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Abstract

Supervised contrastive learning has shown im-001
pressive performance across multiple NLP002
tasks (Gunel et al., 2020; Li et al., 2021; Gao003
et al., 2021), enhancing model generalization004
by shortening the distance between semantic005
representations of samples in the same cate-006
gory and increasing the distance between those007
of different categories. For the task of re-008
sponse selection, directly calculating the sim-009
ilarity between context and response may lead010
to suboptimal model performance due to in-011
sufficient attention mechanism interaction, as012
compared to traditional full attention methods.013
To address this issue, we propose an inno-014
vative interactive supervised contrastive learn-015
ing framework that transforms the problem016
of response selection from classification into017
a matching issue by introducing a special re-018
sponse named anchor response during train-019
ing, effectively applying contrastive learning020
to this task. This framework not only com-021
bines the advantages of deep context interac-022
tion found in traditional methods but also lever-023
ages the strong generalization capability of024
contrastive learning. Additionally, we intro-025
duce a heuristic method for hard negative re-026
sponses sampling, which significantly reduces027
the need for large numbers of negative samples028
in contrastive learning. Applying our method,029
the results obtained on three publicly available030
response selection datasets have reached the031
current state-of-the-art level 1.032

1 Introduction033

Multi-turn dialogue systems are crucial in NLP,034

aiming to enable AI to converse with humans using035

natural language. These systems must comprehend036

context and generate fitting responses using two037

primary approaches: retrieval-based and generative038

methods. Retrieval-based systems select the best039

response from a scored set of candidates, while040

1Codes will be released when the manuscript is accepted.

generative systems create new replies from con- 041

textual clues, offering more versatility but risking 042

contextually inaccurate responses. To mitigate this, 043

developers generate multiple responses for evalu- 044

ation or use a Reward Model with PPO algorithm 045

(Bai et al., 2022) for fine-tuning. Regardless of 046

the approach, ranking candidate responses and se- 047

lecting the appropriate effectively remains a key 048

challenge. 049

In addressing the issue of candidate response 050

selection, the research community has proposed a 051

variety of approaches. Gu et al. (2019) and Chen 052

and Wang (2019) proposed matching networks 053

based on Bidirectional Long Short-Term Memory 054

networks (Bi-LSTM). Tao et al. (2019) and Yuan 055

et al. (2019) combined the attention mechanism 056

with multi-hop interaction models using Gated 057

Recurrent Unit (GRU) networks. With the rise 058

of pretrained models such as BERT(Devlin et al., 059

2019), researchers have begun utilizing these mod- 060

els to improve the task of response selection, while 061

also making customized enhancements consider- 062

ing the task’s specificity. For instance, Gu et al. 063

(2020) introduced a strategy to integrate role in- 064

formation of multi-turn dialogues into the BERT 065

model. Humeau et al. (2019) and Song et al. (2023) 066

presented methods capable of handling multiple 067

candidate responses simultaneously and designed 068

various attention strategies for the interaction be- 069

tween context and responses. Han et al. (2021) 070

and Xu et al. (2021) proposed continual pretraining 071

methods with self-supervised training objectives 072

customized for the response selection task. 073

Previous research on the task of response selec- 074

tion has emphasized the interaction between con- 075

text and responses and the design of pretraining 076

objectives, with less focus on the limitations of 077

the cross-entropy loss function. Liu et al. (2016); 078

Cao et al. (2019) have shown that this loss function 079

can hinder model generalization and is vulnera- 080

ble to noise and attacks. Supervised contrastive 081
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learning is suggested (Gunel et al., 2020; Liu et al.,082

