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Abstract
Information diffusion prediction aims to fore-001
cast how information propagates through social002
networks. Current works have explored users’003
preferences from dynamic diffusion structures004
and social relations. Despite recent advances,005
they generally share two natural deficiencies.006
First, they generally fail to identify users’ crit-007
ical preferences hidden in noisy and complex008
user structures. In addition, existing works009
primarily extract users’ dynamic preferences010
within localized sub-graph structures, strug-011
gling to filter relevant preferences for the cur-012
rent cascade. Thus, we propose Temporal and013
Structural Contrastive Learning Augmented014
Graph Neural Network (TSCLA). Specifically,015
we split the diffusion process into discrete peri-016
ods and introduce a temporal contrastive learn-017
ing module to extract users’ diversified pref-018
erences across the diffusion process. Further-019
more, we introduce a hierarchical adaptation020
module that dynamically filters relevant pref-021
erences in each diffusion period. In addition,022
we construct a heterogeneous graph to extend023
users’ preferences and design a structural con-024
trastive learning module for discerning criti-025
cal user relations from noisy connections. Ex-026
perimental results on four real-world datasets027
demonstrate the superior performance of our028
model compared to state-of-the-art baselines.029

1 Introduction030

In recent years, online social networks (OSN) have031

become powerful platforms for information dis-032

semination. These networks trigger large-scale033

online information diffusion cascades, facilitating034

the rapid dissemination of online content. To un-035

derstand the patterns of information diffusion and036

identify potential participants, researchers have for-037

mulated the task of information diffusion predic-038

tion. As a fundamental problem in social networks039

analysis, the task has been applied in many down-040

stream social applications, such as fake news de-041

tection (Wei et al., 2021; Yuan et al., 2019), and042
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Figure 1: A toy example of diffusion cascades and so-
cial network. The diffusion process is split into three
diffusion periods [t0, t3), [t3, t6), and [t6, t9). Icons
near social relations reflect users’ personal preferences.

personalized recommendation (Wang et al., 2020; 043

Liu et al., 2023b). 044

Generally, existing works on information dif- 045

fusion prediction are encapsulated into the fol- 046

lowing categories. 1) Feature engineering-based 047

models (Yang et al., 2015; Bourigault et al., 2016) 048

assume that the diffusion process is governed by 049

an underlying diffusion function. However, they 050

hardly generalize to real-world diffusion cascades. 051

2) Sequential-based models (Islam et al., 2018; 052

Yang et al., 2021; Wang et al., 2018a) employ se- 053

quence models to extract user correlations within 054

the diffusion path. Despite their effectiveness, these 055

methods focus solely on sequential patterns, over- 056

looking user interactions beyond sequential struc- 057

tures. 3) Graph-based models (Wang et al., 2018b, 058

2022) believe that users’ preferences drive the dif- 059

fusion process and introduce different graph struc- 060

tures to learn users’ preferences. Recently, stud- 061

ies (Yuan et al., 2020; Sun et al., 2022; Jiao et al., 062

2024) further explore the impact of users’ dynamic 063

preferences, achieving promising performance. 064

Although existing works extract various prefer- 065

ences from different user relations or structures, 066

they still suffer from two key limitations. Firstly, 067

existing research typically incorporates all social 068

relations to extend user preferences without distin- 069

guishing critical relationships hidden in complex 070

social structures. Users in social networks main- 071

tain numerous social connections, each of which 072
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reflects different personal preferences. Therefore,073

