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Abstract

Supervised contrastive learning has shown im-
pressive performance across multiple NLP
tasks (Gunel et al., 2020; Li et al., 2021; Gao
et al., 2021), enhancing model generalization
by shortening the distance between semantic
representations of samples in the same cate-
gory and increasing the distance between those
of different categories. For the task of re-
sponse selection, directly calculating the sim-
ilarity between context and response may lead
to suboptimal model performance due to in-
sufficient attention mechanism interaction, as
compared to traditional full attention methods.
To address this issue, we propose an inno-
vative interactive supervised contrastive learn-
ing framework that transforms the problem
of response selection from classification into
a matching issue by introducing a special re-
sponse named anchor response during train-
ing, effectively applying contrastive learning
to this task. This framework not only com-
bines the advantages of deep context interac-
tion found in traditional methods but also lever-
ages the strong generalization capability of
contrastive learning. Additionally, we intro-
duce a heuristic method for hard negative re-
sponses sampling, which significantly reduces
the need for large numbers of negative samples
in contrastive learning. Applying our method,
the results obtained on three publicly available
response selection datasets have reached the
current state-of-the-art level !.

1 Introduction

Multi-turn dialogue systems are crucial in NLP,
aiming to enable Al to converse with humans using
natural language. These systems must comprehend
context and generate fitting responses using two
primary approaches: retrieval-based and generative
methods. Retrieval-based systems select the best
response from a scored set of candidates, while

!'Codes will be released when the manuscript is accepted.

generative systems create new replies from con-
textual clues, offering more versatility but risking
contextually inaccurate responses. To mitigate this,
developers generate multiple responses for evalu-
ation or use a Reward Model with PPO algorithm
(Bai et al., 2022) for fine-tuning. Regardless of
the approach, ranking candidate responses and se-
lecting the appropriate effectively remains a key
challenge.

In addressing the issue of candidate response
selection, the research community has proposed a
variety of approaches. Gu et al. (2019) and Chen
and Wang (2019) proposed matching networks
based on Bidirectional Long Short-Term Memory
networks (Bi-LSTM). Tao et al. (2019) and Yuan
et al. (2019) combined the attention mechanism
with multi-hop interaction models using Gated
Recurrent Unit (GRU) networks. With the rise
of pretrained models such as BERT(Devlin et al.,
2019), researchers have begun utilizing these mod-
els to improve the task of response selection, while
also making customized enhancements consider-
ing the task’s specificity. For instance, Gu et al.
(2020) introduced a strategy to integrate role in-
formation of multi-turn dialogues into the BERT
model. Humeau et al. (2019) and Song et al. (2023)
presented methods capable of handling multiple
candidate responses simultaneously and designed
various attention strategies for the interaction be-
tween context and responses. Han et al. (2021)
and Xu et al. (2021) proposed continual pretraining
methods with self-supervised training objectives
customized for the response selection task.

Previous research on the task of response selec-
tion has emphasized the interaction between con-
text and responses and the design of pretraining
objectives, with less focus on the limitations of
the cross-entropy loss function. Liu et al. (2016);
Cao et al. (2019) have shown that this loss function
can hinder model generalization and is vulnera-
ble to noise and attacks. Supervised contrastive



learning is suggested (Gunel et al., 2020; Liu et al.,
2016) to overcome these issues by clustering se-
mantically similar samples and separating dissimi-
lar ones. The temperature parameter in contrastive
loss also affects the model’s emphasis on harder
samples (Wang and Liu, 2021) and can be tuned
for optimal performance. This paper aims to de-
velop an effective supervised contrastive learning
framework for response selection.

In applying supervised contrastive learning to
response selection, the challenges include select-
ing appropriate anchors and negative responses,
as they affect model outcomes and computational
efficiency. Unlike Li et al. (2021) that rely on com-
plex data augmentation such as synonym replace-
ment or dropout, this study introduces a simpler
approach that avoids these operations. Our innova-
tions have led to state-of-the-art results on various
public datasets. The main contributions of this
paper can be summarized as follows:

1. We propose a supervised contrastive learning
framework tailored for the task of response
selection, which can train models with better
generalization than previous approaches based
on cross-entropy classification.

2. On the foundation of the aforementioned
framework, we introduce a heuristic method
for hard negative responses sampling, which,
based on similarity measures, further en-
hances the training efficiency and perfor-
mance of the model.

