similar drugs.

Obs.2: SubRec exhibits optimal predictive performance compared to other baseline models.
Specifically, ECC and LEAP perform relatively poorly as they only consider diagnoses and procedures
from the current visit. In contrast, RETAIN, VITA, and GAMENet perform better because they take
longitudinal patient information into account. SafeDrug and MoleRec incorporate drug molecule
structures in drug recommendation, leading to further performance improvements. However, these
models, which adopt the BRICS method [3], focus solely on molecular features and ignore the
relationships between patient health conditions and molecular substructures. Consequently, SubRec
outperforms these two models by integrating both aspects.

Obs.3: SubRec exhibits better robustness in cases with limited or no historical drug information.
The MIMIC-III dataset has an imbalanced distribution of patient visit records, with the majority of
patients visiting the hospital fewer than five times. This creates a challenge for models that need
to learn patient-drug relationships from other patients’ visit records for accurate recommendations.
As shown in Appendix F.2, overall, models tend to perform better with more visits, suggesting that
historical visit records contribute to the model’s inference process. However, SubRec demonstrates
superior prediction performance in this scenario while maintaining a low and stability DDI rate.
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4.3 Sensitivity analysis

In this section, we investigate the impact of β, γ, δ and codebook size S on model performance.

Obs.4: The parameter β aims to achieve optimal prediction performance while maintain-
ing a reasonable substructure compression rate. We first analyze the effect of the parame-
ter β in the substructure extraction process, which controls the trade-off between prediction ac-
curacy and compression efficiency in our final objective, as outlined in Equation (7). When
β = 0, the model performs poorly, as it preserves the original graph input without capturing
the essential substructure information. As β increases, the model’s performance improves, in-
dicating that some compression is beneficial for prediction. However, excessively large values
of β do not result in continuous performance gains, as overly aggressive compression can dis-
tort the substructure and hinder the model’s ability to make accurate predictions. For example,
when β > 5E-4, a slight decline in performance is observed. Therefore, β = 5E-4 is selected.

Figure 3: Sensitivity analysis results for β and γ.

Obs.5: We also conducted a sensitivity analy-
sis on the hyperparameters δ and γ within the
loss function Lvq. The hyperparameter δ is used
to balance the commitment loss and embedding
loss, while γ represents the weight of Lvq in the
total loss function, as outlined in Equation (18)
and Equation (24). We tested multiple combi-
nations of these hyperparameters, and observed
that varying δ and γ did not significantly affect
the model’s performance, with overall perfor-
mance remaining stable. This finding is consis-
tent with the other studies [30, 34, 46]. There-
fore we set δ to 0.40 and γ to 5E-4 (in Appendix G).

Obs.6: The codebook size has a slight impact on the recommendation results but significantly
influences the training duration. We conducted an in-depth investigation into the effect of varying
the number of vector embeddings on our model’s performance, as shown in Figure 5. The results
reveal that changes in the number of codebook embeddings have a negligible impact on test perfor-
mance across test datasets, demonstrating the robustness of our model. On the other hand, increasing
the number of codebook vectors significantly increases training time and memory consumption (more
in Appendix G). To balance these factors, we chose 32 as the final configuration for our model.

4.4 Ablation study

To verify the effectiveness of each module of SubRec, we design the following variants:

• Replace the Transformer module with an RNN module in the Patient encoder.

• w/o substructure capture. SubRec no longer considers Z(i)
m when assessing substructure impact.

• Remove the auxiliary codebook. Replace codebook vectors with noise.

Obs.7: Ablation on model components. As shown in Table 2, when the RNN module is used as a
replacement for the Transformer, the model performance slightly decreases. This may be due to RNN
is less effective at capturing long-range dependencies in EHRs compared to Transformer. Removing
either the substructure capture or auxiliary codebook results in a noticeable performance drop. This
suggests that SubRec effectively models the relevancy between patients and molecular substructures,
thereby enhancing the drug recommendation process. The role of the auxiliary codebook is more
prominent in enabling the model to learn and summarize knowledge from historical patient records.
Without this knowledge, the recommendation results deteriorate obviously.

