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ABSTRACT

Robust detection of generated images is critical to counter the misuse of generative
models. Existing methods primarily depend on learning from human-annotated
training datasets, limiting their generalization to unseen distributions. In contrast,
large-scale vision models (LVMs) pre-trained on web-scale datasets exhibit excep-
tional generalization power through exposure to diverse distributions, offering a
transformative paradigm for this task. However, our experimental results reveal that
LVMs pre-trained exclusively on natural images effectively capture the features
of both natural and generated images to achieve comparably low loss, thereby
failing to distinguish both types of images. This prompts a key question: When
and how do LVMs exhibit different behaviors when capturing features of natural
and generated images? This investigation reveals an insight: during unlearning,
LVMs exhibit disparate forgetting dynamics with feature degradation for generated
images escalating faster than natural ones. Inspired by the disparate dynamics,
we introduce two detection methods: 1) data-free detection, which prunes model
parameters to induce unlearning without data access, and 2) data-driven detection,
which optimizes LVMs to unlearn knowledge tied to generated images. Extensive
experiments conducted on various benchmarks demonstrate that our unlearning-
based approach outperforms conventional detection methods. By recasting the
detection task as a problem of machine unlearning, our work establishes a new
paradigm for generated image detection.

1 INTRODUCTION

With the rapid advancements in generative models (Dhariwal & Nichol, 2021; Rombach et al.,
2022; Karras et al., 2019), AI-generated images have reached a level of quality that often makes
them almost indistinguishable from natural images to the human eye. These developments have
unlocked unprecedented potential in areas such as content creation, media, and entertainment, driving
innovation across industries. However, the ability to generate hyper-realistic images also introduces
significant risks Frank et al. (2020b), especially regarding the potential for misuse in misinformation,
privacy invasion, and identity fraud. Consequently, effective and robust detection of AI-generated
images has become essential to promote the responsible development and deployment of generative
models while protecting users and organizations from malicious use.

Existing methods for detecting AI-generated images focus primarily on learning a boundary between
natural and generated images (Wang et al., 2020; Ojha et al., 2023; Tan et al., 2024; Liu et al., 2024b)
to construct a binary classifier. In this context, these methods typically collect labeled natural and
generated images to construct a large-scale dataset to train binary classifiers, aiming to capture and
separate features that uniquely characterize each category. Learning from these collected training
images, models can identify subtle distinctions between natural and generated content, yielding
impressive detection performance under specific conditions.

Despite their success, these methods face the challenge of domain shifts in two critical aspects, which
typically degrades the generalization performance. First, their performance is inherently constrained
by the generative models employed to generate training images, potentially leading to generalization
failures when encountering images produced by novel generative models. Second, the dependency
on natural images introduces cross-domain adaptation challenges, as real-world test environments
often contain samples distributionally deviating from training images. Thus, these methods are
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usually paired with carefully designed data augmentation techniques such as JPEG to enhance their
generalization performance (Wang et al., 2020).

Figure 1: LVMs pre-trained on natural images
exhibit low loss for both natural and generated
images, thus restricting their discriminative ca-
pacity between the types of images.

Regarding the ability of generalization, pre-trained
vision models (LVMs) have shown great success in
various domains thanks to their large-scale training
with extensive data Mohamed et al. (2022). Thus,
LVMs emerge as promising candidates for promot-
ing the detection of generated images. However,
as shown in Figure 1, LVMs trained exclusively
on natural images have the ability to effectively
capture the features of both natural and generated
images to achieve comparably low loss. These ex-
perimental results imply that employing LVMs fails
to detect generated images correctly, which is con-
sistent with the results shown in Figure 1. This
prompts a key question: When and how do LVMs
exhibit different behaviors when capturing features
of natural and generated images?

Figure 2: Dynamic illustration of unlearning.
As the model transitions from learned to un-
learned state, the feature extraction ability of
the model shows a clear discrepancy between
natural and generated images. We compute fea-
ture similarity of images on unlearned model
and original model and use t-SNE to visualize
the feature distribution of the images on models
with different unlearning levels.

To investigate this fundamental question, we de-
velop a controlled ablation framework to degrade
LVM capabilities—a strategy motivated by the in-
herent difficulty of enhancing LVMs’ capabilities,
aiming to elicit potential differences in LVMs on
two types of images. Specifically, we record and
analyze the extent to which the features change as a
result of the degraded LVMs’ capability. Here, we
leverage machine unlearning Bourtoule et al. (2021)
to degrade LVMs by pruning a specific proportion
of parameters with the smallest absolute values. As
shown in Figure 2, our experimental results reveal a
distinct pattern: as LVMs unlearn more knowledge,
the extracted features of natural and generated im-
ages change differently. Namely, LVMs exhibit
disparate forgetting dynamics with degradation of
extracted features for natural and generated images.
For original LVMs, different categories of natu-
ral and generated images are well distinguished.
However, as they unlearn more knowledge, their
capability to extract features from the generated
images decays significantly faster than from the
natural ones. These disparate forgetting dynamics
establish a connection between generated image
detection and machine unlearning.

Leveraging this insight, we propose an unlearning-based approach to detect generated images. Rather
than training a binary classifier from scratch to distinguish between natural and generated images,
we investigate whether this distinction can be achieved by unlearning knowledge in pre-trained
LVMs. Specifically, we propose a simple data-free unlearning method by weight pruning (Han et al.,
2015), which is an effective approach to compress models by removing unimportant parameters.
This method is data-free and training-free, holding potential for generalization, as it does not rely
on specific types of generative models and natural images. Meanwhile, we propose a data-driven
method that unlearns generated images to facilitate the separation of natural and generated images.
Experimental results across multiple benchmarks demonstrate that our unlearning-based approach
outperforms state-of-the-art methods. Moreover, we further conduct experiments on images generated
by inaccessible generative models, i.e., Sora OpenAI (2024), to verify the robustness against domain
shifts of our method. Results shown in Table 3 demonstrate that our method consistently and
significantly outperforms existing methods.

Our main contributions can be summarized as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Employing LVMs for generated image detection holds promise in addressing the challenge
of domain shift, but our experimental results show that original LVMs exhibit similar loss
values for both natural and generated images. To elicit potential differences, we develop
a controlled ablation experiment and reveal that degraded LVMs display distinct patterns
when extracting features for these two types of images.

• Inspired by the disparate dynamics, we propose two unlearning-based methods to detect
generated images: 1) data-free detection inducing unlearning by parameter pruning and 2)
data-driven detection optimizing LVMs by unlearning knowledge tied to generated images.
This unlearning-based approach shifts the focus from learning boundaries between natural
and generated images to unlearning knowledge in pre-trained models.

• Comprehensive experiments validate our method across diverse generated image datasets,
demonstrating that our method outperforms existing methods. Moreover, experiments on
images generated by inaccessible models verify its robustness against domain shifts.

2 PRELIMINARIES

Given a test image x, the task of AI-generated image detection is to determine whether x originates
from the natural image distribution or is generated by a generative model. A common approach
frames this as a supervised binary classification problem, utilizing a training set comprising labeled
samples from both distributions, which is formalized as follows.

Let X0 = {x0
1, . . . ,x

0
N0} represent a set of N0 AI-generated images labeled as 0, and X1 =

{x1
1, . . . ,x

1
N1} denote N1 natural images labeled as 1. The objective is to jointly learn a feature

extractor F (·; θF ) and a binary classifier D(·; θD), parameterized by θF and θD, respectively, by
minimizing a classification loss ℓ(·) over the combined dataset:

D,F = arg min
θD,θF

ℓ (D(F (x; θF ); θD), y) , (1)

where y ∈ {0, 1} is the ground-truth label for input x.

