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ABSTRACT

We propose a unified framework to address the blind forward and inverse prob-
lems in audio domain, where the objective is to estimate either the function or the
input signal solely from the observed output, without access to the other. We for-
mally define forward operators — mapping input to output signals — and formu-
late both problems within a probabilistic framework. For the blind forward prob-
lem, we design an architecture that utilizes a reference encoder to extract features
from the reference signal, enabling the main operator to approximate arbitrary
forward operators systematically composed via algebraic representations. For the
blind inverse problem, we employ a conditional diffusion model conditioned on
features from the pretrained reference encoder and augment the generation pro-
cess using twisted particle filtering technique leveraging the approximated oper-
ator in the forward problem. We validate our framework on zero-shot audio ef-
fect modeling and speech enhancement. The experiments show that our approach
replicates both simple and complex audio effects, generalizes under distribution
mismatches, and effectively enhances noisy full-band audio across diverse effects
and real-world scenarios. Codes are available athttps://t.ly/nlluk, with
audio samples at https://t.ly/dBUhF

1 INTRODUCTION

In both classical digital signal processing (DSP) and modern deep learning-based approaches, a
central assumption is the existence of a ‘function’ that maps input signals to their corresponding
outputs. While the classical DSP decomposes the speech into filters and sound source according to
the source-filter theory (McAulay & Quatieri,|1986;|(Oppenheim, 1999), deep learning-based method
leverages neural networks to approximate more complex mappings between input-output pairs with
a supervised manner even without knowledge on the characteristics of the mappings.

Still, recovering either the function or its input solely from the output signal remains challenging.
Common approaches to estimate the functional form is to simplify or precondition the functional
form or restrict it to specific types, collapsing the problem in parameter estimation or classifications
(Engel et al.l 2020; [Colonel & Reiss, 2021} [Lee et al., [2022b; [Colonel et al.l 2022; |Peladeau &
Peeters), 2024;|Guo & McFee, 2023 |Lee et al.,[2023b; Rice et al.,[2023}; Take et al., [2024). However,
these methods are only able to handle limited and simplified types, often difficult to be generalized
to the wild setting. To reconstruct the input signals from the output signals, discriminative models
learn to either directly predict the input signal from the given output signal or find a mask that
results in a cleaned version of the output; thereby solving speech enhancement or signal restoration
task. Recently, generative models are also one of the choices to recover the input signal by using
the output signal as an auxiliary information in the generation process (Abdulatif et al., [2024; Serra
et al.| [2022; Richter et al.| [2023; |[Lemercier et al., 2023)). These models are particularly effective
in handling diverse types of degradation without relying on specific noise models. However, they
ignore the connection between the clean and noisy signals, hence require large clean and noisy signal
pairs to handle diverse degradation types.

In this work, we introduce a unified framework to solve the blind forward and inverse problems in
the audio domain, focusing on estimating either the function or the input signal from the observed
output. After the definition of forward operators and each problems are rigorously formalized,
we develop a framework to approximate arbitrary forward operators constructed by the algebraic
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approach. For the blind inverse problem, we leverage a conditional diffusion model conditioned by
the pre-trained reference encoder, and apply a twisted particle filtering method using the pre-trained
estimated forward operator. The effectiveness of the proposed method is empirically demonstrated
via zero-shot audio effect modeling and speech enhancement.

2 RELATED WORKS

Zero-shot Audio Effect Modeling We address zero-shot audio effect modeling as a representa-
tive example of the blind forward problem. A common approach to this task involves simplifying
and preconditioning the functional form using DSP-based domain knowledge and strong inductive
biases. For instance, the problem is often reduced to estimating intermediate features such as param-
eters (Engel et al |2020; |Colonel & Reiss| 2021} [Lee et al., [2022b; |Colonel et al., 2022} [Peladeau
& Peeters), [2024)), impulse responses (Steinmetz et al., 2021} [Lee et al.l 2023a), or combinations of
audio effects (Guo & McFee| 2023; [Lee et al., 2023b; [Rice et al., [2023; Take et al., [2024). Other
approaches focus on specific tasks, such as acoustic scene transfer (Im & Nam)| 2024), impulse
response learning (Steinmetz et al., [2021)), or modeling single-type effects (Chen et al.,[2024)).

Speech Enhancement Speech enhancement is a quintessential example of the blind inverse prob-
lem in the audio domain. In deep learning-based approaches, the primary method involves using
discriminative or GAN-based models to estimate a mask in either the time or time-frequency do-
main (Luo & Mesgarani,2019; |Lu et al., [2022b}; |/Abdulatif et al.||2024; (Choi et al., 2019)). Recently,
diffusion models have emerged as a promising alternative for speech enhancement. For example,
Serra et al.| (2022) conditioned score-based models on noisy signals, while |Welker et al| (2022);
Richter et al.| (2023); Lemercier et al.| (2023)) designed a forward and reverse process coherent to
the enhancement process. However, these prior methods primarily treated noisy signals as auxiliary
information, failing to fully exploit the functional relationship between clean and noisy signals.

Diffusion-based Inverse Problem Recently, diffusion-based method gained prominence in solv-
ing inverse problems. Since the score function of the posterior distributions appears as a guidance
term during the diffusion steps, several works approximate the terms using known measurement op-
erators (Song et al., 2021 |Chung et al., [2023b; |Ho et al., [2022)). Some lines of works factorize the
linear operator using SVD (Kawar et al.l [2022) or use pseudo inverse to approximate the operator
(Song et al) 2023). In cases where the operator is unknown, referred to as a blind setting, prior
works estimate the parametrized operators during diffusion process such as (Chung et al., |2023a;
Murata et al.,[2023)). In audio domain, the inverse problem is solved to remove audio effects such as
Moliner et al.| (2024); Lemercier et al.|(2024). Recently, several works integrate Sequential Monte
Carlo (SMC) methods with diffusion models to enhance the conditional generation/Cardoso et al.
(2023); |Wu et al.| (2023)); Dou & Song| (2024)); Nazemi et al.| (2024)

3 DEFINITIONS, NOTATIONS, AND THE PROBLEM FORMULATION

Let K C R” be a signal space, where T denotes the signal length. Consider a mapping A : K — K
that defines the system y = A(z) for x € K. We refer to the input signal x as the dry signal and the
output signal y as the wet signal. To analyze such system, we introduce the following function class
of our interest.

Definition 1 (Forward Operator). For a signal space K C R”, A forward operator A is a continuous
bounded function A : K — K. The set of all forward operators is denoted by

Cy(K) ={A: K — K, Ais continuous, | A(z)|| < M||z|,Vz € K for some M >0 € R} (1)

The advantage of this definition is the composition of the two forward operators, namely A o A’
for any A, A’ € Cy(K), is well-defined and also lies in C,(K). With the continuity assumption,
the wet signal is assumed not to be abruptly changed by the small perturbation in the dry signal.
Additionally, the boundedness condition ensures that the output signal does not become unbounded
when the input is properly normalized.