2016) to overcome these issues by clustering se-083

mantically similar samples and separating dissimi-084

lar ones. The temperature parameter in contrastive085

loss also affects the model’s emphasis on harder086

samples (Wang and Liu, 2021) and can be tuned087

for optimal performance. This paper aims to de-088

velop an effective supervised contrastive learning089

framework for response selection.090

In applying supervised contrastive learning to091

response selection, the challenges include select-092

ing appropriate anchors and negative responses,093

as they affect model outcomes and computational094

efficiency. Unlike Li et al. (2021) that rely on com-095

plex data augmentation such as synonym replace-096

ment or dropout, this study introduces a simpler097

approach that avoids these operations. Our innova-098

tions have led to state-of-the-art results on various099

public datasets. The main contributions of this100

paper can be summarized as follows:101

1. We propose a supervised contrastive learning102

framework tailored for the task of response103

selection, which can train models with better104

generalization than previous approaches based105

on cross-entropy classification.106

2. On the foundation of the aforementioned107

framework, we introduce a heuristic method108

for hard negative responses sampling, which,109

based on similarity measures, further en-110

hances the training efficiency and perfor-111

mance of the model.112

3. Experiments conducted on three publicly113

available response selection datasets confirm114

the effectiveness of our method, with the re-115

sults currently representing the best-known116

performance.117

We will make the source code and models pub-118

licly available for other researchers to reproduce119

our results or for future studies.120

2 Releated Work121

Uni-Encoder In response selection task, binary122

classification based on cross-entropy is standard123

(Gu et al., 2020; Whang et al., 2019; Humeau et al.,124

2019; Han et al., 2021), labeling context-response125

pairs as 0 or 1 and processing them through bi-126

nary classifiers. This approach can lead to redun-127

dant context encoding for multiple responses. To128

address this, UniEncoder, a BERT-based encoder,129

was introduced by Song et al. (2023), which pairs 130

a single context segment with concatenated candi- 131

date responses, modifying BERT’s attention mask 132

to isolate responses from each other while aligning 133

them with the context. This encoder uses a multi- 134

class classification network for response selection, 135

proving more efficient and effective than binary 136

methods. The dialogue encoder in our study builds 137

on UniEncoder by incorporating a unidirectional at- 138

tention mechanism to reduce confusion in contexts 139

with many candidate responses. 140

Supervised Contrastive Learning Contrastive 141

learning has recently excelled in various NLP tasks, 142

beneficial in both unsupervised and supervised con- 143

texts. It works by aligning closer the represen- 144

tations of anchors and positives, distancing them 145

from negatives, and promoting uniform vector dis- 146

tribution. Gunel et al. (2020) shows that supervised 147

contrastive learning fine-tuning enhances general- 148

ization and robustness, even in data-scarce situa- 149

tions. Additionally, Li et al. (2021) applied it to 150

response selection, combining it with cross-entropy 151

loss to improve generalization. This paper intro- 152

duces a new contrastive learning-based response 153

selection framework, distinct from prior work as 154

it eschews cross-entropy, focusing exclusively on 155

contrastive learning for model training and better 156

generalization. 157

Data Augmentation Data augmentation in NLP 158

improves task performance, including response se- 159

lection, where the correlation between responses 160

and contexts is leveraged. A common technique is 161

reusing positive responses from other samples as 162

negative ones for a given context (Li et al., 2019; 163

Humeau et al., 2019; Song et al., 2023). Li et al. 164

(2019) suggests that selecting challenging negative 165

responses, rather than random ones, is more ef- 166

fective. This involves randomly picking multiple 167

negative responses, ranking them by the model’s 168

scores, and choosing the lower-scoring ones as diffi- 169

cult distractors. To avoid high computational costs, 170

the initial pool of negative responses should be 171

limited. This paper suggests a heuristic approach 172

using cosine similarity to simplify the selection of 173

challenging negative responses and reduce compu- 174

tational demands. 175

3 Methodology 176

3.1 Problem Formalization 177

In this research, we consider a dataset D = 178

(ci, ri, yi)
N
i=1 composed of dialogues, where ci = 179
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u1, u2, u3 . . . um represents the multi-turn dialogue180

