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Abstract

Following the current trends for minimizing human intervention in training intelli-1

gent architectures, this paper proposes a self-supervised method for quality control2

of Additive Manufacturing (AM) parts. An Inconel 939 sample is fabricated with3

the Laser Powder Bed Fusion (L-PBF) method and scanned using X-ray Computed4

Tomography (XCT) to reveal the internal cracks. A self-supervised approach was5

adopted by employing three modules that generate crack-like features for training6

a CycleGAN network. The proposed method generates random cracks based on a7

combination of uniform and normal random variables and outperforms the others8

in fine-grain crack detection and capturing narrow tips. A preliminary investigation9

of the training process shows that the algorithm has the capability of predicting the10

crack propagation direction as well.11

1 Introduction12

Additive Manufacturing (AM) is one of the pillars of Industry 4.0 and defined as “the general term13

for those technologies that successively join material to create physical objects as specified by 3D14

model data” [1]. The term “additive” emphasizes its distinction from subtractive and formative15

methods, wherein the desired component is obtained by cutting or shaping raw materials. AM enables16

rapid prototyping, customized production, and localized manufacturing, which revolutionizes sectors,17

such as aerospace, automotive, healthcare, and construction. However, the inherent layer-by-layer18

fabrication process of AM is likely to introduce internal volumetric features in the final product,19

such as cracks and pores. These features are closely linked to the processing parameters, physical20

properties, and mechanical characteristics of the manufactured part.21

In the quest to make AM parts with superior qualities, mining the correlation between the processing22

parameters, internal features, and mechanical properties of the final part is a huge progress. Currently,23

all fabrication, evaluation, and testing stages rely on digital devices, resulting in the generation24

of large amounts of data throughout the process. The advent of AI, in conjunction with powerful25

computational devices, has ushered in fresh opportunities to accomplish this mission through data-26

driven approaches.27

Within the data-driven formulation, the non-destructive evaluation (NDE) assumes a pivotal role in28

assessing the internal features of the part fabricated with a given set of processing parameters. Among29

various NDE methods, X-ray Computed Tomography (XCT) has demonstrated exceptional efficacy30

in revealing internal defects due to its accessibility, high resolution, and ability to detect features at31

the micron level. The XCT analysis yields a stack of 2D slices that together create a 3D volume,32

which must be quantified to determine the volume fraction associated with each type of defect. This33

process can be described as a semantic segmentation task in the context of computer vision.34
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At the top level, segmentation methods can be divided into manual and automated methods. In35

manual methods, a human expert annotates the entire stack of images by assigning distinct regions36

to a particular class with an image editor. The expert’s judgment typically has the highest level37

of accuracy and reliability. However, they have limited tools (e.g. poor eyesight, shaky mouse38

pointer, losing focus) to translate their abstract judgment into pixel-level-accurate segmentation maps.39

Moreover, it takes a considerable amount of time, energy, money, and manpower to quantify the40

entire volume.41

Automated methods are a set of tools that the expert can use to accelerate the segmentation process.42

These methods encompass a wide range of techniques, from simple image processing to advanced43

parametric approaches inspired by statistical learning and artificial intelligence. Traditionally, statis-44

tical models were trained by hand-craft features, which demanded significant expertise, time, and45

effort to decipher hidden information inside the raw data to be used as training data. The advent of46

deep learning techniques, such as DeepLabV3 [2] and Mask R-CNN [3], eliminates the need for47

hand-crafted features but requires extensive volumes of labeled data.48

Most of the state-of-the-art solutions have focused on the complexity of the architecture and designing49

algorithms that are able to learn the contextual information inside the training data. However, in the50

context of additive manufacturing fault detection, it is shown that the reliability of the training data51

is the bottleneck that limits the performance of AI-based networks [4]. Therefore, in this work, our52

major goal is to eliminate the manually labeled data to reduce our dependency on human experts and53

avoid producing erroneous training data. Instead, we present a module that can generate random54

crack-like features that can serve as manually labeled data. Our contributions include:55

• Eliminating the manual segmentation process and the corresponding uncertainties56

• Achieving fine-grain crack tip detection57

• Getting one step closer to the physics-informed prediction of crack propagation58

This idea can ensure fine-grained detection of cracks and microcracks inside X-ray CT data. Our59

results show this idea not only enables precise identification of cracks and microcracks within X-ray60

CT data but also has the capability to forecast the direction in which crack propagation occurs. This61

can be further improved by incorporating the physical governing equations into the crack generation62

algorithm.63

2 Related Work and Background64

The supervised learning approach is the most common approach in semantic segmentation, as it65

has a well-established framework. In this method, training data is prepared manually by human66

domain experts. Among all supervised methods, U-Net [5] was a breakthrough in medical image67

segmentation due to the efficient aggregation of high-resolution and low-resolution features. More68

efforts have been made to trade off between global and local information by developing more69

complicated architectures [6, 7]. Vision Transformers are the most modern tools to address this70

challenge [8]. The drawback is that these networks need a large amount of pixel-level manually71

annotated training data. In particular, cracks tend to get narrower as they propagate and the crack tip72

