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Abstract
Class incremental learning (CIL) is one of the
most challenging scenarios in continual learning.
Existing work mainly focuses on strategies like
memory replay, regularization, or dynamic archi-
tecture but ignores a crucial aspect: mode connec-
tivity. Recent studies have shown that different
minima can be connected by a low-loss valley,
and ensembling over the valley shows improved
performance and robustness. Motivated by this,
we try to investigate the connectivity in CIL and
find that the high-loss ridge exists along the linear
connection between two adjacent continual min-
ima. To dodge the ridge, we propose parameter-
saving OPtimizing Connectivity (OPC) based on
Fourier series and gradient projection for finding
the low-loss path between minima. The optimized
path provides infinite low-loss solutions. We fur-
ther propose EOPC to ensemble points within a
local bent cylinder to improve performance on
learned tasks. Our scheme can serve as a plug-
in unit, extensive experiments on CIFAR-100,
ImageNet-100, and ImageNet-1K show consistent
improvements when adapting EOPC to existing
representative CIL methods. Our code is available
at https://github.com/HaitaoWen/EOPC.

1. Introduction
Continual learning is essential for intelligent machines to
achieve dynamic adaptation (Ashfahani & Pratama, 2019;
Lesort et al., 2020), knowledge accumulation (Caccia et al.,
2020; Jin et al., 2021), and analogical reasoning (Hayes &
Kanan, 2021). Class incremental learning (CIL) as one of
the most challenging scenarios requires the model incremen-
tally learn a sequence of new tasks without the information
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Figure 1. Left: The path found by OPC and the linear path connect
minima ŵ1 and w2 in training loss landscape of task 1. Right:
Testing accuracy curves along OPC and the linear path on task 1
and task 2. It can be seen that OPC locates in a lower-loss region
and dodges the high-loss ridge compared with the linear path.
Because of this low-loss retention property, an interval along OPC
can achieve a higher performance than endpoints (the part above
the gray dashed line). Besides, the ensembling method EOPC
works in this local interval. Results are obtained from the first two
of six tasks on CIFAR-100 with PODNet (Douillard et al., 2020).

of task identification (Van de Ven & Tolias, 2019; Delange
et al., 2021). However, when adapting an unpolished model
to the above scenario, the performance of previous tasks
will significantly degrade, i.e., catastrophic forgetting phe-
nomenon (McCloskey & Cohen, 1989; Robins, 1995).

To achieve CIL, different methods have been proposed in
recent years. Memory replay uses a tiny episodic mem-
ory(Rebuffi et al., 2017; Liu et al., 2020) or the generative
network (Kemker & Kanan, 2017; van de Ven et al., 2020)
to replay samples from the distribution of previous tasks
when learning a new task. Regularization is based on the
idea of constraining important parameters to change (Kirk-
patrick et al., 2017; Zenke et al., 2017) or distilling features
from the previous model (Hou et al., 2019; Douillard et al.,
2020; Simon et al., 2021; Kang et al., 2022). However, the
parameter regularization methods rely on the approximation
of local region around minimum and they are limited by the
shift of distribution between tasks, which usually can not
achieve good performance in CIL. Dynamic architecture
follows two paradigms: one is parameter isolation (Serra
et al., 2018) and the other is architecture expansion (Liu
et al., 2021). Although remarkable advances have been
achieved, none of the above work explores the aspect of
mode connectivity in CIL (Garipov et al., 2018).
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In contrast to the traditional view of loss landscape that
regions of low loss are disconnected (Choromanska et al.,
2015), mode connectivity (Garipov et al., 2018; Draxler
et al., 2018) is the phenomenon that different minima (a.k.a.,
modes) can be connected by low-loss paths. The connectiv-
ity is modeled by parametric paths or a multi-dimensional
volume between modes, such as Bezier curve (Garipov et al.,
2018), nudged elastic band (NEB) (Henkelman & Jónsson,
2000; Draxler et al., 2018), and simplicial complexes (Ben-
ton et al., 2021). The reason why we choose mode con-
nectivity as the breakthrough point of CIL is the low-loss
retention property, when parameters travel along the path,
performance will not change too much compared with the
endpoints, this is what continual learning needs! Therefore,
some pioneers have begun to cultivate this field. (Mirzadeh
et al., 2020) found that there exists linear mode connectivity
between continual minima and multitask minima under the
scenario of task incremental learning (TIL). However, they
are limited to the TIL scenario and linear connection, which
may not scale to CIL.

In this paper, we try to investigate the connectivity between
two adjacent continual minima in CIL and try to find a
low-loss path between them for improving the performance
of learned tasks. Our contributions can be summarized as
follows:

• Linear interpolation experiments with different ways of
initialization between minima are carried out and find that
the high-loss ridge exists along the linear connection;

• A low-loss path finding method OPC based on the Fourier
series and gradient projection is proposed, Figure 1 and
experiments in Section E show OPC is an efficient and
parameter-saving method;

• A performance-boosting method EOPC based on ensem-
bling parameters within a local bent cylinder is proposed;

• Extensive experiments on CIFAR-100, ImageNet-100,
and ImageNet-1K show significant improvements when
adapting EOPC to representative CIL methods, e.g., boost-
ing PODNet by 1.39%, 2.22%, and 3.73% for 5, 10, and
25 steps of increments on ImageNet-1K respectively.

2. Related Work
Class Incremental Learning as a challenging scenario in
continual learning has gained increasing attention in re-
cent years. According to the taxonomy in (Delange et al.,
2021), we can divide existing methods into three categories.
Regularization-based methods commonly use distillation
techniques to constrain output activations or intermediate
features consistent with the previous model. iCaRL (Rebuffi
et al., 2017), LUCIR (Hou et al., 2019), PODNet (Douil-
lard et al., 2020), GeoDL (Simon et al., 2021), and AFC

(Kang et al., 2022) respectively constrains output possibili-
ties, input embeddings, pooled features, projected features,
and weighted features. Memory replay methods rehearse
previous samples against distribution shift between tasks.
iCaRL (Rebuffi et al., 2017) replays samples that are close
to the mean feature of each class. Mnemonics (Liu et al.,
2020) replays parameterized exemplars that mostly approxi-
mate previous tasks. Dynamic architecture methods try to
isolate parameters or representations of each task. AANet
(Liu et al., 2021) designs stable blocks and plastic blocks
for previous tasks and the new task respectively and learns
weights to adaptively aggravate representations.