indiscriminately incorporating all of a user’s so-074

cial relationships for prediction may introduce sub-075

stantial noise, reducing predictive accuracy. As076

illustrated in Figure 1, when predicting the future077

participants of Cascade #5 after timestamp t7, con-078

sidering all of User H’s social relations introduces079

more noise than useful information, since only User080

L shares a preference relevant to the current cas-081

cade. Secondly, current studies describe users’ dy-082

namic preferences from separated sub-graph struc-083

tures, failing to identify relevant preferences that084

shape the current cascade from these structure snap-085

shots. User interactions in social platforms follow086

habitual behavioral patterns, resulting in similar087

user structures among different snapshots. Infer-088

ring user preferences solely from these structures089

may introduce massive amounts of irrelevant in-090

formation. For instance, when predicting the dif-091

fusion trend of Cascade #4, multiple similar dif-092

fusion structures with minor variations can be ob-093

served at different periods (e.g., diffusion structure094

C → D → E, C → E → F , and C → G), mak-095

ing it challenging for models to discern preferences096

that are informative for the current cascade.097

To address the above problems, we propose098

a Temporal and Structural Contrastive Learning099

Augmented graph neural network (short for100

TSCLA). Specifically, we discretize the diffusion101

process into periods and apply GCN at each period102

to learn user preferences at each period. More-103

over, we introduce a temporal contrastive learning104

module to avoid extracting redundant preferences105

from similar structures and diversify user prefer-106

ences in the diffusion process. Furthermore, we107

design a hierarchical adaptation module, which se-108

lects relative preferences at each period based on109

the user context of the current cascade. In addi-110

tion, we integrate three different user relations to111

extend users’ preferences and design a structural112

contrastive learning module to filter critical user113

relations in the heterogeneous graph. We conduct114

extensive experiments on four real-world datasets.115

Empirical results demonstrate that our model out-116

performs state-of-the-art baselines, validating the117

effectiveness of TSCLA.118

In summary, the main contributions of this paper119

are three-fold:120

• We propose a temporal contrastive learning121

module to extract users’ diversified prefer-122

ences at each period and design a hierarchical123

adaptation module to select preferences rele- 124

vant to the current cascade. 125

• We incorporate three types of user relations to 126

extend users’ preferences and design a struc- 127

tural contrastive learning module for discern- 128

ing critical user relations within noisy struc- 129

tures. 130

• We conduct extensive experiments on four 131

real-world datasets, demonstrating the effec- 132

tiveness of TSCLA in information diffusion 133

prediction. 134

2 Related Work 135

2.1 Information Diffusion Prediction 136

Information diffusion prediction has attracted sig- 137

nificant research interest for decades. Early feature- 138

engineering models assume the diffusion process 139

adheres to specific diffusion models (Kempe et al., 140

2003). However, their assumptions constrain their 141

ability to characterize complex diffusion patterns. 142

Sequential-based models have emerged as a 143

promising approach with the recent advancement 144

of deep learning. They (Wang et al., 2017; Islam 145

et al., 2018; Yang et al., 2021) transform diffu- 146

sion cascades into user sequences and incorporate 147

various sequential models (Hochreiter and Schmid- 148

huber, 1997; Vaswani et al., 2017) to capture user 149

correlations within the sequence. However, these 150

sequential-based models focus on strictly ordered 151

user sequences and overlook users’ non-sequential 152

correlations. 153

To address this problem, various graph struc- 154

tures, primarily social graphs, have been utilized to 155

extend user associations. Researchers (Wang et al., 156

2018b, 2022; Cheng et al., 2023) further found that 157

users’ dynamic preferences play a vital role in facil- 158

itating information diffusion and extracted various 159

user preferences from graph structures. Most re- 160

cently, some studies (Wang et al., 2021; Yuan et al., 161

2020) consider that users’ preferences evolve as 162

time passes; they model the diffusion process as a 163

series of structure snapshots and employ graph neu- 164

ral networks to learn users’ dynamic preferences. 165

However, current works incorporate all social 166

relations for prediction without distinguishing crit- 167

ical user relations from noisy connections. More- 168

over, they only describe users’ preferences from 169

separated sub-graph structures, failing to identify 170

relevant preferences within each diffusion period. 171
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2.2 Graph Contrastive Learning172