Once trained, the model computes a decision score s(x) = D(F (x)) for each test image x. A hard
prediction is obtained by thresholding this score at a fixed value τ :

pred(x) =

{
generated, if s(x) < τ,

natural, otherwise.
(2)

The robustness of this framework is fundamentally limited by the empirical coverage of the training
data. Effective generalization to unseen distributions requires the learned representation F (x) captures
features invariant to variations in generative models. However, training sets often provide limited
coverage of the diverse generative mechanisms encountered in practice. To enhance the robustness of
AI-generated image detectors, prior works (Chen et al., 2024; Zhu et al., 2023a) employ techniques
such as data augmentation or adversarial training. Despite these efforts, such methods exhibit limited
transferability to samples from unseen generative distributions, highlighting the need for approaches
rooted in principled distributional modeling beyond empirical discriminative techniques.

3 METHODOLOGY

3.1 MOTIVATION

Current methods for detecting generated images struggle to generalize to unseen generative distribu-
tions. A natural approach to improve generalization is to expand the training dataset, leading to the
consideration of large-scale pre-trained models such as DINOv2 (Oquab et al., 2024), which offer ro-
bust generalization from extensive pre-training. However, as shown in Figure 1, these models exhibit
comparable low loss on both natural and generated images, reflecting their strong comprehension of
both domains, which prevents their direct use for discrimination.

To address this, we propose selectively degrading the model’s ability to interpret generated images,
thus inducing differential performance between natural and generated images. To this end, we employ
machine unlearning (Bourtoule et al., 2021), a technique to mitigate the influence of specific data, to
adapt the pre-trained model to forget generated images while preserving its representation of natural
images. A native unlearning objective function for classification is defined as:
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Figure 3: Differences and connections between learning-based detection and unlearning-based
detection. Learning-based methods aim to introduce a boundary between natural and generated
images, leading to the reliance on the collected training data. In contrast, our unlearning-based
method leverages dynamic classifiers for detection.

Lunlearn(θ) = E(x,y)∼Dforget

[
−
∑
i

1

K
log fi(x; θ)

]
+ λE(x,y)∼Dretain

[
−
∑
i

yi log fi(x; θ)

]
, (3)

where, in general, Dforget and Dretain represent the data distributions to be forgotten and preserved,
respectively; in this work, they correspond to generated and natural images.

3.2 DATA-FREE UNLEARNING

Figure 4: The feature shift caused by
weight perturbation is more significant
in the generated images.

Eq. 3 presents a general machine unlearning framework that
requires collecting both natural and generated images to fine-
tune the model, incurring additional computational costs.
In this study, we investigate strategies to induce selective
unlearning in LVMs, prioritizing the retention of natural
image knowledge while forgetting generated image knowl-
edge, particularly in scenarios where generated images are
unavailable. To do so, we propose a training-free unlearning
method by leveraging insights from the pre-training process
of large-scale models, achieving effective data-free unlearn-
ing. Our idea comes from previous work on the effect of
weight pruning on neural networks (Hooker et al., 2019),
where the authors found that compression has a greater im-
pact on the long-tail of less frequent instances than on higher frequency instances. On existing
pre-trained vision models, such as CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2024),
most of the pre-training data are natural images, and generated images are rarely used for pre-training,
which results in the generated images unintentionally becoming long-tailed, or out-of-distribution
(OOD) data. In this case, weight pruning disproportionately affects generated images compared to
natural images, effectively achieving unlearning objective for generated images. As illustrated in
Figure 4, pruning the weights of DINOv2 results in a significantly larger feature displacement for
generated images than for natural images. This phenomenon is consistently observed in Figures 2.

Based on this, we propose a training-free method for AI-generated image detection, using the feature
similarity between a learned model and its unlearned (pruned) version as the criterion:

s(x) = cos(F (x; θF ), F (x; θ′F )), (4)

where cos denotes cosine similarity, and θ′F is the unlearned version of θF .

3.3 THEORETICAL ANALYSIS OF WEIGHT PRUNING’S DIFFERENTIAL IMPACT

While prior studies (Hooker et al., 2019) have noted the differential impact of weight pruning on
in-distribution (ID) and OOD data, they lack theoretical justification. In this work, we provide a
theoretical proof to substantiate these observations. To formalize this, we consider a neural network
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f(x; θ) trained solely on natural images, where x ∈ X ⊂ Rm is the input image, θ ∈ Rd is the
weight parameter vector and f : X ×Rd → Rk is the output feature embeddings. In this case, natural
images are considered as ID data and generated images are considered as OOD data.
Definition 1 (Weight Pruning). For a model with parameters θ ∈ Rd, weight pruning discards
weights with absolute values below a threshold ϵ > 0, defined as:

θ′i =

{
θi if |θi| ≥ ϵ,

0 if |θi| < ϵ,
(5)

where θ′i represents the pruned parameters.

Definition 2 (Generalization Error Increment). For a loss function ℓ(f(x; θ), y) : Rk × Y →
R measures prediction error, assumed to be Lipschitz continuous with respect to f and twice
differentiable with respect to θ. The generalization error for a distribution D is:

ErrD(f) = E(x,y)∼D[ℓ(f(x; θ), y)]. (6)

And for a model f(x; θ) with pruned parameters θ′, resulting in f ′ = f(x; θ′), the generalization
error increment induced by pruning over a distribution D is defined as:

∆ErrD = ErrD(f ′)− ErrD(f) = E(x,y)∼D[ℓ(f(x; θ
′), y)− ℓ(f(x; θ), y)]. (7)

Specifically, ∆ErrID and ∆ErrOOD denote the increments for ID and OOD data, respectively.

We hypothesize that pruning small weights impacts OOD data more significantly, as formalized in
the following theorems.
Theorem 3 (Generalization Error Increment). For a well-trained ReLU network f(x; θ), assume the
loss function ℓ(f(x; θ), y) is twice differentiable with respect to θ and its first-order and second-order
derivatives are all Lipschitz-continuous, pruning small weights leads to a larger generalization error
increment for OOD data than for ID data:

∆ErrOOD > ∆ErrID. (8)

Definition 4 (Output Difference). The mean squared output difference due to weight pruning over a
distribution D is defined as:

∆D
out = Ex∼D[∥f(x; θ′)− f(x; θ)∥2], (9)

where f(x; θ) and f(x; θ′) are the model outputs before and after pruning, respectively, and ∥ · ∥2
denotes the squared Euclidean norm.
Corollary 1 (Output Difference). Under the conditions of Theorem 3, pruning small weights results
in a larger output difference for OOD data than for ID data:

∆OOD
out > ∆ID

out. (10)

The proofs, based on the spectral properties of the Hessian and gradient covariance matrices, are
provided in Appendix A.4. These results suggest that the feature representations of AI-generated
images (OOD) change more significantly after pruning compared to natural images (ID).

3.4 DATA-DRIVEN UNLEARNING

While data-free unlearning passively removes generative knowledge through structural degradation,
it does not explicitly optimize for forgetting. When generated images are available, we can further
introduce a data-driven unlearning strategy to guide the unlearning process.

