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Abstract

Information diffusion prediction aims to fore-
cast how information propagates through social
networks. Current works have explored users’
preferences from dynamic diffusion structures
and social relations. Despite recent advances,
they generally share two natural deficiencies.
First, they generally fail to identify users’ crit-
ical preferences hidden in noisy and complex
user structures. In addition, existing works
primarily extract users’ dynamic preferences
within localized sub-graph structures, strug-
gling to filter relevant preferences for the cur-
rent cascade. Thus, we propose Temporal and
Structural Contrastive Learning Augmented
Graph Neural Network (TSCLA). Specifically,
we split the diffusion process into discrete peri-
ods and introduce a temporal contrastive learn-
ing module to extract users’ diversified pref-
erences across the diffusion process. Further-
more, we introduce a hierarchical adaptation
module that dynamically filters relevant pref-
erences in each diffusion period. In addition,
we construct a heterogeneous graph to extend
users’ preferences and design a structural con-
trastive learning module for discerning criti-
cal user relations from noisy connections. Ex-
perimental results on four real-world datasets
demonstrate the superior performance of our
model compared to state-of-the-art baselines.

1 Introduction

In recent years, online social networks (OSN) have
become powerful platforms for information dis-
semination. These networks trigger large-scale
online information diffusion cascades, facilitating
the rapid dissemination of online content. To un-
derstand the patterns of information diffusion and
identify potential participants, researchers have for-
mulated the task of information diffusion predic-
tion. As a fundamental problem in social networks
analysis, the task has been applied in many down-
stream social applications, such as fake news de-
tection (Wei et al., 2021; Yuan et al., 2019), and
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Figure 1: A toy example of diffusion cascades and so-
cial network. The diffusion process is split into three
diffusion periods [to,t3), [t3,t6), and [ts,t9). Icons
near social relations reflect users’ personal preferences.

personalized recommendation (Wang et al., 2020;
Liu et al., 2023b).

Generally, existing works on information dif-
fusion prediction are encapsulated into the fol-
lowing categories. 1) Feature engineering-based
models (Yang et al., 2015; Bourigault et al., 2016)
assume that the diffusion process is governed by
an underlying diffusion function. However, they
hardly generalize to real-world diffusion cascades.
2) Sequential-based models (Islam et al., 2018;
Yang et al., 2021; Wang et al., 2018a) employ se-
quence models to extract user correlations within
the diffusion path. Despite their effectiveness, these
methods focus solely on sequential patterns, over-
looking user interactions beyond sequential struc-
tures. 3) Graph-based models (Wang et al., 2018b,
2022) believe that users’ preferences drive the dif-
fusion process and introduce different graph struc-
tures to learn users’ preferences. Recently, stud-
ies (Yuan et al., 2020; Sun et al., 2022; Jiao et al.,
2024) further explore the impact of users’ dynamic
preferences, achieving promising performance.

Although existing works extract various prefer-
ences from different user relations or structures,
they still suffer from two key limitations. Firstly,
existing research typically incorporates all social
relations to extend user preferences without distin-
guishing critical relationships hidden in complex
social structures. Users in social networks main-
tain numerous social connections, each of which



reflects different personal preferences. Therefore,
indiscriminately incorporating all of a user’s so-
cial relationships for prediction may introduce sub-
stantial noise, reducing predictive accuracy. As
illustrated in Figure 1, when predicting the future
participants of Cascade #5 after timestamp ¢, con-
sidering all of User H’s social relations introduces
more noise than useful information, since only User
L shares a preference relevant to the current cas-
cade. Secondly, current studies describe users’ dy-
namic preferences from separated sub-graph struc-
tures, failing to identify relevant preferences that
shape the current cascade from these structure snap-
shots. User interactions in social platforms follow
habitual behavioral patterns, resulting in similar
user structures among different snapshots. Infer-
ring user preferences solely from these structures
may introduce massive amounts of irrelevant in-
formation. For instance, when predicting the dif-
fusion trend of Cascade #4, multiple similar dif-
fusion structures with minor variations can be ob-
served at different periods (e.g., diffusion structure
C—-D—FE (C—FE— F,and C — ), mak-
ing it challenging for models to discern preferences
that are informative for the current cascade.