Mode Connectivity is a phenomenon that different min-
ima can be connected by low-loss paths in parameter space
(Garipov et al., 2018). This is an innovative view that min-
ima optimized by SGD or other optimizers are points on
the same connected multi-dimensional manifold of low-loss
(Draxler et al., 2018; Benton et al., 2021), which advances
our understanding of neural network optimization. Gener-
ally, the existence of mode connectivity depends on two
aspects. First, connectivity condition, (Garipov et al., 2018)
showed that high loss exists along the linear connection
between two minima which are trained with different ran-
dom initialization. (Frankle et al., 2020) found that linear
connectivity exists when two minima are trained from the
same initialization, which should be stable to SGD noise.
Therefore, the initialization of minima is an important factor
for the existence of mode connectivity. Second, connec-
tivity finding tries to find a lower-loss path or more gen-
eral form of connection. The key factor of this aspect is
to model connectivity properly, such as polygonal chain,
Bezier curve (Garipov et al., 2018), elastic band (Draxler
et al., 2018), and simplicial complexes (Benton et al., 2021).
In addition, mode connectivity brings convenience to other
research, such as loss landscape analysis (Garipov et al.,
2018; Draxler et al., 2018; Fort & Jastrzebski, 2019; Czar-
necki et al., 2019), weight pruning analysis (Frankle et al.,
2020), and model ensembling (Fort & Jastrzebski, 2019;
Fort et al., 2019; Benton et al., 2021; Wortsman et al., 2021).

Discussion. In this paper, we introduce mode connectiv-
ity into CIL and study from the following three aspects.
First, considering the impact of initialization on connectiv-
ity, we conduct linear interpolation experiments with differ-
ent ways of initialization to understand the basic situation of
connectivity in CIL. Second, we propose a connectivity find-
ing method OPC based on the Fourier series and gradient
projection, which is novel and parameter-saving compared
with existing connectivity finding methods (Garipov et al.,
2018; Benton et al., 2021). Third, we further propose a
performance-boosting method EOPC, which is orthogonal
to existing CIL work (Rebuffi et al., 2017; Douillard et al.,
2020; Liu et al., 2021) and can be easily plugged into them
in a way of post-processing.
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Figure 2. Testing accuracy curves along the linear connection between two adjacent continual minima of PODNet (Douillard et al., 2020)
for 5 steps of increments (i.e., 6 tasks in total) on CIFAR-100. Ap, An, and Aall denote accuracy on previous tasks, on the new task,
and on all learned tasks respectively. λ is the interpolation factor. Results are the mean and standard deviation of 10 experiments under
different random seeds. Taking the testing accuracy as the measure of connectivity is because it is more sensitive to moving along the path
than training loss.

3. Analyzing Linear Connectivity in CIL
We first give some notations and concepts for convenient
subsequent description. Continual learning requires a model
parameterized with w ∈ Rn to learn a sequence of T tasks
{Dt}Tt=1. For the scenario of class incremental learning
(Van de Ven & Tolias, 2019), data of task t is a set of
tuples and classes between different tasks are not overlapped,
i.e., Dt = {(xt, yt)} and {yt} ∩ {yk ̸=t} = ∅, where x
is the input, y is the corresponding label. We denote the
parameter vector w of a L layers model after learning task t
as wt = {wt,l}Ll=1. Most frontier CIL work adopts memory
replay (Rebuffi et al., 2017; Hou et al., 2019; Simon et al.,
2021; Liu et al., 2021; Kang et al., 2022), we denote the
memory of all learned tasks asMt, which is incrementally
constructed by selecting a small number of representative
samples for each task.

3.1. Linear Interpolation Experiments

Given minima of two adjacent tasks wt−1 and wt. Un-
der the scenario of CIL, before learning the new task t,
a new parameter vector zt parameterizes the new classi-
fier should be added to wt−1 for learning new classes, and
zt is initialized by a distribution P . Therefore, the mini-
mum is expanded as ŵt−1 = wt−1 ⊕ zt, where ⊕ is the
concatenation operator. Generally, ŵt−1 is taken as the
initial parameters of task t. The expanded minimum of
task t − 1 and the minimum of task t are interpolated by
w = (1 − λ)ŵt−1 + λwt, λ ∈ [0, 1]. Here we only fo-

cus on the connectivity between minima after learning task
t− 1 and t and keep the original way of initialization on zt

invariant during the incremental learning.

Figure 2 shows testing accuracy curves along the linear path
between two adjacent minima with five ways of initializa-
tion, including Uniform, Normal, Xavier-Normal (Glorot
& Bengio, 2010), Kaiming-Normal (He et al., 2015), and
Imprint (Hou et al., 2019) that commonly used in CIL. From
this figure, we can see that:

• There is an interval on the linear path ŵ1 → w2 incurs
significant testing accuracy degradation of task 1, which
indicates that a high-loss ridge possibly exists along this
path in training loss landscape of task 1. Therefore, the
overall accuracy on tasks 1 and 2 inevitably deteriorates.

• There is an interval on the linear path ŵt−1 → wt, t ≥ 3
achieves a higher accuracy on all learned tasks than end-
points (the part above the gray dashed line), which indi-
cates that points sampled within this interval can replace
wt as a better minimum of task t.

• Xavier, Kaiming, and Imprint can achieve higher accuracy
on all learned tasks along the linear path compared with
Uniform and Normal (except ŵ4 → w5), by further com-
paring Ap and An, the accuracy of this three initialization
on previous tasks can maintain higher over a longer dis-
tance starting from ŵt−1, which indicates that paths of
this three initialization locate in a lower-loss region in
training loss landscape of previous tasks.
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Therefore, if we pull the path from the high-loss ridge to the
low-loss region, we can get an interval on the path that has
higher accuracy than endpoints. In the next section, we will
propose a connectivity optimization method to dodge this
high-loss ridge.

4. OPC: Optimizing Connectivity between
Minima

To find a low-loss path between expanded minimum ŵt−1

and minimum wt, let pθ(λ) : [0, 1] → Rn be the parame-
terized arbitrary path between them, such that

pθ(0) = ŵt−1 and pθ(1) = wt (1)

and θ is the parameters of path. We commonly use the
expected loss ℓ̂(θ) along the path to characterize its quality
(Garipov et al., 2018), i.e.,

ℓ̂(θ) =

∫ 1

0

L(pθ(λ))dλ = Eλ∼U(0,1)[L(pθ(λ))], (2)

where L is the task loss, such as cross-entropy loss, NCA
loss (Douillard et al., 2020), or embedding loss (Hou et al.,
2019), U(0, 1) is the uniform distribution on the interval
[0, 1]. Under general settings (Garipov et al., 2018; Draxler
et al., 2018), if minima are trained on the same data but
from different initialization or the same initialization that is
stable to SGD noise (Frankle et al., 2020), there exists mode
connectivity between minima. Hence, we can randomly
sample points λ between [0, 1] and minimize loss L(pθ(λ))
with respect to θ to optimize the path, i.e.,

