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ABSTRACT

We propose a unified framework to address the blind forward and inverse prob-
lems in audio domain, where the objective is to estimate either the function or the
input signal solely from the observed output, without access to the other. We for-
mally define forward operators — mapping input to output signals — and formu-
late both problems within a probabilistic framework. For the blind forward prob-
lem, we design an architecture that utilizes a reference encoder to extract features
from the reference signal, enabling the main operator to approximate arbitrary
forward operators systematically composed via algebraic representations. For the
blind inverse problem, we employ a conditional diffusion model conditioned on
features from the pretrained reference encoder and augment the generation pro-
cess using twisted particle filtering technique leveraging the approximated oper-
ator in the forward problem. We validate our framework on zero-shot audio ef-
fect modeling and speech enhancement. The experiments show that our approach
replicates both simple and complex audio effects, generalizes under distribution
mismatches, and effectively enhances noisy full-band audio across diverse effects
and real-world scenarios. Codes are available at https://t.ly/n11uk, with
audio samples at https://t.ly/dBUhF

1 INTRODUCTION

In both classical digital signal processing (DSP) and modern deep learning-based approaches, a
central assumption is the existence of a ‘function’ that maps input signals to their corresponding
outputs. While the classical DSP decomposes the speech into filters and sound source according to
the source-filter theory (McAulay & Quatieri, 1986; Oppenheim, 1999), deep learning-based method
leverages neural networks to approximate more complex mappings between input-output pairs with
a supervised manner even without knowledge on the characteristics of the mappings.

Still, recovering either the function or its input solely from the output signal remains challenging.
Common approaches to estimate the functional form is to simplify or precondition the functional
form or restrict it to specific types, collapsing the problem in parameter estimation or classifications
(Engel et al., 2020; Colonel & Reiss, 2021; Lee et al., 2022b; Colonel et al., 2022; Peladeau &
Peeters, 2024; Guo & McFee, 2023; Lee et al., 2023b; Rice et al., 2023; Take et al., 2024). However,
these methods are only able to handle limited and simplified types, often difficult to be generalized
to the wild setting. To reconstruct the input signals from the output signals, discriminative models
learn to either directly predict the input signal from the given output signal or find a mask that
results in a cleaned version of the output; thereby solving speech enhancement or signal restoration
task. Recently, generative models are also one of the choices to recover the input signal by using
the output signal as an auxiliary information in the generation process (Abdulatif et al., 2024; Serrà
et al., 2022; Richter et al., 2023; Lemercier et al., 2023). These models are particularly effective
in handling diverse types of degradation without relying on specific noise models. However, they
ignore the connection between the clean and noisy signals, hence require large clean and noisy signal
pairs to handle diverse degradation types.

In this work, we introduce a unified framework to solve the blind forward and inverse problems in
the audio domain, focusing on estimating either the function or the input signal from the observed
output. After the definition of forward operators and each problems are rigorously formalized,
we develop a framework to approximate arbitrary forward operators constructed by the algebraic
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approach. For the blind inverse problem, we leverage a conditional diffusion model conditioned by
the pre-trained reference encoder, and apply a twisted particle filtering method using the pre-trained
estimated forward operator. The effectiveness of the proposed method is empirically demonstrated
via zero-shot audio effect modeling and speech enhancement.

2 RELATED WORKS

Zero-shot Audio Effect Modeling We address zero-shot audio effect modeling as a representa-
tive example of the blind forward problem. A common approach to this task involves simplifying
and preconditioning the functional form using DSP-based domain knowledge and strong inductive
biases. For instance, the problem is often reduced to estimating intermediate features such as param-
eters (Engel et al., 2020; Colonel & Reiss, 2021; Lee et al., 2022b; Colonel et al., 2022; Peladeau
& Peeters, 2024), impulse responses (Steinmetz et al., 2021; Lee et al., 2023a), or combinations of
audio effects (Guo & McFee, 2023; Lee et al., 2023b; Rice et al., 2023; Take et al., 2024). Other
approaches focus on specific tasks, such as acoustic scene transfer (Im & Nam, 2024), impulse
response learning (Steinmetz et al., 2021), or modeling single-type effects (Chen et al., 2024).

Speech Enhancement Speech enhancement is a quintessential example of the blind inverse prob-
lem in the audio domain. In deep learning-based approaches, the primary method involves using
discriminative or GAN-based models to estimate a mask in either the time or time-frequency do-
main (Luo & Mesgarani, 2019; Lu et al., 2022b; Abdulatif et al., 2024; Choi et al., 2019). Recently,
diffusion models have emerged as a promising alternative for speech enhancement. For example,
Serrà et al. (2022) conditioned score-based models on noisy signals, while Welker et al. (2022);
Richter et al. (2023); Lemercier et al. (2023) designed a forward and reverse process coherent to
the enhancement process. However, these prior methods primarily treated noisy signals as auxiliary
information, failing to fully exploit the functional relationship between clean and noisy signals.

Diffusion-based Inverse Problem Recently, diffusion-based method gained prominence in solv-
ing inverse problems. Since the score function of the posterior distributions appears as a guidance
term during the diffusion steps, several works approximate the terms using known measurement op-
erators (Song et al., 2021; Chung et al., 2023b; Ho et al., 2022). Some lines of works factorize the
linear operator using SVD (Kawar et al., 2022) or use pseudo inverse to approximate the operator
(Song et al., 2023). In cases where the operator is unknown, referred to as a blind setting, prior
works estimate the parametrized operators during diffusion process such as (Chung et al., 2023a;
Murata et al., 2023). In audio domain, the inverse problem is solved to remove audio effects such as
Moliner et al. (2024); Lemercier et al. (2024). Recently, several works integrate Sequential Monte
Carlo (SMC) methods with diffusion models to enhance the conditional generation.Cardoso et al.
(2023); Wu et al. (2023); Dou & Song (2024); Nazemi et al. (2024)

3 DEFINITIONS, NOTATIONS, AND THE PROBLEM FORMULATION

LetK ⊆ RT be a signal space, where T denotes the signal length. Consider a mappingA : K → K
that defines the system y = A(x) for x ∈ K. We refer to the input signal x as the dry signal and the
output signal y as the wet signal. To analyze such system, we introduce the following function class
of our interest.
Definition 1 (Forward Operator). For a signal spaceK ⊆ RT , A forward operatorA is a continuous
bounded function A : K → K. The set of all forward operators is denoted by

Cb(K) = {A : K → K,A is continuous, ∥A(x)∥ ≤M∥x∥,∀x ∈ K for some M > 0 ∈ R} (1)

The advantage of this definition is the composition of the two forward operators, namely A ◦ A′

for any A,A′ ∈ Cb(K), is well-defined and also lies in Cb(K). With the continuity assumption,
the wet signal is assumed not to be abruptly changed by the small perturbation in the dry signal.
Additionally, the boundedness condition ensures that the output signal does not become unbounded
when the input is properly normalized.
Examples of the Forward Operator An important class of forward operators is audio effects,
which process dry speech or music to produce wet signals with modifications such as equalization,
reverberation, or filtering. Another key class is degradations, although not mutually exclusive with
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Dry Signal Space Wet Signal Space Dry Signal Space Wet Signal Space

Figure 1: A reference signal pair (x∗, y∗) is generated by sampling x∗ ∼ µ∗, A ∼ a, and
y∗ = A(x∗). (Left) Blind forward problem: Ãθ[y∗] ≈ A is approximated so that the push-forward
measure of µ induced by A and Ã coincides, and (Right) Blind inverse problem : the inverse map-
ping Ãϕ[y∗] is approximated so that its push-forward measure is matched to µ

audio effects, which commonly encountered in speech enhancement tasks, where a clean speech
is corrupted by noise, distortion, audio codecs, or reverberation. In this case, the noisy speech y
is a wet signal produced by an unknown degradation operator A, where y = A(x) and x is the
clean signal. In particular, many forward operators in the audio domain are often highly nonlinear
and even non-differentiable (e.g. audio codec). In this work, we equally treat the audio effect and
degradation as forward operators without any distinction.