Examples of the Forward Operator An important class of forward operators is audio effects,
which process dry speech or music to produce wet signals with modifications such as equalization,
reverberation, or filtering. Another key class is degradations, although not mutually exclusive with
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Figure 1: A reference signal pair (x*,y*) is generated by sampling z* ~ u*, A ~ a, and
y* = A(z*). (Left) Blind forward problem: Ag[y*] ~ A is approximated so that the push-forward
measure of i induced by A and A coincides, and (Right) Blind inverse problem : the inverse map-

ping Ay [y*] is approximated so that its push-forward measure is matched to

audio effects, which commonly encountered in speech enhancement tasks, where a clean speech
is corrupted by noise, distortion, audio codecs, or reverberation. In this case, the noisy speech y
is a wet signal produced by an unknown degradation operator A, where y = A(z) and z is the
clean signal. In particular, many forward operators in the audio domain are often highly nonlinear
and even non-differentiable (e.g. audio codec). In this work, we equally treat the audio effect and
degradation as forward operators without any distinction.

3.1 PROBABILISTIC FORMULATION

Although the forward operators are fully deterministic, we adopt a probabilistic formulation for the
following advantages: 1) it reflects the sampling nature of the signal dataset and the randomly con-
structed operator, 2) it parallelizes the forward and inverse problem in a generative framework, and
3) it addresses ill-posed problems, such as irreversible operations (e.g., lowpass filtering) that lose
information in reconstruction and lead to one-to-many mappings. In such cases, a deterministic in-
verse may not exist; however, a probabilistic approach allows for finding the most probable solution.
This parallels the Kantorovich formulation, which overcomes the limitations of Monge approach in
transportation theory (Villani, 2008]).

Let u, a be probabilistic measures of the dry signals and forward operators on K and Cj,(K), respec-
tively. If we fix any forward operator .4, this induces a probability measure on the wet signals via
the push-forward measure by y ~ Axp. Accordingly, we propose our objective as a ‘distribution
matching sense’ between this push-forward measure and the target distribution for each problem.

Definition 2 (Forward / Inverse Problem). Let p* be a probability measure of the reference dry
signals. For a reference pair (z*, y*) generated by y* = A(x*), The blind forward problem aims to

approximate a neural network Ay [y*] conditioned only on y* to A so that || Ag[y*] — Al 1,(,) — O.
Therefore, the objective is given as the distance between the push-forward measures of dry signals

induced by A and Ajy:
BFP)  minEavqeenpe WalAolylpm Ag)] y* = A(a") @

where W, denotes the 2-Wasserstein distance.

In contrast, the blind inverse problem aims to approximate a neural network /I¢ [y*] conditioned only

on y* so that || Ay[y*] o A — id| ,(u) — 0, where id is the identity map. Therefore, we minimize
the following loss:

BIP)  minE v oempe [ Wal(Aoly'] o )] . v = Ala”) 3

It is noteworthy that the approximation of the operator Ag has a dependence on the dry signal space
. In other words, the approximation is only guaranteed on the dry signals drawn from p. We
examine its generalization performance in the experiment.
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Figure 2: (Left) The reference signal pair (z*,y*) and the target signal pairs {(z;,v;)}Y, are
generated by the sampled forward operator .A which is represented by a DAG whose structures and
parameters are randomized. The cryptic acronyms (e.g., 1pl) represent a type of audio effect and
are listed in the Appendix@ (Right) The reference encoder returns cg, ¢; from the reference signal
y*. Then the dry signal x; and its STFT signal X are processed to return ;.

4 SOLVING BLIND FORWARD PROBLEM

Note that we have access only to y*, not to the reference pair (z*, y*), for approximating the ground-
truth operator A, where y* = A(z*). To address this, the reference encoder extracts informative
features from y*, producing a global condition vector ¢, and a sequence of local condition vectors ¢;.
Then the main operator network transforms K i.i.d. dry signals {z;}% | drawn from the distribution
w into wet signals {y; } 2, by conditioning on cg, ;. Finally, a discriminator is applied to eliminate
artifacts and improve the quality of the generated signal.

4.1 ARCHITECTURE CHOICES

Reference Encoder We adopt the encoder part of MTFAA-Net from [Zhang et al.[(2022)), which
has demonstrated strong performance in speech enhancement. In speech enhancement architectures,
the encoder typically extracts features related to non-speech components, allowing the decoder to
separate them from speech. In our framework, we leverage the reference encoder to extract infor-
mative features from y* that help for the main operator to approximate arbitrary forward operators.
The extracted feature 2 is then transformed into a global condition ¢, € R% and a local condition
a € R4 XN by respective conditioning module, where d, and d; are embedding dimensions of each,
and NN is the number of tokens of ¢;.

Main Operator Network We employ the U-Net architecture from the Imagen text-to-image
model (Saharia et al., 2022) as our main operator network. In text-to-image diffusion models, the
network is conditioned on ¢, representing the noise variance, and c, the text embedding from a pre-
trained encoder. We hypothesize that ¢ provides global information on noise scale, while ¢ adjusts
local image details via cross attention (Hertz et al., 2022; |Ramesh et al.| |2022). Based on this, we
replace time conditioning ¢ with a global condition ¢, and text embedding ¢ with a local condition
¢; from the reference encoder.

Additionally, we process the dry signal in both waveform and spectrogram domains, following
(Rouard et al.l 2023} |Défossez, |2021). This dual-domain approach significantly enhances model
performance, as certain effects are more easily detected in one domain than the other. Finally, we
concatenate the wet reference signal y* with the dry target signal x across the channel axis. This is
particularly useful for replicating additive noise components, as they align perfectly in the temporal
or time-frequency domain.

Discriminator To remove possible artifacts from the predicted signal, we apply a multi-resolution
discriminator (MRD) [Lee et al.| (2022a). The MRD consists of multiple sub-discriminators, each
processing magnitude spectrograms at different resolutions. As we found that incorporating a multi-
period discriminator (MPD) deteriorates the overall performance, MRD is only employed.
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4.2 TRAINING OBJECTIVE

We propose the following training objectives to achieve the minimization of the

La(G: D) = [l @) = Ay @)l + A on (Aol i), Ay 22)) + Ao L (G D)

Lp(D;G) = Laaw(D; G)

where L, is the loss function in the magnitude spectrogram domain, A, Aqq4, are some constants,
and L,4,(D; G) and L4, (G; D) are the adversarial loss with the freezed parameters of the model
and the discriminator, respectively. Note that we approximate the 2-Wasserstein distance in
by that of empirical distributions. In addition, we also add the loss function measured in
magnitude spectrogram and adversarial loss to enhance the perceptual quality of the predicted sig-
nals The details of each loss function are in the Appendix [C.3]

5 CONSTRUCTION OF THE FORWARD OPERATOR

Since our model is desired to approximate any general forward operator 4, it must be constructed
and be able to render the wet signal on-the-fly from the given dry signal while training. However,
sampling from the function space we defined in is not only too large but also redundant
as we do not want pathological operators that may completely obscure the contents information of
the dry signal. Therefore, we simulate a forward operator by composing known and closed-form
operators in the following combinatorial way.

5.1 ALGEBRAIC COMPOSITION OF THE FORWARD OPERATOR

From our definition in [Equation I| observe that the addition and multiplication between two opera-
tors A, A" € Cp,(K) for a signal x € K are well-defined as :

(Addition) : (A+ A')(z) :== A(z) + A'(x)

(Multiplication) : (A - A")(x) :== (Ao A")(x) = A(A'(z)) @

Hence we can impose a semiring structure on the function space Cj,(K).