Specifically, for natural images, we encourage the model to retain feature similarity with the original
model. For generated images, we enforce a margin-based separation: the model should not produce
feature representations too similar to the original model. This is implemented via the following loss:

L(θ′F ) = Ex∈X1 [LCE(F (x; θF ), F (x; θ′F ))] + Ex∈X0 [max (0, γ − LCE(F (x; θF ), F (x; θ′F )))] ,
(11)

where γ is a margin that enforces a minimal dissimilarity threshold between the original and unlearned
features for generated images. The cross-entropy loss LCE(P,Q) = −

∑
i Pi logQi measures the

divergence between normalized feature distributions extracted by the original model θF and the
unlearned model θ′F . After getting the unlearned model, we compute the scoring function using
Eq. (4) and make a judgment using Eq. (2).
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Table 1: AI-generated image detection performance on ImageNet. Values are percentages. Bold
numbers are superior results. We compare training methods and training-free methods separately.

Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Training-free Methods
AEROBLADA 55.61 54.26 61.57 56.58 62.67 60.93 85.88 87.71 44.36 45.66 47.39 48.14 47.28 48.54 67.05 67.69 48.05 48.75 57.87 57.85
Data-free Unlearning 91.97 90.44 86.82 85.14 87.62 85.91 85.74 83.84 96.37 96.52 94.39 94.23 96.47 96.53 95.19 95.24 95.27 95.17 92.20 91.45

Training Methods
CNNspot 62.25 63.13 63.28 62.27 63.16 64.81 62.85 61.16 85.71 84.93 74.85 71.45 68.41 68.67 61.83 62.91 60.98 61.69 67.04 66.78
UnivFD 83.37 82.95 79.60 78.15 80.35 79.71 82.93 81.72 93.07 92.77 87.45 84.88 85.36 83.15 85.19 84.22 90.82 90.71 85.35 84.25
DIRE 51.82 50.29 53.14 52.96 52.83 51.84 54.67 55.10 51.62 50.83 50.70 50.27 50.95 51.36 55.95 54.83 52.58 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 86.96 86.15 81.26 89.73 84.46 82.21 78.20 84.13 78.73 80.21 73.21 89.61 84.15 86.00 80.84
PatchCraft 81.83 79.65 70.88 69.36 68.47 65.19 75.38 73.29 99.85 99.26 98.55 97.91 96.33 96.25 91.28 91.47 92.56 92.17 86.13 84.95
FatFormer 91.77 90.36 83.58 83.17 92.58 92.06 86.93 85.14 98.76 98.47 97.65 98.02 97.64 97.57 96.55 95.96 97.65 97.27 93.68 93.11
DRCT 90.26 90.07 85.74 83.85 90.24 89.88 88.27 89.06 95.87 94.99 86.89 86.12 89.11 88.39 92.38 92.41 94.44 94.47 90.36 89.92
AIDE 90.87 90.17 87.91 85.52 93.57 93.89 89.87 88.16 88.48 88.12 97.93 96.58 96.59 95.97 98.31 97.86 99.87 99.56 93.71 92.87
Data-driven Unlearning 96.86 96.69 94.92 94.77 98.32 98.50 96.25 96.52 99.96 99.96 99.43 99.54 99.73 99.74 99.26 99.34 99.90 99.91 98.29 98.33

Table 2: Accuracy (%) of different detectors on Chameleon.

Training Set AEROBLADA Data-free
Unlearning CNNSpot FreDect Fusing GramNet LNP UnivFD DIRE NPR AIDE DRCT PatchCraft FatFormer Data-driven

Unlearning

ProGAN 55.29 59.17 56.94 55.62 56.98 58.94 57.11 57.22 58.19 57.29 56.45 57.89 53.76 55.78 60.59
SD v1.4 55.29 59.17 60.11 56.86 57.07 60.95 55.63 55.62 59.71 58.13 61.10 60.33 56.32 59.34 71.15
All GenImage 55.29 59.17 60.89 57.22 57.09 59.81 58.52 60.42 57.83 57.81 63.89 61.97 55.70 60.59 72.89

Table 3: AI-generated image detection performance, measured by AUROC (%) and AP (%), on Sora.

AEROBLADA Data-free
Unlearning CNNspot UnivFD DIRE NPR PatchCraft FatFormer DRCT AIDE Data-driven

UnlearningModels
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Sora 58.00 57.13 90.89 90.18 52.85 53.29 77.06 80.69 52.83 52.16 51.92 50.25 84.39 82.16 89.95 87.64 82.53 82.28 91.76 89.39 95.89 95.54
Open Sora 62.37 55.79 90.00 89.10 50.14 51.38 67.05 68.67 53.66 52.98 50.25 51.84 83.58 81.89 88.76 87.99 81.79 80.11 89.47 88.98 97.03 95.70
Average 60.19 56.46 90.45 89.64 51.50 52.84 72.06 74.68 53.25 52.57 51.09 51.05 83.99 82.03 89.36 87.82 82.16 81.20 90.62 89.19 96.46 95.62

3.5 RELATION BETWEEN LEARNING AND UNLEARNING APPROACH

In a sense, our unlearning-based method has the same structure as the learning-based method. In
our unlearning method, the feature extractor is instantiated as a pre-trained large-scale vision model,
while the weighting of classifiers is instantiated as the output features of the unlearned model on the
test sample. Our unlearning methods has two advantages over the learning methods: (1) we directly
use the large-scale vision model as the feature extractor, which is pre-trained on a large number of
natural images, instead of retraining a feature extractor on a limited number of samples. This allows
to obtain more powerful features; and (2) the classifier of the learning approach is fixed once the
training is completed; instead, our unlearning method generates an instance-specific classifier for each
test sample, which allows the division of the feature space to be independent of the specific natural
and generated samples. We illustrate the differences and connections between our unlearning-based
method and learning-based approach in Figure 3.

4 EXPERIMENTS

4.1 SETUP

Datasets. Following previous works (Luo et al., 2024; Ojha et al., 2023; Wang et al., 2023; Yan
et al., 2024), we conduct extensive comparative experiments on the following benchmarks: Ima-
geNet (Deng et al., 2009), LSUN-BEDROOM (Yu et al., 2015), GenImage (Zhu et al., 2023b),
DiffusionForensics (Wang et al., 2023), Chameleon (Yan et al., 2024) and DRCT-2M (Chen et al.,
2024). In addition to the public datasets, we evaluate the methods on a proprietary dataset generated
using the Sora and OpenSora models.

Implementation Details. For data-free unlearning, we leverage fully parameterized DINOv2 ViT-
L/14 as the learned model. It has 24 transformer blocks, and we obtain a sparse model by pruning the
parameters of 90% of the minimum magnitude weights of the fc2 layer of its 16th transformer block,
and use this model as the unlearned model. We use 1k natural images sampled from ImageNet and
generated images generated by ProGAN to select hyperparameters. For data-driven unlearning, we
leverage LoRa (Hu et al., 2022) for parameter-effcient fine-tuning. The Lora layers are applied on
the q_proj and v_proj layers of DINOv2. lora_r and lora_α are set to 8. The margin γ is set to 20.
When calculating the classification accuracy, the threshold is determined by a set of natural images
and generated images. More detailed illustration is provided in Appendix A.12.
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Table 4: AI-generated image detection performance on LSUN-BEDROOM.