Graph neural networks (GNNs) have demonstrated173

strong capabilities in learning node and edge rep-174

resentations from graph-structured data (Yao et al.,175

2019; Velickovic et al., 2018). However, traditional176

graph methods rely heavily on labeled data. In-177

spired by the success of self-supervised learning178

in various domains (Zhou et al., 2021; Jain et al.,179

2021), recent studies have introduced graph con-180

trastive learning (GCL) to mitigate dependence181

on labeled data and improve generalization per-182

formance (Wu et al., 2023; Liu et al., 2023a).183

Existing GCL methods can be broadly catego-184

rized into two types based on the contrasting scales,185

same-scale contrastive learning and cross-scale186

contrastive learning. Same-scale contrastive learn-187

ing, where the contrastive objectives are set to dis-188

criminate graph views generated on the same scale.189

Cross-scale contrastive learning generates samples190

at multiple scales and maximizes the mutual in-191

formation between these scales. Both strategy pri-192

marily based on mutual information (MI) maxi-193

mization, where model is optimized to maximize194

agreement between positive pairs while pushing195

negative pairs apart.196

Inspired by their outstanding performance, we197

leverage both contrastive learning frameworks in198

our model to assist prediction.199

3 Problem Formulation200

The information diffusion process is typically201

recorded as a cascade cm = {(umi , tmi )|i < L)} in202

chronological order, where element (umi , tmi ) de-203

notes that user umi participates in cascade cm at204

time tmi , e.g., forwarding the message m at times-205

tamp tmi . L is the maximum length of the cascade.206

The cascade cm can be further decomposed into207

user sequence cum = {umi |i < L} and timestamp208

sequence ctm = {tmi |i < L}. We collect all histori-209

cal cascades and users in C = {c1, c2, ..., c|C|} and210

U = {u1, u2, ..., u|U|}, respectively.211

Moreover, we introduce three graph structures212

essential for prediction: social graph Gs, diffusion213

graph Gd, and bipartite graph Gb, as illustrated214

on the upper part of Figure 2. The social graph215

Gs = {U , Es} is an undirected graph that describes216

the social connections among users. Similarly, the217

diffusion graph Gd = {U , Ed} is a directed graph218

formed by users’ diffusion connections. The bi-219

partite graph Gb = {Vb, Eb} is a directed graph220

describing the co-occurrence correlation between221

users and cascades. 222

Based on the above formulations, we define the 223

task of information diffusion prediction as fol- 224

lows: given the set of user U , the set of historical 225

cascades C, user graph structures Gs,Gd,Gb, and a 226

current cascade co = {(uoi , toi )|uoi ∈ U}. Our ob- 227

jective is to compute the conditional probability 228

ŷj = p(uj |co) to show how likely user uj will 229

participate in cascade co at the next timestamp. 230

4 Method 231

In this section, we present the details of our pro- 232

posed TSCLA framework. An overview of the 233

architecture is illustrated in Fig. 2. 234

4.1 Temporal Contrastive Enhanced User 235

Encoding 236

4.1.1 User Dynamic Embedding 237

To model the diffusion dynamics at different pe- 238

riods, we first discretize the diffusion graph into 239

a discrete-time dynamic graph. Specifically, we 240

create a set of chronological structural snapshots 241

based on diffusion graph Gd, denoted as GD = 242{
Gi
d

}
, 0 ≤ i ≤ N . For structure snapshot Gi

d = 243{
U , E i

d

}
, its edge set E i

d is constructed by select- 244

ing diffusion edges within the corresponding time 245

interval, i.e., E i
d = {ed|ed ∈ Ed, ti ≤ ted < ti+1}. 246

Then, we apply an independent GNN for each struc- 247

ture snapshot to extract users’ dynamic preferences 248

at periods. Technically, we formulate the process 249

in the ith snapshot Gi
d as, 250

Xd,i(2) = Ψd
i

(
Gi
d,X

d,i(0)
)
, (1) 251

where Xd(0) is the input node embedding matrix 252

initialized with a normal distribution (Glorot and 253

Bengio, 2010). Ψd
i (·) is a two layer GNN. Xd,i(2) 254

denotes user embedding matrix from the last GNN 255

layer to represent the users’ dynamic preference at 256

the ith period, abbreviated as Xd,i. 257

4.1.2 Temporal Contrastive Enhancement 258

Although users’ dynamic preferences continually 259

evolve across periods, certain behavioral patterns 260

persist. Inferring preferences solely from these 261

structures without considering their temporal con- 262

text will extract redundant preference. For example, 263

as illustrated in Figure 1, we may extract the same 264

preference for User A in period [t0, t3) and [t3, t6) 265

due to similar user interaction A → B in these 266

periods. 267

3