θ ← θ − γ∇θL(pθ(λ)), λ ∼ U [0, 1], (3)

where γ is the learning rate of the path. However, for con-
tinual learning, the new minimum is trained starting from
the previous minimum on the new task data, which will in-
evitably rise two problems: general connectivity conditions
are not met between two continual minima, and catastrophic
forgetting occurs in the new minimum. Therefore, we can
not directly establish a low-loss path between two adja-
cent continual minima whether in terms of previous tasks
or the new task. Multitask learning learns all task data si-
multaneously and its minimum is capable of all tasks. We
hypothesize that there is a point on the optimal path that has
properties similar to the multitask minimum and term it the
switching point (SP). Then, we can redefine a low-loss path
taking SP as a bridge, where the part between the previous
minimum and SP is for previous tasks, and the part between
SP and the new minimum is for the new task. Let λ∗ be
the point corresponding to SP in the interval [0, 1]. We can
reformulate Equation (2) for continual learning as follows,

ℓ(θ) =

∫ λ∗

0

L1:t−1(pθ(λ))dλ+

∫ 1

λ∗
Lt(pθ(λ))dλ, (4)

where L1:t−1 is loss on previous tasks and Lt is loss on the
new task. With this reasonable criterion, we can effectively
evaluate the quality of the path pθ(λ) between continual
minima.

4.1. Connectivity Modeling
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Figure 3. A toy example of optimizing connectivity between min-
ima in the 2-dimensional plane. The initial guess of the low-loss
path is set to the linear connection. We adopt the Fourier series to
approximate arbitrary perturbation between the linear path and the
ideal low-loss path. The coefficients of trigonometric functions are
optimized by gradient projection to minimize loss along the path,
i.e., Equation (2) or Equation (4).

Existing connectivity modeling depends on polygonal chain
(Garipov et al., 2018), Bezier curve (Garipov et al., 2018),
elastic band (Draxler et al., 2018), and simplicial complexes
(Benton et al., 2021), different from these, we propose a
novel modeling based on the Fourier series. There are infi-
nite forms of paths and the basic requirement of a path is
to pass through two adjacent continual minima. Inspired
by solving the Brachistochrone Problem (Haws & Kiser,
1995), our main idea is to take linear connection as the ba-
sic form, and then add perturbation δθ(λ) on this basis to
approximate any form of the path, i.e.,

pθ(λ) = (1− λ)ŵt−1 + λwt + δθ(λ), λ ∈ [0, 1]. (5)

This requires δθ(λ) should meet the following conditions,

δθ(0) = 0 and δθ(1) = 0. (6)

The property of zeroing at endpoints is similar to that per-
turbation takes the linear connection as the horizontal axis
and fluctuates up and down around it between the interval
[0, 1]. The family of trigonometric functions also has this
property. Therefore, it drives us to model the perturbation
as a periodic curve, and use trigonometric functions paired
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with series to approximate it. Fourier series approximates
arbitrary curves by weighting trigonometric functions (basis
functions) with multiple frequencies, i.e.,

δ̂θ(λ) =
α0

2
+

N∑
i=1

αi cos(ωiλ+ φi), (7)

where α0/2 is the DC component, αi, ωi, and φi are coef-
ficients, frequencies, and phases of basis functions respec-
tively, let θ = [α1, α2, ..., αN ]. In our case, we set α0 and
φi to 0. The fundamental angular frequency of δ̂θ(λ) is ω1,
we only set [0, 1] as the 1/4 fundamental period to reduce
the fluctuation of the path for more convenient optimiza-
tion, thus ω1 = 2π

4 = π
2 . In addition, the behaviors of

standard cosine and sine functions in the first 1/4 period
(i.e., [0, π/2]) are opposite, cosine starts from 1 to 0 and
sine starts from 0 to 1. Therefore, we can multiply cos
with ŵt−1 and multiply sin with wt to construct a curve in
2-dimensional plane, i.e,

p̂θ(λ) = cos(
π

2
λ)ŵt−1 + sin(

π

2
λ)wt, (8)

where 1/4 period is mapped from [0, π/2] to [0, 1] by ad-
justing the angular frequency to π/2. This curve can meet
Condition (1), i.e., pass through ŵt−1 at point 0 and wt at
point 1. To form a more complex curve, we can add trigono-
metric functions with higher frequencies into Equation (8),
the angular frequency of i-th term trigonometric function
must be ωi = π/2 + 2π(i − 1) = (4i − 3)π/2 so that the
i-th term is the same as the 1-th term at points 0 and 1, then

p̂θ(λ) =

N∑
i=1

αi cos(
(4i− 3)π

2
λ)ŵt−1+

N∑
i=1

βi sin(
(4i− 3)π

2
λ)wt,

(9)

where θ = [[α1, ..., αN ]T, [β1, ..., βN ]T]T, in this case, αi

and βi should meet
∑N

i=1 αi = 1 and
∑N

i=1 βi = 1 to make
p̂θ(λ) still meet Condition (1). Under fixed group of basis
functions, substitute Equation (9) into Equation (4), we can
optimize parameters θ according to ℓ(θ) to obtain the low-
loss path. However, this formulation does not have good
initialization, in practice, it will make ℓ(θ) unstable, and we
can only constrain αi and βi within a small boundary for
optimization (Rosen, 1960). Similar to AutoNEB sets the
initial guess as the linear connection(Draxler et al., 2018),
we formulate the path as Equation (5). Here we let δθ(λ) =
p̂θ(λ), and accordingly, the constraints of parameters should
be changed to

∑N
i=1 αi = 0 and

∑N
i=1 βi = 0 to meet

Condition (6). Connections in a 2-dimensional plane may
not be optimal, in addition, (Benton et al., 2021) shows
that the low-loss valley is a multi-dimensional manifold.
Therefore, we connect minima in a layer-wise manner to

construct a space curve pθ(λ) in subspace RL+1, and write
it in the form of matrix operations,

pθ(λ) =(AC + (1− λ)1L) · ŵt−1

+ (BS + λ1L) ·wt,
(10)

where A,B ∈ RL×N and C,S ∈ RN , specifically,

A =

α1,1 . . . α1,N

...
αL,1 . . . αL,N

C =

 cos(π2λ)
...

cos( (4N−3)π
2 λ)



B =

β1,1 . . . β1,N

...
βL,1 . . . βL,N

S =

 sin(π2λ)
...

sin( (4N−3)π
2 λ)


(11)

1L ∈ RL is the notation of all-ones vector, · is the no-
tation of element-wise multiplication between vectors or
matrices, we split w into L blocks for simplicity, i.e.,
w = [wT

1 , . . . ,w
T
L]

T. Correspondingly, θ = [AT,BT]T,
and the constraints of parameters should be,

θ1N = 02L, (12)

where 02L ∈ R2L is a all-zeros vector. This is a constrained
optimization, next, we will adopt gradient projection to cope
with this problem.