To address the above problems, we propose
a Temporal and Structural Contrastive Learning
Augmented graph neural network (short for
TSCLA). Specifically, we discretize the diffusion
process into periods and apply GCN at each period
to learn user preferences at each period. More-
over, we introduce a temporal contrastive learning
module to avoid extracting redundant preferences
from similar structures and diversify user prefer-
ences in the diffusion process. Furthermore, we
design a hierarchical adaptation module, which se-
lects relative preferences at each period based on
the user context of the current cascade. In addi-
tion, we integrate three different user relations to
extend users’ preferences and design a structural
contrastive learning module to filter critical user
relations in the heterogeneous graph. We conduct
extensive experiments on four real-world datasets.
Empirical results demonstrate that our model out-
performs state-of-the-art baselines, validating the
effectiveness of TSCLA.

In summary, the main contributions of this paper
are three-fold:

* We propose a temporal contrastive learning
module to extract users’ diversified prefer-
ences at each period and design a hierarchical

adaptation module to select preferences rele-
vant to the current cascade.

* We incorporate three types of user relations to
extend users’ preferences and design a struc-
tural contrastive learning module for discern-
ing critical user relations within noisy struc-
tures.

* We conduct extensive experiments on four
real-world datasets, demonstrating the effec-
tiveness of TSCLA in information diffusion
prediction.

2 Related Work

2.1 Information Diffusion Prediction

Information diffusion prediction has attracted sig-
nificant research interest for decades. Early feature-
engineering models assume the diffusion process
adheres to specific diffusion models (Kempe et al.,
2003). However, their assumptions constrain their
ability to characterize complex diffusion patterns.

Sequential-based models have emerged as a
promising approach with the recent advancement
of deep learning. They (Wang et al., 2017; Islam
et al., 2018; Yang et al., 2021) transform diffu-
sion cascades into user sequences and incorporate
various sequential models (Hochreiter and Schmid-
huber, 1997; Vaswani et al., 2017) to capture user
correlations within the sequence. However, these
sequential-based models focus on strictly ordered
user sequences and overlook users’ non-sequential
correlations.

To address this problem, various graph struc-
tures, primarily social graphs, have been utilized to
extend user associations. Researchers (Wang et al.,
2018b, 2022; Cheng et al., 2023) further found that
users’ dynamic preferences play a vital role in facil-
itating information diffusion and extracted various
user preferences from graph structures. Most re-
cently, some studies (Wang et al., 2021; Yuan et al.,
2020) consider that users’ preferences evolve as
time passes; they model the diffusion process as a
series of structure snapshots and employ graph neu-
ral networks to learn users’ dynamic preferences.

However, current works incorporate all social
relations for prediction without distinguishing crit-
ical user relations from noisy connections. More-
over, they only describe users’ preferences from
separated sub-graph structures, failing to identify
relevant preferences within each diffusion period.



2.2 Graph Contrastive Learning

Graph neural networks (GNNs) have demonstrated
strong capabilities in learning node and edge rep-
resentations from graph-structured data (Yao et al.,
2019; Velickovic et al., 2018). However, traditional
graph methods rely heavily on labeled data. In-
spired by the success of self-supervised learning
in various domains (Zhou et al., 2021; Jain et al.,
2021), recent studies have introduced graph con-
trastive learning (GCL) to mitigate dependence
on labeled data and improve generalization per-
formance (Wu et al., 2023; Liu et al., 2023a).

Existing GCL methods can be broadly catego-
rized into two types based on the contrasting scales,
same-scale contrastive learning and cross-scale
contrastive learning. Same-scale contrastive learn-
ing, where the contrastive objectives are set to dis-
criminate graph views generated on the same scale.
Cross-scale contrastive learning generates samples
at multiple scales and maximizes the mutual in-
formation between these scales. Both strategy pri-
marily based on mutual information (MI) maxi-
mization, where model is optimized to maximize
agreement between positive pairs while pushing
negative pairs apart.