Structural Contrastive 
Enhanced 

User Encoding

GNN

User Embedding 𝐗𝐗𝑠𝑠

𝑮𝑮ℎ

Cascade Representation and Cascade Prediction

Train set

𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4𝑐𝑐1

𝑢𝑢5 𝑢𝑢6 𝑢𝑢7𝑐𝑐3

⋯

𝑢𝑢1 𝑢𝑢5 𝑢𝑢7𝑐𝑐2

⋯

Bipartite edge

Diffusion edge

Cascade node

User node

Social edge

Diffusion Graph 𝑮𝑮𝑑𝑑

𝑢𝑢3
𝑢𝑢6

𝑢𝑢4
𝑢𝑢2

𝑢𝑢1

𝑢𝑢5

𝑢𝑢7

Bipartite Graph 𝑮𝑮𝒃𝒃

𝑢𝑢3
𝑢𝑢6

𝑢𝑢4𝑢𝑢1
𝑢𝑢2

𝑐𝑐1

𝑢𝑢7

𝑢𝑢5

𝑐𝑐3

𝑐𝑐2

GNN

𝑮𝑮𝒅𝒅1

Timeline

𝑮𝑮𝒅𝒅2

𝑮𝑮𝒅𝒅
3

𝑮𝑮𝒅𝒅𝑁𝑁

Temporal Contrastive 
Enhanced 

User Encoding

User Embedding 𝐗𝐗𝑑𝑑,𝑖𝑖

Structural 
Contrastive 

Enhancement

Temporal 
Contrastive 

Enhancement

Construct
Graphs 

Social Graph 𝑮𝑮𝑠𝑠

𝑢𝑢5 𝑢𝑢3

𝑢𝑢7

𝑢𝑢1

𝑢𝑢6
𝑢𝑢2

𝑢𝑢4

Add & Norm

Masked
Multi-Head
Attention

Feed
Forward

Add & Norm

Linear

Softmax

𝑢𝑢𝑝𝑝

Predict Next User

Cascade Representation 𝐙𝐙𝑜𝑜
The Current Cascade

𝑐𝑐𝑜𝑜 𝑡𝑡0 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3

𝑢𝑢𝐷𝐷𝑢𝑢𝐶𝐶𝑢𝑢𝐵𝐵𝑢𝑢𝐴𝐴

Cascade Representation 𝐙𝐙𝑜𝑜

Single-head 
self-attention 

Concat

𝑢𝑢𝐴𝐴,𝑢𝑢𝐵𝐵 ,𝑢𝑢𝐶𝐶 ,𝑢𝑢𝐷𝐷
User Sequence 

User Embedding 
Lookup

Embedding 
Sequence 𝐂𝐂𝑜𝑜𝑠𝑠

Multi-head 
self-attention 

Embedding 
Sequence 𝐂𝐂𝑜𝑜

𝑑𝑑,𝑖𝑖

User Embedding 
Lookup

User-wise 
attention

𝐗𝐗𝑠𝑠 �𝐗𝐗𝑠𝑠

Structural
Contrastive

Enhancement

�𝐱𝐱𝑢𝑢𝑠𝑠𝐱𝐱𝑢𝑢𝑠𝑠

𝐗𝐗𝑛𝑛

Positive Pair
Negative Pair

Temporal
Contrastive

Enhancement

𝐗𝐗𝑑𝑑,𝑖𝑖 �𝐗𝐗𝑑𝑑,𝑖𝑖𝐗𝐗𝑑𝑑,𝑖𝑖−1

𝐠𝐠𝑑𝑑𝑖𝑖
𝐌𝐌𝐌𝐌𝐌𝐌

Positive Pair
Negative Pair

Figure 2: The overview architecture of TSCLA.

To address this, we propose a temporal con-268

trastive learning task for adjacent subgraphs in GD.269

As illustrated in the left part of Fig. 2, the core270

objective of this contrastive framework is to align271

user embeddings with their corresponding period-272

specific graph-level structural summaries for each273

period while distancing them from summaries of274

adjacent periods, encouraging our model to extract275

diverse preferences from each snapshot. Specifi-276

cally, we first employ a readout function to obtain277

the graph-level representation gi
d for each subgraph278

Gi
d, formulated as, gi

d = MLP( 1
|U|

∑|U|
i=1X

d,i),279

where MLP is a projection head that maps the ag-280

gregated user embeddings to a shared latent space.281

Then, we define positive and negative samples in282

our temporal contrastive learning framework. For283

structure summary gi
d at ith period, its positive284

samples are corresponding user embeddings, i.e.,285

xd,i
k ∈ Xd,i. Its negative samples consist of two286

components. The first part is generated by perturb-287

ing the input user matrix Xd,i(0) with row-wise288

and column-wise shuffling and feeding it to the289

same GNN layer Ψd
i (·), producing X̃d,i(0) and sub-290

sequently X̃d,i. The second part is the user em-291

beddings from the preceding period, denoted as292

xd,i−1
k ∈ Xd,i−1.293

Finally, we leverage Jensen-Shannon Divergence294

(JSD) (Peng et al., 2020) to estimate the distance295

between positive and negative samples, which is,296

Li
t = 2

|U|∑
k

Dw

(
gi
d,x

d,i
k

)
− EP̃

[(
Dw

(
gi
d, x̃

d,i
k

))]
− EP̃

[(
Dw

(
gi
d,x

d,i−1
k

))]
,

(2)297

where Dw : D ×D′ → R is a discriminator con-298

structed by neural networks. The overall temporal299

contrastive loss across all snapshots is given by, 300

Lt = 1
|N−1|

∑|N−1|
i=1 Li

t. 301

4.2 Structural Contrastive Enhanced User 302

Encoding 303

4.2.1 User Structure Embedding 304

Existing studies (Yuan et al., 2020; Sun et al., 305

2022) have demonstrated that the diffusion pro- 306

cess is affected by multiple user preferences. Thus, 307

we further incorporate additional types of user re- 308

lations to extract users’ personal preferences and 309

social biases for the diffusion process to extend 310

users’ dynamic preferences and enhance prediction 311

accuracy. 312

Specifically, we integrate social graph Gs and bi- 313

partite graph Gb with diffusion graph Gd, forming a 314

unified heterogeneous graph Gh = {Vh, Eh}. Here, 315

Vh = Vb is the set of nodes and Eh = Es ∪ Ed ∪ Eb 316

is the edge set. As heterogeneous graph Gh reflects 317

users’ personal preferences and social biases from 318

different perspectives, we apply two layers of GNN 319

on the heterogeneous graph to learn users’ prefer- 320

ences, 321

Xs(2) = Ψs
(
Gh,X

s(0)
)
, (3) 322

where Xs(0) is a randomly initialized input embed- 323

ding matrix. Ψs(·) is a two layer GNN. Since the 324

embeddings are derived by attending to multiple 325

relational structures, we refer to them user struc- 326

ture embeddings. Additionally, as cascade node 327

embeddings hardly contribute to prediction, we re- 328

tain only the user embedding from Xs(2), forming 329

the final structural embedding matrix embedding 330

matrix Xs. 331
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4.2.2 Structural Contrastive Enhancement332