Definition 3. A semiring (R, +) is a set equipped with two binary operations (+, ) which sat-
isfy the following: 1) R is associative and commutative under addition. 2) R is associative under
multiplication. 3) The multiplication is distributive with respect to the addition.

We define R = (Cy(K),+,-,0,1) as a composition semiring equipped with the operation (+, -)
with the additive identity 0 : = ~ 0 and multiplicative identity 1 : z ~ x. Then we refer to the
rendering the forward operator A to the dry signal x simply as a semiring action on the signal space
K by evaluation R x K — K : (A, z) — A(z), which is approximated by Ajg.

Advantages of the Semiring Construction The introduction of a composition semiring provides
several theoretical and practical benefits. First, since each element in the composition semiring
uniquely characterizes the combination of basic operators, the sampling of a representation from R
is equivalent to the sampling of a complex operator. Random parameters are then assigned to each
basic operator to complete the construction of the forward operator. Second, by factorizing terms in
A € R using distributivity, each basic operator in A is processed only once to render any dry signal
x, enabling a sequential rendering from the right-most element of .A. This results in a total rendering
time of O(NN') where N is the number of elements.

Degeneracy Problem Prior approaches such as (Rice et al., 2023] |Lee et al.l |2023b; [2024) are
equivalent to find the representation of the forward operator by classifications. However, these meth-
ods face a degeneracy problem, where different representations yield the same action on signals. For
instance, two linear time-invariant (LTI) operators L, L’ € R are commutative under multiplication,
resulting in identical actions. Similarly, complementary effects, such as two sequential low-shelf
filters with opposite gains, cancel each other out. In contrast, our framework directly approximates
the action of .4 on x rather than its explicit representation, naturally avoiding degeneracy problem
and diverging from prior approaches.
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Figure 3: Directed Acyclic Graph (DAG) representation of the Forward Operator. (Left) Single
type: this form represents a single element in the set of basic operators S. (Middle) Monolithic
type: monomials in R. i.e. [[.A; where A; € S. (Right) General Type: a general element in R.

5.2 PROPERTIES OF THE CONSTRUCTED FORWARD OPERATORS

In practice, we construct an arbitrary forward operator from the known and closed-form operators,
called basic operators, detailed in Appendix [C.2] for the comprehensive list and technical details.
Let S be a set of the basic operators in Cy,(K). A forward operator is formed through summations
and multiplications of elements in S, for example, A = >_ ([, i), for S; € S.

DAG Representation This construction can be effectively visualized as a directed acyclic graph
(DAG), where nodes represent basic operators, as shown in (Lee et all, 2023b}; [2024).
Summations are represented as parallel compositions, and multiplications as serial compositions.
Starting from the input node [in], the DAG is constructed iteratively from the right-most element
of A using serial and parallel compositions, ending at the output node [out]. See Appendix
for details. This DAG representation emphasizes the modularity and structure of the composition
semiring, providing an intuitive framework for analysis and implementation.

Universal Approximation A natural question arises: “Can any forward operator in Cy(K) be
simulated by our construction? If so, what necessary conditions on the collection of basic operators
S must be met to achieve such an approximation?” To prove the universal approximation property,
we imitate the proof of the universal approximation theorem of the single-layer MLPs (Pinkus,
1999). The main idea is to construct S by linear operators and point-wise nonlinear operators,
analogous to affine transformations and activation functions in MLPs (Lin & Pinkus| [1993). The
proof is presented in Appendix

6 SOLVING BLIND INVERSE PROBLEM

6.1 STATE SPACE MODEL (SSM) PERSPECTIVE OF THE DIFFUSION MODEL

Diffusion Model A diffusion model (Song
et all [2021; [Ho et al. [2020; |[Karras et al.| @
2022; |Song et al., [2022)) perturbs a data distri-
bution by adding Gaussian noise with a sched-

uled variance oy, forming a stochatic process @
xy = T + 0vz where zg ~ p,z ~ N(0,1),
governed by a forward SDE. The model learns a Figure 4: State Space model. The sequence z7.;
denoiser function Dg(x4,1) to recover zg from and yr.¢ with the future observation 1y = y* are
x4, which also estimates the score function of observed at time ¢, while the dashed circles are not
zy via Vg, logp(zy) = (Dg(z¢,t) — x¢)/0f.  observed. p(x¢|xi11) and p(y¢|z,) are the transi-
The time-reversed SDE, which matches the tion density and observation density of the SSM,
marginal distribution of the forward SDE at respectively.

each time step, is solved for data generation.

This process requires the score function V, log p(z;), approximated using Dy. Starting from Gaus-
sian noise x, the reversed SDE iteratively transforms x7 into a clean signal x.

Numerical SDE Solvers as SSM  As analytic solutions to the time-reversed SDE are generally
intractable, numerical solvers such as Euler-Maruyama (Song et al., 2021)), Heun’s method (Karras
et al.| 2022), DPM (Lu et al., [2022a), EI solvers (Zhang & Chen, [2023) are used for generation.
These solvers discretize time into finite steps {¢; }"_; and recursively update x; as x;—1 = f(x4,t)+
g(t)z where zx ~ N(0,I). Here f and g are one-step updates derived from the forward SDE
and depend on the chosen approximation method. This discretization forms a Markov chain over

{xi}?:T‘
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Let y* be the given wet signal generated by y* = A(z*). Let y, ~ N(y*,5.) with yo = y* be a
observation sequence. Then we form a state space model (SSM) by assigning y; to each x; of the
Markov chain, as shown in Finally, our objective is to sample 2o ~ p(zo|y*) to generate an
enhanced speech signal for the given noisy observation y*. To achieve this, we estimate p(zo|yr.0),
called the marginal filtering distribution, and marginalize over yr.; to compute p(xo|y*).

6.2 PARTICLE FILTERING FOR THE BLIND INVERSE PROBLEM

Particle Filtering (PF) Particle filtering, a variant of the Sequential Monte Carlo (SMC), sequen-
tially updates the distribution p(¢|yr.+ ), ultimately reaching p(zo|y7.0) at the terminal time
seth et al.} 2022} [Olsenl, 2022} [Guarniero et all, 2016} [Heng et al, [2020). We apply it to solve
the blind inverse problem by computing p(zo|y*) based on the previously constructed SSM. The
marginal filtering distribution p(z¢|yr.;) is factorized into the following recursive alternating steps :

(Prediction Step) : p(z¢|yrit+1) = /p($t|$t+1)p(l‘t+1|yT:t+1)d$t+1

(Update Step) : p(z¢|yr:¢) = /p(yt\xt)p($t|yT:t+1)/Zt

Wherq Zy denptes the normalizing constant. While Algorithm 1: Twisted Particle Filter
these integrations have closed-form solutions for "
specific cases, such as discrete-state or linear Gaus- Input: (pr(z7),9,p0,y", T, N)
sian SSM (e.g., Kalman filter), they are generally fort € ,{T’ ..,0} do

intractable for our SSM. Consequently, PF approx- forie{1,....,N}do
imates the integration using Monte Carlo sampling /* Proposal «/