3. Experiments conducted on three publicly
available response selection datasets confirm
the effectiveness of our method, with the re-
sults currently representing the best-known
performance.

We will make the source code and models pub-
licly available for other researchers to reproduce
our results or for future studies.

2 Releated Work

Uni-Encoder In response selection task, binary
classification based on cross-entropy is standard
(Gu et al., 2020; Whang et al., 2019; Humeau et al.,
2019; Han et al., 2021), labeling context-response
pairs as 0 or 1 and processing them through bi-
nary classifiers. This approach can lead to redun-
dant context encoding for multiple responses. To
address this, UniEncoder, a BERT-based encoder,

was introduced by Song et al. (2023), which pairs
a single context segment with concatenated candi-
date responses, modifying BERT’s attention mask
to isolate responses from each other while aligning
them with the context. This encoder uses a multi-
class classification network for response selection,
proving more efficient and effective than binary
methods. The dialogue encoder in our study builds
on UniEncoder by incorporating a unidirectional at-
tention mechanism to reduce confusion in contexts
with many candidate responses.

Supervised Contrastive Learning Contrastive
learning has recently excelled in various NLP tasks,
beneficial in both unsupervised and supervised con-
texts. It works by aligning closer the represen-
tations of anchors and positives, distancing them
from negatives, and promoting uniform vector dis-
tribution. Gunel et al. (2020) shows that supervised
contrastive learning fine-tuning enhances general-
ization and robustness, even in data-scarce situa-
tions. Additionally, Li et al. (2021) applied it to
response selection, combining it with cross-entropy
loss to improve generalization. This paper intro-
duces a new contrastive learning-based response
selection framework, distinct from prior work as
it eschews cross-entropy, focusing exclusively on
contrastive learning for model training and better
generalization.

Data Augmentation Data augmentation in NLP
improves task performance, including response se-
lection, where the correlation between responses
and contexts is leveraged. A common technique is
reusing positive responses from other samples as
negative ones for a given context (Li et al., 2019;
Humeau et al., 2019; Song et al., 2023). Li et al.
(2019) suggests that selecting challenging negative
responses, rather than random ones, is more ef-
fective. This involves randomly picking multiple
negative responses, ranking them by the model’s
scores, and choosing the lower-scoring ones as diffi-
cult distractors. To avoid high computational costs,
the initial pool of negative responses should be
limited. This paper suggests a heuristic approach
using cosine similarity to simplify the selection of
challenging negative responses and reduce compu-
tational demands.

3 Methodology

3.1 Problem Formalization

In this research, we consider a dataset D —
(ci, i, yz)fi , composed of dialogues, where ¢; =



U1, U2, U3 . . . Uy, represents the multi-turn dialogue
context, r; denotes the corresponding response, and
y; 1s the label with 1 indicating the correct response
and 0 indicating the incorrect response. Our task
is to learn a matching function f, which can accept
any context ¢; and response r; as input, and output
their matching score f(c;, ;). During the testing
phase, for a given context ¢;, n candidate responses
(73)%—, are provided, and the model needs to com-
pute the score for each response f(c;,7;), subse-
quently ranking the candidate responses based on
their scores.

3.2 Model Structure

In this paper, we propose a method based on the
BERT architecture, as shown in Figure 1. This
method inputs the context and multiple candidate
responses into the encoding network together, and
encodes them through ample attention interaction.
At the end of the candidate responses, we intro-
duce a special response, composed of k special
tokens, to serve as an anchor response for the con-
trastive learning distance measurement. Through
our specially designed encoder, we obtain semantic
representations for the anchor response as well as
the positive and negative samples, which are then
processed through a nonlinear projection layer.
Through contrastive learning, our model strives
to minimize the distance between the anchor re-
sponse and positive responses while maximizing
the distance between the anchor response and nega-
tive responses. To enhance the effects of contrastive
learning, we utilize a memory bank to record and
update the semantic representations of samples and
employ a straightforward yet efficient metric func-
tion to select more challenging negative responses.
During the testing phase, it is only necessary to
encode the context and candidate responses with
the anchor response through the trained model, cal-
culate the similarity between the anchor response
and the semantic representations of each candidate
response, and then rank them based on similarity.

