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Abstract001

The wide usage of LLMs raises critical require-002
ments on detecting AI participation in texts.003
Existing studies investigate these detections in004
scattered contexts, leaving a systematic and005
unified approach unexplored. In this paper,006
we present HART, a hierarchical framework007
of AI risk levels, each corresponding to a detec-008
tion task. To address these tasks, we propose a009
novel 2D Detection Method, decoupling a text010
into content and language expression. Our find-011
ings show that content is resistant to surface-012
level changes, which can serve as a key feature013
for detection. Experiments demonstrate that014
2D method significantly outperforms existing015
detectors, achieving an AUROC improvement016
from 0.705 to 0.849 for level-2 detection and017
from 0.807 to 0.886 for RAID. We release our018
data and code at https://github.com/xxxx.019

1 Introduction020

Large language models (LLMs) have shown strong021

text generation abilities, leading to the rise of AI-022

assisted text creation in news, academic, story, and023

advertising writing (Christian, 2023; M Alshater,024

2022; Yuan et al., 2022; Chen and Chan, 2023).025

The coauthorship between humans and machines026

has become the norm in the era of LLM (Lee et al.,027

2022; Nguyen et al., 2024; Liang et al., 2024).028

However, we have different levels of tolerance for029

AI in different contexts. For example, in academic030

paper writing, conferences and journals usually ac-031

cept papers polished using LLMs but reject papers032

fabricated by models. In writing class, teachers033

prefer the essays written completely by students,034

denying the usage of AI. These application scenar-035

ios require techniques to detect AI participation in036

text creation at varying levels, which can be cate-037

gorized into four types as illustrated in Figure 1.038

Prior research explores detection of AI-039

generated text across different contexts. Early stud-040

ies concentrate on identifying fully AI-generated041

write

polishdraft

humanizegenerate

generate

Type 0: Human written 

Type 1: AI polished

Type 2: Humanized AI

Type 3: AI generated

Figure 1: AI participation in text creation

text (Gehrmann et al., 2019; Ippolito et al., 2020; 042

Mitchell et al., 2023), while later studies address 043

challenges like paraphrasing and adversarial at- 044

tacks (Krishna et al., 2024; He et al., 2024; Dugan 045

et al., 2024; Wu et al., 2024). Recently, the focus 046

shifts toward identifying mixed human-AI content 047

(Wang et al., 2024d; Richburg et al., 2024; Zhang 048

et al., 2024; Abassy et al., 2024). However, these 049

studies, tailored to specific contexts and detector 050

designs, lack a systematic framework capable of 051

addressing all levels of AI participation in a unified 052

manner. 053

In this paper, we introduce HART (Hierarchical 054

AI Risk in Text Creation), a comprehensive frame- 055

work of AI risk levels that targets the four types of 056

AI participation, as depicted in Figure 2(a). Each 057

risk level corresponds to a detection task, where 058

a binary classifier is required. To systematically 059

tackle these tasks, we propose decoupling the con- 060

tent and language expression of a text, as illustrated 061

in Figure 2(b). We map the four types of AI partici- 062

pation onto the four quadrants of a two-dimensional 063

coordinate system, where type 2 and type 3 (AI 064

content) are marked as high risk (in red) due to the 065

potential for misinformation, bias, or harmful con- 066

tent, while type 1 (AI expression) is considered low 067

risk (in yellow) as it primarily affects readers’ ex- 068

perience. Based on the two-dimensional view, we 069

propose a novel 2D Detection Method that decom- 070

poses the problem into two sub-problems: detect- 071
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(a) AI Risk Levels (b) Content-Expression Coordinate System
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Figure 2: The detection tasks across three risk levels address the four types of AI participation. We represent these
types in a two-dimensional space, leading to a 2D detection approach. In this method, the detector performs a binary
classification within the two-dimensional space for each detection task.

ing AI content and detecting AI expression. Each072

corresponds to a distinct textual feature, mapped to073

a scalar metric, as Figure 2(c) illustrates.074

We hypothesize that content is the essential075

feature in distinguishing AI-generated texts from076

human-written ones. This is because content is rel-077

atively stable and less affected by superficial text078

changes. For example, the content “the sun rises079

in the east” can be expressed in different styles –080

academic as “the sun appears to ascent from the081

eastern horizon”, news as “the sun rose in the east082

this morning, marking another predictable begin-083

ning to the day for residents in the region”, and084

poetry as “in dawn’s gentle embrace, the golden085

orb doth rise, from eastern realms it paints the086

morning skies”. The core ideas of the content re-087

main the same no matter whether words, grammar,088

style, and tone are altered.089

To test this hypothesis, we investigate two fun-090

damental research questions.091

Q1: How can a text’s content and expression be092

effectively decoupled?093

Q2: How can AI content and AI expression be reli-094

ably detected?095

For Q1, we explore two prototyping approaches:096

extraction, which isolates main ideas or key ex-097

pressions to represent content, and neutralization,098

which simplifies the text by removing unique stylis-099

tic elements or ideas. For Q2, we assess exist-100

ing detection models on these content-driven and101

expression-driven representations, finding that cur-102

rent metric-based detectors can indeed be adapted103

to identify both AI-generated content and AI-104

modified expressions.105

Experimental results reveal that existing detec-106

tors struggle with AI-risk detection tasks due to107

their high sensitivity to surface-level text changes.108

In contrast, leveraging content-based features 109

proves more robust, outperforming traditional de- 110

tectors across multiple domains in the HART and 111

RAID datasets. Further improvements are ob- 112

served when content and expression features are 113

integrated; the 2D framework boosts the best AU- 114

ROC for the level-2 detection task from 0.711 to 115

0.855 and TPR5% from 47% to 59%; and it en- 116

hances the best AUROC on RAID from 0.807 to 117

0.886. 118

To our knowledge, this is the first work to tackle 119

the detection problem by focusing on content as a 120

key feature, demonstrating its importance in distin- 121

guishing AI-generated texts and effectively mitigat- 122

ing diverse attacks on detection systems. 123

2 Related Work 124

AI-Assisted Text Creation. LLMs have made 125

significant progress in the area of creative assis- 126

tance (Zhao et al., 2023b; Lund et al., 2023; Wasi 127

et al., 2024). These models can generate coher- 128

ent, natural text, offer a variety of writing styles 129

and expressions, and are adapted for various writ- 130

ing tasks such as scientific technology (Gero et al., 131

2022; Salimi and Saheb, 2023; Lund et al., 2023), 132

storytelling (Yuan et al., 2022; Zhao et al., 2023b; 133

Wang et al., 2024a,b), and news media (Cheng 134

et al., 2024). On the one hand, LLMs can help cre- 135

ators improve their writing efficiency, and on the 136

other hand, they can enhance the quality of their 137

writing. In this paper, we categorize the ways in 138

which LLMs assist in creating text content into four 139

types and propose detection tasks to cover them. 140

AI-Generated Text Detection. The tasks we pro- 141

pose are related to existing AI-generated text de- 142

tection tasks (Wu et al., 2023; Yang et al., 2023b), 143

where existing tasks do not consider AI participa- 144

tion levels in text creation. It is also related to 145
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existing refined detection tasks (Zhang et al., 2024;146