&)

with N number of particles {z¢} ; and correspond- if s g;;g}gn
. . 1N . ;
ing weights {w; };2, 2\3[’ : zip ~ pr(zr)pe(y*|2r);
) , - Wi = 1/N
p(mt|yT:t+1) = szJrlp(x“m;fl)a else T . .
) i=1 N i . Sample z} ~ g(z¢|z},,);
P(@elyrs) = p(yelze) Zwt+1p(xt|xt+1) @~ PENT) po(yTlah)
‘ i‘:1 ‘ | t g(wt|w§+1) Pe(y*|w§+1)
. . plylad)p(ai|zt, ) Normalize weights
Wy X Wiy T wi:wi/zn wl.
xt|ak., : t t/) 2u1=1 Wt
e T.t+1ayTt) /+ Resampling =/
where g is the proposal distribution. The choice of for 26 (IS N} (;0 AN Y.
g = p(x¢|241) simplifies the weight update to w; = L Z.N catkegomca (wih);
w1 p(Ye|h). SRR

Twisting Particle Filter The estimation of p(z|yr.;) relies on the prediction and update steps up
to time t. However, we incorporate the future observation the future observation yo = y* at time
t, using twisted particle filtering, where prediction and update steps are conjugated by the twisting
function )¢ (), (Olsenl 2022; [Zhao et al.l 2024). Following Wu et al.| (2023)); Zhao et al.| (2024),
we choose the optimal twisting function ¥(z;) = pg(y*|x:) =~ A(Zo), where 2o ~ Eg|¢[xo|2:],
yielded by the Tweedie’s formula. With this choice, the proposal distribution and weight update in

the algorithm [algorithm T] become:
g(@i|zisr) o< p(@e|es1)po (Y [wes1),  we o< p(ae|zisr)po(y™|2e)/9(@e|zes1)po(y™[wes1) (6)

Here the proposal g(z¢|zi+1) = pe(2¢,y™|xea1) is derived by conjugating ¢ (x411) with the tran-
sition density, introducing a “guidance term” in the particle update (Wu et al, 2023}, [Bansal et al.,

[2024}; Moliner et al,[2024).

6.3 REVISITING THE BLIND FORWARD PROBLEM : LEARNED FORWARD OPERATOR A

In the previous section we have approximated fl[y*] to A by observing the wet signal y* generated
by y* = A(xz*). Then we apply the approximated operator Ay to help to solve the blind inverse

problem either. Recall that .4, consists of the reference encoder and the main operator. We train our
conditional diffusion model with using the reference encoder as an auxillary condition, and use the
main operator in the particle filtering framework.
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Observation Density for a Nonlinear Blind ! | Pre-trained @] [ Pretrained @) '
Inverse Problem Recent works applying Se- ¥ | Reference Encoder [ 7| Main Operator | i
quential Monte Carlo (SMC) methods to solve i T T '
linear inverse problems typically model the ob-
servation density p(y:|z:) as a Gaussian distri-
bution (Dou & Songl [2024) or partial observa-
tion (Cardoso et al., |2023), leveraging the lin-
earity of the operator. In contrast, our approach
involves a general non-linear forward operator

A, approximated by a neural network Ay, a \ Training ’ Inference
closed-form expression for p(y;|z;) is unavail- .
able in general. Figure 5: The approximated forward operator Ay

is utilized to solve the blind inverse problem.
tion density using the Tweedie’s formula as fol- (Red) a conditional diffusion model is trained

lowing: (Wu et al], 2023: [Chung et al, 20235 by Cq> Ci from the reference encoder, and (Blue)
Boys et al, 2023). ' ’ ’ " V., Ag(i) is calculated every diffusion step.

p(yelee) = / Py lyo)p(wolzo)p(zolee) dyodzo ~ / N (s Alzo), 60N (m(ar), C 1)) do. ()

where we used yo = A(x¢), and m(x;) and C(z;) are the mean and covariance of po|¢(xol|¢),
presented in Boys et al.|(2023). Furthermore, we linearize the operator .A(-) with Taylor expansion
around z, since the integration in[Equation 7| has closed-form solution only if A is linear.

A(z) = A(zo) + Ve Az — x0) 1= A(zo) + J(2) (8)
We further assume that C'(z;) and J(x;) is small enough compared to &; so that 2 ~ JC(z;)J T +

52 to avoid expensive calculation of the gradient of the score function and the operator, which
requires O(T?) complexity where T is a signal length. In conclusion,

p(yele) = N (yss Alm(r)), JC(w0) I + o) = N (yes A(m(x:)), 07 1) ©)

To address this, we approximate the observa-

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Dataset In our experiments, we train on full-band audio (> 44.1kHz) speech datasets, resampled
to 44.1kHz. To ensure the forward operator is well-defined, the recording environments of the
target and reference signals, denoted as z, z* in must match in terms of microphone and
room characteristics. To achieve this, we organized the training data into two categories, detailed
in Appendix [D.T] In the Single Environment setup, all target and reference pairs were recorded in
the same environment; specifically, we used recordings labeled “microphone 1” from the VCTK
dataset (Veaux et al., 2017). In contrast, in the Multiple Environment setup target and reference
pairs are sampled from the same dataset, but different pairs may be drawn from distinct recording
environments. Wet audio samples are then generated on-the-fly during training for each dry target
and reference audio pair.

Evaluation Metric To evaluate the performance of the proposed method, we use both objec-
tive and subjective metrics as follows : 1) SI-SDR measures the similarity between predicted and
ground-truth wet signals in the waveform domain, 2) Spectral Convergence (SC) Loss and Log-
STFT Magnitude (LSM) Loss in the spectrogram domain, since phase misalignment may not sig-
nificantly affect perceptual quality, and 3) Subjective quality is assessed using Amazon Mechanical
Turk (MTurk). Details of the subjective test are in the Appendix [F}

7.2 BLIND FORWARD PROBLEM : ZERO-SHOT AUDIO EFFECT MODELING

The effectiveness of our method for the blind forward problem is demonstrated via the zero-shot
audio effect learning task. We generated 100 dry and wet signal pairs for each audio effect type with
randomized parameter settings as the test set. Then we report the evaluation metrics together with
the subjective test on learning 1) single-type audio effects and 2) complex audio effects where the
forward operator is constructed as described in[section 3]
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Table 1: Evaluation results for zero-shot audio effect modeling. Dry denotes the metric between the
dry and wet signals. Single and Multi refer to the metric between the wet and the predicted signals
generated by models trained on single-type and multiple audio effects, respectively. Diff.P denotes
the subjective score shown by the correct effect but with different parameters.