3.1 PROBABILISTIC FORMULATION

Although the forward operators are fully deterministic, we adopt a probabilistic formulation for the
following advantages: 1) it reflects the sampling nature of the signal dataset and the randomly con-
structed operator, 2) it parallelizes the forward and inverse problem in a generative framework, and
3) it addresses ill-posed problems, such as irreversible operations (e.g., lowpass filtering) that lose
information in reconstruction and lead to one-to-many mappings. In such cases, a deterministic in-
verse may not exist; however, a probabilistic approach allows for finding the most probable solution.
This parallels the Kantorovich formulation, which overcomes the limitations of Monge approach in
transportation theory (Villani, 2008).

Let µ, a be probabilistic measures of the dry signals and forward operators onK andCb(K), respec-
tively. If we fix any forward operator A, this induces a probability measure on the wet signals via
the push-forward measure by y ∼ A#µ. Accordingly, we propose our objective as a ‘distribution
matching sense’ between this push-forward measure and the target distribution for each problem.
Definition 2 (Forward / Inverse Problem). Let µ∗ be a probability measure of the reference dry
signals. For a reference pair (x∗, y∗) generated by y∗ = A(x∗), The blind forward problem aims to
approximate a neural network Ãθ[y∗] conditioned only on y∗ to A so that ∥Ãθ[y∗]−A∥L2(µ) → 0.
Therefore, the objective is given as the distance between the push-forward measures of dry signals
induced by A and Ãθ:

(BFP) min
θ

EA∼a,x∗∼µ∗

[
W2(Ãθ[y∗]#µ,A#µ)

]
, y∗ = A(x∗) (2)

whereW2 denotes the 2-Wasserstein distance.

In contrast, the blind inverse problem aims to approximate a neural network Ãϕ[y∗] conditioned only
on y∗ so that ∥Ãϕ[y∗] ◦ A − id∥L2(µ) → 0, where id is the identity map. Therefore, we minimize
the following loss:

(BIP) min
ϕ

EA∼a,x∗∼µ∗

[
W2((Ãϕ[y∗] ◦ A)#µ, µ)

]
, y∗ = A(x∗) (3)

It is noteworthy that the approximation of the operator Ãθ has a dependence on the dry signal space
µ. In other words, the approximation is only guaranteed on the dry signals drawn from µ. We
examine its generalization performance in the experiment.
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Figure 2: (Left) The reference signal pair (x∗, y∗) and the target signal pairs {(xi, yi)}Ni=1 are
generated by the sampled forward operator A which is represented by a DAG whose structures and
parameters are randomized. The cryptic acronyms (e.g., lpl) represent a type of audio effect and
are listed in the Appendix C.2. (Right) The reference encoder returns cg, cl from the reference signal
y∗. Then the dry signal xi and its STFT signal X are processed to return ỹi.

4 SOLVING BLIND FORWARD PROBLEM

Note that we have access only to y∗, not to the reference pair (x∗, y∗), for approximating the ground-
truth operator A, where y∗ = A(x∗). To address this, the reference encoder extracts informative
features from y∗, producing a global condition vector cg and a sequence of local condition vectors cl.
Then the main operator network transforms K i.i.d. dry signals {xi}Ki=1 drawn from the distribution
µ into wet signals {yi}Ki=1 by conditioning on cg, cl. Finally, a discriminator is applied to eliminate
artifacts and improve the quality of the generated signal.

4.1 ARCHITECTURE CHOICES

Reference Encoder We adopt the encoder part of MTFAA-Net from Zhang et al. (2022), which
has demonstrated strong performance in speech enhancement. In speech enhancement architectures,
the encoder typically extracts features related to non-speech components, allowing the decoder to
separate them from speech. In our framework, we leverage the reference encoder to extract infor-
mative features from y∗ that help for the main operator to approximate arbitrary forward operators.
The extracted feature z is then transformed into a global condition cg ∈ Rdg and a local condition
cl ∈ Rdl×N by respective conditioning module, where dg and dl are embedding dimensions of each,
and N is the number of tokens of cl.

Main Operator Network We employ the U-Net architecture from the Imagen text-to-image
model (Saharia et al., 2022) as our main operator network. In text-to-image diffusion models, the
network is conditioned on t, representing the noise variance, and c, the text embedding from a pre-
trained encoder. We hypothesize that t provides global information on noise scale, while c adjusts
local image details via cross attention (Hertz et al., 2022; Ramesh et al., 2022). Based on this, we
replace time conditioning t with a global condition cg and text embedding c with a local condition
cl from the reference encoder.

Additionally, we process the dry signal in both waveform and spectrogram domains, following
(Rouard et al., 2023; Défossez, 2021). This dual-domain approach significantly enhances model
performance, as certain effects are more easily detected in one domain than the other. Finally, we
concatenate the wet reference signal y∗ with the dry target signal x across the channel axis. This is
particularly useful for replicating additive noise components, as they align perfectly in the temporal
or time-frequency domain.

Discriminator To remove possible artifacts from the predicted signal, we apply a multi-resolution
discriminator (MRD) Lee et al. (2022a). The MRD consists of multiple sub-discriminators, each
processing magnitude spectrograms at different resolutions. As we found that incorporating a multi-
period discriminator (MPD) deteriorates the overall performance, MRD is only employed.
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4.2 TRAINING OBJECTIVE

We propose the following training objectives to achieve the minimization of the Equation 2:

LG(G;D) =
∑
i,j

[
∥Ãθ[y∗j ](xi)−Aj(xi)∥2 + λmLm(Ãθ[y∗j ](xi),Aj(xi)) + λadvLadv(G;D)

]
LD(D;G) = Ladv(D;G)

where Lm is the loss function in the magnitude spectrogram domain, λm, λadv are some constants,
and Ladv(D;G) and Ladv(G;D) are the adversarial loss with the freezed parameters of the model
and the discriminator, respectively. Note that we approximate the 2-Wasserstein distance in Equa-
tion 2 by that of empirical distributions. In addition, we also add the loss function measured in
magnitude spectrogram and adversarial loss to enhance the perceptual quality of the predicted sig-
nals The details of each loss function are in the Appendix C.3.

5 CONSTRUCTION OF THE FORWARD OPERATOR

Since our model is desired to approximate any general forward operator A, it must be constructed
and be able to render the wet signal on-the-fly from the given dry signal while training. However,
sampling from the function space we defined in Equation 1 is not only too large but also redundant
as we do not want pathological operators that may completely obscure the contents information of
the dry signal. Therefore, we simulate a forward operator by composing known and closed-form
operators in the following combinatorial way.

5.1 ALGEBRAIC COMPOSITION OF THE FORWARD OPERATOR

From our definition in Equation 1, observe that the addition and multiplication between two opera-
tors A,A′ ∈ Cb(K) for a signal x ∈ K are well-defined as :

(Addition) : (A+A′)(x) := A(x) +A′(x)

(Multiplication) : (A · A′)(x) := (A ◦ A′)(x) = A(A′(x))
(4)

Hence we can impose a semiring structure on the function space Cb(K).

Definition 3. A semiring (R,+) is a set equipped with two binary operations (+, ·) which sat-
isfy the following: 1) R is associative and commutative under addition. 2) R is associative under
multiplication. 3) The multiplication is distributive with respect to the addition.

We define R = (Cb(K),+, ·, 0̄, 1̄) as a composition semiring equipped with the operation (+, ·)
with the additive identity 0̄ : x 7→ 0 and multiplicative identity 1̄ : x 7→ x. Then we refer to the
rendering the forward operatorA to the dry signal x simply as a semiring action on the signal space
K by evaluation R×K → K : (A, x) 7→ A(x), which is approximated by Ãθ.

Advantages of the Semiring Construction The introduction of a composition semiring provides
several theoretical and practical benefits. First, since each element in the composition semiring
uniquely characterizes the combination of basic operators, the sampling of a representation from R
is equivalent to the sampling of a complex operator. Random parameters are then assigned to each
basic operator to complete the construction of the forward operator. Second, by factorizing terms in
A ∈ R using distributivity, each basic operator in A is processed only once to render any dry signal
x, enabling a sequential rendering from the right-most element ofA. This results in a total rendering
time of O(N) where N is the number of elements.