Models
ADM DDPM iDDPM Diffusion GAN Projected GAN StyleGAN Unleashing Transformer Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Training-free Methods
AEROBLADA 57.05 58.37 61.57 61.49 59.82 61.06 47.12 48.25 45.98 46.15 45.63 47.06 59.71 57.34 53.85 54.25
Data-free Unlearning 76.49 73.43 92.80 91.78 88.74 87.21 97.51 97.34 98.40 98.43 90.92 89.74 96.73 96.12 91.66 90.58

Training Methods
CNNspot 64.83 64.24 79.04 80.58 76.95 76.28 88.45 87.19 90.80 89.94 95.17 94.94 93.42 93.11 84.09 83.75
UnivFD 71.26 70.95 79.26 78.27 74.80 73.46 84.56 82.91 82.00 78.42 81.22 78.08 83.58 83.48 79.53 77.94
DIRE 57.19 56.85 61.91 61.35 59.82 58.29 53.18 53.48 55.35 54.93 57.66 56.90 67.92 68.33 59.00 58.59
NPR 75.43 72.60 91.42 90.89 89.49 88.25 76.17 74.19 75.07 74.59 68.82 63.53 84.39 83.67 80.11 78.25
DRCT 74.59 71.37 85.45 84.98 87.17 86.99 94.19 94.16 95.96 95.67 93.92 94.66 89.51 89.07 88.68 88.13
Data-driven Unlearning 89.87 90.44 99.51 99.58 99.13 99.13 99.99 99.99 99.99 99.99 99.85 99.86 99.99 99.99 98.33 98.43

Table 5: Comparison with linear classification.

Dataset ImageNet LSUN-BEDROOM

Methods AUROC AP AUROC AP

Linear classification 87.83 86.49 84.72 83.57
Data-free Unlearning 92.20 91.45 91.66 90.58

Table 6: Effect of unlearning different parameters.

Metrics Query Key Value fc1 fc2 all

AUROC 87.55 88.21 90.08 88.19 92.20 88.81
AP 85.06 86.02 88.77 87.07 91.45 87.13

Evaluation metrics. Following previous works (Ojha et al., 2023; Wang et al., 2023), we take
the following metrics: (1) the average precision (AP); (2) the area under the receiver operating
characteristic curve (AUROC) and (3) the classification accuracy (ACC).
Baselines. We take the following works as baselines: CNNspot (Wang et al., 2020), UnivFD (Ojha
et al., 2023), DIRE (Wang et al., 2023), NPR (Tan et al., 2024), PatchCraft (Zhong et al., 2023),
FatFormer (Liu et al., 2024a), DRCT (Chen et al., 2024), AIDE (Yan et al., 2024) and AEROB-
LADE (Ricker et al., 2024). In addition to the above works, we have also compared our methods on
some of benchmarks with the following works: FreDect (Frank et al., 2020a), Fusing (Ju et al., 2022),
Durall (Durall et al., 2020), LNP (Liu et al., 2022), F3Net (Qian et al., 2020), SelfBland (Shiohara &
Yamasaki, 2022), GANDetection (Mandelli et al., 2022), LGrad (Tan et al., 2023), Spec (Zhang et al.,
2019), GenDet (Zhu et al., 2023a), and GramNet (Liu et al., 2020).

4.2 EXPERIMENTAL RESULTS

Comparison with other baselines. As shown in Table 1, 2, 13, 12, 4 and 14, we compare our
method with other baselines on ImageNet, Chameleon, GenImage, DRCT-2M, LSUN-BEDROOM,
and DiffusionForensics, respectively. Results show that our unlearning approach achieves better
performance compared to learning approach. Notably, even without any generated images to guide
the unlearning process, our simple weight pruning-based unlearning method can achieve good results.
And performance is further enhanced when generated images are incorporated to steer the unlearning
procedure. To further illustrate the effectiveness of our method, we count the image feature similarity
on learned and unlearned models for natural images and generated images, respectively. As shown in
Figure 7, the similarity of natural images is significantly higher than that of various generated images,
and this difference effectively distinguishes natural images from generated images.

Table 7: The effect of selecting
different pre-trained models.

Model AUROC AP

DINOv2: ViT-S/14 74.01 72.86
DINOv2: ViT-B/14 85.74 83.05
DINOv2: ViT-L/14 92.20 91.45
DINOv2: ViT-g/14 88.12 84.73

CLIP: ViT-L/14 85.92 85.65
CLIP: RN50×64 80.03 78.32

Experimental results on Sora. We further evaluate the perfor-
mance of our method on unknown video generation models. Specif-
ically, we collect multiple publicly available Sora (OpenAI, 2024)
videos and generate multiple videos using Open Sora (Zheng et al.,
2024), and sample images from these videos as AI-generated im-
ages and sample natural images from Laion-400M (Schuhmann
et al., 2021) to evaluate the effectiveness of our method. As shown
in Table 3, our method achieves the best performance on the im-
ages generated by these unknown generative models. These results
highlight the effectiveness of the proposed method.

4.3 ABLATION STUDY

In this section, we perform ablation experiments. Unless otherwise stated, experiments are conducted
on ImageNet benchmark.

Robustness to image corruptions. In addition to the performance on clean images, the robustness
of the detector to various image corruptions is also an important metric. In reality, images may be
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Figure 5: The effects of pruning blocks. Figure 6: The effect of pruning ratio.

(a) (b) (c) (d)

Figure 7: Comparison of feature similarity on learned and unlearned models. The generated images
are from: (a) ADM, (b) BigGAN, and (c) DDPM, and (d) Midjourney.

exposed to various perturbations, e.g., when people upload images to social media, images may be
compressed, and these operations may affect the performance of the detector. Following previous
work (Wang et al., 2020; Ojha et al., 2023), we assess the robustness of detectors against three types of
perturbations: JPEG compression (with quality parameter q)), Gaussian blur (with standard deviation
σ), and Gaussian noise (with standard deviation σ). As shown in Figure 8, our method also achieves
the best detection performance under different image perturbations.

The effect of model. In our experiments, we focus on using DINOv2 ViT-L/14 as the vision model.
To further investigate the effect of vision model, we also test the performance of the unlearning
approach on other models. As shown in Table 7, the proposed unlearning method is able to distinguish
between natural and generated images across different models.

The effect of γ. Figure 9 illustrates our exploration of how the margin γ influences the performance
of our data-driven unlearning approach. The results show that our method is robustness to γ.

Figure 9: The effect of γ

The effect of pruning ratio. Figure 6 illustrates how prun-
ing ratio influences the performance of our method. The
results show that our method maintains robustness across
a wide range of pruning ratio. Performance degradation
occurs only when the pruning ratio is too low. At lower
pruning ratio, the model unlearns little information and
the features extracted on the learned model and unlearned
model are almost the same, making unlearning ineffective.
Select which block for unlearning? As shown in Figure 5, we investigate the impact of selecting
different blocks for unlearning on detection performance. The results indicate that our method
demonstrates robustness across various blocks. However, when unlearning is applied at the top
block, performance experiences a significant degradation. This is likely due to the fact that the top
block parameters encode higher-level features, and pruning these parameters directly disrupts the
feature representation of natural images. As a result, the feature consistency between the learned and
unlearned models for natural images is compromised, leading to a notable decline in the performance.
The effect of parameters. In DinoV2-L/14, a transformer block consists of two main components:
the attention module and the Multi-Layer Perceptron (MLP). Among them, the attention module
mainly consists of three parameters: Query, Key and Value. MLP mainly consists of two fully
connected layers. In our main experiment, we realize unlearning by pruning the parameters of the
second fully connected layer (fc2) in the MLP. In Table 6, we further explore the effect of pruning
other parameters. The results show that pruning different parameters can obtain good performance.