Inspired by their outstanding performance, we
leverage both contrastive learning frameworks in
our model to assist prediction.

3 Problem Formulation

The information diffusion process is typically
recorded as a cascade ¢, = {(u}",t/")]i < L)} in
chronological order, where element (", t") de-
notes that user u;" participates in cascade c,, at
time ¢}", e.g., forwarding the message m at times-
tamp ¢;"*. L is the maximum length of the cascade.
The cascade c¢,,, can be further decomposed into
user sequence ¢y, = {u/*|i < L} and timestamp
sequence ¢!, = {t™|i < L}. We collect all histori-
cal cascades and users in C = {c1, ¢z, ..., c|c| } and
U = {u1,uz, ..., up, }, respectively.

Moreover, we introduce three graph structures
essential for prediction: social graph G, diffusion
graph G,, and bipartite graph G, as illustrated
on the upper part of Figure 2. The social graph
Gs = {U, Es} is an undirected graph that describes
the social connections among users. Similarly, the
diffusion graph G; = {U, &;} is a directed graph
formed by users’ diffusion connections. The bi-
partite graph G, = {V}, &} is a directed graph
describing the co-occurrence correlation between

users and cascades.

Based on the above formulations, we define the
task of information diffusion prediction as fol-
lows: given the set of user U/, the set of historical
cascades C, user graph structures G, G4, Gy, and a
current cascade ¢, = {(u?,t?)|u$ € U}. Our ob-
jective is to compute the conditional probability
9; = p(uj|c,) to show how likely user u; will
participate in cascade c, at the next timestamp.

4 Method

In this section, we present the details of our pro-
posed TSCLA framework. An overview of the
architecture is illustrated in Fig. 2.

4.1 Temporal Contrastive Enhanced User
Encoding

4.1.1 User Dynamic Embedding

To model the diffusion dynamics at different pe-
riods, we first discretize the diffusion graph into
a discrete-time dynamic graph. Specifically, we
create a set of chronological structural snapshots
based on diffusion graph Gg4, denoted as Gp =
{gé} ,0 <7 < N. For structure snapshot gé =
{u, &}, its edge set £ is constructed by select-
ing diffusion edges within the corresponding time
interval, i.e., gt = {ed]ed €&y t; < te, < ti+1}.
Then, we apply an independent GNN for each struc-
ture snapshot to extract users’ dynamic preferences
at periods. Technically, we formulate the process
in the i™ snapshot G as,

XHi(2) — g (Qiz 7 an’(O)) , (1)

where X% is the input node embedding matrix
initialized with a normal distribution (Glorot and
Bengio, 2010). ¥¢(.) is a two layer GNN. X%#(2)
denotes user embedding matrix from the last GNN
layer to represent the users’ dynamic preference at
the i™ period, abbreviated as X%,

4.1.2 Temporal Contrastive Enhancement

Although users’ dynamic preferences continually
evolve across periods, certain behavioral patterns
persist. Inferring preferences solely from these
structures without considering their temporal con-
text will extract redundant preference. For example,
as illustrated in Figure 1, we may extract the same
preference for User A in period [¢o, t3) and [t3, tg)
due to similar user interaction A — B in these
periods.
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Figure 2: The overview architecture of TSCLA.

To address this, we propose a temporal con-
trastive learning task for adjacent subgraphs in Gp.
As illustrated in the left part of Fig. 2, the core
objective of this contrastive framework is to align
user embeddings with their corresponding period-
specific graph-level structural summaries for each
period while distancing them from summaries of
adjacent periods, encouraging our model to extract
diverse preferences from each snapshot. Specifi-
cally, we first employ a readout function to obtain
the graph-level representation gil for each subgraph
G}, formulated as, g, = MLP(ﬁ ZLZ'I X 1),
where MLP is a projection head that maps the ag-
gregated user embeddings to a shared latent space.
Then, we define positive and negative samples in
our temporal contrastive learning framework. For
structure summary gﬁl at i period, its positive
samples are corresponding user embeddings, i.e.,
XZ’Z € X% Its negative samples consist of two
components. The first part is generated by perturb-
ing the input user matrix X%i0) with row-wise
and column-wise shuffling and feeding it to the
same GNN layer ¥¢(-), producing X%*®) and sub-
sequently X%t The second part is the user em-
beddings from the preceding period, denoted as
XZ’Zfl e Xdi-1,