Richburg et al., 2024), where these tasks identify147

operations applied to text by LLMs or humans. In148

contrast, we focus on AI risk levels instead of spe-149

cific operations.150

Existing detectors consist of three types of tech-151

nology. The first is supervised classifiers(Solaiman152

et al., 2019; Ippolito et al., 2020; Fagni et al.,153

2021; Hu et al., 2023; Yan et al., 2023; Li et al.,154

2024; Verma et al., 2024), which train a binary155

classifier based on a large collection of machine-156

generated and human-written text. The second157

is zero-shot classifiers, including white-box meth-158

ods (Gehrmann et al., 2019; Su et al., 2023; Bao159

et al., 2024; Xu et al., 2024; Hans et al., 2024) and160

black-box methods (Mitchell et al., 2023; Yang161

et al., 2023a; Bhattacharjee and Liu, 2024; Bao162

et al., 2025). These technologies usually use pre-163

trained language models to extract detection met-164

rics. The third is text watermarking technology165

(Kirchenbauer et al., 2023; Zhao et al., 2023a;166

Christ et al., 2024; Zhao et al., 2024b,a), which167

identifies machine-generated text by embedding168

easy-to-detect markers or patterns.169

These techniques are effective in detecting170

purely machine-generated texts, but may not be171

robust to various attacks (Gao et al., 2018; Dyr-172

mishi et al., 2023; Krishna et al., 2024; He et al.,173

2024; Dugan et al., 2024; Wu et al., 2024; Wang174

et al., 2024c). At the same time, various commer-175

cial AI systems are published to serve ‘humanizing’176

ability, bypass existing detectors. To address these177

challenges, we propose the 2D detection frame-178

work as an effective candidate to defend against179

attacks.180

Decoupling of Content and Expression. The181

idea of decoupling content and expression is re-182

lated to existing studies on the disentanglement of183

semantics and syntax. These studies mainly fo-184

cus on the disentanglement at the sentence level185

and discuss about it in different contexts, such186

as recognition science (Caucheteux et al., 2021;187

Moro et al., 2001), sentence representation (Chen188

et al., 2019), sentence comprehension (Dapretto189

and Bookheimer, 1999), and sentence generation190

(Bao et al., 2019). They generally represent seman-191

tics and syntax in separate neural vectors and train192

a neural network with specific structure or training193

objective to obtain disentangled vectors.194

However, our decoupling of content and expres-195

sion differs from these early studies in three aspects.196

First, we focus on discourse level instead of sen- 197

tence level, where the texts are longer and more 198

complex. Second, we represent content and expres- 199

sion still in texts instead of neural vectors, which 200

provides us with a convenience for understanding 201

and explaining. Finally, we decouple them using 202

zero-shot prompting techniques instead of training 203

a model, which simplifies the usage. 204

3 Task and Benchmark 205

3.1 Task Definition 206

We consider AI risks in the dimensions of content 207

and expression, categorizing AI risks into three 208

levels and defining detection tasks accordingly as 209

Figure 2(a) shows. 210

Level-1 Detection: It targets types 1, 2, and 3, 211

covering all texts in which their creation involves 212

AI techniques. This task is suitable for strict situa- 213

tions where AI assistance is forbidden. 214

Level-2 Detection: It targets type 2 and 3, cov- 215

ering all texts whose contents are generated by AI. 216

These texts may contain fabricated content that 217

may deliver wrong, biased, or dangerous informa- 218

tion. This task suites for common situations where 219

AI content may cause risks. Existing AI-generated 220

text detection tasks can be seen as level-2 detection. 221

Level-3 Detection: It targets type 3 only, where 222

texts are generated by LLMs from scratch. This 223

task suites for loose situations, where AI content 224

is allowed, but readers’ experience matters. Early 225

research in pure AI-generated text detection can be 226

seen as level-3 detection. 227

AI-assisted text creation in real scenarios is com- 228

plex, where it is likely that human and AI partici- 229

pate iteratively. In this case, it is hard to define the 230

risk levels. However, we could use the definition 231

of level-1 to 3 as a lens to analyze the texts. 232

3.2 Benchmark Dataset 233

We create the benchmark dataset HART for AI risk 234

detection following a strict construction process 235

and thorough quality assurance. Detailed statis- 236

tics are provided in Table 1, while information on 237

model and parameter coverage can be found in 238

Appendix A.3.4. 239

3.2.1 Data Construction 240

To begin, we gather human-written texts from di- 241

verse sources, creating type-0 samples. Next, we 242

refine these texts to produce type-1 samples, which 243
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Domain Language Length Dev Test

Student Essay English 241 words 2K 2K
ArXiv Intro English 410 words 2K 2K
Creative Writing English 345 words 2K 2K
CC News English 148 words 2K 2K
CC News Chinese 590 chars 2K 2K
CC News French 258 words 2K 2K
CC News Spanish 285 words 2K 2K
CC News Arabic 152 words 2K 2K

Table 1: Domains and languages covered by HART.