Comparison with linear classification. We further compare our method to training a single linear
layer for binary classification on top of DINOv2-L/14. We use the training set in UnivFD and use
JPEG and Blur as data augmentation methods. As shown in Table 5, on the same backbone, our
unlearning method also outperforms the learning method.
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(a) (b) (c)

Figure 8: Robustness to perturbations: (a) JPEG compression; (b) Gaussian blur; (c) Gaussian noise.

Ablation experiment on LoRa parameters. As shown in Table 8, we conduct ablation experiments
on LoRa parameter. The results show that the performance of our unlearning method remains stable
under different LoRa parameters, demonstrating the robustness of our method.

5 RELATED WORK

Table 8: The effect of LoRa parameters.
We report AUROC/AP.

loraα lora_γ = 4 lora_γ = 8 lora_γ = 16

8 98.72/98.74 98.29/98.33 98.01/98.20
16 98.48/98.53 98.71/98.79 98.79/98.83
32 98.68/98.74 98.10/98.21 98.61/98.65

AI-generated Image Detection. In recent years, the de-
tection of AI-generated images has emerged as a critical
research area, driven by the rapid advancement of gener-
ative models Brock et al. (2019); Ho et al. (2020). These
models can create hyper-realistic images, which raises
concerns around issues such as misinformation, privacy
violations, and authenticity. To address these concerns,
various methods have been proposed to differentiate between natural and AI-generated images. Early
methods in this field (Brock et al., 2019; Ho et al., 2020) largely focus on training specialized binary
classifiers to distinguish between natural and generated images. For example, CNNspot (Wang et al.,
2020) trains a binary classifier using natural and generated images, where JPEG and Blur are used
as data augmentation to improve the robustness of the classifier. UniversalFakeDetect (Ojha et al.,
2023) proposes using CLIP’s representation space (Radford et al., 2021) to train classifiers, which
shows superior performance across a wider range of generative architectures. Gendet (Zhu et al.,
2023a) proposes an adversarial teacher-student discrepancy-aware framework, while LaRE2(Luo
et al., 2024) introduces a latent reconstruction error-guided feature refinement approach for detecting
images generated by diffusion models. Although these methods have made significant strides, those
relying on training still face challenges related to generalization and computational costs. To over-
come these limitations, recent studies have shifted focusing toward training-free detection approach.
AEROBLADE(Tan et al., 2024) takes a training-free approach by assessing reconstruction errors
through autoencoder used in Latent Diffusion Model (LDM) (Rombach et al., 2022), but it is limited
to LDM-based generative models. In our paper, the proposed unlearning method is also a train-free
method and can be generalized to various generative models.

Machine Unlearning. Machine unlearning has emerged as an important research area due to the
need for privacy and security. It focuses on removing the influence of specific data points from a
trained model without retraining it from scratch. However, unlearning in deep neural networks is
challenging due to their highly non-convex loss functions. (Golatkar et al., 2020) propose a method
for scrubbing the weights clean of information about a particular set of training data. (Nguyen et al.,
2022) propose a Markov chain Monte Carlo-based machine unlearning algorithm through parameter
sampling. These methods balance efficiency and model performance. (Golatkar et al., 2021) propose
to set a weight subset to zero to effectively remove all the information contained in the non-core data
while minimizing the performance loss. (Jia et al., 2023) utilizes model sparsification via weight
pruning to reduce the gap between exact unlearning and approximate unlearning. In this paper, we
perform machine unlearning by sparsification.

6 CONCLUSION

In this paper, we propose a novel machine unlearning framework for detecting AI-generated images.
Through rigorous analysis of the differential forgetting dynamics in large-scale vision models during
unlearning, we establish that feature degradation for generated images outpaces that for natural
images. Leveraging this insight, we develop an unlearning-based detection approach that effec-
tively distinguishes generated images from natural ones. Comprehensive evaluations across diverse
benchmarks demonstrate superior performance over existing methods.
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A APPENDIX

A.1 LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized Large Language Models (LLMs) to assist with
language polishing and refinement of the text. Specifically, the LLM was employed to enhance the
clarity, coherence, and grammatical accuracy of the writing, ensuring that the manuscript adheres to
high standards of academic communication. The LLM did not contribute to the research ideation,
methodology, data analysis, or core content development, which were entirely conducted by the
authors. All outputs generated by the LLM were carefully reviewed and edited by the authors to
ensure alignment with the intended scientific contributions and to maintain the integrity of the work.

A.2 SOCIAL IMPACTS

The proposed method for detecting AI-generated images significantly contributes to mitigating
societal risks associated with generative model misuse. By enhancing the capability to identify
synthetic media, such as deepfakes, this work bolsters efforts to counter disinformation and fosters
trust in digital media, particularly in critical domains such as journalism and legal evidence.

A.3 LIMITATIONS

The proposed method relies on a vision foundation model pre-trained only on the natural images. How-
ever, with the rapid development of generative models, future models are likely to be contaminated
by generative images, which may lead to the failure of our data-free unlearning method.

A.4 DETAILED PROOFS

A.4.1 PROOF OF THEOREM 3 (GENERALIZATION ERROR INCREMENT)

Proof. The generalization error increment for distribution D is:

∆ErrD = E(x,y)∼D[ℓ(f(x; θ
′), y)− ℓ(f(x; θ), y)]. (12)

Using a second-order Taylor expansion of the loss around θ:

ℓ(f(x; θ′), y) = ℓ(f(x; θ), y)+∇θℓ(f(x; θ), y)
⊤(θ′−θ)+

1

2
(θ′−θ)⊤∇2

θℓ(f(x; θ), y)(θ
′−θ)+O(∥θ′−θ∥3).

(13)

Since θ′ − θ = −∆θ, we have:

ℓ(f(x; θ′), y)− ℓ(f(x; θ), y) ≈ −∇θℓ(f(x; θ), y)
⊤∆θ +

1

2
∆θ⊤∇2

θℓ(f(x; θ), y)∆θ. (14)
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Taking the expectation over D:

∆ErrD ≈ −E(x,y)∼D[∇θℓ(f(x; θ), y)
⊤∆θ] +

1

2
E(x,y)∼D[∆θ⊤∇2

θℓ(f(x; θ), y)∆θ]. (15)

Define the Hessian:
HD = E(x,y)∼D[∇2

θℓ(f(x; θ), y)]. (16)

Thus:
E(x,y)∼D[∆θ⊤∇2

θℓ(f(x; θ), y)∆θ] = ∆θ⊤HD∆θ. (17)

For the first-order term:

E(x,y)∼D[∇θℓ(f(x; θ), y)] = ∇θE(x,y)∼D[ℓ(f(x; θ), y)]. (18)

Since ∆θ corresponds to small weights, the perturbation is small and training minimizes the gradient
magnitude in these directions (Sagun et al., 2017), so the first-order term is negligible and thus:

∆ErrD ≈ 1

2
∆θ⊤HD∆θ. (19)

Specifically:

∆ErrID ≈ 1

2
∆θ⊤HID∆θ, (20)

∆ErrOOD ≈ 1

2
∆θ⊤HOOD∆θ. (21)

Since ∆θ represents small-magnitude weights, these weights are usually not important for ID data,
i.e., HOOD has larger eigenvalues in the direction ∆θ compared to HID. Represent the Hessian
difference:

HOOD = HID +A, (22)

where A = HOOD −HID is a symmetric matrix. Generally speaking, training on DID flattens the loss
landscape in small weight directions (smaller HID eigenvalues) (Hochreiter & Schmidhuber, 1997;
Foret et al., 2021), while OOD data retains higher curvature due to distributional differences. We
assume A has positive eigenvalues in the direction ∆θ, i.e., ∆θ⊤A∆θ > 0, therefore:

∆θ⊤HOOD∆θ = ∆θ⊤HID∆θ +∆θ⊤A∆θ > ∆θ⊤HID∆θ. (23)

Thus:
∆ErrOOD ≈ 1

2
∆θ⊤HOOD∆θ >

1

2
∆θ⊤HID∆θ ≈ ∆ErrID. (24)

This completes the proof.