Finally, we leverage Jensen-Shannon Divergence
(JSD) (Peng et al., 2020) to estimate the distance
between positive and negative samples, which is,

=23 D (gx) - 5 (o (50))
k
(o (gaoxt™))].

where D,, : D x D' — R is a discriminator con-
structed by neural networks. The overall temporal

2

contrastive loss across all snapshots is given by,
_ 1 IN=1] »;
Lt = [N—T1] >im1 L

4.2 Structural Contrastive Enhanced User
Encoding

4.2.1 User Structure Embedding

Existing studies (Yuan et al., 2020; Sun et al.,
2022) have demonstrated that the diffusion pro-
cess is affected by multiple user preferences. Thus,
we further incorporate additional types of user re-
lations to extract users’ personal preferences and
social biases for the diffusion process to extend
users’ dynamic preferences and enhance prediction
accuracy.

Specifically, we integrate social graph G and bi-
partite graph G with diffusion graph G4, forming a
unified heterogeneous graph G, = {V, &, }. Here,
V, = Vpisthe setof nodesand &, = E,UELUE
is the edge set. As heterogeneous graph Gy, reflects
users’ personal preferences and social biases from
different perspectives, we apply two layers of GNN
on the heterogeneous graph to learn users’ prefer-
ences,

X® = w* (G, x*), 3)

where X*(%) is a randomly initialized input embed-
ding matrix. ¥*(-) is a two layer GNN. Since the
embeddings are derived by attending to multiple
relational structures, we refer to them user struc-
ture embeddings. Additionally, as cascade node
embeddings hardly contribute to prediction, we re-
tain only the user embedding from X*(), forming
the final structural embedding matrix embedding
matrix X°.



4.2.2 Structural Contrastive Enhancement

To extract critical user relations from such a com-
plex structure, we introduce a structural contrastive
learning module. As illustrated in the left part of
Fig. 2, the key objective is to align the embed-
dings of the same user across different views while
separating them from other users’ embeddings to
identify invariant critical user relations in the graph.

Specifically, , we first generate an augmented
view for user structure embedding X;. Similar to
temporal contrastive learning, we apply random
shuffling to the input matrix X*(©) and feed it to
GNN W#(.), to obtain augmented user embedding
matrix X*. We then define the positive and negative
samples. For a given user u;, the embedding XS
and x; = from two views are naturally con51dered
as pos1t1ve sample pairs with each other. Their
negative samples consist of 2K node embeddings,
denoted as iﬁk € X”, which are selected randomly
and evenly from both views. To optimize the task,
we adopt the InfoNCE (Zhu et al., 2020) objective
function, which is formulated as,

ﬁi:%%] e;rp( X, iij/T)

k=1 Zk 1 exp( X, "X /7') @

where 7 is a temperature parameter. We apply
this operation on all nodes in the heterogeneous
graph and aggregate the loss from each node.
The final objective is defined as, £; = 1/(JU| +
IC]) ZIM\HCI L%, where |U| and |C| represent the
size of user nodes and cascade nodes, respectively.

4.3 Cascade Representation and Prediction

To predict the current cascade c,, we first construct
its contextual representations by integrating users’
dynamic embeddings and structural embeddings
and then attend to these contextual representations
to make predictions.