Degeneracy Problem Prior approaches such as (Rice et al., 2023; Lee et al., 2023b; 2024) are
equivalent to find the representation of the forward operator by classifications. However, these meth-
ods face a degeneracy problem, where different representations yield the same action on signals. For
instance, two linear time-invariant (LTI) operators L,L′ ∈ R are commutative under multiplication,
resulting in identical actions. Similarly, complementary effects, such as two sequential low-shelf
filters with opposite gains, cancel each other out. In contrast, our framework directly approximates
the action of A on x rather than its explicit representation, naturally avoiding degeneracy problem
and diverging from prior approaches.
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Figure 3: Directed Acyclic Graph (DAG) representation of the Forward Operator. (Left) Single
type: this form represents a single element in the set of basic operators S. (Middle) Monolithic
type: monomials in R. i.e.

∏
Ai where Ai ∈ S. (Right) General Type: a general element in R.

5.2 PROPERTIES OF THE CONSTRUCTED FORWARD OPERATORS

In practice, we construct an arbitrary forward operator from the known and closed-form operators,
called basic operators, detailed in Appendix C.2 for the comprehensive list and technical details.
Let S be a set of the basic operators in Cb(K). A forward operator is formed through summations
and multiplications of elements in S, for example, A =

∑
j(
∏
i Si)j for Si ∈ S.

DAG Representation This construction can be effectively visualized as a directed acyclic graph
(DAG), where nodes represent basic operators, as shown in Figure 3 (Lee et al., 2023b; 2024).
Summations are represented as parallel compositions, and multiplications as serial compositions.
Starting from the input node [in], the DAG is constructed iteratively from the right-most element
of A using serial and parallel compositions, ending at the output node [out]. See Appendix A.1
for details. This DAG representation emphasizes the modularity and structure of the composition
semiring, providing an intuitive framework for analysis and implementation.

Universal Approximation A natural question arises: “Can any forward operator in Cb(K) be
simulated by our construction? If so, what necessary conditions on the collection of basic operators
S must be met to achieve such an approximation?” To prove the universal approximation property,
we imitate the proof of the universal approximation theorem of the single-layer MLPs (Pinkus,
1999). The main idea is to construct S by linear operators and point-wise nonlinear operators,
analogous to affine transformations and activation functions in MLPs (Lin & Pinkus, 1993). The
proof is presented in Appendix A.2.

6 SOLVING BLIND INVERSE PROBLEM

6.1 STATE SPACE MODEL (SSM) PERSPECTIVE OF THE DIFFUSION MODEL

Figure 4: State Space model. The sequence xT :t

and yT :t with the future observation y0 = y∗ are
observed at time t, while the dashed circles are not
observed. p(xt|xt+1) and p(yt|xt) are the transi-
tion density and observation density of the SSM,
respectively.

Diffusion Model A diffusion model (Song
et al., 2021; Ho et al., 2020; Karras et al.,
2022; Song et al., 2022) perturbs a data distri-
bution by adding Gaussian noise with a sched-
uled variance σt, forming a stochatic process
xt = x0 + σtz where x0 ∼ µ, z ∼ N (0, I),
governed by a forward SDE. The model learns a
denoiser function Dθ(xt, t) to recover x0 from
xt, which also estimates the score function of
xt via ∇xt

log p(xt) = (Dθ(xt, t) − xt)/σ
2
t .

The time-reversed SDE, which matches the
marginal distribution of the forward SDE at
each time step, is solved for data generation.
This process requires the score function∇xt

log p(xt), approximated usingDθ. Starting from Gaus-
sian noise xT , the reversed SDE iteratively transforms xT into a clean signal x0.

Numerical SDE Solvers as SSM As analytic solutions to the time-reversed SDE are generally
intractable, numerical solvers such as Euler-Maruyama (Song et al., 2021), Heun’s method (Karras
et al., 2022), DPM (Lu et al., 2022a), EI solvers (Zhang & Chen, 2023) are used for generation.
These solvers discretize time into finite steps {ti}0i=T and recursively update xt as xt−1 = f(xt, t)+
g(t)zt where zt ∼ N (0, I). Here f and g are one-step updates derived from the forward SDE
and depend on the chosen approximation method. This discretization forms a Markov chain over
{xi}0i=T .
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Let y∗ be the given wet signal generated by y∗ = A(x∗). Let yt ∼ N(y∗, σ̄tI) with y0 = y∗ be a
observation sequence. Then we form a state space model (SSM) by assigning yt to each xt of the
Markov chain, as shown in Figure 4. Finally, our objective is to sample x0 ∼ p(x0|y∗) to generate an
enhanced speech signal for the given noisy observation y∗. To achieve this, we estimate p(x0|yT :0),
called the marginal filtering distribution, and marginalize over yT :1 to compute p(x0|y∗).

6.2 PARTICLE FILTERING FOR THE BLIND INVERSE PROBLEM

Particle Filtering (PF) Particle filtering, a variant of the Sequential Monte Carlo (SMC), sequen-
tially updates the distribution p(xt|yT :t), ultimately reaching p(x0|yT :0) at the terminal time (Naes-
seth et al., 2022; Olsen, 2022; Guarniero et al., 2016; Heng et al., 2020). We apply it to solve
the blind inverse problem by computing p(x0|y∗) based on the previously constructed SSM. The
marginal filtering distribution p(xt|yT :t) is factorized into the following recursive alternating steps :

(Prediction Step) : p(xt|yT :t+1) =

∫
p(xt|xt+1)p(xt+1|yT :t+1)dxt+1

(Update Step) : p(xt|yT :t) =

∫
p(yt|xt)p(xt|yT :t+1)/Zt

(5)

Algorithm 1: Twisted Particle Filter
Input: (pT (xT ), g, pθ, y∗, T,N)
for t ∈ {T, ..., 0} do

for i ∈ {1, . . . , N} do
/* Proposal */
if t = T then

Sample
xiT ∼ pT (xT )pθ(y∗|xT );
w̃iT = 1/N

else
Sample xit ∼ g(xt|xit+1);

w̃it ∼
p(xt|xi

t+1)

g(xt|xi
t+1)

pθ(y
∗|xi

t)

pθ(y∗|xi
t+1)

Normalize weights
wit = w̃it/

∑n
l=1 w̃

l
t;

/* Resampling */
for i ∈ {i, . . . , N} do

k ∼ categorical({wit}Ni=1);
xit ← xkt

where Zt denotes the normalizing constant. While
these integrations have closed-form solutions for
specific cases, such as discrete-state or linear Gaus-
sian SSM (e.g., Kalman filter), they are generally
intractable for our SSM. Consequently, PF approx-
imates the integration using Monte Carlo sampling
withN number of particles {xit}Ni=1 and correspond-
ing weights {wit}Ni=1 by :

p̂(xt|yT :t+1) =

N∑
i=1

wit+1p(x
i
t|xit−1),

p̂(xt|yT :t) = p(yt|xt)
N∑
i=1

wit+1p(x
i
t|xit+1)

wit ∝ wit+1

p(yt|xit)p(xit|xit+1)

g(xit|xiT :t+1, yT :t)

where g is the proposal distribution. The choice of
g = p(xt|xt+1) simplifies the weight update towit =
wit+1p(yt|xit).

Twisting Particle Filter The estimation of p(xt|yT :t) relies on the prediction and update steps up
to time t. However, we incorporate the future observation the future observation y0 = y∗ at time
t, using twisted particle filtering, where prediction and update steps are conjugated by the twisting
function ψt(xt), (Olsen, 2022; Zhao et al., 2024). Following Wu et al. (2023); Zhao et al. (2024),
we choose the optimal twisting function ψ(xt) = pθ(y

∗|xt) ≈ A(x̂0), where x̂0 ≈ E0|t[x0|xt],
yielded by the Tweedie’s formula. With this choice, the proposal distribution and weight update in
the algorithm algorithm 1 become:

g(xt|xt+1) ∝ p(xt|xt+1)pθ(y
∗|xt+1), wt ∝ p(xt|xt+1)pθ(y

∗|xt)/g(xt|xt+1)pθ(y
∗|xt+1) (6)

Here the proposal g(xt|xt+1) = pθ(xt, y
∗|xt+1) is derived by conjugating ψ(xt+1) with the tran-

sition density, introducing a “guidance term” in the particle update (Wu et al., 2023; Bansal et al.,
2024; Moliner et al., 2024).

