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ABSTRACT

Transformations based on domain expertise (expert transformations), such as
random-resized-crop and color-jitter, have proven critical to the success of con-
trastive learning techniques such as SimCLR. Recently, several attempts have been
made to replace such domain-specific, human-designed transformations with gen-
erated views that are learned. However for imagery data, so far none of these view
generation methods has been able to outperform expert transformations. In this
work, we tackle a different question: instead of replacing expert transformations
with generated views, can we constructively assimilate generated views with expert
transformations? We answer this question in the affirmative. To do so, we first
propose an information-theoretic framework for designing view generation based
on the analysis of Tian et al. (2020b) on what makes a “good” view in contrastive
learning. Then, we present two simple yet effective assimilation methods that
together with our view generation mechanisms improve the state-of-the-art by up
to ≈ 3.5% on four different datasets. Importantly, we conduct a detailed empirical
study that systematically analyzes a range of view generation and assimilation meth-
ods and provides a holistic picture of the efficacy of learned views in contrastive
representation learning.

1 INTRODUCTION

Contrastive learning (CL) has become a powerful tool for self-supervised representation learning.
Most contrastive methods are trained using instance discrimination: pulling positive views (generated
from the same image) close in the learned representation space, while pushing negative views
(generated from other images) away (Dosovitskiy et al., 2014; Wu et al., 2018; Chen et al., 2020b;c;
He et al., 2020; Chen et al., 2020d; Caron et al., 2020; Grill et al., 2020; Chen & He, 2021; Caron et al.,
2021; Kotar et al., 2021; Tejankar et al., 2021; Wang et al., 2021; Zbontar et al., 2021). Intuitively, the
quality of representations learned by CL is highly dependent on the mechanisms used to generate these
views, which are commonly compositions of a set of handcrafted transformations designed by human
experts. The choice of transformations and the specific design of their composition relies on domain
expertise built by years of CL research - which has mostly focused on general imagery, commonly
captured with consumer cameras or collected from the web. However, this domain expertise may not
necessarily hold for new unseen visual domains that could be encountered by CL practitioners. As
such, many recent works (Tamkin et al., 2020; Jahanian et al., 2021; Shi et al., 2022) have attempted
to remedy this issue by proposing learning-based approaches to view generation. However, none
of these methods have been successful in completely replacing the expert transformations while
matching the performance. Therefore, a natural question arises: How do we systematically learn
to generate “meaningful” views and, more importantly, assimilate them alongside expert views to
improve CL performance?

Recently, Tian et al. (2020a;b) proposed an information theoretic definition of optimal positive
views in CL. They show that there exist a sweet spot at which the mutual information gap between
the two views captures the optimal amount of task-relevant information, with all else discarded.
In this work, we build upon their definition to introduce an information theoretic view generation
framework. To this end, we extend the results of Zimmermann et al. (2021), who showed that
contrastive learning inverts the true data generating process. We present two new results that allow us
to efficiently estimate the mutual information gap between views. These new findings allow us to
propose two practical view generation methods that create information-theoretically “meaningful”
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Figure 1: Illustrative visualization of the view generation strategies. The convex shaped surface
represents the expert view manifold, and the plane on the left and right represent the input pixel space
and the image manifold learned by a GAN, respectively. The hypersphere in the middle represents
the learned representation space of a CL method. W-search searches in the CL model’s latent space
(W-space) using the loss in Eq 3 and then projects it back to the image manifold of the GAN to
generate the view. W-perturb directly perturbs the GAN’s latent space (W-space) with Gaussian
noise and then pushes it through to the GAN’s image manifold. ViewMaker (Tamkin et al., 2020)
performs adversarial training and constrains the generated view in an lp ball around the anchor in
pixel space. Expert transform generates views by applying a set of transformations commonly used
in CL model training. Note that only W-search explicitly controls the distance from anchor in W
space.

views by using pretrained generative models. Given this formal view generation framework and
two practical generation strategies, we introduce two view assimilation methods to leverage the
generated views along with expert views to improve performance and provide extensive empirical
analysis to benchmark their performance. To the best of our knowledge, we are the first to show
that GAN-generated views, when assimilated properly, can lead to consistent improvements in CL
performance on four standard evaluation benchmarks.

To summarize, our main contributions are the following: (1) we propose an information-theoretic
framework for view generation in CL that readily encompasses previously proposed view genera-
tion methods; (2) we instantiate two new practical methods under this framework that leverage a
pretrained generative model to generate meaningful positive views; (3) we introduce a new loss that
effectively assimilates the generated views into the existing InfoNCE loss; (4) with an extensive set
of experiments, we show 0.9%, 2.4%, 3.5%, and 2.5% improvements above a popular CL baseline
on the CIFAR10, CIFAR100, TinyImageNet, and ImageNet datasets respectively, and demonstrate
significantly faster convergence; (5) we provide thorough ablation studies and empirical analysis of
other view generation alternatives for CL (see Fig. 1 for a high-level summary).

2 BACKGROUND AND RELATED WORK

SimCLR (Chen et al., 2020b;c) is one of the first and most established CL baselines. Let x ∈ X
denote an image in a mini-batch B = {xi}Ni=1. Further, let f : X 7→ W be a representation encoder,
parameterized as a deep neural network. Here X ⊆ RD,W ⊆ RK such that K < D. Following the
notations from Khosla et al. (2020), we use i ∈ I ≡ {1, . . . , 2N} to denote the index of an arbitrary
batch (augmented using expert transformations as explained below), where j(i) is the index of the
other augmented sample originating from the same data sample. A(i) := I\{i} is the complement
of i. The contrastive loss function for SimCLR is the InfoNCE loss, which is

Lsimclr = −
∑
i∈I

log
exp(zi · zj(i)/τ)∑

a∈A(i) exp(zi · za/τ)
(1)

where, z = f(x) and τ is the temperature parameter.

Views In contrastive learning, a stochastic data augmentation module applies two different sets
of transformations to generate two correlated views of the same data point, xi and xj(i). The two
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sets of transformations, t1 and t2, are sampled from the same family of transformations T , such
as cropping and resizing, horizontal flipping, color distortion, etc. The images xi and xj(i) are the
positive views, whereas all other views generated from other samples are the negative views. As
studied by many recent works (Ye et al., 2019; Misra & van der Maaten, 2020; Tian et al., 2020a), T
defines the invariances that the model learns. Therefore, human domain knowledge and extensive
years of research have been invested to search for the optimal composition of augmentations and their
corresponding parameters to optimize CL methods for a given data. We refer to the optimal set of
transformations in SimCLR as expert transformations and views created by them as expert views.