preserve the original meanings but use different244

expressions. Using the titles or prompts of the245

human texts, we generate AI-written content, re-246

sulting in type-3 samples. We then adapt the AI-247

generated texts to create type-2 samples, which248

retain AI-generated content but are expressed in a249

more human-like manner. As a result, we obtain an250

equal distribution of samples across all four types.251

Human Texts Collection. We consider the most252

common domains explored in AI-generated text253

detection research. Specifically, we utilize student254

essays from Automated Student Assessment Prize255

(ASAP) 2.0 dataset (Crossley et al., 2024), paper256

introductions sourced from arXiv (arXiv, 2024),257

story writings taken from WritingPrompts (Fan258

et al., 2018), and news articles obtained from Com-259

mon Crawl (Hamborg et al., 2017), as detailed in260

Appendix A.1. The news articles are collected in261

five different languages. For every domain and262

language, we randomly sample 1000 examples, di-263

viding them equally into development and test sets.264

Automatic Refinement. LLMs are commonly265

employed to improve the expression of human-266

written drafts. We focus on two refinement meth-267

ods: polishing and restructuring. Polishing aims268

to enhance the readability and coherence of the269

text, typically adjusting language at the word and270

sentence levels. Restructuring, on the other hand,271

focuses on improving the logical flow by reorga-272

nizing content, which demands a deeper grasp of273

the main ideas and the text’s purpose. These re-274

finement approaches are applied using the prompts275

outlined in Appendix A.2.276

Machine Texts Generation. We create AI-277

generated texts using titles or prompts derived278

from human-written content. For instance, in the279

case of student essays, we instruct LLMs with a280

prompt such as: “Write a student essay (no title)281

in {nwords} words (split into {nparagraphs} para-282

graphs) based on the given title: {title}”. To ensure 283

that the generated texts closely match the average 284

length of human-written texts, we specify the same 285

number of words (or characters for Chinese) and 286

paragraphs in the prompt. The detailed prompts for 287

all domains can be found in Appendix A.1. 288

Humanizing. AI-generated texts can be human- 289

ized to enhance their expressive quality. This can 290

be achieved through human editing, the use of ex- 291

ternal tools, and two automated approaches: di- 292

versifying and mimicking. Diversifying involves 293

increasing the linguistic variety of AI-generated 294

content, resembling the paraphrasing technique 295

that enhances lexical and grammatical diversity 296

(Krishna et al., 2024). Mimicking, on the other 297

hand, prompts LLMs to emulate a human-written 298

reference text in order to rewrite AI-produced con- 299

tent. These two strategies are applied using sim- 300

ple prompts, as detailed in Appendix A.3.1, while 301

human editing and the use of external tools are 302

discussed in Appendices A.3.3 and A.3.2, respec- 303

tively. 304

3.3 Quality Assurance 305

We evaluate the length of each generation from the 306

LLM output, and if it is significantly longer (more 307

than twice the original length) or shorter (less than 308

half the original length), we prompt the LLM to 309

generate the text again. Additionally, we monitor 310

for issues like repetition or nonsensical responses 311

and address them by re-generating the text. After 312

processing the data, we truncate the texts to ensure 313

the length distributions are consistent across types 314

0, 1, 2, and 3. As a final quality check, we randomly 315

select 100 samples per domain for manual review, 316

achieving an average pass rate of 99.5%. In terms 317

of costs, the data construction process involves 318

approximately $2,000 for LLM API usage, $2,000 319

for human editing, $500 for AI tools, and $500 for 320

the manual review step. 321

4 2D Detection Method 322

We prototype to test our hypothesis using a simple 323

zero-shot prompting technique. 324

4.1 Decoupling Content and Expression 325

Achieving a “perfect decoupling” of content and 326

expression means presenting core ideas or meaning 327

(content) in a way that is entirely independent from 328

stylistic or linguistic expression. In this study, we 329

propose a prototyping method by extracting content 330
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Original Text (T ): Jane was walking through the park when she spotted a
small puppy wandering aimlessly. She picked it up, read the collar tag, and
took it to the address. The owner was grateful to have the puppy back.

Prompt 1: Outline the main
points of the text to get a clear
and concise picture of the con-
tent.

Prompt 1: Identify and list the repre-
sentative language expressions used
in the text.

Content (C1): 1. Jane was walk-
ing through the park. 2. She no-
ticed a small puppy wandering
aimlessly. 3. Jane found a collar
tag on the puppy. 4. She took the
puppy to the address on the tag.
5. The owner was grateful to Jane
for returning the puppy.

Expression (E1): 1. "walking
through the park" - indicates Jane’s
action and setting. 2. "spotted a small
puppy" - describes Jane noticing the
puppy. 3. "wandering aimlessly" -
characterizes the puppy’s behavior. 4.
"picked it up" - describes Jane’s ac-
tion of picking up the puppy.

Prompt 2: Simplify the text to
make it clear and concise while
preserving its meaning.

Prompt 2: Replace the main points
of the text with a generic topic while
preserving the language expression.

Content (C2): Jane found a
puppy in the park and returned
it to its grateful owner after read-
ing the collar tag.

Expression (E2): Alex was strolling
through the garden when they noticed
a tiny kitten meandering without direc-
tion. They scooped it up, checked the
collar tag, and brought it to the listed
location. The caretaker was thankful
to have the kitten returned.

Table 2: Decoupling content and language using extrac-
tion and neutralization prompts.

of a text and describing it in simple language to cre-331

ate a representation of the content, and discarding332

content of a text but keeping its language style and333

tone to create a representation of its expression.334

Specifically, as Table 2 shows, we investigate335

two decoupling methods: extraction and neutral-336

ization. The extraction method produces a brief337

outline of the main ideas and a list of representa-338

tive expressions of a text. Although the outline339

and list produced by the extraction method are rel-340

atively short and empirically effectual, they lose341

significant amount of details of the text. The neu-342

tralization method mitigates this issue. It reserves343

more details about the content and expression with344

longer text descriptions, which is empirically better345

for detection tasks.346

4.2 Detection of AI Content and Expression347

Intuitively, language models produce less surpris-348

ing text than humans because the models are349

trained to minimize the empirical risk on human-350

written texts, which encourages the model to gen-351

erate common patterns in the training data. Thus,352

AI-generated texts generally tend to have lower353

perplexity than human-written texts and can be354

detected by perplexity-based detectors. However,355

perplexity-based detectors are easily deceived by356

altered expressions because perplexity itself cannot357

distinguish a surprising content from a surprising358

expression.359

By decoupling content and expression, we can360

measure the surprisingness of them separately. 361

Thus, many existing metric-based detectors can be 362

used to detect AI content and expression. Take Fast- 363

Detect as an example. As Figure 2(c) shows, its 364

metric – conditional probability curvature – can be 365

used to map the textual features into scalars, result- 366

ing in a two-dimensional distribution of texts for 367

the four types. We also tried trained detectors such 368

as RADAR, but failed to obtain an improvement 369

in the AI content detection task. These detectors 370

may need further training to handle the textual fea- 371

tures. In our experiments, we empirically choose 372

Fast-Detect and Binoculars as the representatives. 373

5 Experiments 374

We confirm our hypothesis and demonstrate that 375

combining content and expression features pro- 376

vides us with a stronger detection ability to AI risks 377

in Section 5.2 and resilience to various attacks in 378

Section 5.3. 379

5.1 Experimental Settings 380

Detectors. We mainly focus on metric-based 381

detectors, which generally leverage existing pre- 382

trained LLMs to compute a metric as an indicator 383

of AI-generated text. We take log-perplexity, log- 384

rank, LRR (Su et al., 2023), Fast-Detect (Bao et al., 385

2024), Binoculars (Hans et al., 2024), and Glimpse 386

(Bao et al., 2025) as representatives, as described 387

in Appendix B. For fair comparison, we unify the 388

scoring models to falcon-7B or falcon-7B-instruct 389

(except for Glimpse), where we find that these mod- 390

els perform significantly better than smaller models 391

such as gpt-neo-2.7B. 392

We also consider trained detectors, such as 393

RADAR (Hu et al., 2023) and RoBERTa (Chat- 394

GPT) (Guo et al., 2023). However, these detectors 395

cannot detect extracted textual features without fur- 396

ther training. Thus, we just list them for reference. 397

Metrics. We study the detection problem in vari- 398

ous application scenarios, where the tolerance for 399

false positive rate is unknown. Consequently, we 400

use AUROC (area under the receiver operating char- 401

acteristic curve) as the major metric to measure the 402

quality of the classifiers. We also report F1 and 403

TPR5% (true positive rate at a false positive rate of 404

5%) for reference. 405

5.2 Results on Multi-Level AI Risk Detection 406

We compare existing detectors and 2D methods in 407

HART as Table 3 shows, achieving the following 408
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Detector Level-3 Detection Task Level-2 Detection Task Level-1 Detection Task
Essay ArXiv Writing ALL (TPR5%) Essay ArXiv Writing ALL (TPR5%) Essay ArXiv Writing ALL (TPR5%)