3.2.1 Dialogue Encoding

In this work, we developed a BERT-based encoder
with specific enhancements. The input sequence
includes dialogue context, a positive response, sev-
eral negative responses, and a special anchor re-
sponse, detailed in Section 3.2.2. We concatenated
these components, inserting role identifiers [SPK1]
and [SPK2] between sentences of the context, a
[CLS] token at the beginning of the context and

responses, and [SEP] tokens as separators. To dis-
tinguish between the context and the responses, we
used different segment ids, and for the positional
encoding, each response’s positional identifier was
continuous with the context but discontinuous be-
tween different responses to minimize the influence
of the positive and negative sample concatenation
order on the model.

We modified the attention mechanism to prevent
information leakage between positive and nega-
tive samples, as suggested by Song et al. (2023).
Our custom attention allows unidirectional flow
from responses to context, blocking the opposite
direction and inter-response perception, while pre-
serving bidirectional attention within the context
and individual responses. This is illustrated in the
attention mask matrix in Figure 1. The encoder
facilitates interaction between each response and
the context. After the encoding process, we aver-
age pool the token hidden states to obtain response
representations Ay, hyy - .. Ay, s hane, which are
further processed via a two-layer projector to pro-
duce semantic vectors h;. , by ...~y hg,,.,in
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line with Chen et al. (2020).

3.2.2 Anchor Response

In the Masked Language Model (MLM), we mask
some of the tokens in a sentence and then use the
context to predict these tokens, thereby achieving
self-supervised learning of token semantic repre-
sentations. Inspired by this approach, we intro-
duced a special sentence composed of several spe-
cial tokens into the candidate responses, which we
refer to as the anchor response as shown in 2. The
purpose of this anchor response is to utilize context
information to learn the semantic representation of
appropriate responses. In a specific dialogue, there
may be multiple correct responses, and the same
response can be expressed in various ways; hence
we cannot directly predict the composition of the
correct response in terms of tokens as we do in the
MLM task. However, multiple correct responses
should be semantically similar, or in other words,
their distance in the representation space should be
relatively close. Therefore, we consider employing
a contrastive learning approach. By minimizing the
distance between the anchor response and positive
responses in the semantic space, and maximizing
the distance from negative responses, we aim to
learn the semantic representation of the anchor re-
sponse.

The anchor response is composed of multiple
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Figure 1: SimSCR Model Overview: a) Dialogue context, positive/negative responses, and an anchor response are encoded,
with attention facilitating hidden state acquisition and contrastive learning refining semantic proximities. b) Responses use
repeated position encoding with unidirectional attention to context. ¢) Memory Banks archive representation vectors and a metric

function identifies challenging negatives.

special tokens [anchor], and its length and method
of initialization directly affect the model’s out-
comes. We experimented with two initialization
approaches: random initialization and using pre-
existing tokens from the vocabulary. The compara-
tive results of the experiments are depicted in the
figure 3.

__url__ i get this error when trying to -
install a plugin extension for pidgin
when you untar the package is there
areadme or install file in it

what do youmean my enviroment is
not set up properly

when i type \". __path__ it says bash
__path__ no suchfile or directory

i do n't need audio for yamipod i just
need to put songs onto my ipod
well then doubly he didn't delete

telnetd by installing inetd

the host name i should be using is
this for a home environment

yes and its in another language ..

so what s the problem

did you look at the error i posted ..

well it works in windows .. how isnt it
setup properly
what are kernel header files and why
are they important

Candidate Responses

i did n't seeone

__url__ it saysit cant find anything it
always says that

your environment is not setup i
correctly and missing the header files '

Figure 2: The dialog context is on the left, with positive,
negative, and hard negative responses in green, yellow, and red
boxes, respectively. Dashed boxes denote anchor responses,
comprised of multiple [anchor] tokens.

3.2.3 Training Objective

Gunel et al. (2020) suggests that models trained
with contrastive loss demonstrate stronger general-
ization capabilities and higher robustness to noise.

Additionally, Wang and Liu (2021) also mentions
that contrastive loss functions can automatically
identify challenging negative samples. Based on
these insights, we adopt contrastive loss as the op-
timization objective in this paper. Our objective
function is defined as shown in Equation 1, where
ro denotes the positive sample response, and sim
represents the similarity measure function; in our
experiments, we use cosine similarity. The 7 is a
temperature parameter, which ranges from O to 1,
and can be adjusted during the training process to
control the model’s sensitivity to difficult negative
responses.