4.3.1 Cascade Representation

Although users’ dynamic embeddings capture di-
verse user preferences, they still contain a massive
amount of irrelevant information for predicting the
current cascade. To filter useful information from
these embeddings, we design a hierarchical adap-
tation module to represent the user context in the
current cascade with user dynamic embedding, con-
sisting of a multi-head attention layer and a user-
wise attention layer. In detail, given cascade c,
and its user sequence cj, we first construct user
embedding sequences at each diffusion period by

looking up the corresponding user embedding ma-

trix. For the i period, the embedding sequence is

di _dy d,i
X’u,laxuzu“ XuL

represented as cdi =

Previous works (Wang and Li, 2019) have shown
that user correlations in the current cascade are re-
flected in their dependency on previous users. We
employ a multi-head self-attention module to cap-
ture dependency contexts in the current cascade and
extract helpful user preferences within each diffu-
sion period. In practice, we consider each diffusion
period as an attention head for parallelization and
apply a mask matrix to avoid future information

leakage. The process can be formulated as,
Att(Q, K, V) = softmax ( uc M) v,
chi = Att (cgviw? ,CHWE cdiwY ) )

Crd [Ch 1, o Cg,N]WA’

where WZQ, WZK , WZV , WlA are learnable matri-
ces. dy, is the scaling factor. M is a matrix to mask
out future users to avoid label leakage, which is
M,;; = —occif i > jelse M;; = 0. We refer
to Cg’d as an overall refined user representation,
which encodes users’ relative preferences within
the cascade at each period.

Then, we perform user-wise attention to fuse
refined user representations across different dif-
fusion periods. Given user u; in the current cas-
cade, we first obtain his refined representations

[XZ 71 R S } from the overall refined represen-

tation 5 and stack them as matrix X, - We then

apply user-wise attention to integrate users’ relative

preferences from different periods. The process is,
exp (aTWaxZ’;)

o = ZN exp (ampwaxfﬁ) ’ XuJ Za XuJ7 (6)
2 J

where a and W, are trainable parameter. Sim-
ilarly, we also perform single head attention
for structural user embedding sequence CJ =
(x5, ,%x5,,...,x5 | and concatenate its output
user representation with the above user-wise repre-
sentations to generate users’ contextual representa-
tion, which is,

o = Ate (CoWr 2, oW cowY ), 0

T58,Uq

2 = b

3 Xo

where WS’Q WS’K WS’V are learnable matrices.
T,8,U; 7,8

[; | means concatenation operation. x,"* € C,

Thus, the final contextual representation of current

cascade ¢, is given by Z, = [z}, z!2, ..., ziL].



4.3.2 Cascade Prediction

Given the user representation matrix Z, for the
current cascade ¢,, we then employ the multi-head
self-attention mechanism (as defined in Eq. 5) to
attend to contextual correlations within the cascade,
facilitating more effective prediction. The process
is formulated as follows,

z?i::Att(ZOVVjQ,ZOVV?K}zOVV?V),
(8)
Z) =[Z';.

L ZE WA
where W?’Q, Wf’K, Wf’v, W?’A are learnable
matrices. Then, we apply two layers of fully con-
nected neural networks to further refine user repre-
sentations, given by,
Z, = 0(Z; W1+ b1)W3 + bo, 9)

where W1, W, by, by are learnable parameters.

Finally, we compute the infection probability
g € RUXMI which represents the likelihood of
each user participating in the cascade at each times-
tamp, formulated as,

y = softmax(W,Z; + Mask), (10)
where W), is a learnable parameter to calculate
the infect probability. Mask matrix is to mask
users who have already participated in the current
cascade.

For model optimization, we apply cross-entropy
loss for the task of information diffusion prediction,
which is defined as,

|co| U]

Ly=-— Z Z Yij 10%(’!91]'),

i=2 j=1

an

where y,; = 1 denotes that the predicted user u;
is infected at position i; otherwise, y,;; = 0. The
overall objective function is as follows,

,C((g) = ,Cp + %Lt + ’YS,CS, (12)

where 7, and s are hyper-parameters balancing
the relative importance of two auxiliary tasks. 6
denotes the set of all learnable parameters.

5 Experiment

5.1 Experimental Setups
5.1.1 Datasets

To evaluate the performance of our model, we em-
ploy four publicly available real-world datasets

from previous works (Sun et al., 2022; Yuan et al.,
2020), which are, 1. Twitter (Hodas and Ler-
man, 2014) consists of tweets containing URLs
posted on Twitter during October 2010, along with
their diffusion paths and a predefined social net-
work. 2. Douban (Sun et al., 2022) records book-
sharing behaviors on the Douban website. The
co-occurrence connection of users is interpreted
as their social relation. 3. Android (Sankar et al.,
2020) consists of users’ interactions with the topic
"Android" from a community Q&A website and
social relations among users. 4. Meme (Leskovec
et al., 2009) tracks the migration of frequent quotes
and phrases (i.e., memes) across different websites.
The detailed statistics of these datasets are pre-
sented in Table 3.