4.2. Connectivity Optimizing

Our objective function is shown in Equation (4), which re-
quires all previous tasks data to compute loss L1:t−1. Con-
sidering the setups of continual learning, we can only use the
memoryMt to evaluate the path pθ(λ) after learning task
t. However, the size of memory is commonly set very small,
i.e., |Mt| ≪ |D1:t|, it may not appropriately describe the
original distribution of previous tasks and incurs overfitting
on it (Rebuffi et al., 2017; Liu et al., 2020). A flat minimum
tends to have better generalization performance (Hochreiter
& Schmidhuber, 1997; Keskar et al., 2016). This drives us
to pull the path to a flatter region. We try to construct a
bent cylinder along the path and randomly evaluate points
on its surface. It is essentially equivalent to adding fixed
amplitude noise orthogonal to the tangent direction of the
path. According to Equation (10), the tangent is

p′
θ(λ) = (A′S − 1L) · ŵt−1 + (B′C + 1L) ·wt, (13)

where A′,B′ ∈ RL×N , specifically,

A′ =

−
π
2α1,1 . . . − (4N−3)π

2 α1,N

...
−π

2αL,1 . . . − (4N−3)π
2 αL,N



B′ =


π
2β1,1 . . . (4N−3)π

2 β1,N

...
π
2βL,1 . . . (4N−3)π

2 βL,N


(14)
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Then, randomly sample noise from the normal distribution
and orthogonalize it with the tangent direction, i.e.,

ϵ = ϵ̂− p′
θ(λ)

Tϵ̂p′
θ(λ)

∥p′
θ(λ)∥2

, ϵ̂ ∼ N (0, I), (15)

where I ∈ Rn×n is the identity matrix. Next, add normal-
ized noise scaled by radius r to the path to obtain the point
on the surface of the cylinder,

p̃θ(λ) = pθ(λ) + r
ϵ

∥ϵ∥ . (16)

Replace pθ(λ) with p̃θ(λ) in Equation (3), we can get a
flatter path for traditional connectivity modeling. However,
in our case, directly using gradient ∇θL(p̃θ(λ)) will make
the updated path violate constraints, i.e., Equation (12). We
adopt gradient projection to cope with this problem. For
Equation (12), which is an equality constraint, it is feasible
to update parameters along the direction orthogonal to the
normal of equation, i.e.,

∆(λ) = ∇θL(p̃θ(λ))(IN×N − 1N (1T
N1N )−11T

N )

= ∇θL(p̃θ(λ))−
1

N
∇θL(p̃θ(λ))1N1T

N .
(17)

This operation is essentially equivalent to subtracting the
mean of gradient from original gradient in each layer. Re-
place∇θL(pθ(λ)) with ∆(λ) in Equation (3), we can get
the iterative rule for parameters of the path,

θ ← θ − γ∆(λ), λ ∼ U [0, 1]. (18)

4.3. EOPC: Ensembling with OPC

Figure 4. The green curve is the optimized low-loss path pθ(λ),
the surface with gradient color around the path forms the local
bent cylinder with radius r, τ is the width of the interval, and “SP”
is the switching point. EOPC randomly sample (purple) points
within this cylinder and average them for ensembling.

The optimized path provides infinite low-loss solutions on
both sides of the switching point (SP), i.e., pθ(λ

∗). To
further improve performance on learned tasks, we pro-
pose EOPC to ensemble points within a local bent cylinder
around SP. The cylinder is constructed according to the tan-
gent of the path, let S be the set of points within this cylinder

and can be formulated as follows,

S = {w|(w − pθ(λ))
Tp′

θ(λ) = 0, ∥w − pθ(λ)∥2 ≤ r;

λ ∈ [λ∗ − τ/2, λ∗ + τ/2]},
(19)

where τ is the width of the interval. There are generally two
roadmaps of ensembling, one is ensembling in output space,
and the other is ensembling in parameter space. Considering
the requirement of parameter efficiency in CIL, we adopt
the latter scheme by averaging points within S, i.e.,

w =
1

M

M∑
i=1

wi, wi ∼ S, (20)

where M is the number of total sampling points. The opera-
tion of wi ∼ S can be performed by replacing r in Equation
(16) with a random factor k ∼ U [0, r]. We take w as the
minimum of the current task and the initial parameters of
model in the next task.

5. Experiments
In this section, we will adapt EOPC to several existing
representative CIL methods in a post-processing manner
on several benchmarks for comparisons. Then, extensive
analytical experiments are conducted to validate the effec-
tiveness and scalability of EOPC. Next, we introduce the
basic settings of experiments.

Benchmarks. Three different datasets are used in our exper-
iments: 1) CIFAR-100 contains 100 classes, each class has
500 training samples and 100 testing samples with image
size 32 × 32 (Krizhevsky et al., 2009). 2) ImageNet-1K
contains 1000 classes, each class has about 1300 training
samples and 50 validation samples (Deng et al., 2009). 3)
ImageNet-100 consists of 100 classes and is randomly ex-
tracted from ImageNet-1K with a fixed random seed 1993.
We split these datasets into a sequence of tasks, the first task
contains half of the classes, e.g., 50 classes for CIFAR-100,
then the rest of the classes are equally assigned to 5, 10, and
25 steps for incremental learning.

Baselines and Evaluation Metrics. Two representative
CIL methods are chosen as our adaptation baselines: POD-
Net (Douillard et al., 2020) and AANet (Liu et al., 2021).
For comprehensive comparisons, iCaRL (Rebuffi et al.,
2017), BiC (Wu et al., 2019), LUCIR (Hou et al., 2019),
Mnemonics (Liu et al., 2020), GeoDL (Simon et al., 2021),
and AFC (Kang et al., 2022) are chosen as our com-
parison baselines. We use two metrics for evaluation,
one is the average incremental accuracy (Rebuffi et al.,
2017), i.e., A = 1

T

∑T
t=1 At, where At is the testing

accuracy on all learned tasks after learning task t. The
other is the average forgetting of previous tasks, F =

1
T−1

∑T−1
i=1 maxt∈{1,...,T−1}(at,i − aT,i), where at,i is the
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Method CIFAR-100 ImageNet-100 ImageNet-1K
A (%) ↑ 5 10 25 5 10 25 5 10 25

iCaRL (Rebuffi et al., 2017) 57.83 52.63 49.02 64.75 58.80 52.46 51.60 47.42 41.03
BiC† (Wu et al., 2019) 59.36 54.20 50.00 70.07 64.96 57.73 62.65 58.72 53.47

LUCIR (Hou et al., 2019) 63.62 60.95 57.79 71.93 69.43 63.51 66.13 61.63 54.05
Mnemonics† (Liu et al., 2020) 63.34 62.28 60.96 72.58 71.37 69.74 64.63 63.01 61.00
GeoDL† (Simon et al., 2021) 65.14 65.03 63.12 73.87 73.55 71.72 65.23 64.46 62.20