To extract critical user relations from such a com-333

plex structure, we introduce a structural contrastive334

learning module. As illustrated in the left part of335

Fig. 2, the key objective is to align the embed-336

dings of the same user across different views while337

separating them from other users’ embeddings to338

identify invariant critical user relations in the graph.339

Specifically, , we first generate an augmented340

view for user structure embedding Xs. Similar to341

temporal contrastive learning, we apply random342

shuffling to the input matrix Xs(0) and feed it to343

GNN Ψs(·), to obtain augmented user embedding344

matrix X̃s. We then define the positive and negative345

samples. For a given user uj , the embedding xs
uj

346

and x̃s
uj

from two views are naturally considered347

as positive sample pairs with each other. Their348

negative samples consist of 2K node embeddings,349

denoted as x̃n
uk

∈ X̃n, which are selected randomly350

and evenly from both views. To optimize the task,351

we adopt the InfoNCE (Zhu et al., 2020) objective352

function, which is formulated as,353

Li
s =

1

2K

2K∑
k=1

log
exp

(
xs
uj

· x̃s
uj
/τ

)
∑2K

k=1 exp
(
xs
uj

· x̃n
uk

/τ
) (4)354

where τ is a temperature parameter. We apply355

this operation on all nodes in the heterogeneous356

graph and aggregate the loss from each node.357

The final objective is defined as, Ls = 1/(|U| +358

|C|)
∑|U|+|C|

i=1 Li
s, where |U| and |C| represent the359

size of user nodes and cascade nodes, respectively.360

4.3 Cascade Representation and Prediction361

To predict the current cascade co, we first construct362

its contextual representations by integrating users’363

dynamic embeddings and structural embeddings364

and then attend to these contextual representations365

to make predictions.366

4.3.1 Cascade Representation367

Although users’ dynamic embeddings capture di-368

verse user preferences, they still contain a massive369

amount of irrelevant information for predicting the370

current cascade. To filter useful information from371

these embeddings, we design a hierarchical adap-372

tation module to represent the user context in the373

current cascade with user dynamic embedding, con-374

sisting of a multi-head attention layer and a user-375

wise attention layer. In detail, given cascade co376

and its user sequence cuo , we first construct user377

embedding sequences at each diffusion period by378

looking up the corresponding user embedding ma- 379

trix. For the ith period, the embedding sequence is 380

represented as Cd,i
o =

[
xd,i
u1 ,x

d,i
u2 , . . . ,x

d,i
uL

]
. 381

Previous works (Wang and Li, 2019) have shown 382

that user correlations in the current cascade are re- 383

flected in their dependency on previous users. We 384

employ a multi-head self-attention module to cap- 385

ture dependency contexts in the current cascade and 386

extract helpful user preferences within each diffu- 387

sion period. In practice, we consider each diffusion 388

period as an attention head for parallelization and 389

apply a mask matrix to avoid future information 390

leakage. The process can be formulated as, 391

Att(Q,K,V) = softmax
(

QKT
√
dh

+M
)
V,

Ch,i
o = Att

(
Cd,i

o WQ
i ,Cd,i

o WK
i ,Cd,i

o WV
i

)
,

Cr,d
o = [Ch,1

o ; . . . ;Ch,N
o ]WA,

(5) 392

where WQ
i ,W

K
i ,WV

i ,W
A
i are learnable matri- 393

ces. dh is the scaling factor. M is a matrix to mask 394

out future users to avoid label leakage, which is 395

Mi,j = −∞ if i ≥ j else Mi,j = 0. We refer 396

to Cr,d
o as an overall refined user representation, 397

which encodes users’ relative preferences within 398

the cascade at each period. 399

Then, we perform user-wise attention to fuse 400

refined user representations across different dif- 401

fusion periods. Given user uj in the current cas- 402

cade, we first obtain his refined representations 403[
xr,1
uj , . . . ,x

r,N
uj

]
from the overall refined represen- 404

tation Cr,d
o and stack them as matrix Xr

uj
. We then 405

apply user-wise attention to integrate users’ relative 406

preferences from different periods. The process is, 407

αi =
exp

(
a⊤Wax

r,i
uj

)
∑N

i exp
(
atopWax

t,k
uj

) , xd
uj

=

N∑
i

αiXr
uj
, (6) 408

where a and Wa are trainable parameter. Sim- 409

ilarly, we also perform single head attention 410

for structural user embedding sequence Cs
o = 411[

xs
u1
,xs

u2
, . . . ,xs

uL

]
and concatenate its output 412

user representation with the above user-wise repre- 413

sentations to generate users’ contextual representa- 414

tion, which is, 415

Cr,s
o = Att

(
Cs

oW
s,Q
i ,Cs

oW
s,K
i ,Cs

oW
s,V
i

)
,

zui
o = [xr,s,ui

o ;xr,d,ui
o ]

(7) 416

where Ws,Q
i ,Ws,K

i ,Ws,V
i are learnable matrices. 417

[; ] means concatenation operation. xr,s,ui
o ∈ Cr,s

o . 418

Thus, the final contextual representation of current 419

cascade co is given by Zo = [zu1
o , zu2

o , . . . , zuL
o ]. 420
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4.3.2 Cascade Prediction421