View Generation Previous works have explored the idea of generating views for SSL. ADIOS (Shi
et al., 2022) and Viewmaker (Tamkin et al., 2020) both study adversarial methods. ADIOS learns
a masking function and an image encoder performing a min-max optimization on the same objec-
tive function in the masked image model framework. Alternatively, Viewmaker learns a bounded
perturbation directly in the pixel space by employing the min-max adversarial training. Relatedly,
Jahanian et al. (2021) leverages a pre-trained GAN model to generate the data samples and to replace
the entire training dataset like ImageNet Deng et al. (2009) with a generated one.

View Assimilation Previous works like CMC Tian et al. (2020a) and DINO Caron et al. (2021)
study the case of having more than two views in contrastive learning. Both works treat this as a
special case in which an arbitrary batch of views has been expanded and demonstrate gains from
including additional views. However, empirically we observed that simply augmenting SimCLR with
an additional set of positive views degrades its performance. Instead, we explore and propose new
methods that can effectively integrate additional views and boost performance.

3 VIEW GENERATION

Tian et al. (2020a;b) introduced an information theoretic definition of what makes for a “good”
positive view in contrastive learning. Letting I(·; ·) be the mutual information (MI), they state the
following proposition:
Proposition 3.1. Suppose f is a minimal sufficient encoder. Given a downstream task T with
label y, the optimal views from the data x are (x∗

i , x
∗
j(i)) = argminxi,xj(i)

I(xi;xj(i)), subject
to I(zi; y) = I(zj(i); y) = I(x; y). Given x∗

i , x
∗
j(i), the representations z∗i (or z∗j(i)) learned by

contrastive learning is optimal for T , thanks to the minimality and sufficiency of f .

In other words, there exists an optimal level of mutual information gap between the positive views
such that only the task-relevant information is preserved with all others discarded during training,
i.e. I(zi; zj(i)) = I(xi; yi). In this section, we will use this definition of optimal views to prescribe
a view generation mechanism. A successful generation mechanism requires solving the following
two challenges: (1) estimating mutual information in a high-dimensional observation space; and (2)
evaluating the amount of task-relevant information contained in the views without access to labeled
data from the downstream task in SSL.

Estimating mutual information To leverage Proposition 3.1, one needs to be able to estimate
I(zi; zj(i)) and potentially I(xi; yi). However, owing to the high-dimensionality of these spaces, it
is not possible to estimate these quantities accurately. Thus to resolve this, we present a new result
based on the recent result of Zimmermann et al. (2021) that states the following proposition:
Proposition 3.2. (from Zimmermann et al. (2021)) Let W be a unit hypersphere SK−1, τ > 0

and consider the ground-truth conditional distribution of the form p(w̃|w) = C−1
p eκw̃

⊤w. Let
h = f ◦ g, where g : W 7→ X is a generator, map onto a hypersphere with radius

√
τκ. Consider

the conditional distribution qh parameterized by the model, qh(w̃|w) = Ch(w)
−1eh(w̃)⊤h(w)/τ

with Ch(w) :=
∫
eh(w̃)⊤h(w)/τdw̃, where the hypothesis class for h (and thus f ) is assumed to be

sufficiently flexible such that p(w̃|w) and qh(w̃|w) can match. If h⋆ is a minimizer of the cross-entropy
Ep(w̃|w)[− log qh(w̃|w)], then qh⋆(w̃|w) = p(w̃|w) and ∀w, w̃ : τκw⊤w̃ = h⋆(w)⊤h⋆(w̃).

Simply put, Proposition 3.2 implies that contrastive learning, given a sufficiently flexible f , inverts
the true (unknown) data generating process g. We now state our following proposition for efficiently
estimating the mutual information (MI):
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Proposition 3.3. Let W = SK−1, p(z) = |W|−1, and conditional p(z̃|z) is a von Mises-Fisher
(vMF) distribution:

p(z̃|z) = C−1
p ez̃

⊤z/τ , with Cp :=

∫
ez̃

⊤z/τdz̃. (2)

Then the mutual information I(Z̃;Z) = 1
τ Ez,z̃

[
z⊤z̃

]
+ const.

The proof is in Appendix C. Proposition 3.3 states that we can directly use the distances in the CL
latent space to estimate the mutual information between views up to a scaling and shift operation.
Since the latent space in CL is normalized to a unit hypersphere, the inner-products are equivalent
to the L2 (Euclidean) distances. In Table 1 and Figure 2, we empirically demonstrate the strong
correlation between the MI between views and their Euclidean distances in the latent space, by
comparing against the MI estimates from MINE (Belghazi et al., 2018), which are theoretically a
lower bound to the true MI. In Table 1, the MI estimates from MINE and the L2 distances between
views are given by the first and second columns, respectively. The strong correlation between the
two MI measures in this table and the corresponding illustrative Figure 2 empirically confirms our
Proposition 3.3.

Lack of access to labeled data To tackle the problem of solving for the optimal amount of task-
relevant information without access to the task T , since the latent space is normalized, we can
indeed conduct a grid search to find the optimal mutual information gap. However, through extensive
empirical studies, previous works have proven that expert transformations create a reasonably
sufficient amount of MI gap. Leveraging on this insight, as well as the correlation between MI and
the Euclidean distances between view representations derived in Proposition 3.3, a good heuristic we
adopt is to use the expectation of the euclidean distances between the anchor and the expert views.

Table 1: Estimated mutual information (using the MINE Belghazi et al.
(2018)) and the average L2 distances of CL encoder latents between the
anchor (original), positive expert view (expert) and generated views.

I(f(X); f(X̃)) E[f(x)⊤f(x̃)]
View Pairs CIFAR10 CIFAR100 CIFAR10 CIFAR100
Original, Expert 4.14 5.41 0.973 0.986
Original, W-search 4.13 4.40 0.907 0.867
W-search, Expert 3.78 4.35 0.888 0.859
Original, W-perturb 3.79 3.91 0.849 0.796
W-perturb, Expert 3.66 3.86 0.832 0.789
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Table 2: Inner-Products
v.s. Mutual Information
estimates from MINE.