context, ri denotes the corresponding response, and181

yi is the label with 1 indicating the correct response182

and 0 indicating the incorrect response. Our task183

is to learn a matching function f, which can accept184

any context ci and response ri as input, and output185

their matching score f(ci, ri). During the testing186

phase, for a given context ci, n candidate responses187

(rj)
n
j=1 are provided, and the model needs to com-188

pute the score for each response f(ci, rj), subse-189

quently ranking the candidate responses based on190

their scores.191

3.2 Model Structure192

In this paper, we propose a method based on the193

BERT architecture, as shown in Figure 1. This194

method inputs the context and multiple candidate195

responses into the encoding network together, and196

encodes them through ample attention interaction.197

At the end of the candidate responses, we intro-198

duce a special response, composed of k special199

tokens, to serve as an anchor response for the con-200

trastive learning distance measurement. Through201

our specially designed encoder, we obtain semantic202

representations for the anchor response as well as203

the positive and negative samples, which are then204

processed through a nonlinear projection layer.205

Through contrastive learning, our model strives206

to minimize the distance between the anchor re-207

sponse and positive responses while maximizing208

the distance between the anchor response and nega-209

tive responses. To enhance the effects of contrastive210

learning, we utilize a memory bank to record and211

update the semantic representations of samples and212

employ a straightforward yet efficient metric func-213

tion to select more challenging negative responses.214

During the testing phase, it is only necessary to215

encode the context and candidate responses with216

the anchor response through the trained model, cal-217

culate the similarity between the anchor response218

and the semantic representations of each candidate219

response, and then rank them based on similarity.220

3.2.1 Dialogue Encoding221

In this work, we developed a BERT-based encoder222

with specific enhancements. The input sequence223

includes dialogue context, a positive response, sev-224

eral negative responses, and a special anchor re-225

sponse, detailed in Section 3.2.2. We concatenated226

these components, inserting role identifiers [SPK1]227

and [SPK2] between sentences of the context, a228

[CLS] token at the beginning of the context and229

responses, and [SEP] tokens as separators. To dis- 230

tinguish between the context and the responses, we 231

used different segment ids, and for the positional 232

encoding, each response’s positional identifier was 233

continuous with the context but discontinuous be- 234

tween different responses to minimize the influence 235

of the positive and negative sample concatenation 236

order on the model. 237

We modified the attention mechanism to prevent 238

information leakage between positive and nega- 239

tive samples, as suggested by Song et al. (2023). 240

Our custom attention allows unidirectional flow 241

from responses to context, blocking the opposite 242

direction and inter-response perception, while pre- 243

serving bidirectional attention within the context 244

and individual responses. This is illustrated in the 245

attention mask matrix in Figure 1. The encoder 246

facilitates interaction between each response and 247

the context. After the encoding process, we aver- 248

age pool the token hidden states to obtain response 249

representations hr0 , hr1 . . . hrk+n
, hanc, which are 250

further processed via a two-layer projector to pro- 251

duce semantic vectors h′r0 , h′r1 . . . h
′
rk+n

, h′anc, in 252

line with Chen et al. (2020). 253

3.2.2 Anchor Response 254

In the Masked Language Model (MLM), we mask 255

some of the tokens in a sentence and then use the 256

context to predict these tokens, thereby achieving 257

self-supervised learning of token semantic repre- 258

sentations. Inspired by this approach, we intro- 259

duced a special sentence composed of several spe- 260

cial tokens into the candidate responses, which we 261

refer to as the anchor response as shown in 2. The 262

purpose of this anchor response is to utilize context 263

information to learn the semantic representation of 264

appropriate responses. In a specific dialogue, there 265

may be multiple correct responses, and the same 266

response can be expressed in various ways; hence 267

we cannot directly predict the composition of the 268

correct response in terms of tokens as we do in the 269

MLM task. However, multiple correct responses 270

should be semantically similar, or in other words, 271

their distance in the representation space should be 272

relatively close. Therefore, we consider employing 273

a contrastive learning approach. By minimizing the 274

distance between the anchor response and positive 275

responses in the semantic space, and maximizing 276

the distance from negative responses, we aim to 277

learn the semantic representation of the anchor re- 278

sponse. 279

The anchor response is composed of multiple 280
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Figure 1: SimSCR Model Overview: a) Dialogue context, positive/negative responses, and an anchor response are encoded,
with attention facilitating hidden state acquisition and contrastive learning refining semantic proximities. b) Responses use
repeated position encoding with unidirectional attention to context. c) Memory Banks archive representation vectors and a metric
function identifies challenging negatives.