6.3 REVISITING THE BLIND FORWARD PROBLEM : LEARNED FORWARD OPERATOR A

In the previous section 4, we have approximated Ã[y∗] toA by observing the wet signal y∗ generated
by y∗ = A(x∗). Then we apply the approximated operator Ãθ to help to solve the blind inverse
problem either. Recall that Ãθ consists of the reference encoder and the main operator. We train our
conditional diffusion model with using the reference encoder as an auxillary condition, and use the
main operator in the particle filtering framework.
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Pre-trained
Reference Encoder

Pre-trained
Main Operator

Diffusion Model

Loss Guidance

Training Inference

Figure 5: The approximated forward operator Ãθ
is utilized to solve the blind inverse problem.
(Red) a conditional diffusion model is trained
by cg, cl from the reference encoder, and (Blue)
∇xt
Ãθ(x̂0) is calculated every diffusion step.

Observation Density for a Nonlinear Blind
Inverse Problem Recent works applying Se-
quential Monte Carlo (SMC) methods to solve
linear inverse problems typically model the ob-
servation density p(yt|xt) as a Gaussian distri-
bution (Dou & Song, 2024) or partial observa-
tion (Cardoso et al., 2023), leveraging the lin-
earity of the operator. In contrast, our approach
involves a general non-linear forward operator
A, approximated by a neural network Ãθ, a
closed-form expression for p(yt|xt) is unavail-
able in general.

To address this, we approximate the observa-
tion density using the Tweedie’s formula as fol-
lowing: (Wu et al., 2023; Chung et al., 2023b;
Boys et al., 2023).

p(yt|xt) =
∫
p(yt|y0)p(y0|x0)p(x0|xt)dy0dx0 ≈

∫
N (yt;A(x0), σ̄t)N (m(xt), C(xt))dx0 (7)

where we used y0 = A(x0), and m(xt) and C(xt) are the mean and covariance of p0|t(x0|xt),
presented in Boys et al. (2023). Furthermore, we linearize the operator A(·) with Taylor expansion
around xT , since the integration in Equation 7 has closed-form solution only if A is linear.

A(x) ≈ A(x0) +∇xA(x− x0) := A(x0) + J(x) (8)
We further assume that C(xt) and J(xt) is small enough compared to σ̄t so that σ̄2

t ≈ JC(xt)JT +
σ̄2
t to avoid expensive calculation of the gradient of the score function and the operator, which

requires O(T 2) complexity where T is a signal length. In conclusion,

p(yt|xt) ≈ N (yt;A(m(xt)), JC(xt)J
T + σ2

t ) ≈ N (yt;A(m(xt)), σ
2
t I) (9)

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Dataset In our experiments, we train on full-band audio (≥ 44.1kHz) speech datasets, resampled
to 44.1kHz. To ensure the forward operator is well-defined, the recording environments of the
target and reference signals, denoted as x, x∗ in Figure 2, must match in terms of microphone and
room characteristics. To achieve this, we organized the training data into two categories, detailed
in Appendix D.1. In the Single Environment setup, all target and reference pairs were recorded in
the same environment; specifically, we used recordings labeled ”microphone 1” from the VCTK
dataset (Veaux et al., 2017). In contrast, in the Multiple Environment setup target and reference
pairs are sampled from the same dataset, but different pairs may be drawn from distinct recording
environments. Wet audio samples are then generated on-the-fly during training for each dry target
and reference audio pair.

Evaluation Metric To evaluate the performance of the proposed method, we use both objec-
tive and subjective metrics as follows : 1) SI-SDR measures the similarity between predicted and
ground-truth wet signals in the waveform domain, 2) Spectral Convergence (SC) Loss and Log-
STFT Magnitude (LSM) Loss in the spectrogram domain, since phase misalignment may not sig-
nificantly affect perceptual quality, and 3) Subjective quality is assessed using Amazon Mechanical
Turk (MTurk). Details of the subjective test are in the Appendix F.

7.2 BLIND FORWARD PROBLEM : ZERO-SHOT AUDIO EFFECT MODELING

The effectiveness of our method for the blind forward problem is demonstrated via the zero-shot
audio effect learning task. We generated 100 dry and wet signal pairs for each audio effect type with
randomized parameter settings as the test set. Then we report the evaluation metrics together with
the subjective test on learning 1) single-type audio effects and 2) complex audio effects where the
forward operator is constructed as described in section 5.

8
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Table 1: Evaluation results for zero-shot audio effect modeling. Dry denotes the metric between the
dry and wet signals. Single and Multi refer to the metric between the wet and the predicted signals
generated by models trained on single-type and multiple audio effects, respectively. Diff.P denotes
the subjective score shown by the correct effect but with different parameters.

SI-SDR ↑ SC ↓ LSM ↓ Subjective ↑
Dry Single Multi Dry Single Multi Dry Single Multi Single Multi Diff.P

Noise −3.16 12.31 10.97 1.00 0.24 0.27 1.50 0.30 0.33 61.72 61.59 26.97

Filter

Bandlimiter −7.45 12.26 12.17 0.80 0.20 0.20 1.54 0.24 0.24 82.71 67.22 53.10
Equalizer 14.84 10.80 11.61 0.40 0.22 0.20 0.59 0.25 0.23 66.97 69.93 40.52
Delay 14.89 10.44 10.42 0.19 0.21 0.22 0.48 0.44 0.41 66.00 61.00 68.00
Algo. Reverb 8.82 15.24 10.70 0.34 0.16 0.22 0.59 0.29 0.42 70.31 53.83 49.93
IR Conv −8.45 −0.76 −0.64 0.50 0.34 0.36 1.09 0.40 0.43 66.24 65.03 62.97

Nonlinear
Compressor 3.01 13.50 13.19 0.60 0.21 0.23 0.96 0.28 0.31 50.28 56.28 52.28
Clipping 4.60 23.51 21.12 0.77 0.09 0.11 2.35 0.29 0.28 67.14 62.34 58.86
Distortion 4.14 21.76 20.07 0.75 0.12 0.12 2.16 0.33 0.28 64.69 62.79 54.83

Modulation 2.94 13.16 9.59 0.49 0.21 0.25 0.71 0.34 0.39 50.79 48.86 53.93

Codec 9.34 19.27 17.46 0.25 0.09 0.12 1.32 0.44 0.47 56.69 57.90 65.76

Multi Monolithic −9.82 −7.52 −0.60 0.88 0.61 0.42 1.84 0.92 0.55 50.59 71.89 −
Complex −10.69 −4.48 0.18 0.77 0.57 0.43 1.97 0.87 0.52 52.42 68.19 −

Table 2: Dependency on the dry signal distribution µ.
Single and Multi refer to the model trained on a single
and multiple recording environments, respectively.

SI-SDR ↑ SC ↓ LSM ↓
Recording Env. Dry Single Multi Dry Single Multi Dry Single Multi

VCTK
Mic 1 3.92 13.77 11.75 0.55 0.19 0.21 1.21 0.33 0.39
Mic 2 4.51 13.17 12.22 0.56 0.20 0.21 1.17 0.37 0.39
σ2 = 0.1 -0.35 9.97 8.84 0.64 0.23 0.26 2.61 1.83 1.81

DAPS 4.68 6.25 11.74 0.54 0.31 0.24 1.17 0.79 0.45

Figure 6: t-SNE of the global conditions
cg from the reference encoder trained
on VCTK as µ∗. The top-left shows
cg before training, followed by cg from
VCTK, DAPS, and MAESTRO as µ∗.
Each color represents a different for-
ward operator, with cg extracted from
100 wet audio samples per effect.

Two types of models are trained: one exposed only to
single-type effects and the other to complex effects during
training, and both were evaluated on all effect types.

Results in Table 1 show that our framework success-
fully replicates general audio effects without prior knowl-
edge of their type. Additional results, including mel-
spectrogram comparisons between predicted and wet sig-
nals, are provided in Appendix I. Notably, while the
single-type model excels in modeling single effects, ex-
posure to complex audio effects during training signifi-
cantly improves performance on general effects.

7.3 SENSITIVITY ANALYSIS ON THE SIGNAL DISTRIBUTIONS µ AND µ∗

Recall that our model is trained to satisfy ∥Aθ[y∗]−A∥L2(µ) → 0, implying that the approximation
is only guaranteed for x ∼ µ. To evaluate sensitivity under distribution mismatch, we trained two
models: one trained on VCTK mic 1, and another trained on multiple recording environments. Both
models are then tested across different recording environments, including VCTK mic 1 and 2, DAPS,
and the VCTK mic 1 perturbed with Gaussian noise with variance 0.1. The DAPS dataset is unseen
during training for both models. Results in Table 2 show that both models can approximate the
forward operator under distribution mismatch. However, the model trained on multiple environments
generalizes better to unseen settings (DAPS) at the cost of performance on seen datasets (VCTK).