RoBERTa(ChatGPT) 0.636 0.796 0.653 0.662 (16%) 0.435 0.687 0.498 0.502 (8%) 0.471 0.955 0.606 0.566 (9%)
RADAR 0.692 0.849 0.647 0.728 (14%) 0.566 0.814 0.630 0.687 (10%) 0.705 0.857 0.700 0.758 (20%)
Log-Perplexity 0.868 0.850 0.811 0.799 (33%) 0.364 0.485 0.438 0.473 (11%) 0.769 0.530 0.625 0.576 (6%)
Log-Rank 0.867 0.874 0.813 0.814 (39%) 0.380 0.460 0.441 0.465 (11%) 0.739 0.542 0.611 0.573 (8%)
LRR 0.835 0.909 0.797 0.840 (50%) 0.560 0.616 0.551 0.573 (25%) 0.616 0.576 0.558 0.568 (19%)
Glimpse 0.929 0.869 0.819 0.849 (58%) 0.754 0.737 0.625 0.676 (30%) 0.878 0.719 0.618 0.688 (22%)
Fast-Detect 0.883 0.877 0.840 0.862 (60%) 0.734 0.718 0.692 0.711 (47%) 0.877 0.769 0.740 0.778 (55%)
C2 (Fast-Detect) 0.734 0.787 0.765 0.738 (18%) 0.778 0.862 0.819 0.798 (42%) 0.712 0.779 0.742 0.730 (33%)
C2-T (Fast-Detect) 0.864 0.896 0.890 0.876 (61%) 0.785 0.915 0.890 0.855 (59%) 0.907 0.849 0.836 0.843 (59%)
Binoculars 0.897 0.882 0.847 0.870 (62%) 0.735 0.715 0.693 0.711 (44%) 0.879 0.769 0.740 0.780 (55%)
C2 (Binoculars) 0.736 0.789 0.770 0.737 (17%) 0.781 0.856 0.822 0.791 (35%) 0.701 0.761 0.743 0.716 (25%)
C2-T (Binoculars) 0.854 0.904 0.905 0.883 (61%) 0.746 0.913 0.895 0.848 (32%) 0.900 0.840 0.828 0.838 (58%)

Table 3: Results on AI risk detection, evaluated on HART. The best AUROCs and TPR5% are marked in bold and
second in underline. The column ‘ALL’ denotes a mixture of domains including Essay, arXiv, Writing, and News in
English.

findings.409

Finding 1: Existing detectors are good at level-3410

detection but poor at level-2/1 detections. Ex-411

isting detectors generally perform the best on the412

level-3 detection task, where Binoculars reaches413

an overall AUROC of 0.870 and TPR5% of 62%.414

These scores are significantly higher than those on415

level-2 and 1 detection tasks, suggesting that ex-416

isting detectors may best suit pure AI-generated417

texts. This is potentially because existing detectors418

mainly measure texts along expression dimension,419

thus being sensitive to changes in language expres-420

sions.421

Finding 2: The content feature is resilient to422

changes in language expression, resulting in bet-423

ter level-2 and 1 detection performance. When424

we compare 2D (C2-T ) methods with existing de-425

tectors, we find that although 2D methods perform426

at the same level as existing detectors on the level-3427

detection task, they outperform existing detectors428

by a large margin on level-2 and 1 detection tasks.429

It increases overall AUROC from 0.704 to 0.849 on430

level-2 task and from 0.767 to 0.844 on level-1 task431

using Fast-Detect. Similarly, TPR5% increases by432

12% and 4%, respectively, on the two tasks. These433

results demonstrate the effectiveness of the 2D de-434

tection framework.435

We further look into each type of level-2 de-436

tection data, as Figure 3 shows. The content fea-437

ture plays a key role in the detection of humanized438

AI-generated texts, significantly outperforming the439

baseline. The results also confirm our hypothesis440

that content is the essential feature for identifying441

AI-generated texts.442

Finding 3: The content feature is effective across443

languages. We evaluate the detectors across five444

fully AI
diversify mimic

humbot.ai
bypassgpt.ai

undetectable.ai
human editing

0.2

0.4

0.6
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1.0
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C

Fast-Detect C2 (Fast-Detect) C2-T (Fast-Detect)

Figure 3: Comparison on their ability to detect AI-
generated texts, where ‘xxx.ai’ are external humanizing
tools.
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(a) Textual Features
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Figure 4: Content and expression features evaluated on
AI detection tasks using conditional probability curva-
ture as the feature metric.

languages in Appendix C.1. 2D detectors outper- 445

form the baselines on all three tasks, where the 446

improvements on the level-2 and 1 tasks are espe- 447

cially significant. It is worth noting that Glimpse 448

using gpt-3.5-turbo achieves the best overall re- 449

sults across the languages, possibly because of the 450

stronger multilingual ability of the model. 451

5.2.1 Ablation Study 452

Textual Features. The quality of extracted tex- 453

tual features for content and expression is critical 454

for detection tasks. We first evaluate the candidate 455

features on AI content detection and AI expression 456

detection tasks, each with 1000 pairs of samples 457

from the HART dataset. We use conditional proba- 458

bility curvature as a metric to map textual features 459
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Detector News Books Wiki Abstracts Reddit Recipes Poetry Reviews ALL AUROC F1 TPR5%

RoBERTa-base 0.588 0.622 0.582 0.643 0.673 0.500 0.638 0.710 0.614 67% 24%
RADAR 0.884 0.912 0.842 0.842 0.870 0.818 0.780 0.782 0.828 77% 42%
Log-Perplexity 0.644 0.725 0.701 0.680 0.725 0.627 0.706 0.698 0.663 66% 12%
Log-Rank 0.666 0.745 0.719 0.701 0.735 0.645 0.725 0.716 0.681 67% 14%
LRR 0.750 0.816 0.804 0.771 0.779 0.669 0.776 0.773 0.746 70% 34%
Glimpse 0.712 0.758 0.589 0.787 0.742 0.670 0.756 0.728 0.715 67% 39%
Fast-Detect 0.761 0.845 0.803 0.821 0.794 0.749 0.818 0.810 0.800 76% 54%
Binoculars 0.768 0.850 0.804 0.826 0.811 0.759 0.826 0.812 0.807 77% 58%
C2 (Binoculars) 0.783 0.888 0.808 0.799 0.778 0.726 0.777 0.762 0.774 72% 46%
C2-T (Binoculars) 0.901 0.924 0.861 0.900 0.869 0.878 0.889 0.869 0.886 82% 68%

Table 4: Results on AI-generated text detection, evaluated on RAID. The highest AUROCs are marked in bold. C2,
E2, and T are textual features used for detection, which are illustrated in Table 2.

