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ABSTRACT

Robust detection of generated images is critical to counter the misuse of generative
models. Existing methods primarily depend on learning from human-annotated
training datasets, limiting their generalization to unseen distributions. In contrast,
large-scale vision models (LVMs) pre-trained on web-scale datasets exhibit excep-
tional generalization power through exposure to diverse distributions, offering a
transformative paradigm for this task. However, our experimental results reveal that
LVMs pre-trained exclusively on natural images effectively capture the features
of both natural and generated images to achieve comparably low loss, thereby
failing to distinguish both types of images. This prompts a key question: When
and how do LVMs exhibit different behaviors when capturing features of natural
and generated images? This investigation reveals an insight: during unlearning,
LVMs exhibit disparate forgetting dynamics with feature degradation for generated
images escalating faster than natural ones. Inspired by the disparate dynamics,
we introduce two detection methods: 1) data-free detection, which prunes model
parameters to induce unlearning without data access, and 2) data-driven detection,
which optimizes LVMs to unlearn knowledge tied to generated images. Extensive
experiments conducted on various benchmarks demonstrate that our unlearning-
based approach outperforms conventional detection methods. By recasting the
detection task as a problem of machine unlearning, our work establishes a new
paradigm for generated image detection.

1 INTRODUCTION

With the rapid advancements in generative models (Dhariwal & Nichol, [2021; [Rombach et al.
2022; |[Karras et al., |2019), Al-generated images have reached a level of quality that often makes
them almost indistinguishable from natural images to the human eye. These developments have
unlocked unprecedented potential in areas such as content creation, media, and entertainment, driving
innovation across industries. However, the ability to generate hyper-realistic images also introduces
significant risks [Frank et al.| (2020b), especially regarding the potential for misuse in misinformation,
privacy invasion, and identity fraud. Consequently, effective and robust detection of Al-generated
images has become essential to promote the responsible development and deployment of generative
models while protecting users and organizations from malicious use.

Existing methods for detecting Al-generated images focus primarily on learning a boundary between
natural and generated images (Wang et al., 2020; |Ojha et al.| |2023; [Tan et al., [2024; Liu et al., 2024b)
to construct a binary classifier. In this context, these methods typically collect labeled natural and
generated images to construct a large-scale dataset to train binary classifiers, aiming to capture and
separate features that uniquely characterize each category. Learning from these collected training
images, models can identify subtle distinctions between natural and generated content, yielding
impressive detection performance under specific conditions.

Despite their success, these methods face the challenge of domain shifts in two critical aspects, which
typically degrades the generalization performance. First, their performance is inherently constrained
by the generative models employed to generate training images, potentially leading to generalization
failures when encountering images produced by novel generative models. Second, the dependency
on natural images introduces cross-domain adaptation challenges, as real-world test environments
often contain samples distributionally deviating from training images. Thus, these methods are
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usually paired with carefully designed data augmentation techniques such as JPEG to enhance their
generalization performance (Wang et al., [2020).

Regarding the ability of generalization, pre-trained

vision models (LVMs) have shown great success in
\ —— Al-generated Images various domains thanks to their large-scale training
----- Natural Images with extensive dataMohamed et al.|(2022). Thus,
LVMs emerge as promising candidates for promot-
ing the detection of generated images. However,
as shown in Figure [ LVMs trained exclusively
on natural images have the ability to effectively
capture the features of both natural and generated
images to achieve comparably low loss. These ex-
perimental results imply that employing LVMs fails
) ) ) to detect generated images correctly, which is con-
Figure 1: LVMs pre-trained on natural images  gigtent with the results shown in Figure [ This
§xh1b1t low loss f(?r both na.ture.ll apd gengrated prompts a key question: When and how do LVMs
images, thus restricting their discriminative ca-  ypipjr different behaviors when capturing features
pacity between the types of images. of natural and generated images?
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104 @ analyze the extent to which the features change as a
result of the degraded LVMs’ capability. Here, we
leverage machine unlearningBourtoule et al.|(2021)
to degrade LVMs by pruning a specific proportion
of parameters with the smallest absolute values. As
shown in Figure 2] our experimental results reveal a
distinct pattern: as LVMs unlearn more knowledge,
the extracted features of natural and generated im-
ages change differently. Namely, LVMs exhibit
disparate forgetting dynamics with degradation of
Figure 2: Dynamic illustration of unlearning. extracted features for natural and generated images.
As the model transitions from learned to un- For original LVMs, different categories of natu-
learned state, the feature extraction ability of ral and generated images are well distinguished.
the model shows a clear discrepancy between However, as they unlearn more knowledge, their
natural and generated images. We compute fea- capability to extract features from the generated
ture similarity of images on unlearned model images decays significantly faster than from the
and original model and use t-SNE to visualize natural ones. These disparate forgetting dynamics
the feature distribution of the images on models establish a connection between generated image
with different unlearning levels. detection and machine unlearning.
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Leveraging this insight, we propose an unlearning-based approach to detect generated images. Rather
than training a binary classifier from scratch to distinguish between natural and generated images,
we investigate whether this distinction can be achieved by unlearning knowledge in pre-trained
LVMs. Specifically, we propose a simple data-free unlearning method by weight pruning (Han et al.,
2015), which is an effective approach to compress models by removing unimportant parameters.
This method is data-free and training-free, holding potential for generalization, as it does not rely
on specific types of generative models and natural images. Meanwhile, we propose a data-driven
method that unlearns generated images to facilitate the separation of natural and generated images.
Experimental results across multiple benchmarks demonstrate that our unlearning-based approach
outperforms state-of-the-art methods. Moreover, we further conduct experiments on images generated
by inaccessible generative models, i.e., Sora|/OpenAl| (2024)), to verify the robustness against domain
shifts of our method. Results shown in Table [3] demonstrate that our method consistently and
significantly outperforms existing methods.

Our main contributions can be summarized as follows:
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* Employing LVMs for generated image detection holds promise in addressing the challenge
of domain shift, but our experimental results show that original LVMs exhibit similar loss
values for both natural and generated images. To elicit potential differences, we develop
a controlled ablation experiment and reveal that degraded LVMs display distinct patterns
when extracting features for these two types of images.

* Inspired by the disparate dynamics, we propose two unlearning-based methods to detect
generated images: 1) data-free detection inducing unlearning by parameter pruning and 2)
data-driven detection optimizing LVMs by unlearning knowledge tied to generated images.
This unlearning-based approach shifts the focus from learning boundaries between natural
and generated images to unlearning knowledge in pre-trained models.

* Comprehensive experiments validate our method across diverse generated image datasets,
demonstrating that our method outperforms existing methods. Moreover, experiments on
images generated by inaccessible models verify its robustness against domain shifts.

2 PRELIMINARIES

Given a test image X, the task of Al-generated image detection is to determine whether x originates
from the natural image distribution or is generated by a generative model. A common approach
frames this as a supervised binary classification problem, utilizing a training set comprising labeled
samples from both distributions, which is formalized as follows.

Let X = {x9,...,x%,} represent a set of N° Al-generated images labeled as 0, and X' =
{xi,... 7x}vl} denote V! natural images labeled as 1. The objective is to jointly learn a feature
extractor F'(-; 0r) and a binary classifier D(+;0p), parameterized by 6 and 6p, respectively, by
minimizing a classification loss ¢(-) over the combined dataset:

D,F = arg er[r)liglF (D(F(x;0r);0p),y), (1)

where y € {0, 1} is the ground-truth label for input x.

Once trained, the model computes a decision score s(x) = D(F'(x)) for each test image x. A hard
prediction is obtained by thresholding this score at a fixed value 7:

pred(x) = {

generated, if s(x) < 7,
: 2
natural, otherwise.
The robustness of this framework is fundamentally limited by the empirical coverage of the training
data. Effective generalization to unseen distributions requires the learned representation F'(x) captures
features invariant to variations in generative models. However, training sets often provide limited
coverage of the diverse generative mechanisms encountered in practice. To enhance the robustness of
Al-generated image detectors, prior works (Chen et al.| 2024} Zhu et al.} 2023a)) employ techniques
such as data augmentation or adversarial training. Despite these efforts, such methods exhibit limited
transferability to samples from unseen generative distributions, highlighting the need for approaches
rooted in principled distributional modeling beyond empirical discriminative techniques.