4.5 Case study

Obs.8: Different embeddings in the codebook exhibit clear boundaries in the visualization. This
indicates that the model effectively captures a diverse range of patient-drug variables. Moreover,
embeddings derived from each distinct environment form tight clusters around their corresponding
environment embeddings. This suggests that updating the codebook vectors essentially clusters the
molecular embeddings, with the environment embeddings acting as cluster centers (in Appendix H).
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Table 2: Ablation study on MIMIC-III in terms of DDI rate, Jaccard, F1-score, and PRAUC.

Method DDI (↓) Jaccard (↑) F1-score (↑) PRAUC (↑) Avg.# of Drugs
Patient Encoder (Transformer→RNN) 0.0737(0.0009) 0.5353(0.0031) 0.6886(0.0027) 0.7812(0.0026) 19.6349(0.1676)
w/o substructure capture 0.0748(0.0007) 0.5228(0.0041) 0.6752(0.0034) 0.7701(0.0026) 19.3808(0.1599)
w/o auxiliary codebook 0.0729(0.0005) 0.5257(0.0031) 0.6810(0.0026) 0.7723(0.0026) 19.2589(0.1646)
SubRec 0.0623(0.0008) 0.5585(0.0035) 0.7016(0.0030) 0.7827(0.0025) 19.5040(0.1357)

5 Conclusion
In this work, we propose SubRec, a novel framework for personalized drug recommendation. SubRec
first encodes historical patient visit records and quantize to to construct a discrete codebook, while
simultaneously capturing the complex relationships between patient health conditions and drug
substructures. The quantization process eliminates the need to model variational distributions in high-
dimensional latent spaces, resulting in a more stable and lightweight training process. By integrating
substructure representations and discrete prototypes, SubRec improves training stability and efficiency,
while enabling accurate and clinically reliable recommendations on real-world datasets.
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A Related Work

In this work, we classify drug recommendation research into two main categories: experience/rule-
based drug recommendation models and drug molecular structure-based approaches.

Experience/rule-based methods learn drug recommendation paradigms from historical data. These
methods leverage current patient health conditions or longitudinal patient history, summarizing
experiential knowledge to perform drug combination recommendations. LEAP [43] formulates drug
recommendation as a multi-instance multi-label (MIML) task and utilizes attention mechanisms to
capture dependencies between drug labels during a patient’s current visit to generate prescriptions.
4SDrug [27] proposes measuring the similarity between symptom and drugsets for recommendation.
Researchers have increasingly realized that incorporating longitudinal patient history leads
to more effective recommendations. Consequently, RETAIN [2] develops a two-level neural
attention model for healthcare time-series prediction. GameNet [25] utilizes memory-augmented
neural networks, storing a patient’s longitudinal visit history as references for future predictions.
ALGNET [22] further enhances GameNet by incorporating Dual-Self-Attention and Light-GCN to
address challenges related to the lack of long-range dependency information. COGNet [35] introduces
a novel copy-or-predict mechanism to achieve drug recommendation. While these methods perform
successfully, they overlook the core functional substructures on drug selection.

Drug Structure-considered methods emphasize the relationship between the drug molecular sub-
structure and a patient’s health condition to enhance drug recommendations. For example, Safe-
Drug [39] proposes a DDI-controllable drug recommendation model that leverages molecular struc-
tures and more effectively models drug-drug interactions (DDIs). MoleRec [40] adopts the BRICS
method [3] to decompose drug molecules into substructures and models the relationships between
patient health conditions and molecular substructures to improve prediction accuracy. However, de-
spite the advantages of molecular substructure-aware models in improving efficacy and explainability,
neglecting patient health conditions when extracting substructures may disrupt the integrity of func-
tional groups within drug molecules. This could lead to misguided model predictions regarding the
relevance between a given patient’s health condition and the corresponding molecular substructures.

Graph Information Bottleneck (GIB) theory provides a precise methodology for extracting sub-
graphs and has been widely applied in the task of subgraph extraction from a single graph. PGIB
[42] introduces a GIB framework designed to identify informative yet compact subgraphs from the
original graph, addressing key graph learning challenges such as graph denoising and compression.
To optimize the challenging GIB objective, PGIB incorporates a mutual information estimator tai-
lored for irregular graph data, a bi-level optimization scheme, and a connectivity loss to stabilize the
optimization process. VGIB [41] further stabilizes the subgraph extraction process by introducing
Gaussian noise into node representations, modulating the information flow from the original graph
to the perturbed graph. Here, directly applying the GIB theory to extract core substructures proves
challenging, as the importance of a substructure is context-dependent, i.e., patient’s health condition,
which requires further consideration.