View generation framework We can now cast view generation as a problem of searching for the
w⋆ that minimizes the following loss function. Assuming we are generating n views simultaneously,

{w⋆
k}nk=1 = argmin

{wk}

 1

n

∑
k

δ (ϵ1, ∥f ◦ g(wk)− f(x0)∥2)︸ ︷︷ ︸
boundary constraint

+λ(ϵ2 − d̄n)
+︸ ︷︷ ︸

uniformity

 , (3)

where δ(a, b) is the L2 loss, i.e. δ(a, b) = (a − b)2, d̄n is the average Euclidean distances among
generated views, i.e. d̄n = 1

n(n−1)

∑
j ̸=k ∥f ◦ g(wj) − f ◦ g(wk)∥2, and (·)+ := max(0, ·) is a

ReLU function. The first term is a boundary constraint which enforces the generated views to be ϵ1
away from the anchor in the representation space. The second term is a uniformity regularization
that forces the generated views to be spread out (at least ϵ2 away on average) and therefore diverse.
A hinge loss is utilized in this regularization term since we do not need to precisely control the
pairwise distances among the views. Both ϵ1 and ϵ2 are hyperparameters. Note that Eq. (3) is an
exact realization of Proposition 3.3, but assumes prior access to the true data generating process g. In
practice, we need to approximate g by a generative model of the true data generation process. This
leads to our first view generation method that we describe next.
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3.1 W -SEARCH: PERTURBATION IN CL ENCODER’S LATENT SPACE

We propose W-search as a straightforward implementation of Eq. (3) using a pretrained generator g.
Under the assumption that we can learn a generative model g and encoder e to approximate the true
data generating process (i.e., the joint distribution of (x,w) matches, pg,e = px,w)*, Proposition 3.3
can be strictly realized.

Practical implementation In practice, we further relax this assumption by using a standard GAN
generator without jointly training an inverter. But, we utilize GAN inversion to initialize w for the
optimization. In our experiments, we use a pretrained StyleGAN (Karras et al., 2019; 2020b) as g
and In-domain GAN Inversion (Zhu et al., 2020) as e.

Finally, we define W-search as a transformation W-search(x) := g(w⋆) where w⋆ is the minimizer
of the loss defined in Eq. (3). W-search is illustrated in Fig. 1. Intuitively, it is designed to generate
additional positive views whose distribution of distances from the anchor image x in the CL encoder
f latent space is similar to that of the expert views. Examples of generated views are given in Fig. 3.
Note that W-search differs significantly from ViewMaker (Tamkin et al., 2020) in that W-search
is not formulated as an adversarial game against the same InfoNCE objective that the contrastive
encoder learns to minimize.

Scalability of W-search While effective, online W-search is computationally expensive because
the optimization involving both the contrastive encoder and the generative model needs to be per-
formed for every image in the mini-batch. Therefore, this online view generation using W-search
does not scale as well to large-scale datasets. This scalability problem can be solved by performing
view generation offline. By leveraging a pretrained f , we can cache the generated views before the
actual CL training. In the following experiments, we focus on this offline setting via caching, and
provide an empirical study of approximated online version in Appendix E.

3.2 W -PERTURB: PERTURBATION IN GM’S LATENT SPACE

Another solution to the scalability issue of the online W-search is to generate views via perturbations
in the latent space W of the generator, instead of the latent space of the contrastive encoder Z .
Thereby, we remove the computationally expensive step of finding views through optimization.
In fact, when assumptions in Zimmermann et al. (2021) are realized and the latent spaces of the
generator and CL encoder are well-aligned, the mapping h = f ◦ g : W 7→ Z becomes linear and the
two latent spaces are coupled by a rotation matrix. Given that MI is invariant under rotation, from
Proposition 3.3 we can in turn relate the mutual information between views to the inner-products
between w’s.
Corollary 3.3.1. Assuming the ground-truth data generating process is g. When Theorem 2 from Zim-
mermann et al. (2021) holds, f recovers the latent sources W up to an orthogonal linear trans-
formation and a constant scaling factor. Let W = SK−1, p(w) = |W|−1, and p(w̃|w) is a vMF
distribution, p(w̃|w) = C−1

p exp(κw̃⊤w). Let h := f ◦ g, then with the optimal h⋆ that solves
limN→∞ Lsimclr 1, the mutual information I(Z; Z̃) = I(h⋆(W );h⋆(W̃ )) = κEw,w̃

[
w⊤w̃

]
+ const.

This corollary allows us to propose an alternative view generation method, W-perturb, that creates
positive views by directly perturbing in the latent space W of the pretrained generator g. Under
this method, additional positive views for a given anchor x are generated as: x̃ = W-perturb(x) :=
g(e(x) + wp), where wp ∼ N (0, σI)† and e(x) is the projection of the anchor image in the latent
space of g. This is a generalization of the latent transforms Tz introduced in Jahanian et al. (2021).
The latent transform is not directly applicable to real image domain since the corresponding latents
are unknown. Thus, we project real images in GAN’s latent space via its inverter e.

When all assumptions are realized, W-perturb is exactly equivalent to W-search. However, if in
practice W and Z are misaligned, W-perturb’ed views will not be equally distant from the anchor in

*For example, training a bidirectional GAN (Donahue et al., 2016; Srivastava et al., 2017) minimizes the
Jensen-Shannon divergence, JS(px,w||pg⋆,e⋆) = 0

†In practice, W and Z do not need to have the same dimension. Assuming w ∈ RK′
, we can project wp on

to a hypersphere with radius r = σ
√
K′. Please see Tab. 16 for a comparison.
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Figure 2: Visualization of GAN and SimCLR latent spaces in CIFAR100. (a) L2 norms between
anchors and generated views. We can see W-search induces a much tighter distribution around
the target ϵ1 value. (b) 2-D t-SNE plots of W-search and W-perturb. For the GAN’s latent space,
t-SNE’s perplexity is 40. For SimCLR’s latent space, t-SNE’s perplexity is 20. The hyperparameters
for view generation are the following: ϵ1 = 0.2, ϵ2 = 0.35, and σ = 0.2.

W . By design, W-search explicitly controls the distances in Z . Additionally, the analysis in Fig. 2
illustrates the empirically observed misalignment between W and Z . We observe that W-perturb
results in a one-sided heavy-tail distribution in the SimCLR model latent space, whereas W-search
leads to view representations that are more concentrated on a ring around the anchor. The fact that
the two view generation methods are not precisely aligned suggest that, in practice, since we do not
have the true data generating process and only approximate it, the two latent spaces of W and Z may
not be perfectly aligned.