3 METHODOLOGY
3.1 MOTIVATION

Current methods for detecting generated images struggle to generalize to unseen generative distribu-
tions. A natural approach to improve generalization is to expand the training dataset, leading to the
consideration of large-scale pre-trained models such as DINOv2 (Oquab et al.,2024)), which offer ro-
bust generalization from extensive pre-training. However, as shown in Figure ] these models exhibit
comparable low loss on both natural and generated images, reflecting their strong comprehension of
both domains, which prevents their direct use for discrimination.

To address this, we propose selectively degrading the model’s ability to interpret generated images,
thus inducing differential performance between natural and generated images. To this end, we employ
machine unlearning (Bourtoule et al.,2021)), a technique to mitigate the influence of specific data, to
adapt the pre-trained model to forget generated images while preserving its representation of natural
images. A native unlearning objective function for classification is defined as:
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Figure 3: Differences and connections between learning-based detection and unlearning-based
detection. Learning-based methods aim to introduce a boundary between natural and generated
images, leading to the reliance on the collected training data. In contrast, our unlearning-based
method leverages dynamic classifiers for detection.

1
Eunleam(a) - E(w,y)meorge[ - Z ? IOg fl (xﬂ 0) + AE(x,y)ND,.ewi“ - Z Yi IOg f1 (ZL’, 0) ) (3)
where, in general, Dyoreer and Drerain represent the data distributions to be forgotten and preserved,
respectively; in this work, they correspond to generated and natural images.

3.2 DATA-FREE UNLEARNING

Eq.[3| presents a general machine unlearning framework that
requires collecting both natural and generated images to fine-
tune the model, incurring additional computational costs.
In this study, we investigate strategies to induce selective

Generated - Original
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unlearning in LVMs, prioritizing the retention of natural | AR\N
image knowledge while forgetting generated image knowl- Iy
edge, particularly in scenarios where generated images are SO\

unavailable. To do so, we propose a training-free unlearning

method by leveraging insights from the pre-training process Feature Value

of large-scale models, achieving effective data-free unlearn-
ing. Our idea comes from previous work on the effect of
weight pruning on neural networks (Hooker et al., [2019),

Figure 4: The feature shift caused by
weight perturbation is more significant
in the generated images.

where the authors found that compression has a greater im-

pact on the long-tail of less frequent instances than on higher frequency instances. On existing
pre-trained vision models, such as CLIP (Radford et al.,[2021)) and DINOv2 (Oquab et al., [2024)),
most of the pre-training data are natural images, and generated images are rarely used for pre-training,
which results in the generated images unintentionally becoming long-tailed, or out-of-distribution
(OOD) data. In this case, weight pruning disproportionately affects generated images compared to
natural images, effectively achieving unlearning objective for generated images. As illustrated in
Figure ] pruning the weights of DINOV2 results in a significantly larger feature displacement for
generated images than for natural images. This phenomenon is consistently observed in Figures

Based on this, we propose a training-free method for Al-generated image detection, using the feature

similarity between a learned model and its unlearned (pruned) version as the criterion:
s(x) = cos(F(z;0F), F(x;0p)), 4)

where cos denotes cosine similarity, and 9% is the unlearned version of 6.
3.3 THEORETICAL ANALYSIS OF WEIGHT PRUNING’S DIFFERENTIAL IMPACT
While prior studies (Hooker et al., 2019) have noted the differential impact of weight pruning on

in-distribution (ID) and OOD data, they lack theoretical justification. In this work, we provide a
theoretical proof to substantiate these observations. To formalize this, we consider a neural network
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f(z;0) trained solely on natural images, where z € X C R™ is the input image, § € R? is the
weight parameter vector and f : X x R? — R¥ is the output feature embeddings. In this case, natural
images are considered as ID data and generated images are considered as OOD data.

Definition 1 (Weight Pruning). For a model with parameters § € R, weight pruning discards
weights with absolute values below a threshold € > 0, defined as:

0 if|6;] <e,

K3

&)

where 6/ represents the pruned parameters.

Definition 2 (Generalization Error Increment). For a loss function ¢(f(z;6),y) : RF x J —
R measures prediction error, assumed to be Lipschitz continuous with respect to f and twice
differentiable with respect to 6. The generalization error for a distribution D is:

Errp(f) = E(e,y)~pll(f(2;0), y)]- ©)

And for a model f(x;6) with pruned parameters ¢’, resulting in f = f(x;6’), the generalization
error increment induced by pruning over a distribution D is defined as:

AErrp = Errp(f') — Errp(f) = B yy~n[0(f(2;0'),y) — £(f(x;0), )] (7
Specifically, AErrp and AErroop denote the increments for ID and OOD data, respectively.

We hypothesize that pruning small weights impacts OOD data more significantly, as formalized in
the following theorems.

Theorem 3 (Generalization Error Increment). For a well-trained ReLU network f(x;0), assume the
loss function {(f(x;0),y) is twice differentiable with respect to 6 and its first-order and second-order
derivatives are all Lipschitz-continuous, pruning small weights leads to a larger generalization error
increment for OOD data than for ID data:

AEI’I"OOD > AEI‘I’]D. (8)

Definition 4 (Output Difference). The mean squared output difference due to weight pruning over a
distribution D is defined as:

Ao = Eonp[[1f(x:0") = f(2;0)]7], ©)
where f(z;0) and f(z;6") are the model outputs before and after pruning, respectively, and || - ||
denotes the squared Euclidean norm.

Corollary 1 (Output Difference). Under the conditions of Theorem|[3| pruning small weights results
in a larger output difference for OOD data than for ID data:

AOOD > AID

out out*

(10)

The proofs, based on the spectral properties of the Hessian and gradient covariance matrices, are
provided in Appendix [A.4] These results suggest that the feature representations of Al-generated
images (OOD) change more significantly after pruning compared to natural images (ID).

3.4 DATA-DRIVEN UNLEARNING

While data-free unlearning passively removes generative knowledge through structural degradation,
it does not explicitly optimize for forgetting. When generated images are available, we can further
introduce a data-driven unlearning strategy to guide the unlearning process.

Specifically, for natural images, we encourage the model to retain feature similarity with the original
model. For generated images, we enforce a margin-based separation: the model should not produce
feature representations too similar to the original model. This is implemented via the following loss:

L(OF) = Eoexr [Lop(F(x;0r), F(2;05))] + Egexo [max (0, v = Leg(F(x;0r), F(x:0p)))],

Y
where +y is a margin that enforces a minimal dissimilarity threshold between the original and unlearned
features for generated images. The cross-entropy loss Lcg(P, Q) = — Y. P; log Q; measures the

divergence between normalized feature distributions extracted by the original model 6 and the
unlearned model 0%.. After getting the unlearned model, we compute the scoring function using
Eq. @) and make a judgment using Eq. (2).
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Table 1: Al-generated image detection performance on ImageNet. Values are percentages. Bold
numbers are superior results. We compare training methods and training-free methods separately.

Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP
Training-free Methods
AEROBLADA 55.61 5426 61.57 56.58 62.67 60.93 8588 87.71 4436 45.66 4739 48.14 4728 4854 6705 67.69 4805 4875 57.87 5785
Data-free Unlearning 91.97 9044 86.82 8514 87.62 8591 8574 83.84 96.37 96.52 9439 9423 9647 96.53 9519 9524 9527 9517 9220 9145

Average
Methods

Training Methods

CNNspot 6225 63.13 6328 6227 63.16 6481 62.85 61.16 8571 8493 7485 7145 6841 68.67 6183 6291 6098 61.69 67.04 66.78
UnivFD 8337 8295 79.60 78.15 8035 79.71 82.93 8172 93.07 9277 8745 84.88 8536 83.15 8519 8422 90.82 90.71 8535 8425
DIRE 51.82 5029 53.14 5296 52.83 51.84 54.67 55.10 51.62 50.83 50.70 5027 5095 51.36 5595 54.83 5258 52.10 52.70 52.18
NPR 85.68 80.86 8434 7979 91.98 86.96 86.15 8126 89.73 8446 8221 7820 84.13 7873 8021 7321 89.61 84.15 86.00 80.84
PatchCraft 81.83 79.65 70.88 69.36 6847 6519 7538 7329 99.85 99.26 9855 9791 9633 9625 9128 9147 9256 92.17 86.13 8495
FatFormer 91.77 90.36 83.58 83.17 92.58 9206 86.93 85.14 98.76 9847 9765 98.02 97.64 97.57 96.55 9596 97.65 9727 93.68 93.11
DRCT 90.26 90.07 8574 83.85 90.24 89.88 88.27 89.06 95.87 9499 86.89 86.12 89.11 8839 9238 9241 9444 9447 9036 89.92
AIDE 90.87 90.17 8791 8552 93.57 9389 89.87 88.16 8848 88.12 9793 96.58 96.59 9597 9831 97.86 99.87 99.56 93.71 9287

Data-driven Unlearning  96.86  96.69 94.92 9477 98.32 9850 96.25 96.52 99.96 99.96 99.43 99.54 99.73 99.74 99.26 99.34 9990 99.91 9829 98.33

Table 2: Accuracy (%) of different detectors on Chameleon.

Training Set  AEROBLADA UD"“""".“ CNNSpot FreDect Fusing GramNet LNP UnivFD DIRE NPR AIDE DRCT PatchCraft FatFormer Lot-driven
nlearning Unlearning
ProGAN 55.29 59.17 5694 5562 5698 5894 57.11 5722 5819 57.29 5645 57.89 5376 558 60.59
SDv1.4 55.29 59.17 60.11 5686 57.07 6095 5563 5562 5971 58.13 61.10 6033 5632 5934 7115
All GenImage ~ 55.29 59.17 60.89 5722 57.09 59.81 5852 6042 57.83 57.81 6389 6197 5570  60.59 72.89

Table 3: Al-generated image detection performance, measured by AUROC (%) and AP (%), on Sora.

AEROBLADA ~ Duafree CNNspot UnivED DIRE NPR PatchCraft FatFormer DRCT AIDE Data-driven
Unlearning Unlearning

Models

AUROC AP AUROC AP |AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP
Sora 58.00 57.13 90.89 90.18| 52.85 5329 77.06 80.69 52.83 5216 51.92 5025 8439 82.16 89.95 87.64 8253 8228 9176 89.39 9589 95.54
Open Sora 6237 5579 90.00 89.10| 50.14 5138 67.05 68.67 53.66 5298 50.25 51.84 8358 81.89 88.76 87.99 81.79 80.11 89.47 8898 97.03 95.70
Average 60.19 5646 9045 89.64| 51.50 52.84 7206 74.68 5325 5257 51.09 51.05 8399 82.03 8936 87.82 82.16 81.20 90.62 89.19 96.46 95.62

3.5 RELATION BETWEEN LEARNING AND UNLEARNING APPROACH

In a sense, our unlearning-based method has the same structure as the learning-based method. In
our unlearning method, the feature extractor is instantiated as a pre-trained large-scale vision model,
while the weighting of classifiers is instantiated as the output features of the unlearned model on the
test sample. Our unlearning methods has two advantages over the learning methods: (1) we directly
use the large-scale vision model as the feature extractor, which is pre-trained on a large number of
natural images, instead of retraining a feature extractor on a limited number of samples. This allows
to obtain more powerful features; and (2) the classifier of the learning approach is fixed once the
training is completed; instead, our unlearning method generates an instance-specific classifier for each
test sample, which allows the division of the feature space to be independent of the specific natural
and generated samples. We illustrate the differences and connections between our unlearning-based
method and learning-based approach in Figure

4 EXPERIMENTS

4.1 SETUP

Datasets. Following previous works (Luo et al.l 2024} |Ojha et al.| 2023; |Wang et al.| 2023 |Yan
et al., 2024), we conduct extensive comparative experiments on the following benchmarks: Ima-
geNet (Deng et al., 2009), LSUN-BEDROOM (Yu et al., 2015)), GenImage (Zhu et al.| 2023b)),
DiffusionForensics (Wang et al.,[2023), Chameleon (Yan et al.,|2024) and DRCT-2M (Chen et al.,
2024). In addition to the public datasets, we evaluate the methods on a proprietary dataset generated
using the Sora and OpenSora models.

Implementation Details. For data-free unlearning, we leverage fully parameterized DINOv2 ViT-
L/14 as the learned model. It has 24 transformer blocks, and we obtain a sparse model by pruning the
parameters of 90% of the minimum magnitude weights of the fc2 layer of its 16th transformer block,
and use this model as the unlearned model. We use 1k natural images sampled from ImageNet and
generated images generated by ProGAN to select hyperparameters. For data-driven unlearning, we
leverage LoRa (Hu et al., [2022) for parameter-effcient fine-tuning. The Lora layers are applied on
the q_proj and v_proj layers of DINOvV2. lora_r and lora_c are set to 8. The margin  is set to 20.
When calculating the classification accuracy, the threshold is determined by a set of natural images
and generated images. More detailed illustration is provided in Appendix
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Table 4: Al-generated image detection performance on LSUN-BEDROOM.

Models o
Methods ADM DDPM iDDPM  Diffusion GAN Projected GAN  StyleGAN  Unleashing Transformer Ve8¢
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP
Training-free Methods
AEROBLADA 57.05 5837 6157 6149 59.82 61.06 47.12 4825 4598 46.15 4563 47.06 59.71 57.34 53.85 5425
Data-free Unlearning ~ 76.49  73.43 92.80 91.78 88.74 8721 9751 97.34 9840 9843 90.92 89.74 96.73 96.12 91.66 90.58
Training Methods
CNNspot 64.83 6424 79.04 80.58 7695 7628 8845 87.19 90.80 89.94 95.17 9494 9342 93.11 84.09 83.75
UnivFD 7126 7095 7926 7827 7480 7346 8456 8291 8200 7842 8122 7808 83.58 83.48 79.53 7794
DIRE 57.19 5685 6191 6135 59.82 5829 53.18 5348 5535 5493 57.66 5690 67.92 68.33 59.00 5859
NPR 7543 7260 9142 90.89 89.49 8825 76.17 7419 7507 7459 68.82 6353 8439 83.67 80.11 7825
DRCT 7459 7137 8545 8498 87.17 8699 9419 9416 9596 9567 9392 94.66 89.51 89.07 88.68 88.13
Data-driven Unlearning  89.87 90.44 99.51 99.58 99.13 99.13 99.99 99.99 99.99 99.99 99.85 99.86 99.99 99.99 98.33 9843

Table 5: Comparison with linear classification. — Table 6: Effect of unlearning different parameters.

Dataset | ImageNet | LSUN-BEDROOM — pfeqrics |Query Key Value fcl fc2  all

i | AUROC | AP | AUROC | AP AUROC | 87.55 88.21 90.08 88.19 92.20 88.81
Linear classification | 87.83 86.49 | 84.72 83.57 : : ' ' . '
Data-free Unlearning | 92.20 ‘91.45 ‘ 91.66 ‘90.58 AP 85.06 86.02 88.77 87.07 91.45 87.13

Evaluation metrics. Following previous works (Ojha et al., 2023; |[Wang et al., [2023), we take
the following metrics: (1) the average precision (AP); (2) the area under the receiver operating
characteristic curve (AUROC) and (3) the classification accuracy (ACC).