special tokens [anchor], and its length and method281

of initialization directly affect the model’s out-282

comes. We experimented with two initialization283

approaches: random initialization and using pre-284

existing tokens from the vocabulary. The compara-285

tive results of the experiments are depicted in the286

figure 3.287

__url__ i get this error when trying to 
install a plugin extension for pidgin

when you untar the package is there 
a readme or install file in it

yes and its in another language ..

so what s the problem

did you look at the error i posted ..

i did n't see one

__url__ it says it cant find anything it 
always says that

your environment is not setup 
correctly and missing the header files

what do you mean my enviroment is 
not set up properly

when i type \". __path__ it says bash 
__path__ no such file or directory

i do n't need audio for yamipod i just 
need to put songs onto my ipod
well then doubly he didn't delete 

telnetd by installing inetd
the host name i should be using is 

this for a home environment
well it works in windows .. how isnt it 

setup properly
what are kernel header files and why 

are they important

[anchor][anchor]…[anchor]

C
an
di
da
te
R
es
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es

Figure 2: The dialog context is on the left, with positive,
negative, and hard negative responses in green, yellow, and red
boxes, respectively. Dashed boxes denote anchor responses,
comprised of multiple [anchor] tokens.

3.2.3 Training Objective288

Gunel et al. (2020) suggests that models trained289

with contrastive loss demonstrate stronger general-290

ization capabilities and higher robustness to noise.291

Additionally, Wang and Liu (2021) also mentions 292

that contrastive loss functions can automatically 293

identify challenging negative samples. Based on 294

these insights, we adopt contrastive loss as the op- 295

timization objective in this paper. Our objective 296

function is defined as shown in Equation 1, where 297

r0 denotes the positive sample response, and sim 298

represents the similarity measure function; in our 299

experiments, we use cosine similarity. The τ is a 300

temperature parameter, which ranges from 0 to 1, 301

and can be adjusted during the training process to 302

control the model’s sensitivity to difficult negative 303

responses. 304

`sim = −log[ e
sim(h

′
Ranc

,h
′
R0

)/τ

∑N
j=0e

sim(h
′
Ranc

,h
′
Rj

)/τ
] (1) 305

3.3 Hard Negative Responses Sampling 306

Adopting the methodology from Humeau et al. 307

(2019), we use positive responses from the same 308

batch as negative responses for the current dialogue. 309

Though more negatives could theoretically improve 310

model performance, their computational cost is 311

quadratic due to the Transformer encoder’s com- 312

plexity. Consequently, we have to limit the negative 313
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responses, which restricts the contrastive loss’s ef-314

ficiency in identifying hard negatives. To mitigate315

this, we propose a heuristic method for mining hard316

negative responses that selectively adds a small317

number of more challenging negative responses318

to the model input, thereby aiding the model in319

learning better semantic representations.320

We utilize two memory banks Manc and Mpos,321

each with a capacity of N (the dataset’s size), to322

store the encoded and projected hidden states h′anc323

and h′pos of anchors and positives. For each sample324

i, we fetch its h′anc from the anchor memory bank,325

select K h′pos from the positive memory bank at326

random, and compute their cosine distances. This327

measurement helps discern the difficulty of nega-328

tives, allowing us to choose the hardest up to a limit329

of n, since our training objective is to optimize the330

cosine distance between these responses.331

The pseudocode for the hard negative responses332

sampling algorithm is as Algorithm 1.333

Algorithm 1: Hard negative responses sam-
pling algorithm
Data: Manc, Mpos, K, difficulty coefficient

β, sample index i, sampling number
n

Result: hard negative responses of the ith
sample Si = {rj}nj=1

1 begin
2 h

′
anc ←Manc[i]

3 C = {h′
posj}

K
j=1 ← random(Mpos,K)