4 VIEW ASSIMILATION

In the case of SimCLR, prior works (Tamkin et al., 2020) have explored replacing expert views entirely
with generated views. However, a complete replacement leads to a degradation in performance.
Taking the MI maximization perspective of the InfoNCE loss (Wu et al., 2020; Tian et al., 2020b;
Van den Oord et al., 2018; Poole et al., 2019) in SimCLR, a possible explanation for the degradation
in performance can be attributed to the differences in the MI between the anchor and expert views
and the MI between the anchor and generated views. While it is difficult to accurately compute MI in
the high-dimensional X space, in Table 1, we provide estimates for preliminary analysis. We find
that while the original and expert views share roughly the same amount of mutual information as
the original and generated views, the shared information seem to be different given that there is a
similar gap in information between the expert and the generated views. This finding indicates that
the generated views are likely to contain meaningfully complementary information to the expert
views and hence could lead to additional useful features (for the downstream task). Altogether, these
observations motivate us to assimilate generated views into contrastive learning, instead of entirely
replacing the expert views, to improve downstream accuracy. To this end, we propose two methods
for assimilating generated views into CL training.

Replacement (A1) Our first assimilation method replaces only one of the two expert views with a
generated view. On the generated view, we apply a weak amount of random-resized-crop and flipping.

Multiview (A2) Our second assimilation method simply casts the problem as multiview contrastive
learning, where there are more than two positive views. We append the additional positive views,
xk(i), and define {k(i)} as the batch indices of the appended view(s) generated from a anchor image
with the index i. This, however, requires an adjustment in the training loss. To this end, we propose
the following multiview loss:

Lmultiview = LCL − Lalign, where LCL = LInfoNCE and Lalign =
∑
i∈I

α

|k(i)|
∑

p∈k(i)

z⊤i zp/τ

(4)
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Our loss function appends an α-weighted sum of dot products of the projected (to the CL embedding
space) anchor view i and its respective generated views k(i) to the base CL loss LCL. Lalign is a
general plug-in term that can be used in conjunction with other existing contrastive losses. However,
we empirically found it to work best with InfoNCE (Van den Oord et al., 2018) and adopt it as our
LCL unless otherwise specified. Please refer to Appendix F for results where we use the loss from
SimSiam (Chen & He, 2021). We also experimented with the multiview loss from SupCon (Khosla
et al., 2020), but found it to perform more poorly than our proposed loss.

5 EMPIRICAL STUDY

In this section, we conduct a comprehensive empirical study of view generation and assimilation
methods for CL and provide a thorough benchmark of performances. For this purpose, we use the
highly optimized SimCLR implementation from Dangovski et al. (2021) for all examined methods and
benchmark them on their downstream classification accuracy on four datasets: CIFAR10, CIFAR100,
TinyImageNet and ImageNet. We report the linear probing accuracy as the main evaluation metric.
Additional experimental details and hyperparameters are provided in Appendix A. We experiment
primarily with SimCLR because alignment and uniformity have only been formally studied for the
InfoNCE loss family (Zimmermann et al., 2021; Wang & Isola, 2020). However, our view generation
and assimilation methods also work with other SSL approaches like SimSiam (see Appendix F).

5.1 VIEW GENERATION AND ASSIMILATION

We start with our main results, ablating all possible combinations of four different view generation
methods and two view assimilation methods. For the view generation methods, we use our proposed
W-search and W-perturb methods along with Viewmaker (Tamkin et al., 2020) and the expert
transformations from SimCLR (Chen et al., 2020a). For assimilation of generated views, we consider
replacement of one expert view (A1) and multiview (A2) as described in Sec. 4. For evaluation,
we report the top-1 linear probe accuracy (denoted as Acc@1) and k-Nearest-Neighbor accuracy
(k = 5, denoted as 5-NN). To obtain linear probe accuracy, we freeze the backbone of f and train a
linear layer with SGD for 100 epochs. To determine the value of ϵ’s for W-search, we first pretrain a
SimCLR encoder using expert views and compute the ϵ as the average distance (in W-space) between
anchors and their expertly transformed views. For W-perturb, we conduct a grid search on the σ.
Further details on these hyperparameters are in Appendix G.

As shown in Tab. 3, both W-search and W-perturb outperform all other view generation methods on
CIFAR10, CIFAR100, and TinyImageNet. When we replace one of the views with our proposed view
generation strategies, except in CIFAR10, we see consistent improvements and W-search proves to
be a more effective generation method. Especially for TinyImageNet, we see an improvement of
∼ 4%. When we augment the generated views for multiview contrastive learning, in contrary to the
intuition that more expert views should improve performance, assimilating a third expert view in fact
degrades performance in most cases. On the other hand, the views we generate with W-search and
W-perturb consistently lead to improvements of 0.9%, 2.3%, and 3.6% on CIFAR10, CIFAR100
and TinyImageNet respectively. Overall, the fact that our generated views, when replacing one view
or being assimilated, almost always leads to an improvement suggests that our information-theoretic
framework for view generation allows for generating views that capture some different information
from the expert transformations for the downstream task.

We also evaluate against the standard large-scale dataset ImageNet. Following the more difficult
setting in Jahanian et al. (2021), we generate 1.3 million “fake” images using BigBiGAN (Donahue
& Simonyan, 2019) (approximately the number of images in ImageNet) from the GAN and only
train on this generated dataset. However, we follow the standard protocol of reporting the linear
probe accuracy on the real ImageNet dataset. As evident in Table 4, adding our generated view as an
additional positive view improves performance by ∼ 1.5% and proves to capture some meaningful
information that expert transformations do not.

5.2 REPLACING EXPERT TRANSFORMATION

We now present a comprehensive study on the impact view generation methods, assimilation methods,
and different losses have on the complete replacement of the expert views in SimCLR. We define
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Table 3: Linear probe accuracy for the four view generation methods (W-search, W-perturb,
Viewmaker, expert transformation) under A1 and A2 view assimilation methods. We also report the
baseline SimCLR (reproduced) and Viewmaker (reproduced) accuracies in rows 1 and 5.