5.1.2 Baselines

To evaluate the performance of our model, we
compare it with the following seven state-of-the-
art information diffusion prediction models, 1.
NDM (Yang et al., 2021) utilizes the self-attention
mechanism and CNN modules to capture long-term
user correlation in cascade sequences. 2. FOR-
EST (Yang et al., 2019) is a recurrent model with
a GRU to learn sequential features and a GCN
to extract social structure information. 3. Dy-
HGCN (Yuan et al., 2020) applies GCN to learn
users’ dynamic preferences by discretizing the dif-
fusion process into heterogeneous subgraphs. 4.
MS-HGAT (Sun et al., 2022) constructs a series of
hyper-graphs to model user interactions and inte-
grate them with social relations to depict user inter-
action dependencies. 5. MINDS (Jiao et al., 2024)
models diffusion process as hyper-graph snapshots
and incorporates acroscopic size prediction to as-
sist prediction. 6. DisenIDP (Cheng et al., 2023)
leverages two hyper GCN to learn users’ intents
and designs a self-supervised disentanglement task
to assist the procedure. 7. RotDiff (Qiao et al.,
2023) maps the users into the hyperbolic repre-
sentation space based on the social relations and
diffusion paths, which achieves state-of-the-art per-
formances.

5.1.3 Parameter Settings

We implement TSCLA with PyTorch and optimize
it by Adam. The learning rate is set to 0.001. The
batch size for training is 16, and the dimensional-
ity of all embeddings and representations is fixed
at d = 64. To construct the dynamic graph Gp,
we split the diffusion graph into NV = 14 periods.



Table 1: Experimental results on HITS score over four datasets (%).

Models Twitter Douban Android Meme

@0 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100
NDM 19.34 29.41 3573 10.13 21.23 31.25 339 9.53 1572 20.83 36.63 45.83
FOREST 25.52 3850 46.07 18.68 30.84 38.57 7.00 15.14 2237 29.63 47.80 57.86
DyHGCN 29.01 46.88 57.19 19.87 32.89 3942 842 19.15 26.79 29.52 48.64 58.48
MS-HGAT 29.96 46.54 5735 20.65 35.04 4136 1049 19.837 27.81 2843 49.66 60.47
MINDS 32.56 48.60 58.60 18.83 31.35 3797 949 18.68 2593 2742 4734 58.68
DisenIDP 34.89 50.74 59.67 2059 3545 4284 930 19.09 26.61 31.14 51.75 62.67
RotDiff 3590 5246 61.21 22.16 3823 4637 1144 23.04 31.30 3066 51.70 62.06
TSCLA 36.57 5497 6521 3148 46.84 54.05 12.27 2329 3121 3717 57.82 66.96
Improvement 1.87 4.78  6.53 42.07 22.53 16,57 7.26 1.09 - 16.58 10.29 6.74

Table 2: Experimental results on MAP score over four datasets (%).
Twitter Douban Android Meme

Models

@10 @50 @100 @0 @50 @I00 @10 @50 @I00 @10 @50 @100
NDM 1296 1339 1348 836 879 936 2.19 244 252 1059 1131 11.44
FOREST 1733 17.90 18.01 1086 11.46 11.83 3.81 4.16 426 1553 1637 17.51
DyHGCN 17.51 18.32 1847 1048 11.14 1148 4,58 503 514 16.11 1623 17.25
MS-HGAT 18.80 19.51 19.65 1122 11.87 1198 633 6.75 685 1542 1641 16.57
MINDS 18.62 19.29 1942 10.19 10.76 10.85 6.13 6.53 6.62 1535 1623 16.38
DisenIDP 2246 23.58 2371 1041 11.10 1121 5.69 6.11 621 1666 17.62 17.77
RotDiff 24.06 24.82 2495 11.70 12.54 12.66 696 745 7.56 1653 1691 17.66
TSCLA 2424 2511 2525 17.13 17.87 1797 725 7.74 7.86 20.15 21.13 21.26
Improvement 7.93  1.17 1.20 46.43 4254 4197 422 392 397 2092 1992 19.65

Table 3: Statistics of the datasets.