We further analyzed cases where the reference signal µ∗ and dry signal µ are mismatched. Interest-
ingly, a model trained on speech as target signals and piano recordings as references still approx-
imated forward operators (see Appendix B). We attribute this to the global condition cg encoded
by the reference encoder, which appears to capture signal-invariant features. To illustrate, t-SNE
visualizations in Figure 6 show that cg from reference signals y∗, generated by the same operator A
but different inputs xi, cluster together.
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Table 3: Evaluation results for speech enhancement. Mix denotes the metric between the clean and
noisy signals. Appx. and GT denote the metric between the clean and predicted signals generated by
models using particles filters of the particle size N = 4, with the appoximated operator Ãθ and the
ground-truth operatorA. Results for the compressor and the codec are excluded for the GT operator
since the compressor returns unstable gradients and the codec is inherently non-differentiable. Audio
samples are downsampled to 16 kHz when measure PESQ, eSTOI, and SQUIM

SI-SDR ↑ PESQ ↑ eSTOI ↑ SQUIM-MOS ↑
Mix Cond. GT Apprx. Mix Cond. GT Apprx. Mix Cond. GT Apprx. Mix Cond. GT Apprx.

Noise 3.64 17.52 17.37 17.86 1.40 2.54 2.55 2.55 0.66 0.77 0.78 0.78 3.08 4.25 4.13 4.27

Filter

Bandlimiter -7.74 12.54 -3.38 11.23 4.04 3.79 3.33 3.78 0.96 0.94 0.90 0.94 3.66 4.52 3.67 4.40
Equalizer 17.06 0.57 11.15 8.79 4.50 3.98 4.21 4.22 0.99 0.86 0.97 0.93 4.50 4.61 4.44 4.65
Delay 15.22 9.29 18.95 15.36 2.03 2.53 2.69 2.56 0.88 0.80 0.92 0.89 3.47 4.06 4.06 4.04
Algo. Reverb 8.59 15.39 15.65 16.62 1.62 2.92 2.92 2.95 0.75 0.88 0.87 0.89 3.73 4.17 4.07 4.16
IR Conv -5.01 7.23 -1.83 8.02 3.05 3.39 3.05 3.47 0.80 0.89 0.85 0.89 3.97 4.23 3.96 4.36

Nonlinear
Compressor 3.75 11.76 - 11.32 3.50 3.96 - 3.96 0.95 0.94 - 0.96 4.58 4.59 - 4.64
Clipping 5.11 20.96 7.42 17.04 1.62 3.41 2.04 3.24 0.80 0.95 0.84 0.92 3.91 4.33 4.00 4.20
Distortion 4.63 17.81 12.23 16.80 1.61 3.28 2.49 3.22 0.80 0.94 0.90 0.94 3.50 4.32 4.26 4.26

Modulation 3.16 9.27 10.42 11.00 3.15 3.65 3.64 3.78 0.87 0.89 0.91 0.90 3.82 4.37 4.23 4.42
Codec 8.17 16.89 - 17.20 4.10 3.52 - 3.55 0.82 0.92 - 0.93 4.49 3.72 - 3.82

7.4 BLIND INVERSE PROBLEM : SPEECH ENHANCEMENT (SE)

Table 4: Denoising and Dereverberation results on
VoiceBank/Demand and Reverb-WSJ0.

VoiceBank/Demand Reverb-WSJ0
Method SR (Hz) PESQ eSTOI SI-SDR PESQ eSTOI SI-SDR
Mixture – 1.97 0.79 8.4 1.36 0.46 −7.3

SGMSE 16k 2.28 0.80 16.2 1.33 0.57 −7.4
SGMSE+ 16k 2.93 0.87 17.3 2.66 0.84 1.6
StoRM 16k 2.93 0.88 18.8 2.83 0.88 6.5

Our 44.1k 2.45 0.82 12.3 1.46 0.51 -12.3

We evaluate our method on a speech en-
hancement task, training a conditional dif-
fusion model on the VCTK dataset with
a pre-trained reference encoder. Dur-
ing inference, we apply particle filtering
with the pre-trained main operator Ãθ[y∗]
and compare the results to those using
the ground-truth operator A. An Euler-
Maruyama solver with T = 48 steps is
employed for generation. Notably, our ap-
proximated operator is universally applicable without specifying the type of degradation effect, en-
abling the universal SE and including non-differentiable operators such as audio codecs.

Results in Table 3 demonstrate that our approach effectively enhances noisy audio signals across
various degradation types. In particular, using the approximated operator during particle filtering
even outperforms the ground-truth operator except for delay effect. We hypothesize that when
x̂0 = Dθ(xt) is inaccurate due to errors from the diffusion model, the gradient from ∇xt

Ãθ(x̂0)
provides the better estimation than ∇xt

A(x̂0). Moreover, twisted particle filtering outperforms the
conditional diffusion model according to the Table 3 except for highly non-linear filters like clipping
and distortion, due to errors from the linearized operator approximation.

7.5 COMPARATIVE STUDIES AND REAL-WORLD SPEECH ENHANCEMENT

Despite training our models only on a single full-band audio dataset (VCTK) with general degrada-
tion settings, we evaluate our model on benchmark datasets VoiceBank/DEMAND and Reverb-WSJ0.
We process 1.46 seconds of audio at a time and use an overlap-add method with a 250 ms overlap
to handle longer audio signal. we compare our results to baselines : SGMSE (Welker et al., 2022),
SGMSE+ (Richter et al., 2023), and StoRM (Lemercier et al., 2023), as shown in Table 4. Although
the objective metrics may be lower, the perceptual quality is improved as our model typically extends
the audio bandwidth, resulting in perceptually much clean examples. We further provide enhanced
samples for real-world noisy speech signals at https://t.ly/dBUhF.

8 CONCLUSION

We proposed an integrated framework to solve blind forward and inverse problems for zero-shot
effect modeling and speech enhancement. For the blind forward problem, we developed a novel
framework with a systematic method to generate general forward operators. For the blind inverse
problem, we trained a conditional diffusion model and applied twisted particle filtering using the
pretrained model from the forward problem. Experiments show that our methods effectively recover
both the forward operator and input signal solely from the output signal across various audio effects.
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Alexandre Défossez. Hybrid spectrogram and waveform source separation. In Proceedings of the
ISMIR 2021 Workshop on Music Source Separation, 2021.

Thomas Dietzen, Randall Ali, Maja Taseska, and Toon van Waterschoot. Myriad: a multi-array
room acoustic database. EURASIP Journal on Audio, Speech, and Music Processing, 2023(1):17,
2023.

Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=tplXNcHZs1.

11

https://www.waves.com/downloads/ir-convolution-reverb-library
https://www.waves.com/downloads/ir-convolution-reverb-library
https://openreview.net/forum?id=pzpWBbnwiJ
https://openreview.net/forum?id=pzpWBbnwiJ
https://arxiv.org/abs/2310.06721
https://arxiv.org/abs/2310.06721
https://arxiv.org/abs/2308.07983
https://arxiv.org/abs/2308.07983
https://openreview.net/forum?id=SkeRTsAcYm
https://openreview.net/forum?id=SkeRTsAcYm
https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=tplXNcHZs1


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

James Eaton, Nikolay D Gaubitch, Alastair H Moore, and Patrick A Naylor. Estimation of room
acoustic parameters: The ace challenge. IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 24(10):1681–1693, 2016.

Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts. Ddsp: Differentiable
digital signal processing. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=B1x1ma4tDr.

Eduardo Fonseca, Manoj Plakal, Daniel P. W. Ellis, Frederic Font, Xavier Favory, and Xavier Serra.
Learning sound event classifiers from web audio with noisy labels, 2019. URL https://
arxiv.org/abs/1901.01189.

Juan Carlos Franco Hernández, Bogdan Bacila, Tim Brookes, and Enzo De Sena. A multi-angle,
multi-distance dataset of microphone impulse responses. Journal of the Audio Engineering Soci-
ety, 70(10):882–893, 2022.