4 G = {dj}Kj=1 ← cosine(h
′
anc, C)

5 G
′
= {(dj , indexj)}Kj=1 ←

sort(G, reverse = true)
6 r ← max(n+ 1,K ∗ β)
7 I = {(dk, indexk)}nk=1 ←

random(G
′
[0 : r], n+ 1)

8 S ← []
9 foreach element e in I do

10 index← e[1]
11 if index 6= i then
12 r+index ← positive response of

the indexth sample
13 S.append(r+index)

14 if len(S) >= n then
15 return S

4 Experiments 334

4.1 Datasets 335

This study conducted experiments on three public 336

response selection datasets to evaluate the effec- 337

tiveness of our method. These datasets include: 338

• Douban Conversation (Wu et al., 2017), 339

which is a conversation dataset crawled from 340

the Douban forum, a popular social media 341

website in China. 342

• E-commerce(Wu et al., 2018a), comprising 343

multi-turn dialogue data between customer 344

service representatives and consumers col- 345

lected from Taobao, the largest e-commerce 346

platform in China. 347

• Ubuntu Dialogue v1 (Lowe et al., 2015), an 348

English multi-turn dialogue dataset widely 349

used in technical support scenarios, particu- 350

larly regarding the Ubuntu system. 351

The size and number of turns for each dataset are 352

summarized in Table 1.

Table 1: Dataset Statistics

Dataset Metric Train Valid Test

Douban
Volume 1M 50K 6670
Turns 6.69 6.75 5.95

Pos:Neg 1:1 1:1 1.2:8.8

E-commerce
Volume 1M 10K 10K
Turns 5.51 5.48 5.64

Pos:Neg 1:1 1:1 1:9

Ubuntu v1
Volume 1M 500K 500K
Turns 10.13 10.11 10.11

Pos:Neg 1:1 1:9 1:9

353

Following the practice in Song et al. (2023), we 354

have transformed the dataset D to ensure that each 355

sample contains both a positive response r+i and 356

at least one negative response r−i , resulting in the 357

updated dataset D′ = (ci, r
+
i , r

−
i )

N
i=1. This trans- 358

formation includes the following steps: 359

• Aggregating samples with the same context ci 360

so that each sample contains only one positive 361

response and at least one negative response. If 362

multiple positive responses exist, they can be 363

split into multiple independent samples. 364

• For samples that only have positive responses, 365

we select responses from other samples to 366

serve as negative responses. 367
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• For samples that only have negative responses,368