Datasets Twitter Douban Android Meme
# Users 12,627 12,232 9,958 4,709
# Links 309,631 348,280 48,573 -

# Cascades 3,442 3,475 679 12,661
Avg. Length  32.60 21.76 33.3 16.24

All GNN layer U(-) used for generating user em-
beddings are implemented as GCNs. our model
is flexible and can accommodate other GNN ar-
chitectures. For the temperature 7 in our struc-
tural contrastive learning module, we select it from
{0.1,0.3,0.5,0.7, 1} for each dataset. The number
of negative samples K is set to 150. The number
of heads H in Eq. 8 is chosen from {8, 10, 16}
and is empirically set to 10 after comparison. The
hyper-parameters v, and ~y. are set to 0.1.
Following the previous works (Yuan et al., 2020;
Qiao et al., 2023), we set the maximum cascade
length to 200. For all datasets, 80% of cascades
are used for training; the remaining 20% are split
evenly for validation and testing. Following prior
works (Yuan et al., 2020; Sun et al., 2022), we
frame the task as an information retrieval task and
evaluate the performance with two ranking metrics,
i.e., Mean Average Precision on top K (MAP@K)
and Hits scores on top K (HITS@K), with K =

[10, 50, 100]. We abbreviate them as M@K and
H@K, respectively.

5.2 Experimental Results

5.2.1 Performance Comparison

The experimental results of the information dif-
fusion prediction task are shown in Table 1 and
Table 2. Numbers in bold denote the best results
among all models, and the underlined ones denote
the second-best results. With the result, we have
the following observations: (O1) TSCLA achieves
significant improvements over state-of-the-art base-
lines, with over 40% relative improvement on the
Douban dataset in MAP scores. The result shows
that identifying users’ critical connections within
noisy structures enhances the retrieval of relevant
users. Moreover, integrating contextual informa-
tion into each diffusion period enables more pre-
cise localization of relevant user preferences. (02)
We attribute the variation in TSCLA’s performance
across different datasets to the inherent character-
istics of each dataset. In the Douban and Meme
datasets, our model achieves better results by iden-
tifying critical user interactions from users’ weak
social connections. However, Twitter and Android
datasets are derived from real-world social net-
works. They contain social relationships that are



Table 4: Ablation study results on three datasets. (%)

Models Twitter Douban Android
H@50 H@100 M@50 M@100 H@50 H@l100 M@50 M@100 H@50 H@100 M@50 M@100

TSCLA 5497 65.21 25.11 25.25 46.84 54.05 17.87 17.97 23.04  31.21 7.74 7.86
TSCLApy 53.54  64.45 24.74 24.87 41.55 48.98 15.12 15.23 20.65 28.57 6.80 6.91
TSCLA gt 48.21 60.99 18.59 18.74 28.46 34.71 10.74 10.83 19.15 27.42 6.64 6.76
TSCLAsc 5420  63.70 19.56 19.71 36.73 44.28 13.37 13.47 23.21 30.51 7.73 7.84
TSCLA ¢ 5390 64.78 23.70 23.85 46.70  53.60 17.10 17.20 21.51 29.19 6.95 7.06
TSCLANc 53.53 62.78 19.33 19.49 36.28 44.43 13.18 13.29 21.28 28.75 6.87 6.98
TSCLA A 54.59 63.54 24.44 24.57 45.55 52.66 17.05 17.15 20.11 28.18 6.69 6.80

unrelated to the diffusion process. Without ad-
ditional information, our model faces challenges
in distinguishing between meaningful interactions
and the underlying noise in these networks.