View 1 View 2 View 3 Loss CIFAR10 CIFAR100 TinyImageNet
expert expert ✗ SimCLR 92.04 70.41 47.48
expert W-search ✗ A1 91.86 71.69 51.08
expert W-perturb ✗ A1 91.09 70.83 50.18
expert ViewMaker ✗ A1 82.91 41.87 26.40
ViewMaker ViewMaker ✗ SimCLR 83.59 44.04 40.53
expert expert expert A2 91.46 70.76 47.19
expert expert W-search A2 92.90 72.76 51.05
expert expert W-perturb A2 92.38 72.95 50.73
expert expert ViewMaker A2 80.07 36.51 25.30

Table 4: ImageNet experiments. Linear probe accuracies are reported.

View 1 View 2 View 3 Loss Acc@1
expert expert ✗ SimCLR 49.93
expert W-perturb ✗ A1 48.81
expert expert W-perturb A2 51.42

the basic transform as random-resized-crop with the same hyperparameters as in expert transforms
(for CIFAR100, area range 0.2-1, aspect ratio range 3/4-4/3). Cropping crop, crop, crop are defined
with aspect ratio range 0.9-1.1, and area range of 0.5-1, 0.7-1, 0.9-1, respectively. Horizontal flipping
is always added. We conclude from Table 5 that, while replacing both expert views with generated

Table 5: Ablation on different configurations on complete replacement of expert views in the
CIFAR100 dataset.

(a)

View 1 View 2 Acc@1 5-NN
W-search W-search 57.65 50.61
W-search+crop W-search+crop 62.93 54.38
W-search+crop W-search+crop 66.47 58.72
W-search+crop W-search+crop 66.64 59.44
W-search+basic W-search+basic 65.91 58.38
W-perturb+crop W-perturb+crop 55.87 44.74

(b)

View 1 View 2 View 3 Loss Acc@1 5-NN
basic basic ✗ SimCLR 47.61 35.86
basic W-search ✗ SimCLR 69.19 62.36
basic basic W-search A2 69.55 63.65
W-search W-search basic A2 67.65 60.84
basic W-search W-search A2 69.05 62.33

views under-performs, W-search+basic, using our A2 loss gets very close to the baseline accuracy
(panel (b) row 3, 69.55%). We found that W-search is substantially better than W-search when
replacing both of the expert views, as shown in Table 5(a). However, applying a small amount of
random-resized-cropping is not only necessary to prevent overfitting (as the model can eventually
(after 600 epochs) memorizes the cached images) but also improves performance, as shown.

5.3 ABLATION STUDIES

Training loss The overall performance of generated-view assimilation also depends heavily on the
training loss. To demonstrate that we conduct an ablation of training losses, as reported in Tab. 11.
We found A2 with α = 0.5 to be clearly better on both CIFAR10 and CIFAR100 and as such it is not
order-agnostic. From Figure 4, we can see that our models that use our proposed view generation and
assimilation strategies exhibit faster convergence than the baseline SimCLR model.

Caching v.s. on-the-fly and number of views For all the experiments, we create a cached set of 8
generated views per anchor and randomly sample only 1 per anchor for each training iteration. In this
section, we answer two important questions: (1) What is the impact of caching n = 8 views instead
of generating them on-the-fly? (2) How does changing the number of positive views during training
influence performance?

8
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Original Cached 8 𝒲-search views

Figure 3: Visual samples of
W-search for CIFAR10 dataset.
For each row, we show 8
cached views (ϵ1 = 0.3).

5-NN on CIFAR10 5-NN on CIFAR100

Figure 4: 5-NN accuracy curves during training. Models are trained
with W-search as the view generation and multiview (A2) as the loss.
It is clear that the convergence speed of our models is much faster
than that of the baseline SimCLR.

We investigate the first question of caching vs. on-the-fly view generation with W-perturb and expert
transformations in Table 6. As explained above, for W-search, because the gradients from the Eq. (3)
loss need to be propagated through both f and g, on-the-fly generation could be computationally
expensive. Expectedly, on-the-fly view generation leads to slight improvements over the cached
version. However, interestingly, the improvement from generating views on-the-fly is significantly
smaller in the case where we leverage a generative model to sample the views than in the case where
we use expert transformations. Although the same study could not be conducted for W-search due to
compute budget constraints, we conjecture that only a marginal improvement may come from using
an on-the-fly generation method for W-search.

To study the impact of the number of positive views during training, we conduct an ablation study
with different numbers of cached views and number of views sampled during training in Table 7
with W-search and A2. Contrary to the intuition that the more numbers of views we include during
training the better the performance should be, we see that it is optimal to use only 1 view out of the n
cached views at a time.

Table 6: Ablation on caching. Experiments are
conducted on the CIFAR10 dataset. Note that the
on-the-fly 3-view SimCLR baseline is equivalent
to the Expert + A2 setting.

Setting On-the-Fly? Acc@1 5-NN

W-perturb + A2 ✗ 92.38 90.53
✓ 92.64 90.76

Expert + A2 ✗ 91.46 90.43
✓ 92.19 90.98

3-View SimCLR ✓ 91.84 90.70

Table 7: Ablation on number of cached views
and number of sampled views during training.
Experiments are conducted on CIFAR10.

# Cache # View Acc@1 5-NN
16 1 92.65 90.86
8 8 92.40 91.11
8 4 92.07 91.03
8 1 92.90 90.95
4 4 92.42 91.05
4 1 92.23 90.40
2 2 92.35 90.85
2 1 92.59 91.06
1 1 92.25 90.98

6 CONCLUSION

In this work, we introduced new findings based on recent work and an information theoretic framework
for view generation. Under this framework, we proposed and presented a comprehensive study on
view generation and assimilation techniques in CL. We showed that when used in conjunction with
the expert views using our assimilated methods, views generated via a GAN consistently improve
downstream classification performance on four different datasets.

9
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7 REPRODUCIBILITY STATEMENT

To ensure that our reported results are reproducible, we provide an anonymized source code. In the
Appendix, we provide details on the dataset, evaluation protocol, training configurations, hyperparam-
eters, and hardware configurations. Moreover, for all findings that we derive further from previous
work, we showcase the proofs for the propositions in the Appendix C. We conduct thorough and
systematic ablation studies of our and previous works’ methods of view generation and assimilation
and present the results in both the main text and the Appendix.
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A EXPERIMENTAL SETUP AND DETAILS

Datasets. Experiments are conducted on four datasets:

• CIFAR10 (Krizhevsky et al., 2009) has 10 classes, 50,000 images for training and 10,000
for testing.

• CIFAR100 (Krizhevsky et al., 2009) has 100 classes, 50,000 images for training and 10,000
for testing.

• TinyImageNet is introduced in Le & Yang (2015). The dataset contains 200 classes, 100,000
images for training and 10,000 for testing. Images are resized to 64× 64.