AFC (Kang et al., 2022) 65.87 64.45 62.05 77.27 75.47 72.41 69.07 66.85 63.40
PODNet (Douillard et al., 2020) 65.47 63.13 59.85 76.32 73.54 63.05 68.33 65.35 58.62

w/ EOPC 66.68 64.94 62.36 77.12 74.53 68.18 69.72 67.57 62.35
AANet (Liu et al., 2021) 66.53 64.63 61.05 77.98 74.70 68.65 68.87 65.65 60.07

w/ EOPC 67.55 65.54 61.82 78.95 74.99 70.10 69.47 67.35 62.20
F (%) ↓ 5 10 25 5 10 25 5 10 25

iCaRL (Rebuffi et al., 2017) 25.16 26.57 29.83 24.22 29.63 32.58 16.66 15.94 18.91
LUCIR (Hou et al., 2019) 19.58 19.79 20.31 20.56 25.97 28.55 13.68 26.99 37.73
AFC (Kang et al., 2022) 12.86 14.16 19.37 11.82 12.81 21.47 12.76 14.72 21.69

PODNet (Douillard et al., 2020) 19.26 25.01 28.55 13.72 18.41 29.11 13.88 17.97 28.81
w/ EOPC 7.68 8.64 12.02 6.16 4.15 8.3 11.68 15.75 25.58

AANet (Liu et al., 2021) 25.74 30.31 32.15 18.08 22.17 28.66 16.50 19.88 28.14
w/ EOPC 20.96 23.22 25.17 8.3 9.66 12.06 15.14 18.45 26.70

Table 1. The adaptation results of EOPC and comparison results with existing incremental learning methods on CIFAR-100, ImageNet-100,
and ImageNet-1K. The upper part is the average incremental accuracy results and the lower part is the average forgetting results. †

represents results referenced from (Simon et al., 2021).

testing accuracy of the model on task i after learning task t.
A better CIL method should have a higher A and a lower F .

Model Architectures. We use two types of model archi-
tectures: ResNet-32 (He et al., 2016) for CIFAR-100 and
ResNet-18 for both ImageNet-100 and ImageNet-1K. Al-
though these two types of architectures are widely adopted
in contemporary CIL methods, there are a few differences
between them, e.g., AANet adopts a dual-branch ResNet
architecture that is different from the single-branch ResNet
in PODNet. This difference can validate the scalability of
EOPC in the width of the model to a certain extent. For
a more comprehensive validation, we take iCaRL as the
adaptation baseline and use different architectures, includ-
ing CNN, ResNet, and DenseNet (Huang et al., 2017), with
varying widths and depths in our analytical experiments.

5.1. Adaptation and Comparison Results

Results on CIFAR-100. Table 1 summarizes the adaptation
results of EOPC and comparison results with representative
CIL methods on CIFAR-100. EOPC improves PODNet by
1.21%, 1.81%, and 2.51%, and improves AANet by 1.02%,
0.91%, and 0.77% for 5, 10, and 25 steps respectively. In
addition, EOPC can significantly reduce forgetting, such as
reducing forgetting of PODNet by 11.58%, 16.37%, and
16.53% for 5, 10, and 25 steps respectively.

Results on ImageNet. Table 1 also provides results on
ImageNet-100 and ImageNet-1K. It can be seen that EOPC

improves PODNet by 0.8%, 0.99%, and 5.13% for 5, 10,
and 25 steps respectively, and improves AANet by 0.97%,
0.29%, and 1.45% for 5, 10, and 25 steps respectively on
ImageNet-100. EOPC improves PODNet by 1.39%, 2.22%,
and 3.73%, and improves AANet by 0.6%, 1.7%, and 2.1%
for 5, 10, and 25 steps respectively on ImageNet-1K. Similar
to results on CIFAR-100, EOPC can also reduce forgetting
on ImageNet.

5.2. Analytical experiments

Ablation of OPC. In this part, we try to study the effective-
ness of each component in EOPC. The first thing to figure
out is whether the path found by OPC is more beneficial
than the linear connection for CIL, we donate these two
schemes as “OPC” and “Line” respectively. The switching
point (SP) is directly taken as the initial parameters of the
next task (i.e., without flattening and ensembling), where SP
is pθ(λ

∗) for the “OPC” scheme and (1−λ∗)ŵt−1+λ∗wt

for the “Line” scheme. Table 2 shows the results of these
two schemes adapting to PODNet for 10 and 25 steps. As
shown in Figure 1 and 2, the high ridge loss exists along
the linear connection. It can be seen that the accuracy of
PODNet is significantly decreased by SP in the linear con-
nection. In contrast, OPC optimizes the path to dodge the
high-loss ridge of previous tasks. Therefore, SP in OPC
optimized path can achieve higher accuracy than endpoints
and improves overall performance in CIL, especially for a
long sequence of tasks. These results confirm that the “OPC”

7



Optimizing Mode Connectivity for Class Incremental Learning

scheme is an effective post-processing procedure for CIL.

Method CIFAR-100 ImageNet-100
A (%) ↑ 10 25 10 25
PODNet 63.13 59.85 73.54 63.05
w/ Line 61.03 56.59 45.29 39.80
w/ OPC 64.04 62.21 74.11 67.88

Table 2. Adaptation results of the “OPC” scheme and the “Line”
scheme to PODNet on CIFAR-100 and ImageNet-100.

Ablation of Flattening and Ensembling. Next, we try
to validate the effectiveness of the flattening (in Section
4.2) and ensembling techniques. The key hyperparameter
of these two techniques is the radius of the cylinder. We
combine these two techniques to form three schemes. The
left of Figure 5 shows the accuracy curves of these schemes
when added to the “OPC” scheme under different radii. It
can be seen that the individual “Ensembling” scheme can not
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Figure 5. Left: The accuracy curves of three schemes when added
to the “OPC” scheme on CIFAR-100 for 10 steps under different
radii. Right: The path found by OPC and the path found by OPC
with flattening in training loss landscape of task 1 on CIFAR-100
for 5 steps.

improve accuracy continuously with the increase of radius.
This is because the roadmap of ensembling in parameter
space brings weak benefits (Frankle et al., 2020). In contrast,
the individual “Flattening” scheme can consistently improve
accuracy with the increase of radius. The right of Figure
5 shows the path found by OPC and the path found by
OPC with flattening, where the path found with flattening
is farther away from the high loss region. Therefore, these
results confirm that pulling the path to a flatter region will
have better generalization performance. The third scheme is
the “Ensembling /w Flattening” scheme which can achieve
higher accuracy compared with its two components. This
result indicates that it is necessary to consider the geometric
structure of the ensembling area.