to scalar values. As Figure 4(a) shows, neutraliza-460

tion generally outperforms extraction approach for461

both content and expression representations. The462

content feature C2 achieves the best performance463

in the AI content detection task, while the original464

text T achieves the best performance in the AI ex-465

pression detection task, surpassing the expression466

features E1 and E2 with a significant margin. Thus,467

we choose C2 as the content feature and T as the468

expression feature for our 2D detectors.469

Model and Parameters. The language model470

and decoding strategy can also affect the quality471

of the extracted content. We ablate them as Fig-472

ure 4(b). Compared to the default setting of gpt-4o473

with random sampling, greedy decoding slightly de-474

creases the AUROC. However, we find that greedy475

decoding further improves TPR5% by about 4%476

on the AI content detection task, which may be477

because deterministic decoding produces more sta-478

ble texts. Changing the model to gpt-3.5-turbo479

causes a significant drop in AUROC, suggesting480

that a strong LLM is a prerequisite to extract effec-481

tive content features. In our experiments, we use482

gpt-4o with random sampling.483

5.2.2 Analysis of Data Distribution484

What is the impact of source model and de-485

coding parameters to generated texts? Various486

factors influence the distribution of AI-generated487

texts (type-3 texts), as described in Appendix C.2.1.488

Among the source models, gpt-4o demonstrates the489

most diverse generations and is significantly closer490

to the origin of the coordinate system, suggesting491

its stronger ability to produce human-like texts.492

The decoding temperature also affects the distribu-493

tion, but the differences are not significant. Sim-494

ilarly, larger top-p and presence penalty produce495

more diverse texts but the differences are marginal.496

In contrast, the frequency penalty shows a strong497

impact on generated texts, where a larger penalty498

produces more human-like texts. 499

What has been changed by refinement and hu- 500

manizing? As described in Appendix C.2.2, re- 501

finement and humanizing significantly alter the dis- 502

tribution, mainly along the expression dimension. 503

The change bringing by humanizing is relatively 504

bigger than refinement, where automatic humaniz- 505

ing shifts the distribution largely. Human editing 506

alters the distribution not as significant as the au- 507

tomatic humanizing, which may be because that 508

human annotators do not attack AI detectors pur- 509

posely as the humanizing tools. 510

5.2.3 Discussion 511

Although content features are resilient to surface- 512

level text changes, there is the possibility of devel- 513

oping attacks against the content of a text. How- 514

ever, we posit that attacking detectors at the content 515

level is much harder than at the expression level. 516

Meaningful and coherent content, unlike superficial 517

language expression, requires deep understanding 518

about the world, thus hard to be simulated by cur- 519

rent language models. Additionally, a content-level 520

attack may pay additional costs, such as reducing 521

the logical coherence and readability of the gener- 522

ated content. 523

5.3 Results on AI-Generated Text Detection 524

We evaluate 2D methods on existing detection tasks. 525

Typically, we use the challenging RAID (Dugan 526

et al., 2024) dataset, from which we sample 4K 527

samples (250 pairs per domain) for testing and 528

another 4K for development. 529

As Table 4 shows, the columns AUROC, F1, and 530

TPR@5% are evaluated across all domains, where 531

we find the best development threshold for calcu- 532

lating F1. As the AUROCs indicate, the content 533

feature C2 outperforms the baseline Binoculars on 534

News, Books, and Wiki. When combining content 535

and expression features, 2D (C2-T ) produces the 536
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Figure 6: Comparison on their ability to handle adversarial attacks, decod-
ing strategies, and repetition penalty.

best scores across all the domains. These results537

suggest the positive effect of content feature on the538

detection of AI-generated text.539

Readers may wonder why the content feature540

does not outperform the baseline in all domains.541

We speculate that it is correlated to the genre and542

length of the text. Take poetry as an example. Po-543

etry often relies on evocative language to convey544

emotions, themes, and ideas. The meaning of a545

poem can change depending on how it is expressed.546

Thus, the decoupling of content and expression547

loses significant information. Similar situations548

may happen with other free-style texts, such as549

Reviews and Reddit. (tbd)550

Ablation on expression features. Empirically,551

C2-T outperforms C2-E2 on almost all domains,552

suggesting that the original text T presents its lan-553

guage expression better than the extracted feature554

E2. It confirms our finding in Section 5.2.1 that the555

original text best represents its expression, while556

the extracted content feature C2 best represents its557

content.558

Ablation on the size of development set. 2D559

methods need to fit a two-dimensional binary clas-560

sifier, which requires additional samples. We show561

that such a classifier requires only a small number562

of samples because of its low dimensions. As Fig-563

ure 5 shows, 10 random samples are sufficient to564

outperform the baseline, resulting in a AUROC of565

0.8428 in all domains. Empirically, 200 samples566

are sufficient to reach the full level of performance.567

Analysis on attacks, decoding strategies, and568

repetition penalty. As Figure 6 shows, the569

content feature outperforms the baseline on570

‘zero-width-space’, ‘homoglyph’, and ‘repetition-571

penalty’, demonstrating its effectiveness. When572

we combine content and expression features, we573

achieve significant improvements on all cate- 574

gories except synonym and non-repetition-penalty. 575

The significant improvements on sampling and 576

repetition-penalty suggest that the 2D method is 577

typical beneficial for hard detection situations, 578

given that sampling and repetition-penalty pro- 579

duce more nature texts which are harder for de- 580

tection. These results suggest the advantage of the 581

2D method which is resistant to various attacks and 582

decoding strategies. 583

Addressing the bias toward nonnative writers. 584

Content representation is also resilient to nonnative 585

English writers, where unique language expres- 586

sions are reduced during content extraction. Conse- 587

quently, using the content feature C2 improves the 588

AUROC from 0.4970 (Binoculars) to 0.5212 (C2 589

with Binoculars). When we use the best threshold 590

found on RAID development set, it improves F1 591

from 49% (Binoculars) to 55% (C2 with Binoc- 592

ulars), demonstrating that the content feature re- 593

duces the bias toward nonnative writers. 594

6 Conclusion 595

We introduce a hierarchical framework for detec- 596

tion tasks, categorized into three levels of AI risk, 597

which integrates prior research and established re- 598

quirements. Our study explores 2D detection meth- 599

ods that leverage content as a key feature for identi- 600

fying AI-generated text, demonstrating that content 601

plays a critical role in addressing such detection 602

challenges. Experimental results indicate that con- 603

tent features exhibit resilience to superficial tex- 604

tual modifications, making them a reliable tool for 605

both emerging AI risk detection and traditional 606

AI-generated text identification tasks. Furthermore, 607

our proposed framework and benchmark dataset lay 608

a strong foundation for advancing future research 609

in this field. 610
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Limitations611

The decoupling of content and expression may have612

various solutions, where prompting techniques may613

be the simplest, but not necessarily the most effec-614

tive. There is the possibility to decouple content615

and expression in a more fundamental approach,616

with a specific design of a model or an algorithm.617

On the other hand, detection of content and expres-618

sion may require different methods given that they619

are at different levels of text. Therefore, a specific620

design for each may produce stronger detectors.621

Ethical Considerations622

The dataset we use contains AI-generated texts,623

which could potentially be biased, offensive, or624

irresponsible. Although we filter them with auto-625

matic API provided by Azure OpenAI and check626

10% samples manually with high pass rate, there627

are still possibility of having unpleasant content in628

the released dataset, which may deserve a warning.629
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A Benchmark Dataset 967