• ImageNet (Deng et al., 2009) contains approximately 1.3 million images. We following the
setting in Jahanian et al. (2021) and generate 1.3 million “fake” images using a pretrained
BigBiGAN (Donahue & Simonyan, 2019) at resolution 128× 128.

Implementation. We implement our methods based on the E-SSL Dangovski et al. (2021) codebase‡

(for CIFAR10 experiments) and the SupCon Khosla et al. (2020) codebase§ (for CIFAR100 and
TinyImageNet). Code is provided in the Supplementary zip file. Hyperparameters for each dataset
are listed in Table 9¶.

TinyImageNet. For the TinyImageNet dataset, we initially tried to develop upon the codebase||

provided in Ermolov et al. (2021) and reproduced the SimCLR baseline results reported in their paper
(see Table 8, note that W-search+A2 still improves the SimCLR baseline by a large margin). However,
Ermolov et al. (2021) uses a different optimizer (Adam instead of SGD as for other datasets) and a
different implementation of the SimCLR loss function. Thus, for a fair comparison, we reimplement
the experiments on TinyImageNet using the SupCon Khosla et al. (2020) codebase.

Viewmaker. For Viewmaker Tamkin et al. (2020), we reproduced the reported accuracy on CIFAR10.
For CIFAR100 and TinyImageNet, since the original authors did not evaluate their model against
these datasets, we tried our best to optimize the hyperparameters, such as optimizer, learning rate,
temperature, architecture of encoder (ResNet18 small, ResNet18, ResNet50), and projection head.
We describe the best set of hyperparameters in Table 10.

Evaluation. As for evaluation metrics, we adopt the conventions in the respective codebases. For
CIFAR10, we run linear probe evaluations (for 100 epochs) with 5 random seeds and report the
mean and standard deviation of accuracies. For CIFAR100 and TinyImageNet, we run linear probe
evaluations for 100 epochs and report the best accuracy. For both settings, we load and freeze the last
checkpoint of the backbone network.

Table 8: Linear probe (top-1 and top-5) and 5-NN accuracies on TinyImageNet, using an alternative
implementation.

Acc@1 Acc@5 5-NN
SimCLR 48.50 74.51 32.83
W-search+A2 (ours) 51.30 77.17 36.90

Computational cost for view generation. The computation time depends on the hyperparameters
(the number of optimization steps for W-search), e.g., caching 8 views per sample for CIFAR10
takes 12.19 A100 GPU hours.

Computational cost for pretraining. Each experiment is run on 4 NVIDIA V100 GPUs. The
pretraining time of SimCLR baseline for CIFAR10, CIFAR100, and TinyImagenet are 11.5, 13.6,
and 29.7 hours, respectively.

‡https://github.com/rdangovs/essl/tree/main/cifar10
§https://github.com/HobbitLong/SupContrast
¶For CIFAR10, we found that batch size of 128 gives similar or slightly better results than the default 512.
||https://github.com/htdt/self-supervised
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Table 9: Hyperparameters for experiments.

CIFAR10 CIFAR100 TinyImageNet
Optimizer SGD SGD SGD
Learning Rate 0.015 0.5 0.5
Weight Decay 5e-5 1e-4 1e-4
Momentum 0.9 0.9 0.9
Cosine Decay ✓ ✓ ✓
Batch Size 128 512 512
SimCLR Loss InfoNCE Eq. 12 SimCLR SimCLR
Temperature 0.5 0.5 0.5
Epochs 800 1200 1000
Backbone ResNet18 ResNet50 ResNet18
Embedding Dim 512 2048 512
Projection Dim 2048 128 128

Table 10: Hyperparameters for our reproduced Viewmaker Tamkin et al. (2020) experiments.

CIFAR10 CIFAR100 TinyImageNet
Optimizer SGD (for encoder), Adam (for Viewmaker module)
Learning Rate 0.015 0.06 0.06
Weight Decay 1e-4 1e-4 1e-4
Momentum 0.9 0.9 0.9
Cosine Decay ✗ ✗ ✗
Batch Size 128 512 128
SimCLR Loss Viewmaker Viewmaker Viewmaker
Temperature 0.07 0.1 0.5
α for A2 loss 0.14 0.1 0.5
Epochs 200 800 800
Backbone ResNet18 (small) ResNet50 ResNet18
Noise Dim 100 100 100
Embedding Dim 512 2048 512
Projection Dim 128 128 128

B DETAILS OF STYLEGAN AND IN-DOMAIN GAN INVERSION

StyleGAN We use StyleGAN2** for our experiments on CIFAR and TinyImageNet. The StyleGAN
generator consists of two key components: (1) a mapping function g1 : S 7→ W that maps the
Gaussian-distributed latent code s ∈ S into a collection of style codes w ∈ W , and (2) a generator
g : W 7→ X that decodes w ∈ W to an image. Here, w is a concatenation of w1, ..., wk, where each
wi corresponds to the style code from the ith convolutional block of g.

In-Domain GAN Inversion Let e : X 7→ W denote an inverter neural network. Let d : X 7→ R
denote the discriminator network. In-domain GAN inversion Zhu et al. (2020) aims to learn a mapping
from images to latent space. The encoder is trained to reconstruct real images (thus are “in-domain”)
and guided by image-level loss terms, i.e., pixel MSE, VGG perceptual loss, and discriminator loss:

Lidinv(e, d, g) =Ex∼PX

[
∥x− g ◦ e(x)∥2 + λvgg∥h(x)− h ◦ g ◦ e(x)∥2 − λadva(−d̃ ◦ g ◦ e(x))

]
,

(5)

where h is perception network and here we keep the same as in-domain inversion as VGG network,
A is the activation function and d̃ is the logit or discriminator’s output before activation. Note that
choosing a(t) = softplus(t) = log (1 + exp (t)) recovers the original GAN formulation Goodfellow
et al. (2014a); Karras et al. (2019), and the resulting objective minimizes the Jensen-Shannon
divergence between real and generated data distributions. After encoder training, we optimize the

**https://github.com/rosinality/stylegan2-pytorch
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Figure 5: Visual illustration of the three contrastive loss functions: A2-SimCLR, A2-InfoNCE, and
A2-full for a mini-batch size of N images (visualizing N = 3). For their math formulations, please
refer to Eq. (15), the Supplementary, and Eq. (13), respectively. Each small square represents the
inner-product between corresponding features. The contrastive loss for each instance i is defined on
the corresponding row of inner-products.

associated latent variable w for each image x with the same loss function using w = e(x) as a warm
start. Note that in the main text we reload the notation e(·) as the final results after w-optimization,
which are precomputed and cached.