’ ’
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3.3 Hard Negative Responses Sampling

Adopting the methodology from Humeau et al.
(2019), we use positive responses from the same
batch as negative responses for the current dialogue.
Though more negatives could theoretically improve
model performance, their computational cost is
quadratic due to the Transformer encoder’s com-
plexity. Consequently, we have to limit the negative



responses, which restricts the contrastive loss’s ef-
ficiency in identifying hard negatives. To mitigate
this, we propose a heuristic method for mining hard
negative responses that selectively adds a small
number of more challenging negative responses
to the model input, thereby aiding the model in
learning better semantic representations.

We utilize two memory banks M, and Mp,s,
each with a capacity of N (the dataset’s size), to
store the encoded and projected hidden states h.,,,.
and hy,,,; of anchors and positives. For each sample
i, we fetch its h/,,.. from the anchor memory bank,
select K h;ms from the positive memory bank at
random, and compute their cosine distances. This
measurement helps discern the difficulty of nega-
tives, allowing us to choose the hardest up to a limit
of n, since our training objective is to optimize the

cosine distance between these responses.

The pseudocode for the hard negative responses
sampling algorithm is as Algorithm 1.

Algorithm 1: Hard negative responses sam-
pling algorithm
Data: M., Mpos, K, difficulty coefficient
5, sample index 4, sampling number
n

Result: hard negative responses of the 7,
sample S; = {r;}7_,

1 begin
2 hanc 4 Maneli]
3 C = {hypos, }szl — random(Mpos, K)

4 G= {alj}]K:1 <« cosine(h,., C)
5 G = {(dj,z'ndexj)}]K:l —
sort(G, reverse = true)

6 r < max(n+ 1, K * [3)

7 I = {(dg,indexy)}7_,
random(G'[0 : r],n + 1)

8 S <+

9 foreach element e in I do

10 index < e[l]

11 if index # i then

12 T;L des < POsitive response of
the index,, sample

13 S.append(r . )

14 if len(S) >= n then

15 L return S

4 Experiments

4.1 Datasets

This study conducted experiments on three public
response selection datasets to evaluate the effec-
tiveness of our method. These datasets include:

e Douban Conversation (Wu et al., 2017),
which is a conversation dataset crawled from
the Douban forum, a popular social media
website in China.

* E-commerce(Wu et al., 2018a), comprising
multi-turn dialogue data between customer
service representatives and consumers col-
lected from Taobao, the largest e-commerce
platform in China.

* Ubuntu Dialogue v1 (Lowe et al., 2015), an
English multi-turn dialogue dataset widely
used in technical support scenarios, particu-
larly regarding the Ubuntu system.

The size and number of turns for each dataset are
summarized in Table 1.

Table 1: Dataset Statistics

Dataset Metric | Train | Valid Test
Volume M 50K 6670
Douban Turns 6.69 6.75 5.95
Pos:Neg | 1:1 1:1 1.2:8.8
Volume M 10K 10K
E-commerce Turns 5.51 5.48 5.64
Pos:Neg | 1:1 1:1 1:9
Volume IM | 500K | 500K
Ubuntu vl Turns 10.13 | 10.11 | 10.11
Pos:Neg | 1:1 1:9 1:9

Following the practice in Song et al. (2023), we
have transformed the dataset D to ensure that each
sample contains both a positive response rj and
at least one negative response 7; , resulting in the

T )fil This trans-
formation includes the following steps:

updated dataset D' = (c;, 7}, r;

* Aggregating samples with the same context ¢;
so that each sample contains only one positive
response and at least one negative response. If
multiple positive responses exist, they can be
split into multiple independent samples.

* For samples that only have positive responses,
we select responses from other samples to
serve as negative responses.



* For samples that only have negative responses,
we take the last turn of the original context as
positive response and the other turns as new
context, while keeping the negative responses
unchanged.