SI-SDR 1 SC| LSM | Subjective
Dry Single Multi Dry Single Multi Dry Single Multi Single Multi Diff.P
Noise —3.16 12.31 10.97 1.00 0.24 0.27 1.50 0.30 0.33 61.72 61.59 26.97

Bandlimiter ~ —7.45 12.26 12.17 0.80 0.20 0.20 1.54 0.24 0.24 82.71 67.22 53.10
Equalizer 14.84 10.80 11.61 0.40 0.22 0.20 0.59 0.25 0.23 66.97 69.93 40.52

Filter Delay 14.89 1044 1042 0.19 021 0.22 048 0.44 041 66.00 61.00 68.00
Algo. Reverb 8.82 15.24 10.70 0.34 0.16 0.22 0.59 0.29 042 70.31 53.83 49.93
IR Conv —-845 —-0.76 —0.64 050 034 0.36 1.09 040 043 66.24 65.03 6297
Compressor 3.01 13.50 13.19 0.60 0.21 0.23 096 0.28 0.31 50.28 56.28 52.28
Nonlinear  Clipping 4.60 23.51 21.12 0.77 0.09 0.11 235 029 0.28 67.14 62.34 58.86
Distortion 4.14 21.76 20.07 0.75 0.12 0.12 2.16 0.33 0.28 64.69 62.79 54.83
Modulation 294 1316 959 049 021 025 0.71 0.34 0.39 50.79 48.86 53.93
Codec 9.34 19.27 1746 0.25 0.09 0.12 132 0.44 047 56.69 57.90 65.76
Multi Monolithic -9.82 —-752 —-0.60 088 0.61 042 1.84 092 055 5059 71.89 —
Complex —-10.69 —448 0.18 0.77 0.57 043 197 0.87 0.52 5242 68.19 —

Table 2: Dependency on the dry signal distribution .
Single and Multi refer to the model trained on a single
and multiple recording environments, respectively.

SI-SDR 1 SC| LSM |
Recording Env. Dry Single Multi Dry Single Multi Dry Single Multi

Mic 1 3.92 13.77 11.75 055 0.19 0.21 121 0.33 0.39
VCTK Mic 2 4.51 1317 1222 056 0.20 0.21 1.17 037 0.39
02=0.1 -035 997 884 064 023 026 261 1.83 181

DAPS 468 6.25 11.74 0.54 0.31 0.24 1.17 079 045

Two types of models are trained: one exposed only to
single-type effects and the other to complex effects during
training, and both were evaluated on all effect types.

Results in [Table 1] show that our framework success- Figure 6: t-SNE of the global conditions
fully replicates general audio effects without prior knowl- ¢, from the reference encoder trained
edge of their type. Additional results, including mel- on VCTK as p*. The top-left shows
spectrogram comparisons between predicted and wet sig- ¢, before training, followed by ¢, from
nals, are provided in Notably, while the VCTK, DAPS, and MAESTRO as p*.
single-type model excels in modeling single effects, ex- Each color represents a different for-
posure to complex audio effects during training signifi- Wward operator, with ¢, extracted from
cantly improves performance on general effects. 100 wet audio samples per effect.

7.3  SENSITIVITY ANALYSIS ON THE SIGNAL DISTRIBUTIONS g AND p*

Recall that our model is trained to satisfy ||.Ag[y*] — Al| 1, () — 0, implying that the approximation
is only guaranteed for = ~ p. To evaluate sensitivity under distribution mismatch, we trained two
models: one trained on VCTK mic 1, and another trained on multiple recording environments. Both
models are then tested across different recording environments, including VCTK mic 1 and 2, DAPS,
and the VCTK mic 1 perturbed with Gaussian noise with variance 0.1. The DAPS dataset is unseen
during training for both models. Results in show that both models can approximate the
forward operator under distribution mismatch. However, the model trained on multiple environments
generalizes better to unseen settings (DAPS) at the cost of performance on seen datasets (VCTK).

We further analyzed cases where the reference signal 1* and dry signal p are mismatched. Interest-
ingly, a model trained on speech as target signals and piano recordings as references still approx-
imated forward operators (see Appendix . We attribute this to the global condition ¢, encoded
by the reference encoder, which appears to capture signal-invariant features. To illustrate, t-SNE
visualizations in show that ¢, from reference signals y*, generated by the same operator .A
but different inputs x;, cluster together.
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Table 3: Evaluation results for speech enhancement. Mix denotes the metric between the clean and
noisy signals. Appx. and GT denote the metric between the clean and predicted signals generated by
models using particles filters of the particle size N = 4, with the appoximated operator Ay and the
ground-truth operator .A. Results for the compressor and the codec are excluded for the GT operator
since the compressor returns unstable gradients and the codec is inherently non-differentiable. Audio
samples are downsampled to 16 kHz when measure PESQ, eSTOI, and SQUIM

SI-SDR 1 PESQ 1 eSTOI SQUIM-MOS 1
Mix Cond. GT Apprx. Mix Cond. GT Apprx. Mix Cond. GT Apprx. Mix Cond. GT Apprx.
Noise 3.64 1752 1737 17.86 140 254 255 255 066 077 078 078 3.08 425 4.13 4.27

Bandlimiter -7.74 12.54 -338 1123 4.04 379 333 378 096 094 090 094 366 4.52 3.67 440
Equalizer 17.06 0.57 11.15 879 450 398 421 422 099 086 097 093 450 4.61 444 465

Filter Delay 1522 929 1895 1536 203 253 2.69 256 083 0.80 092 089 347 4.06 4.06 404
Algo. Reverb 859 1539 15.65 16.62 1.62 292 292 295 075 088 087 089 373 417 407 4.16
IR Conv -5.01 723 -1.83 802 305 339 305 347 080 089 085 089 397 423 396 4.36
Compressor ~ 3.75 1176 - 11.32 350 3.96 - 396 095 094 - 096 458 4.59 - 4.64
Nonlinear  Clipping 511 2096 742 1704 1.62 341 204 324 0.80 095 0.84 092 391 433 400 420
Distortion 463 17.81 1223 1680 1.61 328 249 322 080 094 090 094 350 432 426 4.26
Modulation 316 927 1042 11.00 3.15 365 3.64 378 087 089 091 090 382 437 423 442
Codec 8.17 16.89 - 17.20 4.10 3.52 - 3.55 0.82 0.92 - 093 4.49 3.72 - 3.82

7.4 BLIND INVERSE PROBLEM : SPEECH ENHANCEMENT (SE)

We evaluate our method on a speech en-  Taple 4:  Denoising and Dereverberation results on

hancement task, training a conditional dif- VoiceBank/Demand and Reverb-WSJo.
fusion model on the VCTK dataset with

a pre-trained reference encoder. Dur- VoiceBank/Demand Reverb-WSJ0
ing inference’ we apply particle ﬁltering Method SR (Hz) PESQ eSTOI SI-SDR PESQ eSTOI SI-SDR
with the pre-trained main operator Ag[y*] Mixtwre - 197 079 84 136 046 7.3

: SGMSE 16k 228 080 162 133 057 74
and compare the results to those using Gouce 00 00 0y 173 2k osd 16
the ground-truth operator A. An Euler-  sworRM 16k 293 088 188 283 088 65
Maruyama solver with 7" = 48 steps is  “our 441k 245 082 123 146 051 -123
employed for generation. Notably, our ap-
proximated operator is universally applicable without specifying the type of degradation effect, en-
abling the universal SE and including non-differentiable operators such as audio codecs.

Results in demonstrate that our approach effectively enhances noisy audio signals across
various degradation types. In particular, using the approximated operator during particle filtering
even outperforms the ground-truth operator except for delay effect. We hypothesize that when
Zo = Dg(x;) is inaccurate due to errors from the diffusion model, the gradient from V;,;t./{g (Zo)
provides the better estimation than V,, A(Zq). Moreover, twisted particle filtering outperforms the
conditional diffusion model according to the[Table 3|except for highly non-linear filters like clipping
and distortion, due to errors from the linearized operator approximation.