C PROOF OF THEOREM 3.3

Proposition C.1. Let W = SK−1, p(z) = |W|−1, and conditional p(z̃|z) is a von Mises-Fisher
(vMF) distribution:

p(z̃|z) = C−1
p ez̃

⊤z/τ , with Cp :=

∫
ez̃

⊤z/τdz̃. (6)

Then the mutual information I(Z̃;Z) = 1
τ Ez,z̃

[
z⊤z̃

]
+ const.

Proof.

I(z; z̃) = KL(p(z, z̃)||p(z)p(z̃)) (7)
= Ez∼p(z)KL(p(z̃|z)||p(z)) (8)

= Ez∼p(z)Ez̃∼p(z̃|z) log
p(z̃|z)
p(z)

(9)

= Ez∼p(z)Ez̃∼p(z̃|z)
1

τ
z⊤z̃ − logCp + log |Z| (10)

=
1

τ
Ez,z̃∼p(z̃,z)z

⊤z̃ + const (11)
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5-NN on CIFAR10

Figure 6: Online W-search. In legend, VG1 refers to W-search.

D DETAILS OF TRAINING LOSS

We provide an illustrative visualization of our A2 losses in Figure 5. The detailed formulation of loss
functions are as follows,

Linfonce = −
∑
i∈I1

log
exp(zi · zj(i)/τ)∑
a∈I2

exp(zi · za/τ)
−

∑
i∈I2

log
exp(zi · zj(i)/τ)∑
a∈I1

exp(zi · za/τ)
(12)

LA2-full = −
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
, where P (i) = {j(i)} ∪ {k(i)}

(13)

LA2-simclr = Lsimclr −
∑
i∈I

α

|k(i)|
∑

p∈k(i)

zi · zp/τ (14)

= −
∑
i∈I

log
exp(zi · zj(i)/τ + α

|k(i)|
∑

p∈k(i)(zi · zp)/τ)∑
a∈A(i) exp(zi · za/τ)

(15)

In Linfonce, I1 and I2 are the set of indices of two positive views. An ablation of A2 losses is provided
in Table 11. We observe that A2-InfoNCE performs the best for both datasets. We used A2-InfoNCE
as our A2 loss if not specified.

Table 11: Ablation on the loss functions with VG1 views on the CIFAR10 and CIFAR100 datasets.
A2-SimCLR is Lsimclr − Lalign and A2-InfoNCE is Linfonce − Lalign.

CIFAR10 CIFAR100

Loss Acc@1 5-NN Acc@1 5-NN
A2-full 92.57 91.57 71.82 66.06
A2-SimCLR (α = 0.5) 92.66 91.05 72.27 65.85
A2-InfoNCE (α = 0.5) 92.90 90.95 72.76 66.46
A2-InfoNCE (α = 1) 92.54 90.80 72.61 66.96

E ONLINE W -SEARCH

In the online Z-search setting, the optimization is performed involving the current SimCLR encoder
during training. We tried to perform 1-step optimization with fast sign gradient Goodfellow et al.
(2014b), but observed the results are worse than the SimCLR baseline. The 5-NN accuracies are
reported in Figure 6.
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Table 12: Linear-probing and 5-NN accuracies of SimSiam experiments on CIFAR10.

Acc@1 5-NN
SimSiam baseline 90.17 89.27
W-search-SimCLR + A2-SimSiam 90.96 89.81
W-search-SimSiam + A2-SimSiam 90.79 89.82
W-perturb + A2-SimSiam 90.28 89.99
SimCLR baseline 92.04 90.65
W-search-SimSiam + A2-InfoNCE 92.44 90.88

SimSiam CIFAR10

Figure 7: 5-NN accuracy curves of SimSiam experiments on CIFAR10. In legend, VG1 refers to
W-search and VG2 refers to W-perturb.

F SIMSIAM EXPERIMENTS

We conducted experiments of SimSiam Chen & He (2021) with generated views. The 5-NN accuracy
curves are reported in Fig. 7. The linear probe accuracy is reported in Table 12. The A2 loss needs to
be adjusted accordingly to avoid training collapse,

LA2-simsiam = Lsimsiam +
∑
i∈I

α

|k(i)|
∑

p∈k(i)

D(predictor(zp),stopgrad(zi)) (16)

where D is the cosine similarity and Lsimsiam is the SimSiam loss function.

G ABLATION ON HYPERPARAMETERS

In this section we provide ablations on hyperparameters ϵ1, ϵ2, and λ introduced in Eq. (3). In
addition, we perform grid search on σ introduced in Sec. 3.2.

Ablation on ϵ1 and ϵ2. We conduct ablation studies of ϵ1, ϵ2, and λ on CIFAR10. In Table 13, we
set ϵ2 = ϵ1 + 0.2 except for ϵ1 of values 0.1 and 0.2. We empirically find that it is difficult to reach
a large pairwise distance ϵ2 when ϵ1 is small, and a large ϵ2 leads to more optimization steps. By
design, a large ϵ2 encourages generating diverse samples. A rule of thumb is to set ϵ2 ≥ ϵ1.

Table 13: Ablation on ϵ1 and
ϵ2, λ = 0.01. Experiments are
conducted on CIFAR10.

ϵ1 ϵ2 Acc@1
0.1 0.15 92.584 ± 0.023
0.2 0.35 92.615 ± 0.048
0.3 0.50 92.898 ± 0.045
0.5 0.70 92.451 ± 0.053
0.7 0.90 91.760 ± 0.032
0.9 1.10 91.561 ± 0.051

Table 14: Ablation on ϵ1, ϵ2 =
0.15 and λ = 0.01. Exper-
iments are conducted on CI-
FAR10 with the A2 loss.

ϵ1 ϵ2 Acc@1
0.1 0.15 92.584 ± 0.023
0.2 0.15 92.385 ± 0.043
0.3 0.15 92.643 ± 0.043
0.5 0.15 92.455 ± 0.032
0.7 0.15 92.174 ± 0.029

Table 15: Ablation studies on λ.
For all entries we fix ϵ1 = 0.3
and ϵ2 = 0.5. Experiments are
conducted on CIFAR10 with
the A2 loss.