Baselines. We take the following works as baselines: CNNspot (Wang et al.,[2020), UnivFD (Ojha
et al., 2023), DIRE (Wang et al., 2023), NPR (Tan et al., |2024), PatchCraft (Zhong et al.| [2023)),
FatFormer (Liu et al.| [2024a)), DRCT (Chen et al.| 2024}, AIDE (Yan et al., 2024) and AEROB-
LADE (Ricker et al.l2024)). In addition to the above works, we have also compared our methods on
some of benchmarks with the following works: FreDect (Frank et al.,|2020a)), Fusing (Ju et al., [2022),
Durall (Durall et al.,2020), LNP (Liu et al.,|2022), F3Net (Qian et al.,[2020), SelfBland (Shiohara &
'Yamasakil, 2022), GANDetection (Mandelli et al.| [2022)), LGrad (Tan et al.| |2023)), Spec (Zhang et al.|
2019), GenDet (Zhu et al.,[2023a), and GramNet (Liu et al., [2020).

4.2 EXPERIMENTAL RESULTS

Comparison with other baselines. As shown in Table M) and [14] we compare our
method with other baselines on ImageNet, Chameleon, Genlmage, DRCT-2M, LSUN-BEDROOM,
and DiffusionForensics, respectively. Results show that our unlearning approach achieves better
performance compared to learning approach. Notably, even without any generated images to guide
the unlearning process, our simple weight pruning-based unlearning method can achieve good results.
And performance is further enhanced when generated images are incorporated to steer the unlearning
procedure. To further illustrate the effectiveness of our method, we count the image feature similarity
on learned and unlearned models for natural images and generated images, respectively. As shown in
Figure|/| the similarity of natural images is significantly higher than that of various generated images,
and this difference effectively distinguishes natural images from generated images.

Experimental results on Sora. We further evaluate the perfor- Taple 7: The effect of selecting
mance of our method on unknown video generation models. Specif-  different pre-trained models.
ically, we collect multiple publicly available Sora (OpenAll 2024)

videos and generate multiple videos using Open Sora (Zheng et al., Model | AUROC | AP
2024), and sample images from these videos as Al-generated im- ~piNov2: viTs/i4 | 7401 | 72.86
ages and sample natural images from Laion-400M (Schuhmann| DINOv2: ViT-B/14 | 8574 | 83.05
et al}[2021) to evaluate the effectiveness of our method. As shown ~ DINOVZ VL% | 9330 | 9147
in Table 3] our method achieves the best performance on the im- CLIP: \'/iT_L/%4 8592 | 85.65
ages generated by these unknown generative models. These results CLIP: RN50x64 | 80.03 | 78.32
highlight the effectiveness of the proposed method.

4.3 ABLATION STUDY

In this section, we perform ablation experiments. Unless otherwise stated, experiments are conducted
on ImageNet benchmark.

Robustness to image corruptions. In addition to the performance on clean images, the robustness
of the detector to various image corruptions is also an important metric. In reality, images may be
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Figure 5: The effects of pruning blocks. Figure 6: The effect of pruning ratio.
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Figure 7: Comparison of feature similarity on learned and unlearned models. The generated images
are from: (a) ADM, (b) BigGAN, and (c) DDPM, and (d) Midjourney.

exposed to various perturbations, e.g., when people upload images to social media, images may be
compressed, and these operations may affect the performance of the detector. Following previous
work (Wang et al.,[2020; |Ojha et al.,|2023)), we assess the robustness of detectors against three types of
perturbations: JPEG compression (with quality parameter ¢)), Gaussian blur (with standard deviation
o), and Gaussian noise (with standard deviation o). As shown in Figure @ our method also achieves
the best detection performance under different image perturbations.

The effect of model. In our experiments, we focus on using DINOv2 ViT-L/14 as the vision model.
To further investigate the effect of vision model, we also test the performance of the unlearning
approach on other models. As shown in Table[7] the proposed unlearning method is able to distinguish
between natural and generated images across different models.

The effect of ~. Figure [Q]illustrates our exploration of how the margin + influences the performance
of our data-driven unlearning approach. The results show that our method is robustness to 7.

The effect of pruning ratio. Figure[f|illustrates how prun-
ing ratio influences the performance of our method. The
results show that our method maintains robustness across
a wide range of pruning ratio. Performance degradation
occurs only when the pruning ratio is too low. At lower " ” " " p
pruning ratio, the model unlearns little information and ) 4

the features extracted on the learned model and unlearned
model are almost the same, making unlearning ineffective.

Select which block for unlearning? As shown in Figure|5| we investigate the impact of selecting
different blocks for unlearning on detection performance. The results indicate that our method
demonstrates robustness across various blocks. However, when unlearning is applied at the top
block, performance experiences a significant degradation. This is likely due to the fact that the top
block parameters encode higher-level features, and pruning these parameters directly disrupts the
feature representation of natural images. As a result, the feature consistency between the learned and
unlearned models for natural images is compromised, leading to a notable decline in the performance.

The effect of parameters. In DinoV2-1L/14, a transformer block consists of two main components:
the attention module and the Multi-Layer Perceptron (MLP). Among them, the attention module
mainly consists of three parameters: Query, Key and Value. MLP mainly consists of two fully
connected layers. In our main experiment, we realize unlearning by pruning the parameters of the
second fully connected layer (fc2) in the MLP. In Table[6] we further explore the effect of pruning
other parameters. The results show that pruning different parameters can obtain good performance.

AUROC (%)

> =
Rk c
=
1)
o

Figure 9: The effect of

Comparison with linear classification. We further compare our method to training a single linear
layer for binary classification on top of DINOv2-L/14. We use the training set in UnivFD and use
JPEG and Blur as data augmentation methods. As shown in Table[5] on the same backbone, our
unlearning method also outperforms the learning method.
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Figure 8: Robustness to perturbations: (a) JPEG compression; (b) Gaussian blur; (c) Gaussian noise.

Ablation experiment on LoRa parameters. As shown in Table 8] we conduct ablation experiments
on LoRa parameter. The results show that the performance of our unlearning method remains stable
under different LoRa parameters, demonstrating the robustness of our method.

5 RELATED WORK

Al-generated Image Detection. In recent years, the de- Table 8: The effect of LoRa parameters.
tection of Al-generated images has emerged as a critical We report AUROC/AP.

research area, driven by the rapid advancement of gener-
ative models |Brock et al.|(2019); Ho et al.| (2020). These  lora, lora_y=4 lora_y=8 lora_y=16
models can create hyper-realistic images, which raises 8  98.72/98.74 98.29/98.33  98.01/98.20
concerns around issues such as misinformation, privacy ;g gg:gggg:;i gg}éﬁggg? gg:g?ﬁgg:gg
violations, and authenticity. To address these concerns,

various methods have been proposed to differentiate between natural and Al-generated images. Early
methods in this field (Brock et al.,2019;Ho et al.,|2020) largely focus on training specialized binary
classifiers to distinguish between natural and generated images. For example, CNNspot (Wang et al.|
2020) trains a binary classifier using natural and generated images, where JPEG and Blur are used
as data augmentation to improve the robustness of the classifier. UniversalFakeDetect (Ojha et al.}
2023) proposes using CLIP’s representation space (Radford et al.,[2021)) to train classifiers, which
shows superior performance across a wider range of generative architectures. Gendet (Zhu et al.|
2023a) proposes an adversarial teacher-student discrepancy-aware framework, while LaRE*(Luo
et al.,[2024)) introduces a latent reconstruction error-guided feature refinement approach for detecting
images generated by diffusion models. Although these methods have made significant strides, those
relying on training still face challenges related to generalization and computational costs. To over-
come these limitations, recent studies have shifted focusing toward training-free detection approach.
AEROBLADE(Tan et al.| 2024) takes a training-free approach by assessing reconstruction errors
through autoencoder used in Latent Diffusion Model (LDM) (Rombach et al., [2022), but it is limited
to LDM-based generative models. In our paper, the proposed unlearning method is also a train-free
method and can be generalized to various generative models.