HART will be released under Creative Commons 968

license, which is also the license publicly available 969

by all the source data. 970

A.1 Domains and Languages 971

HART encompasses four domains and five lan- 972

guages, with each language featuring 2,000 devel- 973

opment samples and 2,000 test samples. Within 974

these datasets, the samples are evenly distributed 975

across four types (0, 1, 2, and 3). For every domain, 976

human-written texts (type 0) are collected from 977

specific sources, while AI-generated texts (type 3) 978

are produced using prompts outlined in Table 5. 979

Student Essay. We randomly select 1,000 es- 980

says from the Automated Student Assessment Prize 981

(ASAP) 2.0 (Crossley et al., 2024), each accompa- 982

nied by a title and a prompt. These prompts are 983

utilized to prompt LLMs to generate correspond- 984

ing essays. Additionally, metadata such as ‘race 985

ethnicity’, ‘gender’, and ‘grade level’ is recorded 986

for potential future analyses. 987

ArXiv Intro. To build this dataset, we collect 988

1,000 computer science papers from arXiv (arXiv, 989

2024) by crawling PDFs published between 2020 990

and 2024, randomly selecting 200 papers per year. 991

Using S2ORC (Lo et al., 2020), the PDFs are 992

parsed to extract titles and introductions. These 993

titles are then used to prompt LLMs to generate 994

new paper introductions. The inclusion of pub- 995

lication year also provides a basis for analyzing 996

distribution shifts over time. 997

Creative Writing. We randomly pull 1,000 sam- 998

ples from WritingPrompts (Fan et al., 2018), with 999

each sample paired with a corresponding prompt. 1000

These prompts serve as triggers for LLMs to create 1001

new fictional stories. 1002

CC News. For this dataset, we gather 1,000 news 1003

articles in each of five languages – English, Chi- 1004

nese, French, Spanish, and Arabic – sourced from 1005

Common Crawl (Hamborg et al., 2017). The news 1006

headlines are used to prompt LLMs to generate full 1007

news articles. 1008

A.2 Automatic Refinement 1009

We use the following prompts for automatic refine- 1010

ment of human-written texts. 1011
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Student Essay: Write a student essay (no title) in
{n_words} words (split into {n_paragraphs} paragraphs)
based on the given {field}:\n {field_value}

ArXiv Intro: Write an introductory section (no section
name) for an academic paper in {n_words} words (split into
{n_paragraphs} paragraphs) based on the given {field}:\n
{field_value}

Creative Writing: Write a creative story (no title) in
{n_words} words (split into {n_paragraphs} paragraphs)
based on the given {field}:\n {field_value}

CC News: Write a news article (no title) in {n_words}
words (split into {n_paragraphs} paragraphs) based on the
given {field}:\n {field_value}

Multi-lingual CC News: Write a news article (no ti-
tle) in {lang} language in {n_words} words (split into
{n_paragraphs} paragraphs) based on the given {field}:\n
{field_value}

Table 5: Prompts for data generation, where the field
could be either ‘title’ or ‘prompt’ depending on their
availability for each data source.

Prompt for Polishing: “Polish the text to en-1012

hance its readability, coherence, and flow. Cor-1013

rect any grammatical, punctuation, and style1014

errors, but ensure the core content remains1015

unchanged:\n{generation}”1016

Prompt for Restructuring: “Restructure the text1017

to improve its logical flow and coherence by re-1018

arranging paragraphs, sections, or sentences for1019

enhanced clarity and fluency:\n{generation}”1020

A.3 Humanizing1021

A.3.1 Automatic Humanizing1022

We use the following prompts for humanizing AI-1023

generated texts automatically.1024

Prompt for Diversifying: “Revise the text to1025

enrich its language diversity, employing var-1026

ied sentence structures, synonyms, and stylis-1027

tic nuances, while preserving the original1028

meaning:\n{generation}”1029

Prompt for Mimicking: “Rewrite the text1030

using the same language style, tone, and1031

expression as the reference text. Focus on1032

capturing the unique vocabulary, sentence1033

structure, and stylistic elements evident in1034

the reference:\n{generation}\n\n# Reference1035

Text:\n{reference}”1036

A.3.2 External Humanizing Tools1037

There are various AI humanizing tools that are1038

developed to bypass detectors. We list a few in1039

Table 6, where the first three are used to produce1040

AI Tool URL Used

BypassGPT https://bypassgpt.ai/ Y
Humbot https://humbot.ai/ Y
Undetectable AI https://undetectable.ai/ Y
Semihuman AI https://semihuman.ai/
HIX Bypass https://bypass.hix.ai/
AI Humanizer https://aihumanizer.ai/
StealthGPT https://stealthgpt.ai/
GPTinf https://stealthgpt.ai/
WriteHuman https://writehuman.ai/
StealthWriter https://rewritify.ai/
Phrasly LLC https://phrasly.ai/
HIX.AI https://bypass.hix.ai
AISEO Humanizer https://aiseo.ai/
Humanize AI Pro https://www.humanizeai.pro/
Smodin https://smodin.io/
Rewritify https://www.rewritify.ai

Table 6: Humanizing tools that bypass detectors.

our type-2 texts. We demonstrate that these tools 1041

all alter texts at the surface level, where the content 1042

feature has strong resilience. 1043

A.3.3 Human Editing 1044

We hire five annotators from a specialized anno- 1045

tation company, including three with professional 1046

backgrounds in English and two with expertise in 1047

computer science. Each annotator is responsible for 1048

revising 50 AI-generated texts, resulting in a total 1049

of 250 human-edited samples. The editing process 1050

is carried out at three levels: word, sentence, and 1051

paragraph. At the word level, synonyms are used 1052

to replace existing words; at the sentence level, 1053

syntax alterations are made; and at the paragraph 1054

level, the logical flow of sentences is reorganized. 1055

Annotators are asked to apply these three types of 1056

edits in equal proportion, ensuring that over 50% 1057

of the original content is modified, as described in 1058

Table 8. Additionally, a separate annotator reviews 1059

10% of the texts to verify that the edits preserve the 1060

original meaning while ensuring that the revised 1061

texts remain fluent and comprehensible. 1062

A.3.4 Data Coverage 1063

HART encompasses four domains and five lan- 1064

guages as Table 1, which are generated by six 1065

LLMs and four decoding parameters. Specifically, 1066

the dataset leverages six language models – gpt-3.5- 1067

turbo, gpt-4o, claude-3.5-sonnet, gemini-1.5-pro, 1068

llama-3.3-70b-instruct, and qwen-2.5-72b-instruct 1069

– to generate data, with a random model selected 1070

for each sample. As for decoding parameters, a 1071

temperature is randomly chosen from the range 1072

[0.8, 1.0, 1.2], a top-p from [0.96, 1.0], and both 1073

frequency and presence penalties from the range 1074
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Detector English Chinese French Spanish Arabic ALL (TPR5%)