A.4.2 PROOF OF COROLLARY 1 (OUTPUT DIFFERENCE)

Proof. Under the conditions of Theorem 3, we relate the generalization error increment to the output
difference. The Hessian of the loss with respect to the parameters is: HD is:

HD = E(x,y)∼D

[
∇θf(x; θ)

⊤ ∂2ℓ

∂f2
∇θf(x; θ) +

∂ℓ

∂f
∇2

θf(x; θ)

]
. (25)

where f(x; θ) is the network output, ∇θf(x; θ) is the Jacobian, and ∇2
θf(x; θ) is the second-order

derivative tensor. For a ReLU network, f(x; θ) is piecewise linear, so ∇2
θf(x; θ) = 0 for inputs x

where the activation pattern is fixed (i.e., no ReLU threshold crossings). And since the first-order of
loss function is Lipschitz-continuous, the seceond term is negligible:
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E(x,y)∼D

[
∂ℓ

∂f
∇2

θf(x; θ)

]
≈ 0. (26)

The Hessian simplifies to:

HD ≈ E(x,y)∼D

[
∇θf(x; θ)

⊤ ∂2ℓ

∂f2
∇θf(x; θ)

]
. (27)

For the loss function such as cross-entropy loss, the second derivative ∂2ℓ
∂f2 is approximately diagonal

near the optimum, as the softmax output stabilizes. Assume:

∂2ℓ

∂f2
≈ CDI, (28)

where CD > 0 is a positive constant reflecting the loss’s curvature in the output space (e.g., related
to the inverse of the softmax temperature). This approximation holds when the model’s predictions
are confident, as shown in (Goodfellow et al., 2016). Define the covariance matrix of the parameter
gradients:

ΣD = E(x,y)∼D
[
∇θf(x; θ)∇θf(x; θ)

⊤] . (29)

Thus:
HD ≈ CDΣD, (30)

where ΣD ∈ Rn×n is positive semi-definite, with eigenvalues reflecting the variability of the
network’s output sensitivity to parameter changes.

Define the output difference as the expected squared change in the network’s output:

∆D
out = E(x,y)∼D[∥f(x; θ′)− f(x; θ)∥22]. (31)

For small perturbations, approximate f(x; θ′) ≈ f(x; θ)−∇θf(x; θ)
⊤∆θ, so:

f(x; θ′)− f(x; θ) ≈ −∇θf(x; θ)
⊤∆θ. (32)

Thus:

∆D
out ≈ E(x,y)∼D[∥∇θf(x; θ)

⊤∆θ∥22] = E(x,y)∼D[∆θ⊤∇θf(x; θ)∇θf(x; θ)
⊤∆θ] = ∆θ⊤ΣD∆θ.

(33)

Therefore:

∆ErrD ≈ 1

2
CD∆

D
out. (34)

CD only depends on the output value of the network. Since the generated images are very similar
to natural images, we assume that the neural network has consistent output distributions on the two
types of data, which can be confirmed from Figure 1. Therefore: COOD ≈ CID.

Accoring to Theorem 3 and Eq. 34, we have:

∆OOD
out > ∆ID

out.

This completes the proof.
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A.5 ALLEVIATE SENSITIVITY TO MODELS THROUGH FINE-TUNING

As shown in Table 7, data-free Unlearning exhibits sensitivity to the choice of feature extractor, as it
depends on subtle distinctions in how natural and generated images are represented. For the CLIP
model, which is trained with text supervision, extracted image features tend to prioritize semantic
information, potentially reducing their suitability for this task. Conversely, the DINOv2:ViT-g/14
model, with its large parameter count, shows limited sensitivity to pruning parameters from a single
layer, resulting in minimal impact on the final feature representations. This sensitivity to the backbone
can be alleviated through fine-tuning the feature extractor, as demonstrated in the results presented in
Table 9.

Table 9: Alleviate sensitivity to models through fine-tunings.

Method Model AUROC AP

Data-free Unlearning DINOv2:ViT-L/14 92.20 91.45
Data-free Unlearning DINOv2:ViT-g/14 88.12 84.73
Data-free Unlearning CLIP:ViT-L/14 85.92 85.65

Data-driven Unlearning DINOv2:ViT-L/14 98.29 98.33
Data-driven Unlearning DINOv2:ViT-g/14 97.96 98.15
Data-driven Unlearning CLIP:ViT-L/14 97.63 97.48

A.6 PERFORMANCE OF DATA-FREE UNLEARNING ON WEAKER MODELS

We conduct additional experiments using weaker pretrained vision models, including MoCo (He
et al., 2020), SwAV (Caron et al., 2020), and DINO (Caron et al., 2021). As presented in Table 10,
our Data-free Unlearning exhibit significantly reduced performance on these models. This highlights
a promising direction to explore detection with small models.

Table 10: Performance on weak models.

Models AUROC AP

MoCo 72.69 70.15
SwAV 77.85 75.64
DINO 74.79 71.88

A.7 COMPARISON OF COMPUTATIONAL EFFICIENCY

As shown in Table 11, we conduct a comparative analysis of the training and inference costs of
various methods on the ImageNet dataset. For inference cost assessment, we measured the time
required to detect 100 images. Experimental results show that our unlearning method also shows
advantages in computational cost.

Table 11: Comparison of computational efficiency.

Methods training cost (huors) inference cost (seconds)

UnivFD 0.8 1.1
NPR 0.7 0.7
DRCT 25.4 1.1
AEROBLADA 0.0 17.6
Data-free Unlearning 0.0 2.5
Data-driven Unlearning 1.5 2.5

A.8 UNLEARNING WITH DIFFERENT PRUNING STRATEGY

In our experiments, we focus on unlearning by pruning the weights with the smallest magnitude. We
further explore ablation experiments by randomly pruning the weights, pruning the weights with the
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largest magnitude, and filling in the smallest magnitude weights with Gaussian noise instead of using
0 after pruning. As shown in Table 15, simply pruning the weights with the smallest magnitude for
unlearning achieves the best performance.

A.9 EXPERIMENTAL RESULTS ON DRCT-2M, GENIMAGE AND DIFFUSIONFORENSICS

Table 12, 13 and 14 shows the performance of our unlearning approach on DRCT-2M, GenImage and
DiffusionForensics, respectively. The results further demonstrate the effectiveness of our unlearning
approach.

Table 12: AI-generated image detection performance (ACC, %) on DRCT-2M.

Method SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants Avg.