B The statistics result of dataset

The statistics are summarized in Table 3. Specifically, we record the total number of patients, clinical
events, diagnoses, procedures, and medications, along with the average number of visits per patient,
average diagnoses per visit, and other related information.

C Baselines

A detailed description of the baselines is presented here:

Ensemble Classifier Chain (ECC) [24]: This multi-label model organizes logistic regression (LR)
classifiers into a sequential chain, where each classifier receives the predictions from the preceding
classifier as additional features.

LEAP [43]: LEAP formulates drug recommendation as a sequential decision-making process,
employing a recurrent decoder to model label dependencies and a content-based attention mechanism
to capture the mapping between labels and instances.
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Table 3: Statistics of processed data.
Item MIMIC-III MIMIC-IV
# Visits / Patients 14949 / 6344 19461 / 7567
Disease / Proc. Size 1959 / 1440 3973 / 1338
ATC3 / ATC4 Size 112 / 141 212 / 302
Avg. / Max Visits 4.92 / 29 7.28 / 42
Avg. / Max Diag. 13.79 / 39 13.39 / 39
Avg. / Max Proc. 4.40 / 28 2.57 / 28
Avg. / Max ATC3 19.58 / 52 10.82 / 55
Avg. / Max ATC4 26.23 / 63 13.31 / 70

4SDrug [27]: 4SDrug is designed to recommend small sets of drugs, aiming to minimize drug-drug
interactions (DDIs) while ensuring effective treatment options.

RETAIN [2]: RETAIN utilizes a two-level neural attention mechanism that identifies influential past
visits and significant clinical variables within those visits, enabling better interpretation of temporal
healthcare data.

VITA [16]: VITA aims to recommend effective medications for patients’ current visits by leveraging
information from their present and past medical histories. It identifies relevant historical medical
visits for each patient’s current condition and accurately quantifies the correlation between the current
visit and each historical visit.

GAMENet [25]: GAMENet is based on memory networks enhanced with a memory bank that
integrates drug usage information, Drug-Drug Interaction (DDI) graphs, and dynamic memory to
incorporate patient history into predictions.

SafeDrug [39]: SafeDrug extracts and encodes molecular structure information to enrich the drug
recommendation process, improving drug selection by considering structural characteristics.

MoleRec [40]: investigates the relationships between the health condition of patients and molecular
substructures to improve the prediction.

COGNet [35]: COGNet proposes a novel approach where it decides whether to replicate a previously
prescribed drug or recommend a new drug combination by analyzing historical recommendations
and the current patient visit.

D Evaluation Metrics calculation method

Here, we provide the detailed calculation methods for the four metrics used to evaluate model
performance: Drug-Drug Interaction Rate (DDI), Jaccard Similarity Score (Jaccard), F1-score, and
Precision-Recall AUC (PRAUC).

Drug-Drug-Interaction Rate (DDI) For a certain patient x, the corresponding DDI is defined as:

DDI =

∑Nx

i=1

∑
k,l∈{j:ô(t)j =1} 1{Dkl = 1}∑Nx

i=1

∑
k,l∈{j:ô(t)j =1} 1

, (25)

where Nx represents the total number of visits for patient x, o(t) denotes the multi-label predictions
at the t-th visit, o(t)j denotes the j-th entry of o(t), D is the prior DDI relation matrix and 1 is an
indicator function which returns 1 when Dkl = 1, otherwise 0.

Jaccard Similarity Score (Jaccard) For a certain patient x at the t-th visit, the definition of Jaccard
is as follows:

Jaccard(t) =

∣∣∣{i : ô(t)i = 1
}
∩
{
i : o

(t)
i = 1

}∣∣∣∣∣∣{i : ô(t)i = 1
}
∪
{
i : o

(t)
i = 1

}∣∣∣ , (26)
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where ô(t) and o(t) denote the multi-label predictions and ground-truth recommendation, respectively.
Note that ∗i represents the i-th entry of ∗. Then, we take the average over all the patient’s visits to
obtain the final Jaccard Similarity Score for patient x,

Jaccard =
1

Nx

Nx∑
i=1

Jaccard(i), (27)

where Nx represents the total number of visits for patient x.