4.2 Metrics

Similar to previous studies (Song et al., 2023; Han
et al., 2021), we adopt recall as the primary evalua-
tion metric, where recall is defined as R,,@Qk, indi-
cating the proportion of correct responses that are
ranked within the top k& out of all n candidate replies
by the model. Specifically, we use R10@Q1, R1p@2,
and R1¢@5 as evaluation metrics for the Ubuntu v1
and E-commerce datasets. For the Douban dataset,
since some dialogues in the test set contain multiple
positive responses, we introduce additional evalua-
tion metrics including top 1 accuracy PQ1, Mean
Average Precision (MAP), and Mean Reciprocal
Rank (MRR) as a supplement.

4.3 Baselines

In the field of response selection tasks, the per-
formance of pre-trained models has significantly
surpassed that of traditional matching algorithms.
Consequently, the baseline methods selected in
this study are all based on pre-trained models,
including BERT(Gu et al., 2020), RoBERTa-SS-
DA(Lu et al., 2020), SA-BERT(Gu et al., 2020),
SA-BERT+HCL(Su et al., 2021), UMSBERT and
UMSBERT+(Whang et al., 2021), MDFN(Liu
et al., 2021), BERT-SL(Xu et al., 2021), BERT-
UMS+FGC(Li et al., 2021), BERT-FP (Han et al.,
2021), Uni-Enc+BERT-FP(Song et al., 2023).
Among them, Uni-Enc+BERT-FP was the previ-
ous state-of-the-art method.

4.4 Setup

Our model, built using the transformers library?,
initialized with pre-trained weights from Hugging-
Face? and fine-tuned weights by Han et al. (2021),
was trained on an NVIDIA A100-SXM4-80GB
GPU. We used the Adam optimizer with a cosine
learning rate scheduler at a rate of 5e-5 and em-
ployed deepspeed” for efficient mixed-precision
training. The training settings included a batch size
of 16, a default contrastive learning temperature of
0.07, and 8 hard negative responses. The difficulty
coefficient 3 was dynamically adjusted; it was 0.05

2https ://github.com/huggingface/transformers
3https ://huggingface.co/models
*https://github.com/microsoft/DeepSpeed

for the Douban and e-commerce datasets and 0.75
for Ubuntu-v1. Consistent with Song et al. (2023),
we incorporated the MLM loss into the model’s
final loss function to enhance training stability and
effectiveness.

4.5 Results

Table 2 presents the performance of the proposed
SimSCR method on three different datasets in this
study. The comparative analysis of the results
shows that SimSCR has surpassed existing com-
parative methods across all three datasets. Specifi-
cally, SimSCR has achieved improvements of 1.8%,
2.3%, and 0.3% on the R1p@1 metric for the E-
commerce, Douban, and Ubuntu v1 datasets, re-
spectively. Notably, the performance gains of Sim-
SCR are more significant on the Douban and E-
commerce datasets, which have relatively lower
benchmarks. This reflects the suitability of the
proposed method in handling more challenging
datasets. Additionally, the contrastive loss function
adopted in this study is characterized by its ability
to identify difficult negative samples (Wang and
Liu, 2021), which may be a key factor contributing
to the performance improvement.

Although BERT-UMS+FGC (Li et al., 2021)
also applied a contrastive learning mechanism, the
design of its loss function suggests that contrastive
learning only serves as an auxiliary to the cross-
entropy loss, thus limiting the performance gains it
can provide. The experimental results indicate that,
even without the adoption of post-training weights,
SimSCR outperforms BERT-UMS+FGC on most
evaluation metrics on the Douban and Ubuntu v1
datasets. In summary, these experimental results
fully validate the effectiveness of the proposed
method in the task of response selection.

S Further Analysis

5.1 Anchor Response

The anchor response is constructed from multiple
special tokens [anchor]. For the initialization of
the token vectors, we experimented with two ap-
proaches: random initialization and using existing
tokens from the vocabulary. The comparative re-
sults of the experiments are illustrated in the fol-
lowing figure. As can be seen from the results,
the initialization using existing tokens from the
vocabulary yields more stable outcomes, with the
best performance observed when the length of the
anchor response is equal to 10.
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Table 2: Main results on three benchmarks. The models marked with 1 have been post-trained, the others use naive BERT
weights. Results acquired using SimSCR outperforms the original results with a significance level p-value < 0.05.