Machine Unlearning. Machine unlearning has emerged as an important research area due to the
need for privacy and security. It focuses on removing the influence of specific data points from a
trained model without retraining it from scratch. However, unlearning in deep neural networks is
challenging due to their highly non-convex loss functions. (Golatkar et al., | 2020) propose a method
for scrubbing the weights clean of information about a particular set of training data. (Nguyen et al.|
2022) propose a Markov chain Monte Carlo-based machine unlearning algorithm through parameter
sampling. These methods balance efficiency and model performance. (Golatkar et al.,2021) propose
to set a weight subset to zero to effectively remove all the information contained in the non-core data
while minimizing the performance loss. (Jia et al., 2023)) utilizes model sparsification via weight
pruning to reduce the gap between exact unlearning and approximate unlearning. In this paper, we
perform machine unlearning by sparsification.

6 CONCLUSION

In this paper, we propose a novel machine unlearning framework for detecting Al-generated images.
Through rigorous analysis of the differential forgetting dynamics in large-scale vision models during
unlearning, we establish that feature degradation for generated images outpaces that for natural
images. Leveraging this insight, we develop an unlearning-based detection approach that effec-
tively distinguishes generated images from natural ones. Comprehensive evaluations across diverse
benchmarks demonstrate superior performance over existing methods.



Under review as a conference paper at ICLR 2026

REFERENCES

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE symposium
on security and privacy (SP), 2021.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In International Conference on Learning Representations, ICLR, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems,
NeurlPS, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In IEEE/CVF
International Conference on Computer Vision, ICCV, 2021.

Baoying Chen, Jishen Zeng, Jianquan Yang, and Rui Yang. DRCT: diffusion reconstruction con-
trastive training towards universal detection of diffusion generated images. In International
Conference on Machine Learning, ICML, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In The IEEE / CVF Computer Vision and Pattern Recognition
Conference, CVPR, 2009.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
Advances in Neural Information Processing Systems,NeurIPS, 2021.

Ricard Durall, Margret Keuper, and Janis Keuper. Watch your up-convolution: CNN based generative
deep neural networks are failing to reproduce spectral distributions. In The IEEE / CVF Computer
Vision and Pattern Recognition Conference, CVPR, 2020.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
ICLR, 2021.

Joel Frank, Thorsten Eisenhofer, Lea Schonherr, Asja Fischer, Dorothea Kolossa, and Thorsten Holz.
Leveraging frequency analysis for deep fake image recognition. In International Conference on
Machine Learning, ICML, 2020a.

Joel Frank, Thorsten Eisenhofer, Lea Schonherr, Asja Fischer, Dorothea Kolossa, and Thorsten Holz.
Leveraging frequency analysis for deep fake image recognition. In International conference on
machine learning, pp. 3247-3258. PMLR, 2020b.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In The IEEE / CVF Computer Vision and Pattern Recognition
Conference, CVPR, 2020.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-privacy forgetting in deep networks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2021.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems,NeurIPS, 2015.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. In The IEEE / CVF Computer Vision and Pattern
Recognition Conference, CVPR, 2020.

10



Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems,NeurIPS, 2020.

Sepp Hochreiter and Jiirgen Schmidhuber. Flat minima. Neural computation, 1997.

Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do com-
pressed deep neural networks forget? arXiv preprint arXiv:1911.05248, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International
Conference on Learning Representations, ICLR, 2022.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
and Sijia Liu. Model sparsity can simplify machine unlearning. In Advances in Neural Information
Processing Systems,NeurIPS, 2023.

Yan Ju, Shan Jia, Lipeng Ke, Hongfei Xue, Koki Nagano, and Siwei Lyu. Fusing global and local
features for generalized ai-synthesized image detection. In International Conference on Image
Processing, ICIP, 2022.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In The IEEE / CVF Computer Vision and Pattern Recognition Conference,
CVPR, 2019.

Bo Liu, Fan Yang, Xiuli Bi, Bin Xiao, Weisheng Li, and Xinbo Gao. Detecting generated images by
real images. In Proceedings of the European Conference on Computer Vision, ECCV, 2022.

Huan Liu, Zichang Tan, Chuangchuang Tan, Yunchao Wei, Jingdong Wang, and Yao Zhao. Forgery-
aware adaptive transformer for generalizable synthetic image detection. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, 2024a.

Huan Liu, Zichang Tan, Chuangchuang Tan, Yunchao Wei, Yao Zhao, and Jingdong Wang. Forgery-
aware adaptive transformer for generalizable synthetic image detection. In The IEEE / CVF
Computer Vision and Pattern Recognition Conference, CVPR, 2024b.

Zhengzhe Liu, Xiaojuan Qi, and Philip H. S. Torr. Global texture enhancement for fake face detection
in the wild. In The IEEE / CVF Computer Vision and Pattern Recognition Conference, CVPR,
2020.

Yunpeng Luo, Junlong Du, Ke Yan, and Shouhong Ding. Lare™2: Latent reconstruction error based
method for diffusion-generated image detection. In The IEEE / CVF Computer Vision and Pattern
Recognition Conference, CVPR, 2024.

Sara Mandelli, Nicolo Bonettini, Paolo Bestagini, and Stefano Tubaro. Detecting gan-generated
images by orthogonal training of multiple cnns. In International Conference on Image Processing,
ICIP, 2022.

Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, Jakob D Havtorn, Joakim Edin, Christian
Igel, Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars Maalge, et al. Self-supervised speech
representation learning: A review. IEEE Journal of Selected Topics in Signal Processing, 16(6):
1179-1210, 2022.

Quoc Phong Nguyen, Ryutaro Oikawa, Dinil Mon Divakaran, Mun Choon Chan, and Bryan
Kian Hsiang Low. Markov chain monte carlo-based machine unlearning: Unlearning what
needs to be forgotten. In ASIA CCS ’22: ACM Asia Conference on Computer and Communications
Security, 2022.

Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize
across generative models. In The IEEE / CVF Computer Vision and Pattern Recognition Conference,
CVPR, 2023.

OpenAl. Sora: Creating video from text, 2024. URL https://openai.com/index/sora/l

11


https://openai.com/index/sora/

Under review as a conference paper at ICLR 2026

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision.
Trans. Mach. Learn. Res., 2024.

Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing Shao. Thinking in frequency: Face
forgery detection by mining frequency-aware clues. In Proceedings of the European Conference
on Computer Vision, ECCV, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In International Conference
on Machine Learning, ICML, 2021.

Jonas Ricker, Denis Lukovnikov, and Asja Fischer. AEROBLADE: training-free detection of latent
diffusion images using autoencoder reconstruction error. In The IEEE / CVF Computer Vision and
Pattern Recognition Conference, CVPR, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In The IEEE / CVF Computer Vision and
Pattern Recognition Conference, CVPR, 2022.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114,2021.

Kaede Shiohara and Toshihiko Yamasaki. Detecting deepfakes with self-blended images. In The
IEEE / CVF Computer Vision and Pattern Recognition Conference, CVPR, 2022.

George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin Ville-
croze, Zhaoyan Liu, Anthony L. Caterini, J. Eric T. Taylor, and Gabriel Loaiza-Ganem. Exposing
flaws of generative model evaluation metrics and their unfair treatment of diffusion models. In
Advances in Neural Information Processing Systems,NeurIPS, 2023.

Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, and Yunchao Wei. Learning on gradients:
Generalized artifacts representation for gan-generated images detection. In The IEEE / CVF
Computer Vision and Pattern Recognition Conference, CVPR, 2023.

Chuangchuang Tan, Huan Liu, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei.
Rethinking the up-sampling operations in cnn-based generative network for generalizable deepfake
detection. In The IEEE / CVF Computer Vision and Pattern Recognition Conference, CVPR, 2024.

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. Cnn-generated
images are surprisingly easy to spot... for now. In The IEEE / CVF Computer Vision and Pattern
Recognition Conference, CVPR, 2020.

Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and Hougiang
Li. DIRE for diffusion-generated image detection. In IEEE/CVF International Conference on
Computer Vision, ICCV, 2023.

Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Weidi Xie. A sanity
check for ai-generated image detection. arXiv preprint arXiv:2406.19435, 2024.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of a
large-scale image dataset using deep learning with humans in the loop. CoRR, 2015.

Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detecting and simulating artifacts in GAN fake
images. In International Workshop on Information Forensics and Security, WIFS, 2019.

12



Under review as a conference paper at ICLR 2026

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, March
2024. URL https://github.com/hpcaitech/Open—-Soral

Nan Zhong, Yiran Xu, Zhenxing Qian, and Xinpeng Zhang. Rich and poor texture contrast: A simple
yet effective approach for ai-generated image detection. arXiv preprint arXiv:2311.12397, 2023.

Mingjian Zhu, Hanting Chen, Mouxiao Huang, Wei Li, Hailin Hu, Jie Hu, and Yunhe Wang. Gendet:
Towards good generalizations for ai-generated image detection. arXiv preprint arXiv:2312.08880,
2023a.

Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin

Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated
image. In Advances in Neural Information Processing Systems,NeurIPS, 2023b.

A APPENDIX

A.1 LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized Large Language Models (LLMs) to assist with
language polishing and refinement of the text. Specifically, the LLM was employed to enhance the
clarity, coherence, and grammatical accuracy of the writing, ensuring that the manuscript adheres to
high standards of academic communication. The LLM did not contribute to the research ideation,
methodology, data analysis, or core content development, which were entirely conducted by the
authors. All outputs generated by the LLM were carefully reviewed and edited by the authors to
ensure alignment with the intended scientific contributions and to maintain the integrity of the work.

A.2  SOCIAL IMPACTS
The proposed method for detecting Al-generated images significantly contributes to mitigating
societal risks associated with generative model misuse. By enhancing the capability to identify

synthetic media, such as deepfakes, this work bolsters efforts to counter disinformation and fosters
trust in digital media, particularly in critical domains such as journalism and legal evidence.

A.3 LIMITATIONS
The proposed method relies on a vision foundation model pre-trained only on the natural images. How-

ever, with the rapid development of generative models, future models are likely to be contaminated
by generative images, which may lead to the failure of our data-free unlearning method.

A.4 DETAILED PROOFS
A.4.1 PROOF OF THEOREM [3| (GENERALIZATION ERROR INCREMENT)

Proof. The generalization error increment for distribution D is:

AErrp = By ) ~pll(f (2:0'),y) — £(f (230), y)]- (12)

Using a second-order Taylor expansion of the loss around 6:

O(f(z;0),y) = f(f(fv;9)»y)+V9€(f($;9)’y)T(9'—9)+%(9/—9)Tvgf(f($;9)’y)(9'—9)+0(||9/—9||3)-
(13)
Since #' — 8 = — A6, we have:

(7 (@:0),9) = U (:0),) = ~Vallf(30),5) T A0+ SA0TV3(S(230),)A0. (14)
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Taking the expectation over D:

1
Define the Hessian:
Hp = E(g 4~ [V3(f(2:0),y)]. (16)
Thus:
E () ~n[A0TVEL(f(2;0),y)A0] = AGT HpAb. (17)
For the first-order term:
E(zy)~p[Vol(f(7;0),y)] = VoE ()~ [l(f(2:0),y)]. (18)

Since A6 corresponds to small weights, the perturbation is small and training minimizes the gradient
magnitude in these directions (Sagun et al,2017), so the first-order term is negligible and thus:

AErrp =~ %AQTHDAQ. (19)
Specifically:
1 T
AEI‘I‘ID ~ §A9 HIDA97 (20)
1
AErtoop ~ 5A@THOODM. (21)

Since A# represents small-magnitude weights, these weights are usually not important for ID data,
i.e., Hoop has larger eigenvalues in the direction Af compared to Hip. Represent the Hessian
difference:

Hoop = Hip + A, (22)

where A = Hpop — Hip is a symmetric matrix. Generally speaking, training on Dip flattens the loss
landscape in small weight directions (smaller Hyp eigenvalues) (Hochreiter & Schmidhuber, |1997
Foret et al., 2021)), while OOD data retains higher curvature due to distributional differences. We
assume A has positive eigenvalues in the direction A6, i.e., A@T AA#H > 0, therefore:

AT HoopAO = AOT HipAO + AT AAO > AOT Hip A6. (23)

Thus: . )
AErroop & §A9THOODA0 > 5A@THIDM ~ AErrp. (24)
This completes the proof. O

A.4.2 PROOF OF COROLLARY[I](OUTPUT DIFFERENCE)

Proof. Under the conditions of Theorem 3] we relate the generalization error increment to the output
difference. The Hessian of the loss with respect to the parameters is: Hp is:

0%l or

Hp =E(,y~p |Vof(x; Q)TTFWM; 0) + ;fvzf(x; 0)] . (25)

where f(x;6) is the network output, V f(x; 0) is the Jacobian, and V3 f (z; ) is the second-order
derivative tensor. For a ReLU network, f(z;0) is piecewise linear, so V3 f(z;6) = 0 for inputs =
where the activation pattern is fixed (i.e., no ReLU threshold crossings). And since the first-order of
loss function is Lipschitz-continuous, the seceond term is negligible:
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or
E(zy)~D [é)fvif(x;@)] ~ 0. (26)
The Hessian simplifies to:
+ 0%
Hp =~ Egy)~p |Vof(z;0) ngvef(z; )] - (27)
920

For the loss function such as cross-entropy loss, the second derivative i is approximately diagonal
near the optimum, as the softmax output stabilizes. Assume:

0%l
where Cp > 0 is a positive constant reflecting the loss’s curvature in the output space (e.g., related
to the inverse of the softmax temperature). This approximation holds when the model’s predictions

are confident, as shown in (Goodfellow et al.,[2016). Define the covariance matrix of the parameter
gradients:

Sp =B yyon [Vof(@;0)Vof(z;0)T] . (29)

Thus:
HD =~ CD ED, (30)

where ¥p € R™ ™ is positive semi-definite, with eigenvalues reflecting the variability of the
network’s output sensitivity to parameter changes.

Define the output difference as the expected squared change in the network’s output:

AR =Eq ol f(@:0) — f2:0)]3]. 31

For small perturbations, approximate f(z;0") ~ f(x;0) — Vo f(x;0)T A6, so:

f(a;0") — f(a;0) = =V f(x;0)" AG. (32)
Thus:
AR~ Byl Vof(z;:0) T A|3] = By )~ AT Vo f(2;0) Vo f(x;0) T ABl = AGTSpAf.
(33)
Therefore:
1
AErrp =~ §CDAan. (34)

C'p only depends on the output value of the network. Since the generated images are very similar
to natural images, we assume that the neural network has consistent output distributions on the two
types of data, which can be confirmed from Figure E} Therefore: Coop ~ Cip.

Accoring to Theorem [3|and Eq. [34] we have:

AOOD > AID

out out*

This completes the proof.
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A.5 ALLEVIATE SENSITIVITY TO MODELS THROUGH FINE-TUNING

As shown in Table[/| data-free Unlearning exhibits sensitivity to the choice of feature extractor, as it
depends on subtle distinctions in how natural and generated images are represented. For the CLIP
model, which is trained with text supervision, extracted image features tend to prioritize semantic
information, potentially reducing their suitability for this task. Conversely, the DINOv2:ViT-g/14
model, with its large parameter count, shows limited sensitivity to pruning parameters from a single
layer, resulting in minimal impact on the final feature representations. This sensitivity to the backbone
can be alleviated through fine-tuning the feature extractor, as demonstrated in the results presented in
Table

Table 9: Alleviate sensitivity to models through fine-tunings.