we take the last turn of the original context as369

positive response and the other turns as new370

context, while keeping the negative responses371

unchanged.372

4.2 Metrics373

Similar to previous studies (Song et al., 2023; Han374

et al., 2021), we adopt recall as the primary evalua-375

tion metric, where recall is defined as Rn@k, indi-376

cating the proportion of correct responses that are377

ranked within the top k out of all n candidate replies378

by the model. Specifically, we use R10@1, R10@2,379

and R10@5 as evaluation metrics for the Ubuntu v1380

and E-commerce datasets. For the Douban dataset,381

since some dialogues in the test set contain multiple382

positive responses, we introduce additional evalua-383

tion metrics including top 1 accuracy P@1, Mean384

Average Precision (MAP), and Mean Reciprocal385

Rank (MRR) as a supplement.386

4.3 Baselines387

In the field of response selection tasks, the per-388

formance of pre-trained models has significantly389

surpassed that of traditional matching algorithms.390

Consequently, the baseline methods selected in391

this study are all based on pre-trained models,392

including BERT(Gu et al., 2020), RoBERTa-SS-393

DA(Lu et al., 2020), SA-BERT(Gu et al., 2020),394

SA-BERT+HCL(Su et al., 2021), UMSBERT and395

UMSBERT+(Whang et al., 2021), MDFN(Liu396

et al., 2021), BERT-SL(Xu et al., 2021), BERT-397

UMS+FGC(Li et al., 2021), BERT-FP (Han et al.,398

2021), Uni-Enc+BERT-FP(Song et al., 2023).399

Among them, Uni-Enc+BERT-FP was the previ-400

ous state-of-the-art method.401

4.4 Setup402

Our model, built using the transformers library2,403

initialized with pre-trained weights from Hugging-404

Face3 and fine-tuned weights by Han et al. (2021),405

was trained on an NVIDIA A100-SXM4-80GB406

GPU. We used the Adam optimizer with a cosine407

learning rate scheduler at a rate of 5e-5 and em-408

ployed deepspeed4 for efficient mixed-precision409

training. The training settings included a batch size410

of 16, a default contrastive learning temperature of411

0.07, and 8 hard negative responses. The difficulty412

coefficient β was dynamically adjusted; it was 0.05413

2https://github.com/huggingface/transformers
3https://huggingface.co/models
4https://github.com/microsoft/DeepSpeed

for the Douban and e-commerce datasets and 0.75 414

for Ubuntu-v1. Consistent with Song et al. (2023), 415

we incorporated the MLM loss into the model’s 416

final loss function to enhance training stability and 417

effectiveness. 418

4.5 Results 419

Table 2 presents the performance of the proposed 420

SimSCR method on three different datasets in this 421

study. The comparative analysis of the results 422

shows that SimSCR has surpassed existing com- 423

parative methods across all three datasets. Specifi- 424

cally, SimSCR has achieved improvements of 1.8%, 425

2.3%, and 0.3% on the R10@1 metric for the E- 426

commerce, Douban, and Ubuntu v1 datasets, re- 427

spectively. Notably, the performance gains of Sim- 428

SCR are more significant on the Douban and E- 429

commerce datasets, which have relatively lower 430

benchmarks. This reflects the suitability of the 431

proposed method in handling more challenging 432

datasets. Additionally, the contrastive loss function 433

adopted in this study is characterized by its ability 434

to identify difficult negative samples (Wang and 435

Liu, 2021), which may be a key factor contributing 436

to the performance improvement. 437

Although BERT-UMS+FGC (Li et al., 2021) 438

also applied a contrastive learning mechanism, the 439

design of its loss function suggests that contrastive 440

learning only serves as an auxiliary to the cross- 441

entropy loss, thus limiting the performance gains it 442

can provide. The experimental results indicate that, 443

even without the adoption of post-training weights, 444

SimSCR outperforms BERT-UMS+FGC on most 445

evaluation metrics on the Douban and Ubuntu v1 446

datasets. In summary, these experimental results 447

fully validate the effectiveness of the proposed 448

method in the task of response selection. 449

5 Further Analysis 450

5.1 Anchor Response 451

The anchor response is constructed from multiple 452

special tokens [anchor]. For the initialization of 453

the token vectors, we experimented with two ap- 454

proaches: random initialization and using existing 455

tokens from the vocabulary. The comparative re- 456

sults of the experiments are illustrated in the fol- 457

lowing figure. As can be seen from the results, 458

the initialization using existing tokens from the 459

vocabulary yields more stable outcomes, with the 460

best performance observed when the length of the 461

anchor response is equal to 10. 462
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Table 2: Main results on three benchmarks. The models marked with † have been post-trained, the others use naive BERT
weights. Results acquired using SimSCR outperforms the original results with a significance level p-value < 0.05.