Level-3 Detection Task
Log-Perplexity 0.7370 0.8599 0.8471 0.8668 0.6290 0.7489 (26%)
Log-Rank 0.7665 0.8701 0.8645 0.8770 0.6327 0.7647 (25%)
LRR 0.8466 0.8625 0.8706 0.8744 0.6117 0.7651 (21%)
Fast-Detect 0.8551 0.8655 0.8662 0.8310 0.5871 0.8118 (48%)
C2 (Fast-Detect) 0.7084 0.7121 0.7404 0.7163 0.5657 0.6910 (18%)
C2-T (Fast-Detect) 0.8600 0.8459 0.8538 0.8397 0.5879 0.8065 (48%)
Binoculars 0.8698 0.8698 0.8814 0.8474 0.5754 0.7990 (48%)
C2 (Binoculars) 0.7177 0.7117 0.7633 0.7318 0.5507 0.6882 (19%)
C2-T (Binoculars) 0.8698 0.8495 0.8587 0.8548 0.5476 0.7924 (49%)
Glimpse 0.8310 0.8868 0.8793 0.8382 0.7950 0.8323 (51%)
C2 (Glimpse) 0.7422 0.7182 0.7434 0.7382 0.6952 0.6958 (13%)
C2-T (Glimpse) 0.8257 0.8681 0.8853 0.8729 0.8031 0.8481 (53%)

Level-2 Detection Task
Log-Perplexity 0.3909 0.8660 0.6955 0.7963 0.4679 0.6287 (14%)
Log-Rank 0.4130 0.8769 0.7066 0.7959 0.4686 0.6350 (12%)
LRR 0.5296 0.8748 0.7118 0.7644 0.4777 0.6380 (11%)
Fast-Detect 0.6665 0.8361 0.7728 0.6961 0.4658 0.7007 (37%)
C2 (Fast-Detect) 0.7412 0.7778 0.7819 0.7454 0.6099 0.7336 (28%)
C2-T (Fast-Detect) 0.8242 0.8295 0.8344 0.7837 0.5867 0.7793 (42%)
Binoculars 0.6770 0.8383 0.7779 0.7115 0.4543 0.6929 (37%)
C2 (Binoculars) 0.7492 0.7803 0.7968 0.7587 0.5955 0.7265 (28%)
C2-T (Binoculars) 0.8310 0.8234 0.8464 0.7955 0.4978 0.7515 (38%)
Glimpse 0.5953 0.8123 0.7511 0.7269 0.6813 0.6921 (33%)
C2 (Glimpse) 0.6990 0.7569 0.7444 0.7110 0.7059 0.6860 (14%)
C2-T (Glimpse) 0.7094 0.8258 0.8257 0.8083 0.7969 0.7776 (41%)

Level-1 Detection Task
Log-Perplexity 0.3960 0.8483 0.6629 0.7890 0.4876 0.6154 (08%)
Log-Rank 0.4042 0.8519 0.6640 0.7824 0.4830 0.6140 (07%)
LRR 0.5009 0.8309 0.6480 0.7288 0.4760 0.6070 (08%)
Glimpse
Fast-Detect 0.6897 0.8349 0.7510 0.7331 0.4359 0.7032 (30%)
C2 (Fast-Detect) 0.7021 0.7237 0.6963 0.7105 0.5678 0.6820 (22%)
C2-T (Fast-Detect) 0.7770 0.7997 0.7749 0.7669 0.4798 0.7288 (32%)
Binoculars 0.6969 0.8394 0.7484 0.7461 0.4286 0.7053 (33%)
C2 (Binoculars) 0.6959 0.7234 0.7042 0.7137 0.5521 0.6752 (21%)
C2-T (Binoculars) 0.7843 0.8041 0.7637 0.7657 0.4639 0.7264 (33%)
Glimpse 0.5600 0.7928 0.6933 0.7034 0.6673 0.6596 (24%)
C2 (Glimpse) 0.5815 0.6481 0.6456 0.6192 0.6052 0.6003 (10%)
C2-T (Glimpse) 0.6386 0.7904 0.7336 0.7634 0.7638 0.7302 (24%)

Table 7: Results in CC News of HART, covering five languages. The best AUROC and TPR5% are marked in bold.
The column ‘ALL’ denotes a mixture of languages.

[0.0, 1.0] for each sample.1075

B Baseline Detectors1076

RoBERTa (ChatGPT) (Guo et al., 2023) refers1077

to a RoBERTa-base model (Liu et al., 2019) that1078

has been fine-tuned on the HC3 (Guo et al., 2023)1079

dataset. This dataset includes responses written1080

by humans and ChatGPT across a variety of fields1081

such as Reddit, medicine, finance, and law. We use1082

this model as a representative baseline for trained1083

detectors. 11084

1https://huggingface.co/Hello-SimpleAI/chatgpt-
detector-roberta

RADAR (Hu et al., 2023) is trained on Vicuna- 1085

7B, employing a generative adversarial framework. 1086

In this setup, a paraphraser is optimized to deceive 1087

the detector, while the detector itself learns to rec- 1088

ognize outputs generated by the paraphraser. 2 1089

Log-Perplexity and Log-Rank (Gehrmann 1090

et al., 2019; Solaiman et al., 2019; Ippolito et al., 1091

2020) are simple yet effective baseline methods. 1092

Log-perplexity measures the logarithmic perplexity 1093

of a scoring model, while Log-rank computes the 1094

average logarithm of token ranks in descending 1095

probability order. For this study, we use falcon-7B 1096

as the scoring model, which has shown superior 1097

2https://huggingface.co/TrustSafeAI/RADAR-Vicuna-7B
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Figure 7: The impact of source model and decoding parameters to generated texts.
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performance compared to smaller models.1098