Method Model AUROC | AP

Data-free Unlearning DINOvV2:ViT-L/14 92.20 91.45
Data-free Unlearning DINOv2:ViT-g/14 88.12 84.73
Data-free Unlearning CLIP:ViT-L/14 85.92 85.65
Data-driven Unlearning DINOvV2:ViT-L/14 98.29 98.33
Data-driven Unlearning DINOvV2:ViT-g/14 97.96 98.15
Data-driven Unlearning CLIP:ViT-L/14 97.63 97.48

A.6 PERFORMANCE OF DATA-FREE UNLEARNING ON WEAKER MODELS

We conduct additional experiments using weaker pretrained vision models, including MoCo (He
et al.}2020), SWAV (Caron et al.,[2020), and DINO (Caron et al.| 2021). As presented in Table[El,
our Data-free Unlearning exhibit significantly reduced performance on these models. This highlights
a promising direction to explore detection with small models.

Table 10: Performance on weak models.

Models AUROC AP

MoCo 72.69  70.15
SwAV 77.85 75.64
DINO 7479  71.88

A.7 COMPARISON OF COMPUTATIONAL EFFICIENCY

As shown in Table [TT] we conduct a comparative analysis of the training and inference costs of
various methods on the ImageNet dataset. For inference cost assessment, we measured the time
required to detect 100 images. Experimental results show that our unlearning method also shows
advantages in computational cost.

Table 11: Comparison of computational efficiency.

Methods training cost (huors) inference cost (seconds)
UnivFD 0.8 1.1

NPR 0.7 0.7

DRCT 25.4 1.1
AEROBLADA 0.0 17.6
Data-free Unlearning 0.0 2.5
Data-driven Unlearning 1.5 2.5

A.8 UNLEARNING WITH DIFFERENT PRUNING STRATEGY

In our experiments, we focus on unlearning by pruning the weights with the smallest magnitude. We
further explore ablation experiments by randomly pruning the weights, pruning the weights with the
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largest magnitude, and filling in the smallest magnitude weights with Gaussian noise instead of using
0 after pruning. As shown in Table[T5] simply pruning the weights with the smallest magnitude for
unlearning achieves the best performance.

A.9 EXPERIMENTAL RESULTS ON DRCT-2M, GENIMAGE AND DIFFUSIONFORENSICS

Table [12} [T3]and [T4]shows the performance of our unlearning approach on DRCT-2M, GenImage and
DiffusionForensics, respectively. The results further demonstrate the effectiveness of our unlearning
approach.

Table 12: Al-generated image detection performance (ACC, %) on DRCT-2M.

SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants

Method Avg.
SDXL- SD- SDXL- LCM- LCM- SDvi- SDv2- SDXL- SDvl- SDv2- SDXL-
LDM  SDvl4  SDvLS SDv2 SDXL  pefiner Turbo Turbo SDvl5 SDXL Cul  Cul  Cul DR DR DR
CNNSpot 9987 9991 9990 9763 6625 8655 8615 7242 9826 6172 9796 8580 8294 6093 514l 5028 S8LI2
F3Net 9985 9978 9979 8860 5585 8737 6329 63.66 9739 5498 9798 7239 8199 6542 5039 5027 7113
CLIP/RNS0 9900 9999 9996 9461 6208 9143 8440 6440 9897 5743 9974 8069 8203 6583 5067 5047 8005
GramNet 9940 9901 9884 9530 6263 8068 7119 6932 9305 5702 8997 7555 8268 5123 5001 5008 7662
De-fake 921 9553 9951 89.65 6402 6924 9200 9393 9913 70.89 5898 6234 6666 S50.12 5016 5000 7552
Conv-B 99.97 1000 9997 9584 6444 8200 6075 9927 9927 6233 9980 8340 7328 6165 5179 5041 7911
UniFD 9830 9622 9633 9383 9101 9391 8638 8592 9044 8999 9041 8106 89.06 5196 5103 5046 8346
FatFormer 9652 9531 9327 9199 9287 9178 8815 8748 9282 9176 9028 8699 88.19 6592 60.15 5513 8553
DIRE 5462 7589 7604 9987 5990 9308 9755 8720 7253 6785 9960 6440 6440 4996 5248 4992 7255
DRCT 0445 0435 9424 9505 9641 9538 9481 0448  OL66 9554 0386 9350 9354 8434 8320 6761 9135

Data-free Unlearning 93.87 7241 71.82  77.64 8323 7539 7158 67.59 66.84  80.67 84.12 8389 8893 70.67 69.14 6859 76.69
Data-driven Unlearning  98.73  98.93 99.23 9955 9890 9944 99.32 99.30 99.33  99.02 99.14 99.29 9887 7683 7463 73.65 94.50

Table 13: Al-generated image detection performance (ACC, %) on Genlmage.

Methods Midjourney SD V1.4 SD V1.5 ADM GLIDE Wukong VQDM BigGAN Average
Training-free Methods
AEROBLADE 80.3 87.5 86.8 672 815 83.7 51.1 52.5 73.8
Data-free Unlearning 79.9 80.8 796 717  79.1 82.7 87.1 87.3 81.8
Training Methods
ResNet-50 54.9 99.9 99.7 535 619 98.2 56.6 52.0 72.1
DeiT-S 55.6 99.9 99.8 498 58.1 98.9 56.9 535 71.6
Swin-T 62.1 99.9 99.8 498 67.6 99.1 62.3 57.6 74.8
CNNspot 52.8 96.3 959 50.1 398 78.6 534 46.8 64.2
Spec 52.0 99.4 99.2 497 4938 94.8 55.6 49.8 68.8
F3Net 50.1 99.9 99.9 499 50.0 99.9 49.9 49.9 68.7
GramNet 54.2 99.2 99.1 503 546 98.9 50.8 51.7 69.9
DIRE 60.2 99.9 99.8 509 550 99.2 50.1 50.2 70.7
UnivFD 73.2 84.2 840 552 769 75.6 56.9 80.3 73.3
PatchCraft 79.0 89.5 893 773 784 89.3 83.7 724 82.3
NPR 81.0 98.2 979 769 89.8 96.9 84.1 84.2 88.6
FatFormer 92.7 100.0 99.9 759 88.0 99.9 98.8 55.8 88.9
GenDet 89.6 96.1 96.1  58.0 784 92.8 66.5 75.0 81.6
DRCT 91.5 95.0 944 794 89.1 94.6 90.0 81.6 89.4
AIDE 79.4 99.7 99.8 785 918 98.7 80.3 66.9 86.9
Data-driven Unlearning 90.8 95.6 95.1 745 90.0 94.6 91.8 85.1 89.7

Table 14: Al-generated image detection performance (ACC, %) on DiffusionForensics.

Models

Methods ADM DDPM  iDDPM LDM PNDM  VQ-Diffusion SDVI SDV2 Average

ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP
CNNspot 53.9 71.8 62.7 76.6 502 82.7 504 787 50.8 903 50.0 71.0 38.0 767 520 903 510 79.8
UnivFD 784 92.1 729 78.8 750 92.8 822 97.1 753 92.5 835 977 564 904 715 924 744 917
Frank 58.9 65.9 37.0 27.6 514 650 517 485 440 382 517 667 328 523 408 375 460 50.2
Durall 39.8 42.1 529 49.8 553 567 43.1 399 445 473 386 383 395 563 62.1 558 47.0 483
SelfBland 570 59.0 61.9 49.6 632 66.9 833 922 482 482 772 827 462 680 712 739 635 676
GANDetection 51.1 53.1 62.3 464 502 63.0 51.6 48.1 50.6 79.0 5.1 512 398 656 50.1 369 50.8 554
Patchfor 77.5 939 623 97.1 50.0 91.6 99.5 100.0 502 99.9 100.0 100.0 90.7 99.8 94.8 100.0 78.1 97.8

Data-free Unlearning ~ 79.8 85.0 87.5 94.3 883 953 802 89.5 942 987 923 980 931 979 928 979 885 94.6
Data-driven Unlearning 86.9 93.4 98.5 99.9 984 999 954 99.0 99.1 100.0 992 100.0 922 97.5 93.5 98.1 954 98.5

A.10 THE EFFECT OF STRUCTURED PRUNING

In our main experiment, we explore the effect of unstructured pruning, i.e., removing some of the
weights in certain blocks individually. We further explore the effect of structured pruning, i.e.,
removing a certain block completely. As shown in Figure[T0] removing shallow blocks usually gives
stable results, whereas removing top blocks results in a more significant impact on the features of
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the natural image due to their closer connection to the output features. Thus, this results in poor
detection performance. An exception is that when the second block is removed, the proposed method
is completely unable to distinguish between natural images and Al-generated images. This may stem
from the fact that the second block in DINOV?2 is crucial for the extraction of the image features, and
when the second block is removed, the model is unable to correctly extract the features of test images.