Models ~ E-commerce ) Douban ) ) ) Ubump vl
Ri1o@1 Ri0@2 R1o@5 | MAP MRR PQ@1 Ryp@l Rig@2 Ry@5 | Rig@l Rip@2 Ry0@5
BERT(Gu et al., 2020) 0.610 0.814 0.973 0.591 0.633 0454 0280 0470 0.828 | 0.808 0.897 0.975
RoBERTa-SS-DA(Lu et al., 2020) 0.627  0.835 0980 | 0.602 0.646 0.460 0280  0.495 0.847 | 0.826  0.909  0.978
SA-BERT(Gu et al., 2020) 0.704  0.879  0.985 | 0.619 0.659 0.496 0.313  0.481 0.847 | 0855 0928  0.983
SA-BERT+HCL(Su et al., 2021) 0.721 0.896  0.993 0.639 0.681 0514 0330 0531 0.858 | 0.867 0.940  0.992
UMSBERT(Whang et al., 2021) 0.674  0.861 0.980 | 0.597 0.639 0.466 0.285 0471 0.829 | 0.843 0920 0.982
UMSBERT+(Whang et al., 2021) 0762 0.905 0.986 | 0.625 0.664 0.499 0318 0482 0.858 | 0875 0942 0988
MDEFN(Liu et al., 2021) 0.639 0829 0971 0.624 0.663 0.498 0325 0511 0.855 0.866 0932  0.984
BERT-SL(Xu et al., 2021) 0.776 0919  0.991 - - - - - - 0.884  0.946  0.990
t BERT-UMS+FGC(Li et al., 2021) - - - 0.627 0.670 0.500 0.326 0512 0.869 | 0.886 0948  0.990
t BERT-FP(Han et al., 2021) 0.870 0956  0.993 0.644 0.680 0512 0324 0542 0870 | 0911 0962  0.994
1 Uni-Enc+BERT-FP(Song et al., 2023) | 0.910  0.970  0.997 | 0.648 0.688 0.518 0.327 0.557  0.865 0916 0965  0.994
SimSCR(Ours) 0.899 0957 0997 | 0.652 0.695 0531 0336 0539 0.871 0.890  0.947  0.989
1 SimSCR+BERT-FP(Ours) 0.928 0975 0998 | 0.671 0.712 0.547 0.346 0.584 0.887 | 0919 0.965 0.994
Table 3: Ablation study on Douban Conversation dataset. 53  Impact of Parameters

HNRS - hard negative responses sampling. UniEncoder + FP
is the baseline.

MRR
0.688
0.712
0.700

rail

0.518
0.547
0.529

Models

UniEncoder + FP(Song et al., 2023)
SimSCR (Ours)

w/o HNRS (Ours)

MAP
0.648
0.671 (+2.3%)
0.659 (+1.1%)

Ryp@l
0.327
0.351
0.341

Rip@2
0.557
0.584
0.575

Rip@5
0.865
0.887
0.866
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Figure 3: Comparison of Anchor Response by Init Strategy
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5.2 Ablation Study

To evaluate the contribution of each component
proposed in this study to the final performance,
we conducted ablation experiments on the Douban
dataset. We chose UniEncoder+FP as the compara-
tive baseline and separately examined the effects of
two key components within our method, with the
specific results presented in Table 3. The findings
indicate that without the addition of hard negative
samples, the text-based method can achieve a 1.1%
increase in Mean Average Precision (MAP), and
with hard negative samples, it can attain a 2.3%
improvement in MAP. This demonstrates that the
hard negative sampling method proposed in this
paper can significantly enhance the effectiveness
of contrastive learning in the response selection
task under the condition of limited negative sample
capacity.

In the self-supervised contrastive learning frame-
work proposed in this study, three key parameters
have a significant impact on model performance:
the temperature 7 in the contrastive loss, the sam-
pling number of hard negative responses n , and
the difficulty coefficient h. To investigate the ef-
fects of these parameters, we conducted thorough
experimental analyses on the Douban Conversation
dataset, with the results displayed in Figure 4, 5
and 6.

Comparison of MAP on Douban Corpus
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Figure 4: The Impact of Temperature 7
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Figure 5: The Impact of Hard-Neg Responses Number n

Observing the experimental outcomes in Figure
4, it is evident that an increase in the temperature
7 results in a performance trend that first rises and



then declines, with the model achieving optimal
performance at 7 = 0.07.