7.5 COMPARATIVE STUDIES AND REAL-WORLD SPEECH ENHANCEMENT

Despite training our models only on a single full-band audio dataset (VCTK) with general degrada-
tion settings, we evaluate our model on benchmark datasets VoiceBank/DEMAND and Reverb-WSJO.
We process 1.46 seconds of audio at a time and use an overlap-add method with a 250 ms overlap
to handle longer audio signal. we compare our results to baselines : SGMSE (Welker et al.| |[2022),
SGMSE+ (Richter et al,2023)), and StoRM (Lemercier et al.,[2023)), as shown in Although
the objective metrics may be lower, the perceptual quality is improved as our model typically extends
the audio bandwidth, resulting in perceptually much clean examples. We further provide enhanced
samples for real-world noisy speech signals at https://t.1ly/dBUhF.

8 CONCLUSION

We proposed an integrated framework to solve blind forward and inverse problems for zero-shot
effect modeling and speech enhancement. For the blind forward problem, we developed a novel
framework with a systematic method to generate general forward operators. For the blind inverse
problem, we trained a conditional diffusion model and applied twisted particle filtering using the
pretrained model from the forward problem. Experiments show that our methods effectively recover
both the forward operator and input signal solely from the output signal across various audio effects.
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A CONSTRUCTION OF THE FORWARD OPERATOR

A.1 CORRESPONDANCE BETWEEN LINEAR DAG AND THE SEMIRING

Proposition 1 (DAG Representation). Let (S) be a subring of a composition semiring R generated
by a subset S. Then, each element A € (S) has a one-to-one correspondence to a linear DAG G,
which has a single leaf and root whose nodes are composed of elements in S. We refer to such G as
a graph representation of A.

Proof. Let R be a composition semiring generated by a set S. If G € R, then G can be expressed
by the combinations of the finite additions and multiplications of the elements in S by construction.
Hence, G is represented by the finite sum of monomials after expansion since the multiplication is
distributive. Now enumerate the elements of S according to the order appeared in the monomials
so that if s; comes former than s, in any monomial (a;), then j < k. Thus we can express as

following:
N

M;
G=> (a;), (a)=1]] Sl (10)
i=1 k=1

where {n,(j)} is a strictly increasing subsequence of the natural numbers, and M; is the lengths of
the monomial (a;). Then define a chain-shaped graph for the monomial (a;) by putting nodes as
its elements and edges as adjacent multiplication. Formally, G, = (V;, E;) where a set of nodes

Vi = {Sn“) : ngf),k =1,...M;} and edges E; = {e;y, : nl(j) = n§2+)1}
k

Then G = (UN.,V;,UN | E;) forms a directed acyclic graph with the root s,,, and leaf s; where
m = min{n{"} and M = max {n{"}.

Conversely, let G = (V, E) be a directed acyclic graph with one root and leaf. Let P = {P;} =
{(V;, E:)}, be a family of paths from the root and the leaf. Then write a path by multiplication
of the nodes by G; = HLZ“l s;jif s; € V;. Then G = Zf\j G is the corresponding element in the
semiring we wanted. O

A.2 APPROXIMATION THEOREM OF OPERATOR

In this section, we will prove the universal approximation property of the semiring action we con-
structed at As stated, the main idea is to imitate the universal approximation theorem
of the MLPs. In particular, we corresponds the linear layer of the MLP to the linear operator and
activation function to the component non-linear operator.

Definition 4 (Linear Operator). A function A : RT — R7" is a linear operator if it satisfies
Az +y) = A(x) + Aly), A(ax) = aA(z), forz,y e RT aecR (11)
Any linear operator A : R” — R”" has a matrix representation A € R7*T" such that A(x) = Ax.

Now we consider the following specific type of operators that resemble the structure of the MLP.

Definition 5 (Ridge Functions). Suppose that F, L are subsets the semiring R. Then the set R(F, L)
is a subring of R defined by

R(F,L) = {Zai/ﬂ':xex,ai eF,AiGL} (12)

i€l

In particular, we choose L to the collection of linear operators L = {A!, A% ...} and F to the
collection of component non-polynomial non-linear operators F' = {o',02,...}. Note that the
point-wise operator o : RT — R” acts on z € R” by o((z1,...77)) = (01(21), ..., o0 (27)).
Concisely we denote this by [o(x)]; = o;(z;) by representing j-th coordinate. Then for any input
x € R, the action of any element of R(F, L) can be represented as

[(Z o,iAi> (:c)] | _ Zai (Ai(x)) | — Zg;, <ZT: a§kxk> (13)

i
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where a§ i 1s the j-th row and k-th column of coefficients of the matrix representation of the i-th

linear operator A®. And oj- : R — R is the j-th function of the i-th component-wise non-linear
operator.

The following Lemma is the approximation theorem for the ridge function. We refer to (Lin &
Pinkus, (1993 [Ismailov, 2020; [Pinkus), |1999)) for the detail.

Lemma 1. Let Q(U) be a subset of all d x n real matrices whose row (aq, ...an) € U = Uy x...x Uy,
Set

M(QU)) = span{g(Az) : A€ Q,g € C(R" = R)} (14)

Then M(2) is dense in C(R™, R) in the topology of the uniform convergence on compact subsets if
and only if a) at least n — d of the Uy, ..., U, have an infinite number of distinct elements; b) at
most one of the Uy, . .., U, has only one element, and none has only the zero element.

Proof. See the Theorem 2.1 and Proposition 3.6 of [Lin & Pinkus|(1993) O

This is the main approximation theorem for our case.

Theorem 1. Suppose that L = { A1, Ao, ...} is a collection of linearly independent linear operators
A; inCy(K), and F = {01,049, ...} is a set of non-polynomial component-wise continuous functions
in Cyp(K). Then, for a bounded continuous function, A € Cy,(K) can be uniformly approximated by
the action of g € R(F, L).

Proof. Since F' are chosen by the collection of component-wise functions, the approximation of
A RT — RT isreduced to A; : RT — R by In the case, R(F, L) is the M(Q)
of the Lemmal[I] It suffices to show that our assumptions of L and F' satisfies the assumptions of
the Lemmal|1} However, since A in C,(K) : K — K, the coefficients of the matrix representation

[ai] ;% are bounded in some nonzero compact sets V;, C R. Choosing U;, = UJT:1ij to be Uy, in the
lemma, it satisfies the assumption. Therefore, the approximation is given component-wisely. O

Remark 1. Although the operator A can be approximated using ridge functions, we do not construct
any operator as a ridge function to simulate any forward operator in practice. This is because the
approximation in the theorem assumes a countable sum. Approximations using a finite sum, such
as h(z) = Zle oi(a’ - ), are more nuanced, as discussed by [[smailov (2020). Moreover, since
our goal is to simulate practical operators for real-world scenarios, sampling pathological operators
that heavily distort or erase the content of a speech signal is undesirable and redundant, potentially
hindering neural network training.