F1-scoreWe first provide the definitions of Precision and Recall for a patient x at the t-th visit,

Precision(t) =
|{i : ô(t)i = 1} ∩ {i : o(t)i = 1}|

|{i : ô(t)i = 1}|
, (28)

Recall(t) =
|{i : ô(t)i = 1} ∩ {i : o(t)i = 1}|

|{i : o(t)i = 1}|
. (29)

The F1-score is the harmonic mean of Precision and Recall,

F1(t) =
2

1
Precision(t) +

1
Recall(t)

. (30)

Then, we average over all visits and obtain F1 score for patient x,

F1 =
1

Nx

Nx∑
i=1

F1(i), (31)

where Nx represents the total number of visits for patient x.

Precision Recall AUC (PRAUC) Note that we treat drug combination recommendation as an
information retrieval problem. For the patient x at the t-th visit, PRAUC is defined as follows:

PRAUC(t) =

|M |∑
k=1

Precision(k)(t)∆Recall(k)(t), (32)

∆Recall(k)(t) = Recall(k)(t) − Recall(k − 1)(t), (33)

where k is the rank in the sequence of the retrieved drugs, |M | denotes the number of drugs.
Precision(k)(t) represents the precision at cut-off k in the ordered retrieval list and Recall(k)(t)
denotes the change of recall from drug k − 1 to k. We also average over all visits and then obtain the
PRAUC value for patient x.

PRAUC =
1

Nx

Nx∑
i=1

PRAUC(i), (34)

where Nx represents the total number of visits for patient x.

E Proof

The proof of Equation (9) is as follows

−I(Y ;Gsub, e
(i)) = −EY,Gsub,e(i)

[
log

p(Y | Gsub, e
(i))

p(Y )

]
(35)

Since the true conditional distribution p(Y | X) is intractable, we introduce a variational approxima-
tion pθ(Y | X). Then:
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− EY,Gsub,e(i)

[
log

p(Y | Gsub, e
(i))

p(Y )

]
= −EY,Gsub,e(i)

[
log

pθ(Y | Gsub, e
(i))

p(Y )
· p(Y | Gsub, e

(i))

pθ(Y | Gsub, e(i))

]
(36)

= −EY,Gsub,e(i)

[
log

pθ(Y | Gsub, e
(i))

p(Y )

]
− EY,Gsub,e(i)

[
log

p(Y | Gsub, e
(i))

pθ(Y | Gsub, e(i))

]
(37)

= −EY,Gsub,e(i)

[
log

pθ(Y | Gsub, e
(i))

p(Y )

]
− EGsub,e(i)

[
DKL

(
p(Y | Gsub, e

(i))∥pθ(Y | Gsub, e
(i))

)]
(38)

By the non-negativity of the KL divergence, we have:

−EY,Gsub,e(i)

[
log

p(Y | Gsub, e
(i))

p(Y )

]
≤ −EY,Gsub,e(i)

[
log

pθ(Y | Gsub, e
(i))

p(Y )

]
(39)

Continuing, we can rewrite the right-hand side as:

−EY,Gsub,e(i)

[
log

pθ(Y | Gsub, e
(i))

p(Y )

]
= −EY,Gsub,e(i)

[
log pθ(Y | Gsub, e

(i))
]
+ EY [log p(Y )]

(40)

= −H(Y )− EY,Gsub,e(i)

[
log pθ(Y | Gsub, e

(i))
]

(41)

where H(Y ) = −EY [log p(Y )] is the entropy of Y . −EY,Gsub,e(i)
[
log pθ(Y | Gsub, e

(i))
]

is calcu-
lated by the prediction loss in Eq. 10, Lpred(Y,Gsub, e

(i)), where z = pool(Hsub), the graph-level
embedding of G obtained from Hsub of the subgraph Gsub, and f denotes the prediction head. H(Y )
is a constant value that can be ignored.

F Additional Experimental Results

F.1 Configurations

The hidden size is set to 128. The model is trained by Adam optimizer [5]. The code is based on
Python 3.8.16 and PyTorch 1.9.0. The model was trained on an NVIDIA Tesla V100 16GB. We
applied bootstrapping sampling 10 times on the validation set, and the results are presented as the
mean and standard deviation.