Table 15: The effect of pruning strategy.

Model | AUROC | AP
random pruning 86.29 85.54
pruning largest magnitude weights 83.69 83.21
pruning smallest magnitude weights 92.20 91.45
pruning and filling noise 86.03 85.64

A.11 USING THE SIMILARITY OF THE MIDDLE LAYER FEATURES AS THE DECISION SCORE

As shown in Table [T6] we further explore the
effect of using the feature similarity of other

middle layers as decision scores. Since we prune 80 ;" NAYT R\

the weights of block 15, the outputs of the test &, 5 \
samples on the learned and unlearned models £ \
differ from blocks 16 to block 23. Therefore, ~* —— AUROC N\~
we explore the effect of feature similarity using 501 i i
the output of blocks from block 16 to block 23. 0 5 Coek 20

The results show that using high-level features

to compute the similarity could achieve good  Fjgure 10: The effect of structured pruning. We

results. This is because there is a significant  obtain an unlearned model by completely dropping
difference between the high-level features of the 4 fu11 block.

natural image and the generated image on the
learned and unlearned models.

A.12 IMPLEMENTATION DETAILS

For data-free unlearning, we leverage fully parameterized DINOv2 ViT-L/14 as the learned model. It
has 24 transformer blocks, and we obtain a sparse model by pruning the parameters of 90% of the
minimum magnitude weights of the fc2 layer of its 16th transformer block, and use this model as the
unlearned model. We use 1k natural images sampled from ImageNet and generated images generated
by ProGAN to select hyperparameters. For data-driven unlearning, we leverage LoRa (Hu et al.
2022) for parameter-effcient fine-tuning. The Lora layers are applied on the q_proj and v_proj layers
of DINOV2. lora_r and lora_c are set to 8. The margin + is set to 20. To optimize computational
efficiency, we apply Low-Rank Adaptation (LoRA) exclusively to the 18th, 19th, and 20th blocks of
the model and fine-tune for only three epochs. The model is optimized using the AdamW optimizer
with a learning rate of 1 x 1075, 8; = 0.9, f2 = 0.99, and a weight decay of 0.01. We report
the average results under five different random seeds and report the standard deviation in Figure 9]
Following CNNspot (Wang et al.| 2020), data augmentation techniques including JPEG compression
and Gaussian blur are employed to enhance robustness. For the IMAGENNET, LSUN-BEDROOM,
and DiffusionForensics benchmarks, the ProGAN dataset serves as the training set. For the Genlmage
benchmark, SDv1.4 dataset is used. For the DRCT-2M benchmark, SDv2 dataset is used as training
set.

When comparing classification accuracy with other methods, since our method is not a standard binary
classifier, the traditional classification threshold of 0.5 is not applicable to our method. Consequently,
we employed a validation set to determine an appropriate threshold. Specifically, this validation set
consisted of 1,000 images generated by ProGAN and an equivalent number of natural images. We
identified the threshold that maximized classification accuracy on this validation set as the optimal
threshold for subsequent analyses. The determined optimal thresholds were 0.94287 for the data-free
unlearning method and 0.90178 for the data-driven unlearning method, with classification accuracy
calculated accordingly at these thresholds.
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Table 16: Effectiveness of using feature similarity in the middle layer for detection.

Generative Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer ~ Mask GIT

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

16 70.32 6920 65.32 63.28 82.62 8388 85.69 86.05 88.20 89.79 7642 77.61 8259 8333 8148 8396 86.64 88.82 79.92 80.66
17 6393 6525 61.22 61.21 7237 7471 80.19 8240 84.65 87.70 61.02 62.82 66.01 66.85 7334 7630 80.59 83.72 7148 73.77
18 78.64 7676 73.38 70.61 8527 8443 8834 88.05 9447 9437 8334 8375 88.27 88.82 8497 84.02 9423 9451 8566 8504
19 86.90 86.57 81.04 78.92 8803 8801 89.80 89.71 96.51 96.69 90.86 9123 93.55 93.99 89.77 90.06 96.54 96.72 90.33 90.21
20 86.42 86.31 81.82 79.37 89.43 89.60 89.72 89.36 96.89 96.99 9150 91.57 94.77 9496 91.56 9174 96.18 96.30 90.92 90.69
21 87.15 87.57 8293 80.84 90.00 90.33 89.99 90.36 96.18 96.42 9208 9255 9521 9552 9257 9328 9580 96.08 91.33 91.44
22 91.04 89.61 8553 8290 88.00 86.60 86.37 8451 9629 96.71 9451 9458 96.65 96.80 9490 9522 9597 96.19 92.14 91.46
23 9197 9044 86.82 85.14 87.62 8591 8574 83.84 9637 96.52 9439 9423 9647 96.53 9519 9524 9527 95.17 9220 91.45

Average
Block

A.13 DETAILS OF DATASETS

ImageNet and LSUN-BEDROOM. The natural images and Al-generated images of ImageNet
benchmark and LSUN-BEDROOM benchmark can be obtained from https://github.com/
layerb6ai-labs/dgm-evall which are provided by (Stein et al.|[2023). The generated images
of the ImageNet benchmark are generated with the following generative models: ADM, ADMG, Big-
GAN, DiT-XL-2, GigaGAN, LDM, StyleGAN-XL, RQ-Transformer, and Mask-GIT. The generated
images of the LSUN-BEDROOM benchmark are generated with the following generative models:
ADM, DDPM, iDDPM, StyleGAN, Diffusion-Projected GAN, Projected GAN, and Unleashing
Transformers.

Genlmage. The natural images and Al-generated images can be obtained from https://github,
com/GenImage-Dataset/GenImage. The images are provided by (Zhu et al., 2023b). The
generative model includes Midjourney, SD V1.4, SD V1.5, ADM, GLIDE, Wukong, VQDM, and
BigGAN. The natural images come from ImageNet.

Chameleon. Chameleon is a a very challenging dataset and various detection methods perform
unsatisfactorily on it, as all Al-generated images in this dataset have passed a human perception
“Turing Test”, i.e., human annotators have misclassified them as natural images. The images are
provided by (Yan et al.| 2024). The dataset can be obtained from https://shilinyan99,
github.io/AIDE/!

DiffusionForensics. The natural images and Al-generated images of DiffusionForensics can be
obtained fromhttps://github.com/ZhendongWang6/DIRE, which are provided by (Wang
et al.| 2023)). The generative model includes ADM, DDPM, iDDPM, LDM, PNDM, VQ-Diffusion,
sdvl and sdv2.

DRCT-2M. The natural images of DRCT-2M come from CoCo and can be obtained from https
//cocodataset.org/#download, Al-generated images of DRCT-2M can be obtained from
https://modelscope.cn/datasets/BokingChen/DRCT-2M/files, which are pro-
vided by (Chen et al.,|2024)). The generative model includes LDM, SDv1.4, SDv1.5, SDv2, SDXL,
SDXL-Refiner, SD-Turbo, SDXL-Turbo, LCM-SDv1.5, LCM-SDXL, SDv1-Ctrl, SDv2-Ctrl, SDXL-
Ctrl, SDv1-DR, SDv2-DR, SDXL-DR.
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