B CR0OSsS DOMAIN RESULTS

Table 5: Effect of the reference: in-domain vs out-of-domain (MASTERO)

SI-SDR 1 SC| LSM | Subjective 1
Dry In Out Dry In Out Dry In Out Pred Diff.P
Noise —3.04 946 6.79 1.01 0.32 0.43 1.48 0.47 0.41 70.38 39.31

Bandlimiter —7.43 11.21 10.05 0.79 0.21 0.20 1.54 0.36 0.47 59.71 61.75
Equalizer 1346 8.68 11.36 0.43 0.25 0.21 0.59 0.47 0.27 62.69 50.21

Filter Delay 1542 6.15 13.27 0.18 0.27 0.18 0.46 0.69 0.40 43.41 53.34
Algo. Reverb  8.89 9.47 16.03 0.33 0.24 0.14 0.58 0.57 0.27 56.86 54.66
IR Conv -8.656 —1.71 —-1.12 0.50 0.35 0.34 1.09 0.56 0.41 58.24 63.10
Compressor 3.24 10.24 11.27 0.61 0.27 0.25 0.95 0.48 0.41 59.28 65.10
Nonlinear  Clipping 4.61 21.24 2475 0.77 0.12 0.08 2.35 0.39 0.25 71.52 60.69
Distortion 4.00 18.94 22.63 0.76 0.17 0.09 2.21 047 0.28 65.03 69.90
Modulation 3.15 10.13 15.17 0.48 0.27 0.18 0.71 0.53 0.31 57.34 59.38
Codec 9.31 17.90 19.53 0.25 0.12 0.10 1.32 0.48 0.47 52.07 53.28
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C TRAINING DETAILS

C.1 ARCHITECTURES

For the reference encoder, we employed the encoder part of the MTFAA-Net. First, it takes the
wet reference signal y* and transform to the STFT domain, and the phase encoder is applied. Then
it sequentially downsamples the frequency axis, and each signals are processed by time-frequency
conv module and Bi-axial Attention module.

Table 6: Hyperparameters of the architectures. Hyperparameters for the main operators of 1d and
2d models are paranthesized if they are different.

Reference Encoder Main Operator Discriminator

Parameters Values  Parameters  Values [1d, 2d] Parameters Values

Channels 128 Channels [128, 64]
Channel Mult. (1,2,4) Channel Mult. (1,1,2,2,2)
Ds Factors 4,4,4) cg size 512
Causal False ¢ size 512
Window Length 2046 Self-Attn. 2
Hop Length 512 Cross-Attn. 2
Nres 2,2,4,4,4)
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C.2 AuDIO EFFECTS

All the audio effects are implemented in JAX and operated in CPU with JIT(Just-in-Time) compila-
tion, enabling an on-the-fly generation and rendering of the forward operator. We will also exploit an
automatic differentiation system of JAX to calculate V. A(z). All the audio effects are implemented
based on the algorithms in (Zodlzer et al., [2002).

Table 7: AFX Parameter Types

Class AFX Acronym Parameters (Default Sampling Range)
Lowpass Ip Frequency Hz [1000, 30001, q [0.7, 1.2]
Bandpass bp Frequency Hz [250, 5000], q [0.2, 2]
Highpass hp Frequency Hz [500, 30001, q [0.5, 4]
2nd Order Bandreject brj Frequency Hz [400, 4000], q [0.2, 2]
Filter Lowshelf Is Frequency Hz [200, 3000], q [0.5, 2], Gain dB [6, 18, 9, 6]
Highshelf hs Frequency Hz [2000, 72001, q [0.5, 2], Gain dB [6, 18, 9, 6]
Bell bell Frequency Hz [120, 3000], q [1, 4], Gain dB [8, 24, 12, 6]
SVF svf Frequency Hz [180, 3000], q [0.5, 4], ¢ hp [0.2, 0.8], ¢ bp [0.2, 0.7], ¢ Ip [0.2, 0.7]
Bandpass Ladder bpl Frequency Hz [700, 40001, k [0, 0.6]
Ladder Highpass Ladder hpl Frequency Hz [250, 4000], k [0, 0.6]
Lowpass Ladder 1Ipl Frequency Hz [800, 3000], k [0.2, 0.6]
Crossover Crossover Crs Frequency Hz [40, 3000]
Distortion dist Gain dB [8, 32, 12, 6], Hardness [0, 1, 0.5, 0.2], Asymmetry [0, 1]
Memoryless Hard Clipper hclp Gain dB [18, 36, 24, 4]
Nonlinearity Soft Clipper scli Factor [12, 24]
Bitcrush bit Bit Depth [4, 8, 6, 2]
Compressor m Threshold dB [-24, -6], Ratio [12, 20], Attack. ms [10, 60],
Dvnamic Range 0Ompresso cmp Release ms [30, 50], Knee dB [0, 24]
Czntroller 2 Inverted Com ‘e Threshold dB [-15, -6], Ratio [0.25, 1], Attack. ms [0.1, 50],
v p. lcmp Release ms [50, 3001, Knee dB [0, 24]
Limiter lim Threshold dB [-10, -6], Release ms [30, 100]
Chorus cho Centre Delay ms [5, 15], Feedback [0.4, 0.7], Mix [0.8, 1, 0.8, 0.1]
Modulation Vibrato vib Depth [0.5, 1, 0.8, 0.2]
Effect Flanger fla Depth [0.5, 1, 0.7, 0.1]
Tremolo tre Depth [0.5, 1, 0.7, 0.1]
Delay del Delay Seconds [0.1, 0.3], Feedback Gain dB [-12, -6], Mix [0.4, 0.8, 0.5, 0.25]
Delay and Mono Reverb rvb Room Size [0.2, 0.8], damping [0.3, 1], Mix [0.3, 0.8, 0.5, 1]
Reverb RIR Conv. rir
MicIR Conv. mcir
Phase Vocoder Pitch Shift pits Semitones [-12, 12]
libopus lopus Bitrate [8, 256]
Codec libvorbis Ivobs Bitrate [48, 200]
aac aac Bitrate [8, 256]

C.3 OBIJECTIVE FUNCTIONS
We used SC loss and LSM for the spectogram loss L, .

* SI-SDR (Roux et al., 2018; [Luo & Mesgarani}, [2017): .
e Spectral convergence loss (SC), Log-STFT magnitude loss (LSM) (Yamamoto et al., 2020)

1 [ISTFTi(a)] — [STRT,(3)
sC S
@8 =5 2 ST
1 (15)
LSM(z. ) = + 3 | log [STFT, (x)] ~ logSTFT, (2)]
€S

where 2 represents the predicted signal, and ST F'T; denotes the short-time Fourier trans-
form with FFT size i € S = {2048, 1024, 512, 256} with 75% overlap between windows.

* Subjective: To quantify the perceptual discrepancy between the predicted wet signal and
the ground-truth wet signal, we conducted a subjective listening test. The details can be
found in the appendix.
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D EXPERIMENT DETAILS

D.1 DATASET SPLIT

* Single Environment: All target and reference datasets are from the same recording en-
vironment. We used the VCTK dataset(Veaux et al.l |2017), which has two recording
environments. Therefore, we separated this dataset into two sub-datasets and chose one
environment for the whole dry and wet audio pair.

¢ Multiple Environments: We use (Bakhturina et al., 2021}, |[Puchtler et al.,[2021)

For convolved RIR, we mixed publicly available room impulse datasets for various RIR data.