F.2 Similarity Analysis

Using the MIMIC-III dataset, we analyzed patient visit records as reference points and randomly
selected 10,000 samples to calculate diagnosis and drug similarities with the Jaccard index. The
analysis revealed a Pearson correlation coefficient of 0.53 between diagnosis similarity and drug
recommendation similarity, indicating a moderately positive correlation. This finding reinforces the
idea that drug recommendation models can align closely with clinical practices by leveraging patterns
in patient diagnosis data, as shown in Figure 4 (a). To further illustrate this point, we additionally
examined the similarity between patient diagnoses and recommended drugs. The results, summarized
in Table 4, clearly show that higher diagnosis similarity corresponds to a greater overlap in drug
recommendations.

F.3 Limited Scene Analysis

In scenarios with limited patient visits or sparse longitudinal history, models relying heavily on
memorized patterns from past records tend to degrade in performance. For instance, COGNet’s
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Table 4: Relationship between diagnosis similarity and drug recommendation overlap.
Diagnosis Similarity Range 0.0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5

Pair Count 2641 1820 1681 1400 1023
Avg. Jaccard (Drug Rec.) 0.2835 0.2945 0.3047 0.3155 0.3222

Diagnosis Similarity Range 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

Pair Count 672 411 206 108 38
Avg. Jaccard (Drug Rec.) 0.3367 0.3541 0.3873 0.4140 0.5067

Figure 4: Model performance on a limited number of patient visits scenarios.

“copy-or-predict” mechanism can be effective when sufficient history exists, but it suffers when
contextual information is scarce. Under these constraints, our evaluation on the MIMIC-III dataset
shows that SubRec maintains consistently low and stable DDI rates (Figure 4 (b), (c)), underscoring
its ability to ensure patient safety while providing effective recommendations. Extremely, in a
single-drug recommendation setting in Table 5, where each visit results in only one prescribed drug,
historical signals are insufficient to support accurate predictions., Compared to COGNet, which
exhibits the highest memory consumption and relies on historical repetition, SubRec leverages a
structure-aware design to extract condition-specific drug substructures via the GIB module and further
refines them through the VQ mechanism. This enables efficient similarity matching and ensures that
the learned representations remain both clinically relevant and robust, even with restricted historical
input. As a result, SubRec outperforms other baselines, achieving superior accuracy relative to
SafeDrug and MoleRec.

G Additional sensitivity analyses

As shown in Table 6, increasing the number of vectors in the codebook directly leads to a rise in
model parameters, memory consumption, and training time. Given the vast potential space and the
diversity of patient-drug combinations, our objective is to make the latent codes compact, meaningful,
and represented with as few bits as possible. Simultaneously, it is crucial for the latent codes to
convey as much information as possible, ensuring the model remains confident in the latent codes
derived from the input. Thus, balancing the trade-off between description length and information
content in the latent code becomes essential.

H Case study

Here, we present the dimensionality reduction analysis results of the codebook vectors in SubRec, as
shown in Figure 6. The training samples are effectively clustered, with the environment embeddings
serving as cluster centers. Further analysis of cluster center embeddings from category 5 reveals
that they correspond to the diagnoses recorded in Visit 30, alongside their associated prescribed
medications. A closely related vector, Visit 37, shows a high degree of overlap in diagnostic records
(red color), with a corresponding similarity in prescribed drugs.

Moreover, Visit 44, a test sample vector, is assigned to category 5 based on calculations from
Equation (17). Visualization reveals that its diagnoses and drug recommendation results are highly
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Table 5: Performance comparison under single-drug
recommendation scenario.

Model Jaccard

SubRec 0.1620 ± 0.1641
MoleRec 0.1269 ± 0.1108
COGNet 0.1037 ± 0.0086
SafeDrug 0.0755 ± 0.0043
GameNet 0.0521 ± 0.0032

Table 6: Performance with different codebook sizes.

Size Time (min) Memory (MB) Params

16 392.95 1762 2.96M
32 459.45 1762 2.97M
2000 582.42 1770 3.48M
5000 580.94 1782 4.26M
20000 975.18 1864 8.14M

Figure 5: Sensitivity analysis results for different hyperparameters δ and codebook size S.

similar to those of Visit 30 (green color). This indicates that the VQ-based codebook encoding
effectively captures and stores representative patient-drug relationships, enabling the model to
achieve accurate drug recommendations.