Models
E-commerce Douban Ubuntu v1

R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5 R10@1 R10@2 R10@5

BERT(Gu et al., 2020) 0.610 0.814 0.973 0.591 0.633 0.454 0.280 0.470 0.828 0.808 0.897 0.975
RoBERTa-SS-DA(Lu et al., 2020) 0.627 0.835 0.980 0.602 0.646 0.460 0.280 0.495 0.847 0.826 0.909 0.978
SA-BERT(Gu et al., 2020) 0.704 0.879 0.985 0.619 0.659 0.496 0.313 0.481 0.847 0.855 0.928 0.983
SA-BERT+HCL(Su et al., 2021) 0.721 0.896 0.993 0.639 0.681 0.514 0.330 0.531 0.858 0.867 0.940 0.992
UMSBERT(Whang et al., 2021) 0.674 0.861 0.980 0.597 0.639 0.466 0.285 0.471 0.829 0.843 0.920 0.982
UMSBERT+(Whang et al., 2021) 0.762 0.905 0.986 0.625 0.664 0.499 0.318 0.482 0.858 0.875 0.942 0.988
MDFN(Liu et al., 2021) 0.639 0.829 0.971 0.624 0.663 0.498 0.325 0.511 0.855 0.866 0.932 0.984
BERT-SL(Xu et al., 2021) 0.776 0.919 0.991 - - - - - - 0.884 0.946 0.990
† BERT-UMS+FGC(Li et al., 2021) - - - 0.627 0.670 0.500 0.326 0.512 0.869 0.886 0.948 0.990
† BERT-FP(Han et al., 2021) 0.870 0.956 0.993 0.644 0.680 0.512 0.324 0.542 0.870 0.911 0.962 0.994
† Uni-Enc+BERT-FP(Song et al., 2023) 0.910 0.970 0.997 0.648 0.688 0.518 0.327 0.557 0.865 0.916 0.965 0.994
SimSCR(Ours) 0.899 0.957 0.997 0.652 0.695 0.531 0.336 0.539 0.871 0.890 0.947 0.989
† SimSCR+BERT-FP(Ours) 0.928 0.975 0.998 0.671 0.712 0.547 0.346 0.584 0.887 0.919 0.965 0.994

Table 3: Ablation study on Douban Conversation dataset.
HNRS - hard negative responses sampling. UniEncoder + FP
is the baseline.

Models MAP MRR P@1 R10@1 R10@2 R10@5

UniEncoder + FP(Song et al., 2023) 0.648 0.688 0.518 0.327 0.557 0.865
SimSCR (Ours) 0.671 (+2.3%) 0.712 0.547 0.351 0.584 0.887
w/o HNRS (Ours) 0.659 (+1.1%) 0.700 0.529 0.341 0.575 0.866
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Figure 3: Comparison of Anchor Response by Init Strategy
across Various Length.

5.2 Ablation Study463

To evaluate the contribution of each component464

proposed in this study to the final performance,465

we conducted ablation experiments on the Douban466

dataset. We chose UniEncoder+FP as the compara-467

tive baseline and separately examined the effects of468

two key components within our method, with the469

specific results presented in Table 3. The findings470

indicate that without the addition of hard negative471

samples, the text-based method can achieve a 1.1%472

increase in Mean Average Precision (MAP), and473

with hard negative samples, it can attain a 2.3%474

improvement in MAP. This demonstrates that the475

hard negative sampling method proposed in this476

paper can significantly enhance the effectiveness477

of contrastive learning in the response selection478

task under the condition of limited negative sample479

capacity.480

5.3 Impact of Parameters 481

In the self-supervised contrastive learning frame- 482

work proposed in this study, three key parameters 483

have a significant impact on model performance: 484

the temperature τ in the contrastive loss, the sam- 485

pling number of hard negative responses n , and 486

the difficulty coefficient h. To investigate the ef- 487

fects of these parameters, we conducted thorough 488

experimental analyses on the Douban Conversation 489

dataset, with the results displayed in Figure 4, 5 490

and 6. 491
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Figure 4: The Impact of Temperature τ
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Figure 5: The Impact of Hard-Neg Responses Number n

Observing the experimental outcomes in Figure 492

4, it is evident that an increase in the temperature 493

τ results in a performance trend that first rises and 494
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then declines, with the model achieving optimal495

performance at τ = 0.07.496

As the number of hard negative responses in-497

creases, the MAP value shows an upward trend (as498

presented in Figure 5); however, considering that499

a large number of hard negative responses would500

increase computational complexity, the experiment501

defaults to sampling 8 hard negative responses502

based on performance considerations.503

As shown in Figure 6, a higher difficulty coeffi-504

cient of negative responses has a positive impact505

on training effectiveness. When the difficulty coef-506

ficient h = 1.0, the model degenerates into a ran-507

dom sampling strategy, and the results indirectly508

confirms the superiority of the sampling approach509

proposed in this study compared to random sam-510

pling.511
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Figure 6: The Impact of Difficulty Coefficient β

5.4 Model Performance512

During the model training phase, the use of addi-513

tional negative samples results in a slower train-514

ing process. However, in the inference stage, our515

method allows concatenating multiple candidate re-516

sponses together, enabling the prediction of several517

samples with a single forward pass, thereby achiev-518

ing an acceleration effect. The results in 4 is a519

performance comparison between the training and520

testing phases, with the comparative method be-521

ing direct classification based on BERT (Gu et al.,522

2020).