Pieralberto Guarniero, Adam M. Johansen, and Anthony Lee. The iterated auxiliary particle filter,
2016. URL https://arxiv.org/abs/1511.06286.

Jinyue Guo and Brian McFee. Automatic recognition of cascaded guitar effects. In Proceedings of
the International Conference on Digital Audio Effects. DAFx Board, 2023.

Jeremy Heng, Adrian N. Bishop, George Deligiannidis, and Arnaud Doucet. Controlled sequential
monte carlo. The Annals of Statistics, 48(5), October 2020. ISSN 0090-5364. doi: 10.1214/
19-aos1914. URL http://dx.doi.org/10.1214/19-AOS1914.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models, 2022. URL https://arxiv.org/abs/2204.03458.

Jaekwon Im and Juhan Nam. Diffrent: A diffusion model for recording environment transfer of
speech, 2024.

Vugar Ismailov. Notes on ridge functions and neural networks, 2020. URL https://arxiv.
org/abs/2005.14125.

Marco Jeub, Magnus Schafer, and Peter Vary. A binaural room impulse response database for the
evaluation of dereverberation algorithms. In 2009 16th International Conference on Digital Signal
Processing, pp. 1–5. IEEE, 2009.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. ArXiv, abs/2206.00364, 2022.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models, 2022. URL https://arxiv.org/abs/2201.11793.

Gavin Kearney, Helena Daffern, Patrick Cairns, Anthony Hunt, Ben Lee, Jacob Cooper, Panos
Tsagkarakis, Tomasz Rudzki, and Daniel Johnston. Measuring the acoustical properties of the
bbc maida vale recording studios for virtual reality. In Acoustics, volume 4, pp. 783–799. MDPI,
2022.

Adam Kujawski, Art JR Pelling, and Ennes Sarradj. Miracle—a microphone array impulse response
dataset for acoustic learning. EURASIP Journal on Audio, Speech, and Music Processing, 2024
(1):32, 2024.

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A universal
neural vocoder with large-scale training. In The Eleventh International Conference on Learning
Representations, 2022a.

12

https://openreview.net/forum?id=B1x1ma4tDr
https://arxiv.org/abs/1901.01189
https://arxiv.org/abs/1901.01189
https://arxiv.org/abs/1511.06286
http://dx.doi.org/10.1214/19-AOS1914
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2005.14125
https://arxiv.org/abs/2005.14125
https://arxiv.org/abs/2201.11793


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sungho Lee, Hyeong-Seok Choi, and Kyogu Lee. Differentiable artificial reverberation. IEEE/ACM
Trans. Audio, Speech and Lang. Proc., 30:2541–2556, jul 2022b. ISSN 2329-9290. doi: 10.1109/
TASLP.2022.3193298. URL https://doi.org/10.1109/TASLP.2022.3193298.

Sungho Lee, Hyeong-Seok Choi, and Kyogu Lee. Yet another generative model for room impulse
response estimation, 2023a.

Sungho Lee, Jaehyun Park, Seungryeol Paik, and Kyogu Lee. Blind estimation of audio processing
graph. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1–5, 2023b. doi: 10.1109/ICASSP49357.2023.10096581.

Sungho Lee, Marco A. Martı́nez-Ramı́rez, Wei-Hsiang Liao, Stefan Uhlich, Giorgio Fabbro, Kyogu
Lee, and Yuki Mitsufuji. Searching for music mixing graphs: A pruning approach, 2024. URL
https://arxiv.org/abs/2406.01049.

Jean-Marie Lemercier, Julius Richter, Simon Welker, and Timo Gerkmann. Storm: A diffusion-
based stochastic regeneration model for speech enhancement and dereverberation. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 31:2724–2737, 2023. doi: 10.1109/
TASLP.2023.3294692.

Jean-Marie Lemercier, Eloi Moliner, Simon Welker, Vesa Välimäki, and Timo Gerkmann. Unsu-
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A CONSTRUCTION OF THE FORWARD OPERATOR

A.1 CORRESPONDANCE BETWEEN LINEAR DAG AND THE SEMIRING

Proposition 1 (DAG Representation). Let ⟨S⟩ be a subring of a composition semiring R generated
by a subset S. Then, each element A ∈ ⟨S⟩ has a one-to-one correspondence to a linear DAG G,
which has a single leaf and root whose nodes are composed of elements in S. We refer to such G as
a graph representation of A.

Proof. Let R be a composition semiring generated by a set S. If G ∈ R, then G can be expressed
by the combinations of the finite additions and multiplications of the elements in S by construction.
Hence, G is represented by the finite sum of monomials after expansion since the multiplication is
distributive. Now enumerate the elements of S according to the order appeared in the monomials
so that if sj comes former than sk in any monomial (ai), then j < k. Thus we can express as
following:

G =

N∑
i=1

(ai), (ai) =

Mi∏
k=1

s
n
(i)
k

(10)

where {n(i)k } is a strictly increasing subsequence of the natural numbers, and Mi is the lengths of
the monomial (ai). Then define a chain-shaped graph for the monomial (ai) by putting nodes as
its elements and edges as adjacent multiplication. Formally, Gi = (Vi, Ei) where a set of nodes
Vi = {sn(i)

k

: n
(i)
k , k = 1, ...Mi} and edges Ei = {ejk : n

(i)
k = n

(i)
j+1}.

Then G = (∪Ni=1Vi,∪Ni=1Ei) forms a directed acyclic graph with the root sm and leaf sM where
m = min {n(i)k } and M = max {n(i)k }.
Conversely, let G = (V,E) be a directed acyclic graph with one root and leaf. Let P = {Pi} =
{(Vi, Ei)}Ni=1 be a family of paths from the root and the leaf. Then write a path by multiplication
of the nodes by Gi =

∏|Pi|
j=1 sj if sj ∈ Vi. Then G =

∑N
i1
Gi is the corresponding element in the

semiring we wanted.

A.2 APPROXIMATION THEOREM OF OPERATOR

In this section, we will prove the universal approximation property of the semiring action we con-
structed at section 5. As stated, the main idea is to imitate the universal approximation theorem
of the MLPs. In particular, we corresponds the linear layer of the MLP to the linear operator and
activation function to the component non-linear operator.

Definition 4 (Linear Operator). A function A : RT → RT ′
is a linear operator if it satisfies

A(x+ y) = A(x) +A(y), A(ax) = aA(x), for x, y ∈ RT , a ∈ R (11)

Any linear operator A : RT → RT ′
has a matrix representation A ∈ RT×T

′

such that A(x) = Ax.

Now we consider the following specific type of operators that resemble the structure of the MLP.
Definition 5 (Ridge Functions). Suppose that F,L are subsets the semiringR. Then the setR(F,L)
is a subring of R defined by

R(F,L) =

{∑
i∈I

σiAi : x ∈ X,σi ∈ F,Ai ∈ L

}
(12)

In particular, we choose L to the collection of linear operators L = {A1, A2, ...} and F to the
collection of component non-polynomial non-linear operators F = {σ1, σ2, ...}. Note that the
point-wise operator σ : RT → RT acts on x ∈ RT by σ((x1, ...xT )) = (σ1(x1), ..., σT (xT )).
Concisely we denote this by [σ(x)]j = σj(xj) by representing j-th coordinate. Then for any input
x ∈ RT , the action of any element ofR(F,L) can be represented as[(∑

i

σiAi

)
(x)

]
j

=

[∑
i

σi
(
Ai(x)

)]
j

=
∑
i

σij

(
T∑
k=1

aijkx
k

)
(13)
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where aijk is the j-th row and k-th column of coefficients of the matrix representation of the i-th
linear operator Ai. And σij : R → R is the j-th function of the i-th component-wise non-linear
operator.

The following Lemma is the approximation theorem for the ridge function. We refer to (Lin &
Pinkus, 1993; Ismailov, 2020; Pinkus, 1999) for the detail.

Lemma 1. Let Ω(U) be a subset of all d x n real matrices whose row (a1, ...an) ∈ U = U1×...×Un
Set

M(Ω(U)) = span{g(Ax) : A ∈ Ω, g ∈ C(Rn → R)} (14)

ThenM(Ω) is dense in C(Rn,R) in the topology of the uniform convergence on compact subsets if
and only if a) at least n − d of the U1, . . . , Un have an infinite number of distinct elements; b) at
most one of the U1, . . . , Un has only one element, and none has only the zero element.