LDM SDv1.4 SDv1.5 SDv2 SDXL SDXL-
Refiner

SD-
Turbo

SDXL-
Turbo

LCM-
SDv1.5

LCM-
SDXL

SDv1-
Ctrl

SDv2-
Ctrl

SDXL-
Ctrl

SDv1-
DR

SDv2-
DR

SDXL-
DR

CNNSpot 99.87 99.91 99.90 97.63 66.25 86.55 86.15 72.42 98.26 61.72 97.96 85.89 82.94 60.93 51.41 50.28 81.12
F3Net 99.85 99.78 99.79 88.60 55.85 87.37 63.29 63.66 97.39 54.98 97.98 72.39 81.99 65.42 50.39 50.27 71.13
CLIP/RN50 99.00 99.99 99.96 94.61 62.08 91.43 84.40 64.40 98.97 57.43 99.74 80.69 82.03 65.83 50.67 50.47 80.05
GramNet 99.40 99.01 98.84 95.30 62.63 80.68 71.19 69.32 93.05 57.02 89.97 75.55 82.68 51.23 50.01 50.08 76.62
De-fake 92.1 95.53 99.51 89.65 64.02 69.24 92.00 93.93 99.13 70.89 58.98 62.34 66.66 50.12 50.16 50.00 75.52
Conv-B 99.97 100.0 99.97 95.84 64.44 82.00 60.75 99.27 99.27 62.33 99.80 83.40 73.28 61.65 51.79 50.41 79.11
UniFD 98.30 96.22 96.33 93.83 91.01 93.91 86.38 85.92 90.44 89.99 90.41 81.06 89.06 51.96 51.03 50.46 83.46
FatFormer 96.52 95.31 93.27 91.99 92.87 91.78 88.15 87.48 92.82 91.76 90.28 86.99 88.19 65.92 60.15 55.13 85.53
DIRE 54.62 75.89 76.04 99.87 59.90 93.08 97.55 87.29 72.53 67.85 99.69 64.40 64.40 49.96 52.48 49.92 72.55
DRCT 94.45 94.35 94.24 95.05 96.41 95.38 94.81 94.48 91.66 95.54 93.86 93.50 93.54 84.34 83.20 67.61 91.35
Data-free Unlearning 93.87 72.41 71.82 77.64 83.23 75.39 71.58 67.59 66.84 80.67 84.12 83.89 88.93 70.67 69.14 68.59 76.69
Data-driven Unlearning 98.73 98.93 99.23 99.55 98.90 99.44 99.32 99.30 99.33 99.02 99.14 99.29 98.87 76.83 74.63 73.65 94.50

Table 13: AI-generated image detection performance (ACC, %) on GenImage.

Methods Midjourney SD V1.4 SD V1.5 ADM GLIDE Wukong VQDM BigGAN Average

Training-free Methods
AEROBLADE 80.3 87.5 86.8 67.2 81.5 83.7 51.1 52.5 73.8
Data-free Unlearning 79.9 80.8 79.6 77.7 79.1 82.7 87.1 87.3 81.8

Training Methods
ResNet-50 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1
DeiT-S 55.6 99.9 99.8 49.8 58.1 98.9 56.9 53.5 71.6
Swin-T 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8
CNNspot 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2
Spec 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8
F3Net 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7
GramNet 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9
DIRE 60.2 99.9 99.8 50.9 55.0 99.2 50.1 50.2 70.7
UnivFD 73.2 84.2 84.0 55.2 76.9 75.6 56.9 80.3 73.3
PatchCraft 79.0 89.5 89.3 77.3 78.4 89.3 83.7 72.4 82.3
NPR 81.0 98.2 97.9 76.9 89.8 96.9 84.1 84.2 88.6
FatFormer 92.7 100.0 99.9 75.9 88.0 99.9 98.8 55.8 88.9
GenDet 89.6 96.1 96.1 58.0 78.4 92.8 66.5 75.0 81.6
DRCT 91.5 95.0 94.4 79.4 89.1 94.6 90.0 81.6 89.4
AIDE 79.4 99.7 99.8 78.5 91.8 98.7 80.3 66.9 86.9
Data-driven Unlearning 90.8 95.6 95.1 74.5 90.0 94.6 91.8 85.1 89.7

Table 14: AI-generated image detection performance (ACC, %) on DiffusionForensics.

Models
ADM DDPM iDDPM LDM PNDM VQ-Diffusion SDV1 SDV2 Average

Methods
ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP

CNNspot 53.9 71.8 62.7 76.6 50.2 82.7 50.4 78.7 50.8 90.3 50.0 71.0 38.0 76.7 52.0 90.3 51.0 79.8
UnivFD 78.4 92.1 72.9 78.8 75.0 92.8 82.2 97.1 75.3 92.5 83.5 97.7 56.4 90.4 71.5 92.4 74.4 91.7
Frank 58.9 65.9 37.0 27.6 51.4 65.0 51.7 48.5 44.0 38.2 51.7 66.7 32.8 52.3 40.8 37.5 46.0 50.2
Durall 39.8 42.1 52.9 49.8 55.3 56.7 43.1 39.9 44.5 47.3 38.6 38.3 39.5 56.3 62.1 55.8 47.0 48.3
SelfBland 57.0 59.0 61.9 49.6 63.2 66.9 83.3 92.2 48.2 48.2 77.2 82.7 46.2 68.0 71.2 73.9 63.5 67.6
GANDetection 51.1 53.1 62.3 46.4 50.2 63.0 51.6 48.1 50.6 79.0 51.1 51.2 39.8 65.6 50.1 36.9 50.8 55.4
Patchfor 77.5 93.9 62.3 97.1 50.0 91.6 99.5 100.0 50.2 99.9 100.0 100.0 90.7 99.8 94.8 100.0 78.1 97.8
Data-free Unlearning 79.8 85.0 87.5 94.3 88.3 95.3 80.2 89.5 94.2 98.7 92.3 98.0 93.1 97.9 92.8 97.9 88.5 94.6
Data-driven Unlearning 86.9 93.4 98.5 99.9 98.4 99.9 95.4 99.0 99.1 100.0 99.2 100.0 92.2 97.5 93.5 98.1 95.4 98.5

A.10 THE EFFECT OF STRUCTURED PRUNING

In our main experiment, we explore the effect of unstructured pruning, i.e., removing some of the
weights in certain blocks individually. We further explore the effect of structured pruning, i.e.,
removing a certain block completely. As shown in Figure 10, removing shallow blocks usually gives
stable results, whereas removing top blocks results in a more significant impact on the features of
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the natural image due to their closer connection to the output features. Thus, this results in poor
detection performance. An exception is that when the second block is removed, the proposed method
is completely unable to distinguish between natural images and AI-generated images. This may stem
from the fact that the second block in DINOv2 is crucial for the extraction of the image features, and
when the second block is removed, the model is unable to correctly extract the features of test images.

Table 15: The effect of pruning strategy.

Model AUROC AP

random pruning 86.29 85.54
pruning largest magnitude weights 83.69 83.21

pruning smallest magnitude weights 92.20 91.45
pruning and filling noise 86.03 85.64

A.11 USING THE SIMILARITY OF THE MIDDLE LAYER FEATURES AS THE DECISION SCORE

Figure 10: The effect of structured pruning. We
obtain an unlearned model by completely dropping
a full block.

As shown in Table 16, we further explore the
effect of using the feature similarity of other
middle layers as decision scores. Since we prune
the weights of block 15, the outputs of the test
samples on the learned and unlearned models
differ from blocks 16 to block 23. Therefore,
we explore the effect of feature similarity using
the output of blocks from block 16 to block 23.
The results show that using high-level features
to compute the similarity could achieve good
results. This is because there is a significant
difference between the high-level features of the
natural image and the generated image on the
learned and unlearned models.