¢ Seen Noise : [Fonseca et al.|(2019) Train set
¢ Unseen Noise : [Fonseca et al.| (2019)) Valid set

e Seen RIR : [Eaton et al.| (2016); Jeub et al.| (2009)); [Szoke et al.| (2019); Rebecca & Mark
(2010); |Amengual Gari et al. (2020); |Yasuda et al.| (2022); Kearney et al.| (2022); [Traer
& McDermott| (2016); Dietzen et al.| (2023); Murphy & Shelley| (2010); [Pasoulas et al.;
Nakamura et al.| (1999); |/Audio|and also used Altiverb, Echotheif, Fokke rir dataset.

* Unseen RIR : Murphy & Shelley|(2010) and also used Altiverb, Fokke rir dataset.
* Seen MiclIR : [Kujawski et al.|(2024), and also used Vintage micir dataset.
¢ Unseen MiclR : [Franco Hernandez et al.| (2022); MICIR!

For VCTK, we isolated p231, p271, p311, p347 as a valid set.

E PARTICLE FILTERING AND SEQUENTIAL MONTE CARLO

E.1 SEQUENTIAL MONTE CARLO (SMC) AND TWISTED PARTICLE FILTERING

The goal of Sequential Monte Carlo (SMC) is to estimate 7;(x1.+) recursively over time. A farget
distribution m¢(21.¢) is defined by an unnormalized density ~;(z1.;) with normalization constant
Z;. In the context of state-space models, one of the natural choices is m¢(21.t) = p(@1.¢|y1:t)
by v (z1.¢) = p(x14,y1.¢) and Zy = p(y1.¢). However, as it is typically high dimensional and
intractable, direct sampling is unfeasible except for a few cases. Additionally, even if the sampling
is feasible, the full trajectory x;.; should be sampled every step ¢ to simulate the target distribution.
To address these limitations, Sequential Importance Sampling (SIS) is introduced, which enables the
sequential approximation of 7;(x1.;) via importance sampling.

Let g;(z1.+) be a probability density whose support includes that of 7;(z1.+) and is easier to sample
from, referred to as the importance sampling density. The importance weight is then defined as the
ratio wy(x1.¢) = m(21.¢)/q:(x1.¢) and normalized to ;. Given samples x%., ~ q;(21.t), we can
approximate the target distribution and expectations as follows:

Now, assume that g;(x1.;) is factorized as g1 (x1) HZ:2 qr(zk|x1.5—1). Then, the importance weight
can be updated recursively:

7Tt71(l‘1:t71) ’Yt(l'l:t)
dt—1 (ﬂUl:t—l) Tt—1 (xl:t—l)Qt(30t|3C1:t—1

wi(T1:4) = ) = w1 (T1:—1)ue(@1:4) (16)

where u;(x1.t) = Ye(@1.)/Vi—1(21.4—1)qe(x¢|T1.4—1) is the incremental importance weight.This
recursive formulation reduces computational complexity by reusing previous weights and particles.

As time progresses, the variance of the weights w tends to increase, causing weight degeneracy
where only a few particles carry significant weight. To address this, resampling is performed pe-
riodically, replacing low-weight particles with high-weight ones such as systematic, residual, and
multinomial resampling.
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Particle Filtering Now we aim to estimate the marginal filtering distribution p(x¢|ys.¢) on
the state-space model. Note that the distribution has a recursive relation by the predic-
tion step, p(z¢|ly1.t—1) = fp(xt|xt_1)p(xt_1|y1:t_1)d:17t_1 and the update step p(x¢|yr1.1)
p(yt|xe)p(ze|y1.t—1). However, this integration is intractable except for the case of finite SSM
or linear Gaussian SSM, where the latter has a tractable solution known as Kalman filter. There-
fore, we need an approximation to evaluate the marginal distribution using SMC. By setting
Ye(T1:4) = p(T1:4,Y1:t)s 80 T (21:4) = p(T1:4|y1:4) and Zy = p(y1.¢). Suppose that we have ap-
Eroximated Pe—1lyrie—1) by B(@-1lyre—1) = iy wi_yxi_y by xf_y ~ q(w¢|yre). Then we
ave

N

N
Blarlyret) = S wiop@ilai_y), ey = plyele) S wi_ip(ailai_) (A7)
i=1 i=1

with the updating function w! oc wi_;p(y¢|at)p(xi|xi_|)/g(xi|zt, 1,v1.c). While the parti-
cle filtering reflects the observation sequences up to the current step ¢, we can incorporate the
future observation through the twisting function ;. By this choice of the twisting function,
the prediction and update steps are twisted by p¥ (z¢|zi—1) = p(ae|ze_1)Ve(as)/e—1 (1)
and pY (yelw)) = p(yelae)dy(we)/te(z). While remaining the terminal target distribution
m(x1.7ly1.r) = T(@1.7|y1.7) invariant.

F SUBJECTIVE TEST

We use Amazon Mechanical Turk (MTurk) to conduct the subjective evaluation. A total of 30 partic-
ipants were recruited and assigned to evaluate the audio samples based on the provided instructions.
We eliminated 3 participants who did not pass the attention check test, resulting in 27 participants
total. To evaluate the perceptual quality of audio transformation, a subjective listening test was con-
ducted using a set of reference and test audio signals. The test follows the below procedure to assess
how well transformed (wet) audio resembles the target wet audio, given a reference dry-wet pair.

1. Reference Listening: Participants first listen to two reference audio signals:

* Dry Reference: The unprocessed (dry) version of the audio.
* Wet Reference: The processed (wet) version of the same audio, transformed using an
audio effects (AFX) mapping.

These reference signals are provided to inform participants with the transformation effect
and the expected result.

2. Target Listening: After listening to the reference signals, participants are presented with
a new dry target audio signal that has not been processed.

3. Expectation Formation: Participants are instructed to imagine the expected wet version
of the target audio based on the transformation they heard in the reference signals.

4. Rating: Participants are then presented with several test audio samples, each a processed
version of the dry target audio, and asked to rate how similar each sample is to the imagined
wet target audio using a slider. The rating scale is as follows:

* 0: Very poor resemblance to the desired wet target audio.
* 100: Identical to the wet reference.

G FURTHER APPLICATIONS

Further applications inhibit in areas such as Automatic Dialog Replacement (ADR), recording envi-
ronment normalization, automatic mixing and mastering, and timbre transfer. By recovering the dry
signal using our inverse problem approach and applying transformations with the forward problem
method, we can facilitate tasks like transferring audio characteristics between signals and enhancing
overall audio production processes.
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H LIMITATIONS AND FUTURE WORK

Our study currently focuses on single-input single-output (SISO) systems with fixed signal lengths;
extending it to handle multi-input multi-output (MIMO) systems and variable-length signals would
enhance versatility. The approach relies on input signals from a known distribution, so performance
may degrade with significant deviations—developing robustness to input variations is important.
Computational complexity is also a concern, making real-time applications challenging and neces-
sitating efficiency optimizations. Additionally, while effective in audio applications, extending the
framework to other domains remains an open challenge, and some theoretical assumptions may not
hold universally, requiring further analysis.

I ADDITIONAL RESULTS ON FORWARD OPERATOR LEARNING

Dry Wet Pred

bandpass add_noise

bandreject

Figure 7: Mel Spectrogram of Single Audio Effect

22



Under review as a conference paper at ICLR 2025

uoIHO3SIp

Jaddi|p paey

J23w]|

Figure 8: Mel Spectrogram of Single Audio Effect
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Figure 10: Mel Spectrogram of Complex AFX Graph
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