Validation of Scalability on Different Architectures. We
adopt similar configurations of architectures to (Draxler
et al., 2018), including CNN, ResNet, and DenseNet. For
CNN, the size of the filter is set to 3×3 and “CNN-W×D”

means CNN has D convolution layers (Depth) with W chan-
nels (Width). We consider 12×8, 24×8, 36×8, 48×8, and
96×8 to validate in different widths, and consider 48×6,
48×8, and 48×10 to validate in different depths. In addition,
different depths of ResNet (-8, -20, -32, -44, and -56) and
DenseNet (-40, -100) are also considered. Figure 6 shows
the results of EOPC adapting to iCaRL with different archi-
tectures. It can be seen that EOPC can significantly improve
the performance in a wide range of architectures, except the
narrow CNN-12×8 and the shallow ResNet-8. We think
that this is because these two architectures are too weak for
CIL on CIFAR-100, the poor results of iCaRL when using
CNN-12×8 and ResNet-8 indicate that continual minima
of these architectures tend to stay in the high-loss region
after each task. Therefore, it is difficult to find a low-loss
path between their continual minima, which deteriorates the
overall performance in CIL. We also provide adaptation re-
sults to the transformer architecture (Douillard et al., 2022)
in Section D.

12 24 36 48 96 6 8 10
       Width               Depth
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0.25

0.30

0.35

0.40

0.45

0.50
CNN

iCaRL
iCaRL /w EOPC

8 20 32 44 56
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Figure 6. The results of EOPC adapting to iCaRL with different
model architectures on CIFAR-100 for 5 steps.

6. Conclusion
In this paper, we studied the connectivity between two adja-
cent continual minima in CIL and found that the high-loss
ridge exists along the linear connection. If we pull the path
from the high-loss ridge to the low-loss region, we can get
an interval on the path that has higher accuracy than end-
points. Therefore, we proposed optimizing connectivity
(OPC) to find the low-loss path between minima. OPC mod-
els the connectivity by the Fourier series in a layer-wise
manner to construct a space curve between minima in a
multi-dimensional subspace. We further proposed the flat-
tening scheme to pull the path to a flatter region and use
the gradient projection to make the updated path still pass
through two endpoints. With the path in a flat region, we pro-
posed EOPC to ensemble points within a local bent cylinder
for further improving the performance. Extensive experi-
ments show that the adaptation of EOPC to representative
CIL methods can significantly improve performance.

We think that the ideal minimum of multitasks is located
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somewhere in the region of low-loss connecting continual
minima. In the future, we will continue to leverage the
theory of mode connectivity for a more accurate finding of
the multitask minimum.
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A. Algorithm

Algorithm 1 Adapting EOPC to CIL methods
Input: a sequence of tasks data {Dt}Tt=1, parameter vector of the model w, existing CIL method A , memory of previous
tasksM, learning rate of the path γ, and predetermined λ∗.
Random initialize w0.
Train w0 on D1 and obtain w1.
Store representative samples of D1 intoM1.
for t = 2, . . . , T do

Incremental learning with existing method, wt = A (Dt,Mt−1,wt−1).
Store representative samples of Dt and update the memory asMt.
Expand parameter vector wt−1 by Kaiming initialization (He et al., 2015) and obtain ŵt−1.
Connect ŵt−1 and wt using pθ(λ) according to Equation (10).
Initialize the path pθ(λ) as the linear connection, i.e., θ = 0.
repeat

for (x, y) ∼Mt do
Sample λ ∈ [0, 1] uniformly.
Obtain points on the cylinder p̃θ(λ) according to Equation (16).
Compute loss L(p̃θ(λ)) according to Equation (4) with predetermined λ∗ and the batch sample (x, y).
Project gradient∇θL(p̃θ(λ)) according to Equation (17) and obtain the feasible update ∆.
Update parameters of the path, θ ← θ − γ∆.

end for
until required epochs
Ensembling within the local bent cylinder according to Equation (20) and obtain w.
Assign the value of w to wt.

end for

B. Batch Normalization
The batch normalization (BN) layer (Ioffe & Szegedy, 2015) is widely used in modern neural networks for accelerating
training. It maps the input x to a unified distribution,

x̂ = γ
x− µ(x)√
σ(x) + ϵ

+ β, (21)

where γ and β are learnable parameters, µ(x) and σ(x) are the mean and the standard deviation of the input, and ϵ > 0 is
for numerical stability. At the training stage, µ(x) and σ(x) are the statistics of the current batch samples, we keep two
additional variables µ and σ for storing the global statistics updated by the momentum of µ(x) and σ(x). At the testing
stage, the input is normalized by the global statistics µ and σ, and mapped by the learned γ and β.

Connectivity finding usually involves interpolation of parameters between minima, which will cause the mismatch between
learnable parameters (γ and β) and the statistics (µ and σ) in the BN layer. Existing work of mode connectivity deals with
this problem by updating the statistics as usual at the training stage and updating the statistics with an additional forward
pass on training data before being applied to the testing data (Draxler et al., 2018; Garipov et al., 2018). However, this
operation is too time-consuming for class incremental learning (CIL), especially on a large dataset, such as ImageNet-1K.
Furthermore, if the additional updating of statistics is on the tiny memory of previous tasks, it will bias the statistics. We
deal with this problem in OPC for CIL by directly interpolating the global statistics of the previous model and the global
statistics of the new model, i.e,

µ = (1− λ)µt−1 + λµt

σ = (1− λ)σt−1 + λσt

(22)

We apply this interpolation of statistics at both the training stage and the testing stage.
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C. Implementation Details
Hyperparameters of all baselines are the same as the original implementations in their work. We use PyTorch (Paszke et al.,
2019) to reimplement iCaRL (Rebuffi et al., 2017), LUCIR (Hou et al., 2019), PODNet (Douillard et al., 2020), AANet (Liu
et al., 2021), and AFC (Kang et al., 2022) in the same environment for fair comparisons. For the hyperparameters of EOPC,
we choose the SGD optimizer with an initial learning rate of 0.1, which is decayed by a factor of 0.1 at 10 and 15 epochs.
The path between continual minima is optimized for 20 epochs with a batch size of 128. The maximum order of the Fourier
series (i.e., N in Equation (10)) is set to 4, and the radius of the cylinder is chosen from {2, 4, 6}. We select an appropriate
λ∗ from {0.75, 0.85, 0.9} for OPC and uniformly sample 10 points in the interval [0.1, 0.95] and take their average loss as
the loss of each iteration. Kaiming initialization is used to initialize the new parameter vector zt in OPC. The number of
total sampling points in ensembling is set to 10 and the interval τ is set to 0.1. The 10 random seeds used for results of
Figure 2 are from 1991 to 2000. Consistent with existing CIL methods, the random seed used for results in Tables 1 and 2
is 1993. The random seeds used for all repeated experiments are from {1993, 1994, 1995}. In addition, we want to note
that the cross-entropy (CE) loss is adopted for drawing the loss landscapes (except Figure 3) and for OPC because a higher
performance can be achieved compared with the NCA loss (Douillard et al., 2020) (PODNet is taken as the testbed), this will
lead to the loss Lp and Ln (colorbar range) larger than the usual value, but the OPC is functioning properly with the CE loss.