Proof. See the Theorem 2.1 and Proposition 3.6 of Lin & Pinkus (1993)

This is the main approximation theorem for our case.

Theorem 1. Suppose that L = {A1, A2, ...} is a collection of linearly independent linear operators
Ai inCb(K), and F = {σ1, σ2, ...} is a set of non-polynomial component-wise continuous functions
in Cb(K). Then, for a bounded continuous function,A ∈ Cb(K) can be uniformly approximated by
the action of g ∈ R(F,L).

Proof. Since F are chosen by the collection of component-wise functions, the approximation of
A : RT → RT is reduced to Aj : RT → R by Equation 13. In the case, R(F,L) is the M(Ω)
of the Lemma 1. It suffices to show that our assumptions of L and F satisfies the assumptions of
the Lemma 1. However, since A in Cb(K) : K → K, the coefficients of the matrix representation
[ai]jk are bounded in some nonzero compact sets Vjk ⊆ R. Choosing Uk = ∪Tj=1Vjk to be Uk in the
lemma, it satisfies the assumption. Therefore, the approximation is given component-wisely.

Remark 1. Although the operatorA can be approximated using ridge functions, we do not construct
any operator as a ridge function to simulate any forward operator in practice. This is because the
approximation in the theorem assumes a countable sum. Approximations using a finite sum, such
as h(x) =

∑T
i=1 σi(a

i · x), are more nuanced, as discussed by Ismailov (2020). Moreover, since
our goal is to simulate practical operators for real-world scenarios, sampling pathological operators
that heavily distort or erase the content of a speech signal is undesirable and redundant, potentially
hindering neural network training.

B CROSS DOMAIN RESULTS

Table 5: Effect of the reference: in-domain vs out-of-domain (MASTERO)

SI-SDR ↑ SC ↓ LSM ↓ Subjective ↑
Dry In Out Dry In Out Dry In Out Pred Diff.P

Noise −3.04 9.46 6.79 1.01 0.32 0.43 1.48 0.47 0.41 70.38 39.31

Filter

Bandlimiter −7.43 11.21 10.05 0.79 0.21 0.20 1.54 0.36 0.47 59.71 61.75
Equalizer 13.46 8.68 11.36 0.43 0.25 0.21 0.59 0.47 0.27 62.69 50.21
Delay 15.42 6.15 13.27 0.18 0.27 0.18 0.46 0.69 0.40 43.41 53.34
Algo. Reverb 8.89 9.47 16.03 0.33 0.24 0.14 0.58 0.57 0.27 56.86 54.66
IR Conv −8.65 −1.71 −1.12 0.50 0.35 0.34 1.09 0.56 0.41 58.24 63.10

Nonlinear
Compressor 3.24 10.24 11.27 0.61 0.27 0.25 0.95 0.48 0.41 59.28 65.10
Clipping 4.61 21.24 24.75 0.77 0.12 0.08 2.35 0.39 0.25 71.52 60.69
Distortion 4.00 18.94 22.63 0.76 0.17 0.09 2.21 0.47 0.28 65.03 69.90

Modulation 3.15 10.13 15.17 0.48 0.27 0.18 0.71 0.53 0.31 57.34 59.38

Codec 9.31 17.90 19.53 0.25 0.12 0.10 1.32 0.48 0.47 52.07 53.28
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C TRAINING DETAILS

C.1 ARCHITECTURES

For the reference encoder, we employed the encoder part of the MTFAA-Net. First, it takes the
wet reference signal y∗ and transform to the STFT domain, and the phase encoder is applied. Then
it sequentially downsamples the frequency axis, and each signals are processed by time-frequency
conv module and Bi-axial Attention module.

Table 6: Hyperparameters of the architectures. Hyperparameters for the main operators of 1d and
2d models are paranthesized if they are different.

Reference Encoder Main Operator Discriminator
Parameters Values Parameters Values [1d, 2d] Parameters Values

Channels 128 Channels [128, 64]
Channel Mult. (1, 2, 4) Channel Mult. (1, 1, 2, 2, 2)

Ds Factors (4, 4, 4) cg size 512
Causal False cl size 512

Window Length 2046 Self-Attn. 2
Hop Length 512 Cross-Attn. 2

nres (2, 2, 4, 4, 4)
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C.2 AUDIO EFFECTS

All the audio effects are implemented in JAX and operated in CPU with JIT(Just-in-Time) compila-
tion, enabling an on-the-fly generation and rendering of the forward operator. We will also exploit an
automatic differentiation system of JAX to calculate∇xA(x). All the audio effects are implemented
based on the algorithms in (Zölzer et al., 2002).

Table 7: AFX Parameter Types

Class AFX Acronym Parameters (Default Sampling Range)

2nd Order
Filter

Lowpass lp Frequency Hz [1000, 3000], q [0.7, 1.2]
Bandpass bp Frequency Hz [250, 5000], q [0.2, 2]
Highpass hp Frequency Hz [500, 3000], q [0.5, 4]
Bandreject brj Frequency Hz [400, 4000], q [0.2, 2]
Lowshelf ls Frequency Hz [200, 3000], q [0.5, 2], Gain dB [6, 18, 9, 6]
Highshelf hs Frequency Hz [2000, 7200], q [0.5, 2], Gain dB [6, 18, 9, 6]
Bell bell Frequency Hz [120, 3000], q [1, 4], Gain dB [8, 24, 12, 6]
SVF svf Frequency Hz [180, 3000], q [0.5, 4], c hp [0.2, 0.8], c bp [0.2, 0.7], c lp [0.2, 0.7]

Ladder
Bandpass Ladder bpl Frequency Hz [700, 4000], k [0, 0.6]
Highpass Ladder hpl Frequency Hz [250, 4000], k [0, 0.6]
Lowpass Ladder lpl Frequency Hz [800, 3000], k [0.2, 0.6]

Crossover Crossover crs Frequency Hz [40, 3000]

Memoryless
Nonlinearity

Distortion dist Gain dB [8, 32, 12, 6], Hardness [0, 1, 0.5, 0.2], Asymmetry [0, 1]
Hard Clipper hclp Gain dB [18, 36, 24, 4]
Soft Clipper scli Factor [12, 24]
Bitcrush bit Bit Depth [4, 8, 6, 2]

Dynamic Range
Controller

Compressor cmp Threshold dB [-24, -6], Ratio [12, 20], Attack. ms [10, 60],
Release ms [30, 50], Knee dB [0, 24]

Inverted Comp. icmp Threshold dB [-15, -6], Ratio [0.25, 1], Attack. ms [0.1, 50],
Release ms [50, 300], Knee dB [0, 24]

Limiter lim Threshold dB [-10, -6], Release ms [30, 100]

Modulation
Effect

Chorus cho Centre Delay ms [5, 15], Feedback [0.4, 0.7], Mix [0.8, 1, 0.8, 0.1]
Vibrato vib Depth [0.5, 1, 0.8, 0.2]
Flanger fla Depth [0.5, 1, 0.7, 0.1]
Tremolo tre Depth [0.5, 1, 0.7, 0.1]

Delay and
Reverb

Delay del Delay Seconds [0.1, 0.3], Feedback Gain dB [-12, -6], Mix [0.4, 0.8, 0.5, 0.25]
Mono Reverb rvb Room Size [0.2, 0.8], damping [0.3, 1], Mix [0.3, 0.8, 0.5, 1]
RIR Conv. rir
MicIR Conv. mcir

Phase Vocoder Pitch Shift pits Semitones [-12, 12]

Codec
libopus lopus Bitrate [8, 256]
libvorbis lvobs Bitrate [48, 200]
aac aac Bitrate [8, 256]

C.3 OBJECTIVE FUNCTIONS

We used SC loss and LSM for the spectogram loss Lm.

• SI-SDR (Roux et al., 2018; Luo & Mesgarani, 2017): .

• Spectral convergence loss (SC), Log-STFT magnitude loss (LSM) (Yamamoto et al., 2020)

SC(x, x̂) =
1

N

∑
i∈S

∥|STFTi(x)| − |STFTi(x̂)|∥F
∥|STFTi(x)|∥F

LSM(x, x̂) =
1

N

∑
i∈S
∥ log |STFTi(x)| − log |STFTi(x̂)|∥1

(15)

where x̂ represents the predicted signal, and STFTi denotes the short-time Fourier trans-
form with FFT size i ∈ S = {2048, 1024, 512, 256} with 75% overlap between windows.