5.2.2 Ablation Study

To validate the contribution of each component in
TSCLA, we designed six variants for our model and
conducted an ablation study on them. They are: 1.
TSCLA.py removes temporal contrastive enhance-
ment user encoding module. 2. TSCLA gt removes
the structural contrastive enhancement user encod-
ing module. 3. TSCLA gc removes the structural
contrastive enhancement module . 4. TSCLA ¢ re-
moves the temporal contrastive enhancement mod-
ule. 5. TSCLA _sc removes both temporal and
structural contrastive enhancements. 6. TSCLA _ga
replaces the hierarchical user adaptation module
with a simple lookup module in (Sun et al., 2022).

The results of these variants are shown in Table 4.
By analyzing the results, we have the following ob-
servations: (O1) The performance of TSCLA st
and TSCLA py demonstrates that removing any
user encoding mechanism would result in perfor-
mance degradation. Notably, TSCLA st experi-
ences a more significant drop, underscoring the im-
portance of identifying critical user connections for
accurate diffusion modeling. (02) When we omit
any contrastive learning enhancement modules, the
performance drops across all datasets, demonstrat-
ing their importance. (O3) When we replace the
hierarchical user adaptation module with a memory
lookup module (TSCLA g, ), it leads to a perfor-
mance decline. It implies that without the guidance
of the user context of the current cascade, extract-
ing helpful information from users’ diversified pref-
erences becomes challenging.

5.2.3 Parameter Analysis

We conduct comparative experiments to analyze
the effect of maximum cascade length on model
performance. The results in Fig. 3 show that

TSCLA can outperform other models under any
cascade lengths, illustrating its stability and effec-
tiveness. We contribute its remarkable performance
to our structural contrastive learning user encoding
module, which could extend user preference from
a global perspective regardless of cascade length
and duration.
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Figure 3: Impact of maximum cascade length.

6 Conclusion

In this paper, we propose temporal and structural
contrastive learning augmented graph neural net-
works (TSCLA). Specifically, we extract users’ dy-
namic preferences from discretized structure snap-
shots and design a temporal contrastive learning
module that extracts users’ diversified preferences
in the diffusion process. Furthermore, we propose
a hierarchical adaptation module that dynamically
fuses relevant preferences based on the user con-
text of the current cascade. Additionally, we de-
velop a structural contrastive learning module to
identify critical user relations within noisy struc-
tural information to extend users’ dynamic prefer-
ences. Extensive experiments on four real-world
datasets validate the robustness and effectiveness
of TSCLA.



7 Limitations

We consider our model to have the following three
limitations:

1) Inefficient model updating & training. Since our
model extracts users’ periodic preferences by split-
ting the historical diffusion process into diffusion
periods, it requires continuously incorporating new
diffusion subgraphs to learn the users’ latest pref-
erences for more timely predictions. Furthermore,
our model utilizes the multi-head attention mecha-
nism to strengthen user correlation relationships at
each time period. With the increasing sub-graphs,
this module’s computational complexity will also
grow, which will result in inefficient model training
in the future.

2) Transductive graph learning. As our model only
explores structural factors that affect the online
information diffusion process, it is limited to han-
dling graph structures with a fixed node set and
cannot effectively address dynamic node changes.
Although the issue of node addition can be allevi-
ated by incorporating user features (e.g., gender,
age, re-posting frequency) into the graph encoders,
it remains challenging for our model to handle node
deletion, a limitation that has been effectively ad-
dressed in some continuous-time dynamic graph
networks.

3) Ignoring other factors of the diffusion process.
The online information diffusion process is a com-
plex process. The dissemination of specific infor-
mation by users is influenced not only by the social
structure or historical diffusion structures but also
by many other factors, including the content’s se-
mantics, social background, and even the publish-
ing time. Moreover, with the continuous advance-
ment of recommendation systems, the diffusion
pattern of online information in social networks
has shifted from traditional word-of-mouth propa-
gation to a model increasingly reliant on recommen-
dation systems for amplification. Thus, our model
TSCLA, which is based solely on the diffusion
structure, lacks the incorporation of more intricate
factors, making it challenging to accurately and ef-
ficiently identify potential disseminators who may
participate in the current information propagation.
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