D. Repeated Experiments
To further demonstrate the robust effectiveness of EOPC in repeated experiments, we adapt it to existing CIL methods for 3
runs with different random seeds and report their mean performance and standard deviation in Table 3. DyTox (Douillard
et al., 2022) is additionally chosen as the adaptation baseline, as it has a strong performance and is based on the recently
prevalent transformer architecture (Dosovitskiy et al., 2020). It can be seen that EOPC can still consistently improve
adaptation baselines in repeated experiments.

Method CIFAR-100 ImageNet-100
A (%) ↑ 5 10 25 5 10 25

AFC (Kang et al., 2022) 65.94(±0.07) 64.29(±0.31) 62.33(±0.34) 77.25(±0.05) 75.45(±0.01) 72.65(±0.23)
PODNet (Douillard et al., 2020) 65.07(±0.28) 62.93(±0.14) 59.45(±0.28) 76.46(±0.14) 73.52(±0.06) 64.86(±1.31)

w/ EOPC 66.58(±0.01) 64.92(±0.20) 62.13(±0.09) 76.88(±0.18) 74.39(±0.10) 68.57(±0.53)
AANet (Liu et al., 2021) 65.97(±0.40) 64.08(±0.44) 60.44(±0.45) 77.97(±0.05) 74.98(±0.21) 68.51(±0.10)

w/ EOPC 67.04(±0.36) 65.17(±0.26) 61.69(±0.16) 78.77(±0.14) 74.82(±0.19) 70.15(±0.14)
DyTox (Douillard et al., 2022) 69.48(±0.12) 65.90(±0.14) 58.82(±0.18) 74.45(±0.10) 70.67(±0.09) 64.61(±0.22)

w/ EOPC 70.04(±0.09) 66.77(±0.11) 60.31(±0.08) 75.21(±0.05) 71.95(±0.05) 65.91(±0.10)
DyTox-2K 71.47(±0.08) 68.37(±0.07) 63.59(±0.14) 75.95(±0.22) 73.24(±0.17) 69.75(±0.12)
w/ EOPC 72.02(±0.09) 69.47(±0.08) 64.74(±0.07) 76.40(±0.02) 74.14(±0.03) 70.42(±0.07)

Table 3. Repeated adaptation and comparison results of EOPC on CIFAR-100 and ImageNet-100. Results are reported with mean and
standard deviation. We allocate 2 GPUs for the distributed training of DyTox and use the distributed memory option. For a sequence of
tasks containing 100 classes, the total memory size of existing CIL methods is commonly set to 2K (i.e., 20 representative samples for
each class). To keep fairness, DyTox leaves a total memory size of 1K for each GPU process. We also provide the results of 2K for each
GPU process, denoted by DyTox-2K.

E. Companions with Existing Connectivity Finding Methods
E.1. Experimental Scheme

We compare Fourier-based OPC with three kinds of existing non-linear mode connectivity finding methods, including
polygonal chain (Garipov et al., 2018), Bezier curve (Garipov et al., 2018), and simplicial complexes (Benton et al., 2021).
We use these methods to find a low-loss path between two adjacent continual minima according to Equation (4). Therefore,
a switching point (SP) pθ(λ

∗) needs to be appointed on the path for bridging previous tasks and the new task. Different
from the original definition of the polygonal chain, we reformulate it to take λ∗ as the SP and the parameterized path is,

pθ(λ) =

{
(1− λ

λ∗ )ŵt−1 +
λ
λ∗ θ, 0 ≤ λ ≤ λ∗

(1− λ−λ∗

1−λ∗ )θ + λ−λ∗

1−λ∗ wt, λ∗ ≤ λ ≤ 1,
(23)

where θ ∈ Rn. The simplicial complexes is a generalization of polygonal chain, which needs multiple iterations of polygonal
chain to build a low-loss volume, we use two connectors to connect adjacent continual minima, and it eventually constructs
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Method Params CIFAR-100
A (%) ↑ 5 10 25
PODNet 0 65.07(±0.28) 62.93(±0.14) 59.45(±0.28)
w/ Line 0 64.85(±0.30) 60.72(±0.37) 56.63(±0.06)

w/ Polygonal Chain 5× 105 64.41(±0.18) 60.02(±0.10) 52.40(±0.18)
w/ Bezier Curve 5× 105 66.81(±0.08) 64.06(±0.07) 57.59(±0.12)

w/ Second-order Bezier Curve 10× 105 66.56(±0.11) 62.69(±0.04) 55.02(±0.23)
w/ Simplicial Complexes 10× 105 66.73(±0.06) 63.71(±0.01) 57.33(±0.23)

w/ Fourier-based OPC 2× 96× 4 66.53(±0.06) 64.53(±0.34) 62.00(±0.16)

Table 4. Results of comparing Fourier-based OPC with existing connectivity finding methods on CIFAR-100. We run each experiment 3
times and report their mean and standard deviation. “Params” is the number of parameters that need to be learned for each method. The
continual model used for the classification task of CIFAR-100 contains approximately 5× 105 parameters and 96 learnable layers.

two triangles with these four points (two connectors and two minima) in parameter space. The Bezier curve is the same as
the original definition, i.e., pθ(λ) = (1− λ)2ŵt−1 + 2λ(1− λ)θ + λ2wt. We also consider the second-order Bezier curve
with two bends, its formulation is,

pθ(λ) = (1− λ)3ŵt−1 + 3λ(1− λ)2θ1 + 3(1− λ)λ2θ2 + λ3wt, (24)

where parameters of the path θ = [θ1,θ2] ∈ Rn×2. The proposed Fourier-based OPC is defined in Equation (10). For
polygonal chain, Bezier curve, and OPC, we use SP pθ(λ

∗) as the substitute for endpoints. For simplicial complexes,
we take the center of two connectors as the substitute for endpoints. Table 4 shows the results of these non-linear mode
connectivity finding methods when adapting to PODNet. It can be seen that OPC achieves comparable performance with
Bezier curve for 5 steps, and get the best results for 10 and 25 steps of incremental learning. In addition, we count the
number of parameters that need to be learned for each method. It can be seen that the number of parameters that OPC needs
is significantly fewer than other mode connectivity finding methods, which indicates OPC is a parameter-saving algorithm.

E.2. Effectiveness Analysis

We try to analyze why Fourier-based OPC is better than other mode connectivity finding methods in terms of adapting
to CIL. In the scenario of CIL, two adjacent continual minima tend to stay in regions with big differences. As shown in
the first row of Figure 10, for task t ≥ 3, the minimum of the previous task ŵt−1 stays in the low-loss region of previous
tasks, on the contrary, the minimum of the new task wt stays in the high-loss ridge of previous tasks, this is a reflection of
the catastrophic forgetting problem in the loss landscape. In this work, we try to find a low-loss path connecting adjacent
continual minima. To minimize forgetting previous tasks to the maximum extent when moving from the previous minimum
to the new minimum, the path must walk along the same direction as the contour of a region, since the change in loss is zero
along the contour. In addition, the path ultimately needs to pass through the new minimum, which forces the path to shift to
the direction of the next contour and creates a bend in the path.