LRR (Su et al., 2023) is a detector based on per-1099

plexity, calculated by dividing the perplexity by1100

the log-rank of a scoring model. Similar to oth-1101

ers, falcon-7B serves as the scoring model in our1102

experiments.1103

Fast-Detect (Bao et al., 2024) employs a1104

perplexity-based detection approach. It calculates1105

a metric named conditional probability curvature1106

by subtracting perplexity on a scoring model from1107

the cross-entropy between the scoring model and a1108

sampling model. The original implementation uses1109

gpt-j-6B as the sampling model and gpt-neo-2.7B1110

as the scoring model. However, we observe that1111

using a larger model considerably improves detec-1112

tion. To ensure fair comparisons, we use falcon-1113

7B-instruct as the scoring model and falcon-7B as1114

the sampling model, similar to Binoculars.1115

Binoculars (Hans et al., 2024) is another1116

perplexity-based detection method, which operates1117

by dividing the perplexity of a scoring model (re-1118

ferred to as the performer) by the cross-entropy be-1119

tween the performer model and an observer model.1120

In our experiments, we adhere to the original setup,1121

where falcon-7B-instruct acts as the performer and1122

falcon-7B as the observer.1123

Glimpse (Bao et al., 2025) is a variation of Fast-1124

Detect that utilizes the proprietary gpt-3.5-turbo-1125

0301 model. It approximates the full token prob- 1126

ability distribution using a partial observation re- 1127

trieved from the Completion API. 1128

C Results and Analysis 1129

C.1 Results on Multiple Languages 1130

As shown in Table 7, 2D detectors demonstrate 1131

clear superiority over baseline models in level-2 1132

and level-1 detection tasks across five languages, 1133

highlighting the effectiveness of the 2D frame- 1134

work across all tested languages. Among the exist- 1135

ing detectors, Glimpse, powered by gpt-3.5-turbo- 1136

0301, outperforms both Fast-Detect and Binocu- 1137

lars, which are based on falcon-7B and falcon-7B- 1138

instruct. We hypothesize that this advantage stems 1139

from the stronger multilingual capabilities of gpt- 1140

3.5-turbo. 1141

C.2 Analysis on Data Distribution 1142

C.2.1 Impact of Parameters 1143

As illustrated in Figure 7, each factor uniquely 1144

affects the distribution of generated texts. 1145

Source Model. The source model plays the most 1146

pivotal role in shaping the distribution. Among 1147

the six models, gpt-4o stands out by generating 1148

the most diverse texts across both expression and 1149

content dimensions. 1150

Temperature. In general, increasing the tempera- 1151

ture leads to greater diversity in the generated texts. 1152
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However, the variations in diversity are relatively1153

minor.1154

Top-p. Similar to temperature, larger values of1155

p result in more diverse outputs, but the overall1156

differences remain limited.1157

Frequency Penalty. Frequency penalty during1158

decoding significantly influences the distribution1159

of generated texts, with higher penalties tending to1160

produce more human-like outputs.1161

Presence Penalty. Compared to frequency1162

penalty, presence penalty has a smaller impact.1163

Nonetheless, higher penalties generally result in1164

more human-like text generation.1165

C.2.2 Impact of Refinement and Humanizing1166

As illustrated in Figure 8, both refinement and hu-1167

manizing introduce significant changes to the dis-1168

tribution.1169

Refinement. The process of refining, which in-1170

volves polishing and restructuring, shifts the dis-1171

tribution upward, indicating a notable influence1172

along the expression dimension. However, the vari-1173

ations between the two refinement techniques are1174

relatively minimal.1175

Humanizing. Various humanizing techniques af-1176

fect the distribution differently. Human editing1177

induces the smallest changes, maintaining a center1178

close to the origin. In contrast, AI tools produce1179

a more pronounced impact, though the shift pre-1180

dominantly occurs along the expression dimension.1181

The “Diversify” technique yields results similar to1182

external AI tools, while “Mimic” causes the most1183

substantial distribution shift.1184

C.3 Discussion on Alternative Solutions1185

Due to their straightforward nature, the prompting1186

techniques serve as suitable options for a proof-of-1187

concept. However, there are numerous alternative1188

methods for representing content, including struc-1189

tural representations like abstract meaning repre-1190

sentations (Banarescu et al., 2013), semantic role1191

labeling (Palmer et al., 2011), semantic parsing1192

(Poon and Domingos, 2009), knowledge graphs1193

(Hogan et al., 2021), and frame semantics (Fill-1194

more et al., 2006), as well as neural representa-1195

tions (Vigliocco and Vinson, 2007). For instance,1196

neural representations might be a more effective1197

approach since they bypass the need to depend on1198

external large language models (LLMs) for extract- 1199

ing content features. Further exploration of these 1200

possibilities is deferred to future work. 1201
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Instruction for Manual Editing of AI-Generated Texts
The goal of this task is to manually edit AI-generated essays, paper introductions, creative writings, and news articles
to improve their language quality while retaining the original intended meaning. Follow the steps and guidelines below
carefully to ensure consistency and quality.
—
General Guidelines
1. Preserve Original Meaning:
- Your edits must not alter the intended meaning or factual content of the original text. Focus solely on improving language
clarity, expression, and flow.
2. Balance of Edits: Ensure that your edits improve the language across three levels: word, sentence, and paragraph.
Distribute your edits so that:
- Word-level modifications account for about 1/3 of your changes.
- Sentence-level modifications account for about 1/3 of your changes.
- Paragraph-level modifications account for about 1/3 of your changes.
3. Volume of Edits:
- The cumulative changes you make should amount to editing more than half of the total word count of the text. Be
thorough in your revisions.
—
Types of Edits
1. Word-Level Editing
- Replace repetitive or vague words with more precise synonyms.
- Improve word choice to match the tone and style of the piece (e.g., academic, formal, journalistic, creative).
- Correct incorrect usage of words, awkward phrasing, or redundant expressions.
Example:
Original: "The results were really very significant."
Edited: "The results were highly significant."
2. Sentence-Level Editing
- Adjust sentence structures to enhance readability and fluency. This includes:
- Breaking down long, convoluted sentences into shorter, clear ones.
- Combining choppy or fragmented sentences for better flow.
- Reorganizing sentence components for coherence and logic.
- Fix issues with grammar, punctuation, and syntax where necessary.
- Ensure variety in sentence structure to avoid monotony.
Example:
Original: "The team successfully completed the project, which was a very crucial step in their plan, and they presented it
to stakeholders two days later."
Edited: "The team successfully completed this crucial step in their plan and presented the project to stakeholders two days
later."
3. Paragraph-Level Editing
- Rearrange sentences within the paragraph to improve logical progression and argument clarity.
- Merge or split paragraphs when necessary for better organization or flow.
- Add transitional phrases if needed to improve coherence between sentences and paragraphs.
- Ensure that the paragraph aligns with the overall tone and intent of the text.
Example:
Original: “Climate change is a growing concern worldwide. The effects of climate change include rising temperatures,
melting polar ice, and severe weather events. Many governments are implementing policies to mitigate these effects. Public
awareness around climate change has also been increasing over recent years. Organizations are focusing on educating
individuals and communities about sustainable practices.”
Edited: “Climate change is an increasingly urgent issue with global implications. Its effects, such as rising temperatures,
melting polar ice, and severe weather events, are becoming more evident. In response, many governments are enacting
policies to address these challenges. At the same time, public awareness has grown significantly, driven by organizations
that educate communities about sustainable practices.”
—
Step-by-Step Workflow
1. Understand the Text:
- Read the entire text carefully to grasp its main ideas, tone, and intent before making any changes.
2. Edit with Balance and Intent:
- As you edit, keep track of the types of changes you are making (word-level, sentence-level, paragraph-level) and ensure
an even distribution across the three levels.
- Avoid over-editing in one specific area (e.g., only doing word-level tweaks).
3. Meet the Edit Requirement:
- Ensure that more than 50% of the text has been edited after revisions. Track your changes to confirm this.
4. Review and Finalize:
- Re-read your edited version to confirm it retains the original meaning and intention.
- Check that the language is smooth, natural, and appropriate for the target audience and genre.

Table 8: Instruction for human editing.
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