Figure 6: TSNE analysis of codebook vectors in SubRec codebook. The table below displays the patient records,
with red indicating the overlap of diagnoses and drugs between training sample vectors and cluster center vectors,
and green indicating the overlap between test sample vectors and cluster center vectors.

I Complexity Analysis

While our method introduces some additional computational cost compared to lightweight baselines,
the overhead remains manageable and can be effectively mitigated through practical strategies. As
shown in Table 7, SubRec consumes less memory than COGNet and is only marginally slower than
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Table 7: Comparison of model efficiency in terms of memory, parameters, training, and inference (Shared GPU,
NVIDIA Tesla V100 16G).

Model Memory (MB) Para. (M) Train (h) Test (10 runs; min)

GameNet 496 0.44 5.33 1.22
SafeDrug 1716 0.37 4.06 0.45
MoleRec 1422 0.51 10.71 0.85
COGNet 3266 1.36 24.44 6.44
SubRec (codebook size = 32) 1762 2.97 20.63 4.50

Table 8: Efficiency improvements of SubRec under different strategies.
Variant Train (h) Test (10 runs; min)

SubRec (Shared GPU) 20.63 4.50
SubRec (Early stopping) 8.71 4.01
SubRec (Dedicated GPU) 7.23 2.07

SafeDrug and MoleRec, while achieving substantially better predictive accuracy. The increased
complexity largely stems from modeling the sparsity of longitudinal EHRs and the heterogeneity of
drug structures—challenges that prior methods struggle to address. For instance, COGNet exhibits
the highest memory consumption due to its reliance on historical information, whereas GameNet
adopts a lookup-based mechanism that falls outside the scope of deep learning. In contrast, SubRec
introduces a VQ module to cluster heterogeneous patient–drug interactions into a compact codebook,
mitigating the instability of variational modeling and enabling efficient similarity matching. To
further reduce runtime, we evaluate optimization strategies (Table 8); applying early stopping yields
over 2× training speedup with negligible performance loss, and a dedicated GPU environment reduces
training time to about 7 hours. Beyond efficiency, SubRec improves interpretability by incorporating
an enhanced CIB to extract pharmacologically meaningful substructures conditioned on patient
context, while the VQ mechanism enforces a discrete latent structure that preserves only the most
relevant features. This design overcomes the limitations of prior rule-based fragmentation approaches
(e.g., BRICS in SafeDrug and MoleRec), which disrupt functional group connectivity and overlook
the synergistic effects of substructures. As pharmacological studies have shown, many drugs act
through shared pharmacophores (e.g., simvastatin and atorvastatin targeting HMG-CoA reductase),
and reactive substructures often explain adverse drug interactions. SubRec explicitly captures such
motifs, balancing efficiency, accuracy, and interpretability to provide personalized and clinically
meaningful recommendations.

J Boarder Impacts Statements

The proposed framework, SubRec, advances personalized medicine by integrating longitudinal
electronic health records (EHRs) and molecular substructure knowledge for precise and safe drug rec-
ommendations. Future societal consequences include the potential to democratize access to advanced
healthcare technologies by enabling scalable and cost-effective drug recommendation systems across
diverse healthcare settings. Additionally, the incorporation of molecular substructure knowledge
opens new pathways for drug repurposing and accelerated drug discovery, further benefiting global
healthcare. By aligning AI systems with clinical practices and ethical standards, SubRec holds
promise to not only improve individual patient outcomes but also transform the broader landscape of
medical treatment and drug safety.

K Limitation

While SubRec demonstrates strong performance in personalized drug recommendation, it has several
limitations. First, the learned discrete codebook reflects the latent space of the training dataset and
thus provides strong adaptability within this space. However, for out-of-distribution (OOD) patient
cases—whose profiles deviate significantly from the training distribution—the model may require
retraining or codebook extension to maintain performance. Second, the framework assumes access to
detailed molecular graph information for all candidate drugs, which may not always be available in
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practical clinical settings. Future work could explore dynamic codebook updates and alternative drug
representations to improve generalizability and scalability.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and/or introduction has clearly stated the claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided the full proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we have fully disclosed all the information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided the details for training and testing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have done the statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have present the compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have made sure to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the potential impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code package or dataset
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: we create an anonymized URL for our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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