These two requirements are very challenging for existing non-linear mode connectivity finding methods. For the polygonal
chain and the Bezier curve, they can only construct a path with multiple bends in a parameter-inefficient way. As results are
shown in Table 4, the Bezier curve with one bend achieves the best result for relatively simple 5-step learning. However,
with the increasing of steps, forgetting is aggravating, the path needs to shift from one contour direction to another multiple
times. Therefore, the path constructed by existing connectivity finding methods with only one or two bends can not meet
this requirement, and results in Table 4 show that polygonal chain and the Bezier curve deteriorate the adaptation baseline
when learning for 25 steps. The simplicial complexes construct a low-loss volume between minima and can improve the
baseline for 5 and 10 steps, however, there will exist a similar problem as the Bezier curve when learning for 25 steps, it
can not flexibly shift between different loss regions. The proposed OPC is based on the Fourier series and scaling model
parameters in a layer-wise manner to construct a space curve in subspace RL+1, it exhibits more flexibility and parameter
efficiency compared with existing methods. Extensive visualization results shown in Figures 8, 9, and 10 demonstrate
the OPC optimized path tends to walk along the contours of the ridge for staying in the low-loss region as far as possible.
Therefore, the Fourier-based OPC can perform better than other non-linear connectivity finding methods when adapting to
CIL in a more parameter-saving way.
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F. Dealing with the Steep Change of L
As shown in Equation (4), the loss L used for calculation ℓ(θ) is different before and after λ∗. We visualize the OPC-
optimized paths during the process of optimization and calculate the memory loss along paths, results are shown in Figure 7.
It can be seen that as the path is continuously pulled to the low-loss region in the loss landscape of previous tasks, there
exist steep changes of L along the optimized paths. We find that this disconnectivity will affect the stability of optimization,
especially for a long sequence of tasks. To deal with this problem, we take the following three measures:

• First, L is weighted according to its position, i.e., λ. The weighting rule is: L = L ∗ (abs(λ− 0.5) + ρ), where ρ is a
preset balance coefficient, commonly set to 0.1. Therefore, points near the middle of the path will be assigned to smaller
weights, and weaken the instability from discontinuity.

• Second, we expand the calculation range of L1:t−1 in Equation (4) to the whole interval [0, 1]. This will prioritize ensuring
the continuity of L1:t−1 as catastrophic forgetting is the main problem of continual learning.

• Third, we empirically find that setting a nonzero weight decay on the parameters of the path (i.e., θ) will make optimization
more stable. We commonly set the same value as the weight decay of the continual learning model.
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ŵ1 pθ(λ∗) w2

3.2

3.4

3.6

3.8

4.0

L
al

on
g

O
P

C

L1:t−1

Lt

OPC at iter 0

OPC at iter 10

Final OPC

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.15

3.30

3.45

3.60

3.75

3.90

4.05

4.20

Figure 7. The loss landscapes and loss L curves when OPC optimizing path between ŵ1 and w2. Left: The loss landscape of previous
tasks (task 1). Center: The loss landscape of the new task (task 2). Right: The loss L curves along OPC-optimized paths, the part
between [ŵ1,pθ(λ

∗)] is the loss L1:t−1 on the memory of previous tasks, the part between [pθ(λ
∗),w2] is the loss Lt on the memory

of the new task. There exist steep changes of L at the SP points along paths.

G. Visualization
To study the effects of order N in the Fourier series (Equation 10), we visualize the low-loss path found by OPC with
different orders in Figure 8. Furthermore, to study the effects of the switching point, we visualize the low-loss path found by
OPC with different values of λ∗ in Figure 9. Finally, we visualize the detailed results of OPC finding the low-loss path
between two adjacent continual minima in Figure 10. These results are obtained based on PODNet (Douillard et al., 2020)
on CIFAR-100 for 5 steps of incremental learning.
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Figure 8. Results of OPC finding the low-loss path with different orders of Fourier series (N ∈ {2, 4, 6}), Lp means the loss landscape of
previous tasks. It can be seen that the path found with N = 2 is smooth, although part of the path stays in a lower-loss region compared
with the linear connection, most of the path still stays on the high-loss ridge. When N = 6, the path found by OPC fluctuates severely,
although more part of the path stays in the low-loss region compared with N = 2, it will make the switching point unstable and affect the
function of ensembling. In contrast, the path found with N = 4 obtains a good balance between N = 2 and N = 6.
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ŵ5→w6

−0.1 0.2 0.5 0.8 1.1
−0.5

0.0

0.5

1.0

1.5

L p
,λ
∗

=
0
.8

5
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Figure 9. Results of OPC finding the low-loss path with different positions of the switching point (λ∗ ∈ {0.75, 0.85, 0.9}), Lp means
the loss landscape of previous tasks. For a different SP, the final state of the path can be divided into two situations. For t = 2, two
minima are blocked by the high-loss ridge but can be connected with a non-linear low-loss path. There is not much difference between the
optimized paths with different SP points, they all successfully stay in the low-loss region. For t ≥ 3, two adjacent continual minima stay
in regions with big differences, the previous minimum stays in the low-loss region and the new stays on the high-loss ridge. In this case,
with a larger value of λ∗, the optimized path will extend outward along the direction of the contour to stay in the low-loss region as far as
possible, however, this will make the SP stay in a higher loss region. Therefore, we need to balance the position of SP and the demand
that more part of the path is in the low-loss region.
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ŵ4→w5

−0.1 0.2 0.5 0.8 1.1
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Figure 10. Detailed results of OPC finding the low-loss path between two adjacent continual minima. Lp, Ln, ℓ(θ), Ap, An, and Aall are
training loss on previous tasks, training loss on the new task, training loss of OPC on the memory M, testing accuracy on previous tasks,
testing accuracy on the new task, and testing accuracy on all learned tasks. It can be seen that the path found by OPC tends to stay in a
lower-loss region in the training loss landscape of previous tasks compared with the linear connection. In addition, because we introduce
the switching point in Equation (4), and assign different parts of the path to previous tasks and the new task, the testing accuracy of the
new task along the path is not greatly affected. Therefore, there is an interval on the path that achieves higher accuracy on learned tasks.
This confirms that OPC achieves higher CIL performance by mainly reducing forgetting of previous tasks. Furthermore, we can observe
that the training loss of OPC along the path is rapidly decreased when minima are clearly blocked by the high-loss ridge (ŵ1 → w2),
which demonstrates OPC is an efficient algorithm for finding the connectivity between minima.
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