Given the user representation matrix Zo for the422

current cascade co, we then employ the multi-head423

self-attention mechanism (as defined in Eq. 5) to424

attend to contextual correlations within the cascade,425

facilitating more effective prediction. The process426

is formulated as follows,427

Zh,i
o = Att

(
ZoW

o,Q
i ,ZoW

o,K
i ,ZoW

o,V
i

)
,

Zh
o = [Zh,1

o ; . . . ;Zh,H
o ]Wo,A,

(8)428

where Wo,Q
i ,Wo,K

i ,Wo,V
i ,Wo,A

i are learnable429

matrices. Then, we apply two layers of fully con-430

nected neural networks to further refine user repre-431

sentations, given by,432

Zo
p = σ(Zo

hW1 + b1)W2 + b2, (9)433

where W1, W2,b1,b2 are learnable parameters.434

Finally, we compute the infection probability435

ŷ ∈ RL×|U|, which represents the likelihood of436

each user participating in the cascade at each times-437

tamp, formulated as,438

ŷ = softmax(WpZ
o
p +Mask), (10)439

where Wp is a learnable parameter to calculate440

the infect probability. Mask matrix is to mask441

users who have already participated in the current442

cascade.443

For model optimization, we apply cross-entropy444

loss for the task of information diffusion prediction,445

which is defined as,446

Lp = −
|co|∑
i=2

|U|∑
j=1

yij log(ŷij), (11)447

where yij = 1 denotes that the predicted user uj448

is infected at position i; otherwise, yij = 0. The449

overall objective function is as follows,450

L(θ) = Lp + γtLt + γsLs, (12)451

where γt and γs are hyper-parameters balancing452

the relative importance of two auxiliary tasks. θ453

denotes the set of all learnable parameters.454

5 Experiment455

5.1 Experimental Setups456

5.1.1 Datasets457

To evaluate the performance of our model, we em-458

ploy four publicly available real-world datasets459

from previous works (Sun et al., 2022; Yuan et al., 460

2020), which are, 1. Twitter (Hodas and Ler- 461

man, 2014) consists of tweets containing URLs 462

posted on Twitter during October 2010, along with 463

their diffusion paths and a predefined social net- 464

work. 2. Douban (Sun et al., 2022) records book- 465

sharing behaviors on the Douban website. The 466

co-occurrence connection of users is interpreted 467

as their social relation. 3. Android (Sankar et al., 468

2020) consists of users’ interactions with the topic 469

"Android" from a community Q&A website and 470

social relations among users. 4. Meme (Leskovec 471

et al., 2009) tracks the migration of frequent quotes 472

and phrases (i.e., memes) across different websites. 473

The detailed statistics of these datasets are pre- 474

sented in Table 3. 475

5.1.2 Baselines 476

To evaluate the performance of our model, we 477

compare it with the following seven state-of-the- 478

art information diffusion prediction models, 1. 479

NDM (Yang et al., 2021) utilizes the self-attention 480

mechanism and CNN modules to capture long-term 481

user correlation in cascade sequences. 2. FOR- 482

EST (Yang et al., 2019) is a recurrent model with 483

a GRU to learn sequential features and a GCN 484

to extract social structure information. 3. Dy- 485

HGCN (Yuan et al., 2020) applies GCN to learn 486

users’ dynamic preferences by discretizing the dif- 487

fusion process into heterogeneous subgraphs. 4. 488

MS-HGAT (Sun et al., 2022) constructs a series of 489

hyper-graphs to model user interactions and inte- 490

grate them with social relations to depict user inter- 491

action dependencies. 5. MINDS (Jiao et al., 2024) 492

models diffusion process as hyper-graph snapshots 493

and incorporates acroscopic size prediction to as- 494

sist prediction. 6. DisenIDP (Cheng et al., 2023) 495

leverages two hyper GCN to learn users’ intents 496

and designs a self-supervised disentanglement task 497

to assist the procedure. 7. RotDiff (Qiao et al., 498

2023) maps the users into the hyperbolic repre- 499

sentation space based on the social relations and 500

diffusion paths, which achieves state-of-the-art per- 501

formances. 502

5.1.3 Parameter Settings 503

We implement TSCLA with PyTorch and optimize 504

it by Adam. The learning rate is set to 0.001. The 505

batch size for training is 16, and the dimensional- 506

ity of all embeddings and representations is fixed 507

at d = 64. To construct the dynamic graph GD, 508

we split the diffusion graph into N = 14 periods. 509
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Table 1: Experimental results on HITS score over four datasets (%).

Models Twitter Douban Android Meme
@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

NDM 19.34 29.41 35.73 10.13 21.23 31.25 3.39 9.53 15.72 20.83 36.63 45.83
FOREST 25.52 38.50 46.07 18.68 30.84 38.57 7.00 15.14 22.37 29.63 47.80 57.86
DyHGCN 29.01 46.88 57.19 19.87 32.89 39.42 8.42 19.15 26.79 29.52 48.64 58.48
MS-HGAT 29.96 46.54 57.35 20.65 35.04 41.36 10.49 19.87 27.81 28.43 49.66 60.47
MINDS 32.56 48.60 58.60 18.83 31.35 37.97 9.49 18.68 25.93 27.42 47.34 58.68
DisenIDP 34.89 50.74 59.67 20.59 35.45 42.84 9.30 19.09 26.61 31.14 51.75 62.67
RotDiff 35.90 52.46 61.21 22.16 38.23 46.37 11.44 23.04 31.30 30.66 51.70 62.06
TSCLA 36.57 54.97 65.21 31.48 46.84 54.05 12.27 23.29 31.21 37.17 57.82 66.96
Improvement 1.87 4.78 6.53 42.07 22.53 16.57 7.26 1.09 - 16.58 10.29 6.74

Table 2: Experimental results on MAP score over four datasets (%).