A.12 IMPLEMENTATION DETAILS

For data-free unlearning, we leverage fully parameterized DINOv2 ViT-L/14 as the learned model. It
has 24 transformer blocks, and we obtain a sparse model by pruning the parameters of 90% of the
minimum magnitude weights of the fc2 layer of its 16th transformer block, and use this model as the
unlearned model. We use 1k natural images sampled from ImageNet and generated images generated
by ProGAN to select hyperparameters. For data-driven unlearning, we leverage LoRa (Hu et al.,
2022) for parameter-effcient fine-tuning. The Lora layers are applied on the q_proj and v_proj layers
of DINOv2. lora_r and lora_α are set to 8. The margin γ is set to 20. To optimize computational
efficiency, we apply Low-Rank Adaptation (LoRA) exclusively to the 18th, 19th, and 20th blocks of
the model and fine-tune for only three epochs. The model is optimized using the AdamW optimizer
with a learning rate of 1 × 10−5, β1 = 0.9, β2 = 0.99, and a weight decay of 0.01. We report
the average results under five different random seeds and report the standard deviation in Figure 9.
Following CNNspot (Wang et al., 2020), data augmentation techniques including JPEG compression
and Gaussian blur are employed to enhance robustness. For the IMAGENNET, LSUN-BEDROOM,
and DiffusionForensics benchmarks, the ProGAN dataset serves as the training set. For the GenImage
benchmark, SDv1.4 dataset is used. For the DRCT-2M benchmark, SDv2 dataset is used as training
set.

When comparing classification accuracy with other methods, since our method is not a standard binary
classifier, the traditional classification threshold of 0.5 is not applicable to our method. Consequently,
we employed a validation set to determine an appropriate threshold. Specifically, this validation set
consisted of 1,000 images generated by ProGAN and an equivalent number of natural images. We
identified the threshold that maximized classification accuracy on this validation set as the optimal
threshold for subsequent analyses. The determined optimal thresholds were 0.94287 for the data-free
unlearning method and 0.90178 for the data-driven unlearning method, with classification accuracy
calculated accordingly at these thresholds.
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Table 16: Effectiveness of using feature similarity in the middle layer for detection.

Generative Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

Block
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

16 70.32 69.20 65.32 63.28 82.62 83.88 85.69 86.05 88.20 89.79 76.42 77.61 82.59 83.33 81.48 83.96 86.64 88.82 79.92 80.66
17 63.93 65.25 61.22 61.21 72.37 74.71 80.19 82.40 84.65 87.70 61.02 62.82 66.01 66.85 73.34 76.30 80.59 83.72 71.48 73.77
18 78.64 76.76 73.38 70.61 85.27 84.43 88.34 88.05 94.47 94.37 83.34 83.75 88.27 88.82 84.97 84.02 94.23 94.51 85.66 85.04
19 86.90 86.57 81.04 78.92 88.03 88.01 89.80 89.71 96.51 96.69 90.86 91.23 93.55 93.99 89.77 90.06 96.54 96.72 90.33 90.21
20 86.42 86.31 81.82 79.37 89.43 89.60 89.72 89.36 96.89 96.99 91.50 91.57 94.77 94.96 91.56 91.74 96.18 96.30 90.92 90.69
21 87.15 87.57 82.93 80.84 90.00 90.33 89.99 90.36 96.18 96.42 92.08 92.55 95.21 95.52 92.57 93.28 95.80 96.08 91.33 91.44
22 91.04 89.61 85.53 82.90 88.00 86.60 86.37 84.51 96.29 96.71 94.51 94.58 96.65 96.80 94.90 95.22 95.97 96.19 92.14 91.46
23 91.97 90.44 86.82 85.14 87.62 85.91 85.74 83.84 96.37 96.52 94.39 94.23 96.47 96.53 95.19 95.24 95.27 95.17 92.20 91.45

A.13 DETAILS OF DATASETS

ImageNet and LSUN-BEDROOM. The natural images and AI-generated images of ImageNet
benchmark and LSUN-BEDROOM benchmark can be obtained from https://github.com/
layer6ai-labs/dgm-eval, which are provided by (Stein et al., 2023). The generated images
of the ImageNet benchmark are generated with the following generative models: ADM, ADMG, Big-
GAN, DiT-XL-2, GigaGAN, LDM, StyleGAN-XL, RQ-Transformer, and Mask-GIT. The generated
images of the LSUN-BEDROOM benchmark are generated with the following generative models:
ADM, DDPM, iDDPM, StyleGAN, Diffusion-Projected GAN, Projected GAN, and Unleashing
Transformers.

GenImage. The natural images and AI-generated images can be obtained from https://github.
com/GenImage-Dataset/GenImage. The images are provided by (Zhu et al., 2023b). The
generative model includes Midjourney, SD V1.4, SD V1.5, ADM, GLIDE, Wukong, VQDM, and
BigGAN. The natural images come from ImageNet.

Chameleon. Chameleon is a a very challenging dataset and various detection methods perform
unsatisfactorily on it, as all AI-generated images in this dataset have passed a human perception
”Turing Test”, i.e., human annotators have misclassified them as natural images. The images are
provided by (Yan et al., 2024). The dataset can be obtained from https://shilinyan99.
github.io/AIDE/.

DiffusionForensics. The natural images and AI-generated images of DiffusionForensics can be
obtained from https://github.com/ZhendongWang6/DIRE, which are provided by (Wang
et al., 2023). The generative model includes ADM, DDPM, iDDPM, LDM, PNDM, VQ-Diffusion,
sdv1 and sdv2.

DRCT-2M. The natural images of DRCT-2M come from CoCo and can be obtained from https:
//cocodataset.org/#download. AI-generated images of DRCT-2M can be obtained from
https://modelscope.cn/datasets/BokingChen/DRCT-2M/files, which are pro-
vided by (Chen et al., 2024). The generative model includes LDM, SDv1.4, SDv1.5, SDv2, SDXL,
SDXL-Refiner, SD-Turbo, SDXL-Turbo, LCM-SDv1.5, LCM-SDXL, SDv1-Ctrl, SDv2-Ctrl, SDXL-
Ctrl, SDv1-DR, SDv2-DR, SDXL-DR.

19

https://github.com/layer6ai-labs/dgm-eval
https://github.com/layer6ai-labs/dgm-eval
https://github.com/GenImage-Dataset/GenImage 
https://github.com/GenImage-Dataset/GenImage 
https://shilinyan99.github.io/AIDE/
https://shilinyan99.github.io/AIDE/
https://github.com/ZhendongWang6/DIRE
https://cocodataset.org/#download
https://cocodataset.org/#download
https://modelscope.cn/datasets/BokingChen/DRCT-2M/files

	Introduction
	Preliminaries
	Methodology
	Motivation
	Data-free Unlearning
	Theoretical analysis of weight pruning’s differential impact
	Data-driven Unlearning
	Relation between learning and unlearning approach

	Experiments
	Setup
	Experimental results
	Ablation study

	Related Work
	Conclusion
	Appendix
	LLM Usage Statement
	Social impacts
	Limitations
	Detailed proofs
	Proof of Theorem 3 (Generalization Error Increment)
	Proof of Corollary 1 (Output Difference)

	Alleviate sensitivity to models through fine-tuning
	Performance of data-free unlearning on weaker models
	Comparison of computational efficiency
	Unlearning with different pruning strategy
	Experimental results on DRCT-2M, GenImage and DiffusionForensics
	The effect of structured pruning
	Using the similarity of the middle layer features as the decision score
	Implementation Details
	Details of datasets