ϵ1 λ Acc@1
0.3 0 92.555 ± 0.028
0.3 0.005 92.756 ± 0.042
0.3 0.01 92.898 ± 0.045
0.3 0.02 92.854 ± 0.027
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Table 16: Ablation on σ of value 0, 0.1, 0.2, 0.4 and 1.0. Experiments are conducted on CIFAR10
with A2 loss.

View Acc@1
e(x) 91.697 ± 0.038
e(x) + wGauss ∼ N(0, 0.1) 92.297 ± 0.024
e(x) + wGauss ∼ N(0, 0.2) 92.383 ± 0.033
e(x) + wGauss ∼ N(0, 0.4) 91.852 ± 0.030
e(x) + wGauss ∼ N(0, 1.0) 87.893 ± 0.026
e(x) + proj(wGauss) ∼ N(0, 0.2) 92.479 ± 0.055

Table 17: Ablation on σ of value 0.1, 0.2, 0.4 and 1.0. Experiments are conducted on CIFAR100
with A2 loss.

View Acc@1 5-NN
e(x) + wGauss ∼ N(0, 0.1) 71.84 66.33
e(x) + wGauss ∼ N(0, 0.2) 72.95 66.60
e(x) + wGauss ∼ N(0, 0.4) 71.69 65.33
e(x) + wGauss ∼ N(0, 1.0) 68.05 61.06

Ablation on λ. In Table 14, we fix ϵ2 = 0.15 and vary ϵ1. In Table 15, we fix ϵ1 = 0.3 and ϵ2 = 0.5
and vary λ.

Ablation on σ. We perform grid search on σ for W-perturb and report results in Tables 16 and 17.
We find that for both CIFAR10 and CIFAR100, σ = 0.2 leads to the best results, which is consistent
with the empirical findings in Jahanian et al. (2021).

H ABLATION ON APPENDED VIEWS

We perform ablations on the appended views (with A2 loss) on CIFAR10. As shown in Table 18,
appending the in-domain GAN inversion reconstructed images, optimizing Eq. (3) with SGD (instead
of Adam), optimizing Equation 2 for only 1 or 2 steps, and appending the expert or the original view
lead to inferior performance than W-search.

I MORE RESULTS ON REPLACING EXPERT VIEWS

Augmented GAN training. Please note that for all experiments in Section 5.3 on replacing expert
transformations, we employ augmented GAN training, i.e., the StyleGAN2 generator is trained with
expert augmentations. Please also note that this augmentation is different from the differentiable
augmentations commonly used in training GAN with limited data Karras et al. (2020a); Zhao
et al. (2020). Here we apply expert transforms on real images with probability 0.5, thus the expert
transformations will be leaked to the generator.

Additional results. For the following additional results in Table 19, we use -aug to denote
augmented GAN training††. As shown in rows 2 and 3, 7 and 8, in Table 19, the A2 loss is better
than A2-full. Note that row 3 is equivalent to online 3-view SimCLR with basic transforms. From
row 1-4 we found that W-search-aug views significantly improves basic transforms.

J ADDITIONAL SAMPLES OF GENERATED VIEWS

Here we show additional visual samples via W-search and W-perturb in Figure 8, 9, and 10. We see
that for CIFAR10, CIFAR100 and TinyImageNet, W-search tends to generate more diverse samples
than W-perturb.

††To ease the notation, we remove -aug for all entries of Tab. 5.
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Table 18: Ablation on appended views. Experiments are conducted on CIFAR10 with A2 loss.

View Acc@1
Reconstruction g ◦ e(x) 91.697 ± 0.038
SGD Optimizer 91.674 ± 0.045
1-Step Optimization 92.467 ± 0.029
2-Step Optimization 92.359 ± 0.018
Original 91.936 ± 0.017

Table 19: Ablation on different configurations on complete replacement of expert views in the
CIFAR100 dataset. W-search-aug indicates that the generator is trained with expert augmentations.

Row View 1 View 2 View 3 Loss Acc@1 5-NN
1 basic basic ✗ SimCLR 47.61 35.86
2 basic basic basic A2 49.35 38.03
3 basic basic basic A2-full 44.64 34.18
4 basic basic W-search-aug A2 69.55 63.65
5 basic basic W-search-aug A2-full 69.16 63.15
6 basic W-search-aug ✗ SimCLR 69.19 62.36
7 W-search-aug W-search-aug W-search-aug A2 62.80 53.26
8 W-search-aug W-search-aug W-search-aug A2-full 61.17 52.09
9 W-search-aug W-search-aug ✗ SimCLR 57.65 49.27
10 W-search W-search ✗ SimCLR 47.50 37.54

K ADDITIONAL TRAINING CURVES

In Figure 11 and 12, we provide additional 5-NN accuracies evaluated after every epoch during
training.

L ETHICAL IMPACT

In this work, we utilized generative models for learning augmentations of natural images, which
potentially relate to image generation techniques. As with any good generative model of image
data, there is risk that work built on these generative models could potentially be used for the
creation of deliberately deceptive imagery. However, our work focuses on an orthogonal direction of
representation learning and conducts an extensive empirical study on how to generate meaningful
views and how to assimilate them.
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(a) W-search (b) W-perturb

Figure 8: Visual samples of W-search and W-perturb on CIFAR10 dataset. In each subfigure panel,
the first column (in the red box) is the original image, and columns 2-9 are generated 8 views.
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(a) W-search (b) W-perturb

Figure 9: Visual samples of W-search and W-perturb on CIFAR100 dataset. In each subfigure panel,
the first column (in the red box) is the original image, and columns 2-9 are generated 8 views.
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(a) W-search (b) W-perturb

Figure 10: Visual samples of W-search and W-perturb on TinyImageNet dataset. In each subfigure
panel, the first two columns are the original image and its reconstruction, and columns 3-8 are
generated 6 views.

5-NN on CIFAR1005-NN on CIFAR10

Figure 11: 5-NN accuracy curves during training. In legend, VG1 refers to W-search and VG2 refers
to W-perturb.
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A2: 3-View 5-NN AccA1: 2-View 5-NN Acc

(a) CIFAR10.

A2: 3-View 5-NN AccA1: 2-View 5-NN Acc

(b) CIFAR100.

A2: 3-View 5-NN AccA1: 2-View 5-NN Acc

(c) TinyImageNet.

Figure 12: 5-NN accuracy curves during training. In legend, VG1 refers to W-search and VG2 refers
to W-perturb.
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