Table 4: Model Performance of SimSCR.

Training Inference
Baseline 4.21s / 100 samples 0.17s / 100 samples
Ours 18.31s / 100 samples (0.23x) 0.056s / 100 samples (3.04x)

523

6 Discussion524

This chapter will explore the possibility of applying525

our method to other Transformer models, as well526

as the application extensions.527

6.1 Extending to Other Transformer Models 528

Despite the remarkable achievements of the BERT 529

model in the field of natural language processing, 530

emerging models such as GPT(Brown et al., 2020) 531

and GLM(Du et al., 2022) have also demonstrated 532

outstanding performance and application potential. 533

The supervised contrastive learning framework pro- 534

posed in this paper is also applicable to these mod- 535

els. During application, since these models do 536

not support segment IDs, different markers can be 537

added before the context responses to distinguish 538

them, thereby achieving a similar effect to segment 539

IDs. 540

6.2 As a Reward Model for Training LLM 541

The successful application of the self-supervised 542

contrastive learning method in dialogue response 543

ranking tasks also inspires us to use it as a reward 544

model during the training process of large-scale 545

language models. Especially when using PPO for 546

reinforcement learning training, an efficient reward 547

model is crucial. Our method can serve as a means 548

to train reward models, providing more accurate re- 549

ward signals, thereby helping to guide the model’s 550

training and optimize the final performance. 551

7 Conclusion 552

In this paper, we introduce an innovative super- 553

vised contrastive learning framework to enhance 554

the performance of response selection tasks. This 555

approach not only draws on the advantages of deep 556

context interaction found in tradition methods but 557

also enhances the model’s generalization ability 558

through contrastive learning. To further improve 559

model efficiency, we devised a heuristic sampling 560

method for hard negative responses to reduce the 561

dependence of contrastive learning on large nega- 562

tive sample sets. In experiments, our framework 563

achieved state-of-the-art results on three public re- 564

sponse selection datasets, proving the efficiency 565

and practicality of the supervised contrastive learn- 566

ing framework and the negative sampling strategy. 567

These achievements provide a powerful new tool 568

for response selection tasks and offer valuable ref- 569

erences for the future application of supervised 570

contrastive learning in other NLP tasks. We look 571

forward to extending our framework to a broader 572

range of tasks in future research and exploring new 573

ways to improve model effectiveness. 574
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8 Limitations575

Despite the remarkable achievements of this study576

in the task of response selection, we must acknowl-577

edge some limitations. First, although the inter-578

active supervised contrastive learning framework579

performs well on the current datasets, these datasets580

may not fully cover all types of conversational sce-581

narios. Therefore, the universality and robustness582

of the framework under different dialogue systems583

and diverse contexts still require further valida-584

tion. Our interaction mechanism, while effective585

in facilitating attention interactions between con-586

text and responses, may not be optimized in its587

design, potentially leading to issues with compu-588

tational efficiency or model complexity. Future589

research could explore more efficient interactive590

architectures to reduce the computational burden591

of the model while enhancing performance. Lastly,592

as a training strategy, the generalizability of con-593

trastive learning across different NLP tasks still594

needs further research and validation. In particu-595

lar, whether the approach presented in this paper596

remains effective in tasks substantially different in597

nature from response selection is a question that598

awaits future exploration. In summary, the method599

proposed in this study brings a new perspective600

and significant performance improvements to the601

task of response selection, but it is important to602

consider its limitations regarding data coverage,603

optimization of interaction mechanisms, and gener-604

alizability across different tasks. Future work will605

be devoted to deeper exploration and improvement606

in these areas.607
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