Models Twitter Douban Android Meme
@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

NDM 12.96 13.39 13.48 8.36 8.79 9.36 2.19 2.44 2.52 10.59 11.31 11.44
FOREST 17.33 17.90 18.01 10.86 11.46 11.83 3.81 4.16 4.26 15.53 16.37 17.51
DyHGCN 17.51 18.32 18.47 10.48 11.14 11.48 4.58 5.03 5.14 16.11 16.23 17.25
MS-HGAT 18.80 19.51 19.65 11.22 11.87 11.98 6.33 6.75 6.85 15.42 16.41 16.57
MINDS 18.62 19.29 19.42 10.19 10.76 10.85 6.13 6.53 6.62 15.35 16.23 16.38
DisenIDP 22.46 23.58 23.71 10.41 11.10 11.21 5.69 6.11 6.21 16.66 17.62 17.77
RotDiff 24.06 24.82 24.95 11.70 12.54 12.66 6.96 7.45 7.56 16.53 16.91 17.66
TSCLA 24.24 25.11 25.25 17.13 17.87 17.97 7.25 7.74 7.86 20.15 21.13 21.26
Improvement 7.93 1.17 1.20 46.43 42.54 41.97 4.22 3.92 3.97 20.92 19.92 19.65

Table 3: Statistics of the datasets.

Datasets Twitter Douban Android Meme
# Users 12,627 12,232 9,958 4,709
# Links 309,631 348,280 48,573 -
# Cascades 3,442 3,475 679 12,661
Avg. Length 32.60 21.76 33.3 16.24

All GNN layer Ψ(·) used for generating user em-510

beddings are implemented as GCNs. our model511

is flexible and can accommodate other GNN ar-512

chitectures. For the temperature τ in our struc-513

tural contrastive learning module, we select it from514

{0.1, 0.3, 0.5, 0.7, 1} for each dataset. The number515

of negative samples K is set to 150. The number516

of heads H in Eq. 8 is chosen from {8, 10, 16}517

and is empirically set to 10 after comparison. The518

hyper-parameters γg and γc are set to 0.1.519

Following the previous works (Yuan et al., 2020;520

Qiao et al., 2023), we set the maximum cascade521

length to 200. For all datasets, 80% of cascades522

are used for training; the remaining 20% are split523

evenly for validation and testing. Following prior524

works (Yuan et al., 2020; Sun et al., 2022), we525

frame the task as an information retrieval task and526

evaluate the performance with two ranking metrics,527

i.e., Mean Average Precision on top K (MAP@K)528

and Hits scores on top K (HITS@K), with K =529

[10, 50, 100]. We abbreviate them as M@K and 530

H@K, respectively. 531

5.2 Experimental Results 532

5.2.1 Performance Comparison 533

The experimental results of the information dif- 534

fusion prediction task are shown in Table 1 and 535

Table 2. Numbers in bold denote the best results 536

among all models, and the underlined ones denote 537

the second-best results. With the result, we have 538

the following observations: (O1) TSCLA achieves 539

significant improvements over state-of-the-art base- 540

lines, with over 40% relative improvement on the 541

Douban dataset in MAP scores. The result shows 542

that identifying users’ critical connections within 543

noisy structures enhances the retrieval of relevant 544

users. Moreover, integrating contextual informa- 545

tion into each diffusion period enables more pre- 546

cise localization of relevant user preferences. (O2) 547

We attribute the variation in TSCLA’s performance 548

across different datasets to the inherent character- 549

istics of each dataset. In the Douban and Meme 550

datasets, our model achieves better results by iden- 551

tifying critical user interactions from users’ weak 552

social connections. However, Twitter and Android 553

datasets are derived from real-world social net- 554

works. They contain social relationships that are 555
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Table 4: Ablation study results on three datasets. (%)

Models Twitter Douban Android

H@50 H@100 M@50 M@100 H@50 H@100 M@50 M@100 H@50 H@100 M@50 M@100
TSCLA 54.97 65.21 25.11 25.25 46.84 54.05 17.87 17.97 23.04 31.21 7.74 7.86
TSCLA-DY 53.54 64.45 24.74 24.87 41.55 48.98 15.12 15.23 20.65 28.57 6.80 6.91
TSCLA-ST 48.21 60.99 18.59 18.74 28.46 34.71 10.74 10.83 19.15 27.42 6.64 6.76
TSCLA-SC 54.20 63.70 19.56 19.71 36.73 44.28 13.37 13.47 23.21 30.51 7.73 7.84
TSCLA-TC 53.90 64.78 23.70 23.85 46.70 53.60 17.10 17.20 21.51 29.19 6.95 7.06
TSCLA-NC 53.53 62.78 19.33 19.49 36.28 44.43 13.18 13.29 21.28 28.75 6.87 6.98
TSCLA-HA 54.59 63.54 24.44 24.57 45.55 52.66 17.05 17.15 20.11 28.18 6.69 6.80