• Subjective: To quantify the perceptual discrepancy between the predicted wet signal and
the ground-truth wet signal, we conducted a subjective listening test. The details can be
found in the appendix.
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D EXPERIMENT DETAILS

D.1 DATASET SPLIT

• Single Environment: All target and reference datasets are from the same recording en-
vironment. We used the VCTK dataset(Veaux et al., 2017), which has two recording
environments. Therefore, we separated this dataset into two sub-datasets and chose one
environment for the whole dry and wet audio pair.

• Multiple Environments: We use (Bakhturina et al., 2021; Puchtler et al., 2021)

For convolved RIR, we mixed publicly available room impulse datasets for various RIR data.

• Seen Noise : Fonseca et al. (2019) Train set

• Unseen Noise : Fonseca et al. (2019) Valid set

• Seen RIR : Eaton et al. (2016); Jeub et al. (2009); Szöke et al. (2019); Rebecca & Mark
(2010); Amengual Gari et al. (2020); Yasuda et al. (2022); Kearney et al. (2022); Traer
& McDermott (2016); Dietzen et al. (2023); Murphy & Shelley (2010); Pasoulas et al.;
Nakamura et al. (1999); Audio and also used Altiverb, Echotheif, Fokke rir dataset.

• Unseen RIR : Murphy & Shelley (2010) and also used Altiverb, Fokke rir dataset.

• Seen MicIR : Kujawski et al. (2024), and also used Vintage micir dataset.

• Unseen MicIR : Franco Hernández et al. (2022); MICIR

For VCTK, we isolated p231, p271, p311, p347 as a valid set.

E PARTICLE FILTERING AND SEQUENTIAL MONTE CARLO

E.1 SEQUENTIAL MONTE CARLO (SMC) AND TWISTED PARTICLE FILTERING

The goal of Sequential Monte Carlo (SMC) is to estimate πt(x1:t) recursively over time. A target
distribution πt(x1:t) is defined by an unnormalized density γt(x1:t) with normalization constant
Zt. In the context of state-space models, one of the natural choices is πt(x1:t) = p(x1:t|y1:t)
by γt(x1:t) = p(x1:t, y1:t) and Zt = p(y1:t). However, as it is typically high dimensional and
intractable, direct sampling is unfeasible except for a few cases. Additionally, even if the sampling
is feasible, the full trajectory x1:t should be sampled every step t to simulate the target distribution.
To address these limitations, Sequential Importance Sampling (SIS) is introduced, which enables the
sequential approximation of πt(x1:t) via importance sampling.

Let qt(x1:t) be a probability density whose support includes that of πt(x1:t) and is easier to sample
from, referred to as the importance sampling density. The importance weight is then defined as the
ratio wt(x1:t) = πt(x1:t)/qt(x1:t) and normalized to w̃t. Given samples xi1:t ∼ qt(x1:t), we can
approximate the target distribution and expectations as follows:

Now, assume that qt(x1:t) is factorized as q1(x1)
∏n
k=2 qk(xk|x1:k−1). Then, the importance weight

can be updated recursively:

wt(x1:t) =
πt−1(x1:t−1)

qt−1(x1:t−1)

γt(x1:t)

γt−1(x1:t−1)qt(xt|x1:t−1)
= wt−1(x1:t−1)ut(x1:t) (16)

where ut(x1:t) = γt(x1:t)/γt−1(x1:t−1)qt(xt|x1:t−1) is the incremental importance weight.This
recursive formulation reduces computational complexity by reusing previous weights and particles.

As time progresses, the variance of the weights wit tends to increase, causing weight degeneracy
where only a few particles carry significant weight. To address this, resampling is performed pe-
riodically, replacing low-weight particles with high-weight ones such as systematic, residual, and
multinomial resampling.
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Particle Filtering Now we aim to estimate the marginal filtering distribution p(xt|y1:t) on
the state-space model. Note that the distribution has a recursive relation by the predic-
tion step, p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 and the update step p(xt|y1:t) ∝

p(yt|xt)p(xt|y1:t−1). However, this integration is intractable except for the case of finite SSM
or linear Gaussian SSM, where the latter has a tractable solution known as Kalman filter. There-
fore, we need an approximation to evaluate the marginal distribution using SMC. By setting
γt(x1:t) = p(x1:t, y1:t), so πt(x1:t) = p(x1:t|y1:t) and Zt = p(y1:t). Suppose that we have ap-
proximated p(xt−1|y1:t−1) by p̂(xt−1|y1:t−1) =

∑N
i=1 w

i
t−1x

i
t−1 by xit−1 ∼ q(xt|y1:t). Then we

have

p̂(xt|y1:t−1) =

N∑
i=1

wit−1p(x
∗
t |xit−1), p̂(xt|y1:t) = p(yt|xt)

N∑
i=1

wit−1p(x
i
t|xit−1) (17)

with the updating function wit ∝ wit−1p(yt|xit)p(xit|xit−1)/g(x
i
t|xi1:t−1, y1:t). While the parti-

cle filtering reflects the observation sequences up to the current step t, we can incorporate the
future observation through the twisting function ψt. By this choice of the twisting function,
the prediction and update steps are twisted by pψt (xt|xt−1) = p(xt|xt−1)ψt(xt)/ψ̃t−1(xt−1)

and pψt (yt|xt) = p(yt|xt)ψ̃t(xt)/ψt(xt). While remaining the terminal target distribution
π(x1:T |y1:T ) = π̃(x1:T |y1:T ) invariant.

F SUBJECTIVE TEST

We use Amazon Mechanical Turk (MTurk) to conduct the subjective evaluation. A total of 30 partic-
ipants were recruited and assigned to evaluate the audio samples based on the provided instructions.
We eliminated 3 participants who did not pass the attention check test, resulting in 27 participants
total. To evaluate the perceptual quality of audio transformation, a subjective listening test was con-
ducted using a set of reference and test audio signals. The test follows the below procedure to assess
how well transformed (wet) audio resembles the target wet audio, given a reference dry-wet pair.

1. Reference Listening: Participants first listen to two reference audio signals:

• Dry Reference: The unprocessed (dry) version of the audio.
• Wet Reference: The processed (wet) version of the same audio, transformed using an

audio effects (AFX) mapping.

These reference signals are provided to inform participants with the transformation effect
and the expected result.

2. Target Listening: After listening to the reference signals, participants are presented with
a new dry target audio signal that has not been processed.

3. Expectation Formation: Participants are instructed to imagine the expected wet version
of the target audio based on the transformation they heard in the reference signals.

4. Rating: Participants are then presented with several test audio samples, each a processed
version of the dry target audio, and asked to rate how similar each sample is to the imagined
wet target audio using a slider. The rating scale is as follows:

• 0: Very poor resemblance to the desired wet target audio.
• 100: Identical to the wet reference.

G FURTHER APPLICATIONS

Further applications inhibit in areas such as Automatic Dialog Replacement (ADR), recording envi-
ronment normalization, automatic mixing and mastering, and timbre transfer. By recovering the dry
signal using our inverse problem approach and applying transformations with the forward problem
method, we can facilitate tasks like transferring audio characteristics between signals and enhancing
overall audio production processes.
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H LIMITATIONS AND FUTURE WORK

Our study currently focuses on single-input single-output (SISO) systems with fixed signal lengths;
extending it to handle multi-input multi-output (MIMO) systems and variable-length signals would
enhance versatility. The approach relies on input signals from a known distribution, so performance
may degrade with significant deviations—developing robustness to input variations is important.
Computational complexity is also a concern, making real-time applications challenging and neces-
sitating efficiency optimizations. Additionally, while effective in audio applications, extending the
framework to other domains remains an open challenge, and some theoretical assumptions may not
hold universally, requiring further analysis.

I ADDITIONAL RESULTS ON FORWARD OPERATOR LEARNING

Figure 7: Mel Spectrogram of Single Audio Effect
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Figure 8: Mel Spectrogram of Single Audio Effect
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Figure 9: Mel Spectrogram of Monolithic AFX Graph

Figure 10: Mel Spectrogram of Complex AFX Graph
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