As the number of hard negative responses in-
creases, the MAP value shows an upward trend (as
presented in Figure 5); however, considering that
a large number of hard negative responses would
increase computational complexity, the experiment
defaults to sampling 8 hard negative responses
based on performance considerations.

As shown in Figure 6, a higher difficulty coeffi-
cient of negative responses has a positive impact
on training effectiveness. When the difficulty coef-
ficient h = 1.0, the model degenerates into a ran-
dom sampling strategy, and the results indirectly
confirms the superiority of the sampling approach
proposed in this study compared to random sam-

pling.

Comparison of MAP on Douban Corpus
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UniEncoder
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Figure 6: The Impact of Difficulty Coefficient 3

5.4 Model Performance

During the model training phase, the use of addi-
tional negative samples results in a slower train-
ing process. However, in the inference stage, our
method allows concatenating multiple candidate re-
sponses together, enabling the prediction of several
samples with a single forward pass, thereby achiev-
ing an acceleration effect. The results in 4 is a
performance comparison between the training and
testing phases, with the comparative method be-
ing direct classification based on BERT (Gu et al.,
2020).

Table 4: Model Performance of SimSCR.

Training Inference
Baseline | 4.21s/ 100 samples 0.17s / 100 samples
Ours 18.31s / 100 samples (0.23x) | 0.056s / 100 samples (3.04x)

6 Discussion

This chapter will explore the possibility of applying
our method to other Transformer models, as well
as the application extensions.

6.1 Extending to Other Transformer Models

Despite the remarkable achievements of the BERT
model in the field of natural language processing,
emerging models such as GPT(Brown et al., 2020)
and GLM(Du et al., 2022) have also demonstrated
outstanding performance and application potential.
The supervised contrastive learning framework pro-
posed in this paper is also applicable to these mod-
els. During application, since these models do
not support segment IDs, different markers can be
added before the context responses to distinguish
them, thereby achieving a similar effect to segment
IDs.

6.2 As a Reward Model for Training LL.M

The successful application of the self-supervised
contrastive learning method in dialogue response
ranking tasks also inspires us to use it as a reward
model during the training process of large-scale
language models. Especially when using PPO for
reinforcement learning training, an efficient reward
model is crucial. Our method can serve as a means
to train reward models, providing more accurate re-
ward signals, thereby helping to guide the model’s
training and optimize the final performance.

7 Conclusion

In this paper, we introduce an innovative super-
vised contrastive learning framework to enhance
the performance of response selection tasks. This
approach not only draws on the advantages of deep
context interaction found in tradition methods but
also enhances the model’s generalization ability
through contrastive learning. To further improve
model efficiency, we devised a heuristic sampling
method for hard negative responses to reduce the
dependence of contrastive learning on large nega-
tive sample sets. In experiments, our framework
achieved state-of-the-art results on three public re-
sponse selection datasets, proving the efficiency
and practicality of the supervised contrastive learn-
ing framework and the negative sampling strategy.
These achievements provide a powerful new tool
for response selection tasks and offer valuable ref-
erences for the future application of supervised
contrastive learning in other NLP tasks. We look
forward to extending our framework to a broader
range of tasks in future research and exploring new
ways to improve model effectiveness.



8 Limitations

Despite the remarkable achievements of this study
in the task of response selection, we must acknowl-
edge some limitations. First, although the inter-
active supervised contrastive learning framework
performs well on the current datasets, these datasets
may not fully cover all types of conversational sce-
narios. Therefore, the universality and robustness
of the framework under different dialogue systems
and diverse contexts still require further valida-
tion. Our interaction mechanism, while effective
in facilitating attention interactions between con-
text and responses, may not be optimized in its
design, potentially leading to issues with compu-
tational efficiency or model complexity. Future
research could explore more efficient interactive
architectures to reduce the computational burden
of the model while enhancing performance. Lastly,
as a training strategy, the generalizability of con-
trastive learning across different NLP tasks still
needs further research and validation. In particu-
lar, whether the approach presented in this paper
remains effective in tasks substantially different in
nature from response selection is a question that
awaits future exploration. In summary, the method
proposed in this study brings a new perspective
and significant performance improvements to the
task of response selection, but it is important to
consider its limitations regarding data coverage,
optimization of interaction mechanisms, and gener-
alizability across different tasks. Future work will
be devoted to deeper exploration and improvement
in these areas.
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