unrelated to the diffusion process. Without ad-556

ditional information, our model faces challenges557

in distinguishing between meaningful interactions558

and the underlying noise in these networks.559

5.2.2 Ablation Study560

To validate the contribution of each component in561

TSCLA, we designed six variants for our model and562

conducted an ablation study on them. They are: 1.563

TSCLA-DY removes temporal contrastive enhance-564

ment user encoding module. 2. TSCLA-ST removes565

the structural contrastive enhancement user encod-566

ing module. 3. TSCLA-SC removes the structural567

contrastive enhancement module . 4. TSCLA-TC re-568

moves the temporal contrastive enhancement mod-569

ule. 5. TSCLA-AC removes both temporal and570

structural contrastive enhancements. 6. TSCLA-HA571

replaces the hierarchical user adaptation module572

with a simple lookup module in (Sun et al., 2022).573

The results of these variants are shown in Table 4.574

By analyzing the results, we have the following ob-575

servations: (O1) The performance of TSCLA-ST576

and TSCLA-DY demonstrates that removing any577

user encoding mechanism would result in perfor-578

mance degradation. Notably, TSCLA-ST experi-579

ences a more significant drop, underscoring the im-580

portance of identifying critical user connections for581

accurate diffusion modeling. (O2) When we omit582

any contrastive learning enhancement modules, the583

performance drops across all datasets, demonstrat-584

ing their importance. (O3) When we replace the585

hierarchical user adaptation module with a memory586

lookup module (TSCLA-HA), it leads to a perfor-587

mance decline. It implies that without the guidance588

of the user context of the current cascade, extract-589

ing helpful information from users’ diversified pref-590

erences becomes challenging.591

5.2.3 Parameter Analysis592

We conduct comparative experiments to analyze593

the effect of maximum cascade length on model594

performance. The results in Fig. 3 show that595

TSCLA can outperform other models under any 596

cascade lengths, illustrating its stability and effec- 597

tiveness. We contribute its remarkable performance 598

to our structural contrastive learning user encoding 599

module, which could extend user preference from 600

a global perspective regardless of cascade length 601

and duration. 602

(a) Douban

(b) Android

Figure 3: Impact of maximum cascade length.

6 Conclusion 603

In this paper, we propose temporal and structural 604

contrastive learning augmented graph neural net- 605

works (TSCLA). Specifically, we extract users’ dy- 606

namic preferences from discretized structure snap- 607

shots and design a temporal contrastive learning 608

module that extracts users’ diversified preferences 609

in the diffusion process. Furthermore, we propose 610

a hierarchical adaptation module that dynamically 611

fuses relevant preferences based on the user con- 612

text of the current cascade. Additionally, we de- 613

velop a structural contrastive learning module to 614

identify critical user relations within noisy struc- 615

tural information to extend users’ dynamic prefer- 616

ences. Extensive experiments on four real-world 617

datasets validate the robustness and effectiveness 618

of TSCLA. 619
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7 Limitations620

We consider our model to have the following three621

limitations:622

1) Inefficient model updating & training. Since our623

model extracts users’ periodic preferences by split-624

ting the historical diffusion process into diffusion625

periods, it requires continuously incorporating new626

diffusion subgraphs to learn the users’ latest pref-627

erences for more timely predictions. Furthermore,628

our model utilizes the multi-head attention mecha-629

nism to strengthen user correlation relationships at630

each time period. With the increasing sub-graphs,631

this module’s computational complexity will also632

grow, which will result in inefficient model training633

in the future.634

2) Transductive graph learning. As our model only635

explores structural factors that affect the online636

information diffusion process, it is limited to han-637

dling graph structures with a fixed node set and638

cannot effectively address dynamic node changes.639

Although the issue of node addition can be allevi-640

ated by incorporating user features (e.g., gender,641

age, re-posting frequency) into the graph encoders,642

it remains challenging for our model to handle node643

deletion, a limitation that has been effectively ad-644

dressed in some continuous-time dynamic graph645

networks.646

3) Ignoring other factors of the diffusion process.647

The online information diffusion process is a com-648

plex process. The dissemination of specific infor-649

mation by users is influenced not only by the social650

structure or historical diffusion structures but also651

by many other factors, including the content’s se-652

mantics, social background, and even the publish-653

ing time. Moreover, with the continuous advance-654

ment of recommendation systems, the diffusion655

pattern of online information in social networks656

has shifted from traditional word-of-mouth propa-657

gation to a model increasingly reliant on recommen-658

dation systems for amplification. Thus, our model659

TSCLA, which is based solely on the diffusion660

structure, lacks the incorporation of more intricate661

factors, making it challenging to accurately and ef-662

ficiently identify potential disseminators who may663

participate in the current information propagation.664
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