(which is the most crucial part of the crack to be detected) fades into the background, making it either73

very hard to manually segment or ending up with unreliable training data [4].74

One workaround to reduce the dependency on manually labeled data is to train the network on a75

standard dataset (e.g. ImageNet) and fine-tune the weights on the target dataset, which is known as76

Domain adaptation [9]. Nonetheless, the accuracy of the final output is still affected by the erroneous77

target dataset.78

Urged to propose a solution to this bottleneck, researchers have turned their attention towards semi-79

supervised and unsupervised learning approaches to completely eliminate the manual segmentation80

process. In a self-supervised approach through the abstraction of the domain experts’ knowledge.81

In these methods, the model trains itself by generating labeled data, by which it transforms an82

unsupervised problem into a supervised problem [10]. Self-supervised learning shows significant83

potential in enhancing representations in situations where there is a limited amount of labeled data84

[11], which is the case in AM fault detection applications.85

In the context of Additive Manufacturing, despite its huge benefits including the capability to86

print sophisticated structures and simplicity of use, there are challenges that need more research87
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and advancement including part size limitation, anisotropic mechanical characteristics, high cost88

of production, demand for high-quality products, warping, pillowing, stringing, gaps in the top89

layers, under-extrusion, layer misalignment, and over-extrusion [12]. To tackle these challenges,90

additive manufacturing can benefit from AI in post-processing stages where the parts are already91

built. Information extracted from AI models can be used for quality control, energy, and resource92

management and optimize the process for future parts to be built and reduce defects such as cracks93

and pores [13].94

As Nemati et al. [4] showed, zero-shot learning approaches need to be tested in XCT quantification95

to minimize the training data uncertainty. In this regard, Hu et al. used a self-supervised contrastive96

representation for steel surface defect detection [14]. An unsupervised Out-of-Distribution data97

detection scheme with Autoencoders was proposed by Kolektor et al. [15] for the same application.98

Lindgren and Zach [16] proposed an auto-encoder deep learning approach for quality control with99

non-destructive evaluation for out-of-distribution data. This model is used as a one-class classifier for100

industrial X-ray images trained and tested on the public dataset Kolektor SDD. Wang [17] presented101

a novel contrastive learning-based semantic segmentation model, named cLass-aware Semantic102

Contrast and Attention Amalgamation to detect in-situ stratified defects and extract rich semantic103

contexts with limited imbalanced data. In their approach, they proposed an adaptive sampling104

approach to categorize the pixels into two groups: 1-Easy-to-detect and 2- Hard-to-detect. This105

division aims to safeguard against inaccurate predictions in the defect memory bank during the initial106

learning phases.107

3 Methodolgy108

3.1 Overview109

The modern engineer is well-educated in both practical engineering and simulations. The wealth of110

simulation tools at the engineer’s fingertips is powerful and comprehensive. This present methodology111

merges the engineering simulation skill set with artificial intelligence starting with the relatively112

simple simulation of 2-D crack networks. We would like to emphasize this application is the first113

step on a path of 3-D crack simulation, crack growth simulation, and cracks through inhomogeneous114

media. That is, the dimensionality of the training sets is projected to increase for this initial 2-D into115

3-D, 4-D (cartesian space plus time), 5-D (cartesian space plus time plus reinforced materials), 6-D116

(cartesian space plus time plus reinforced materials plus wear), and more (composite materials). All117

of these situations, ordered by dimensionality, have corresponding engineering simulation tools. The118

present work develops a path from the world of engineering simulations into the facile generation of119

training sets for artificial intelligence.120

The overview of the employed CycleGAN process is shown in Figure 1. We follow the same121

architecture as [18], and we put of focus on the crack generation module and its effect on the overall122

performance of the segmentation results for XCT data of AM parts.123

3.2 Crack Generation Modules (CGMs)124

We need to populate a dataset for crack-like features to serve as segmentation maps during training in125

a self-supervised approach. Typical cracks in AM parts have random planar structures that propagate126

through material depending on the factors including but not limited to composition, processing127

parameters, build direction, and post treatments. In particular, Inconel 939 fabricated using the L-PBF128

method is likely to contain solidification cracks, liquation cracks, ductility-dip cracks, and strain-age129

cracks [19]. However, it is practically impossible to find a closed-form deterministic function to130

estimate the crack morphology due to numerous unknown factors and uncertainties. Therefore, we131

tested 3 different Crack Generation Modules (CGMs) to populate crack-like datasets:132

• CGM1: Synthetic simplified fractal generator module proposed by [18].133

• CGM2: Experimental concrete crack dataset available online. [20, 21]134

• CGM3: Synthetic random crack generator proposed by us.135

The first module (CGM1) generates fractals based on rectangular units in a sequential order to136

simulate coronary angiogram images. The details can be found in the original paper [18]. We utilized137
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Figure 1: The workflow of the CycleGAN network during training. The data flow for map recon-
struction and image reconstruction is independent. However, the loss functions take input from both
paths, forcing them to converge simultaneously. In the testing phase, only the trained Segmenter GA

is used for generating the segmentation map from a real image.

the exact same module to evaluate the effectiveness of this algorithm in AM crack detection. The138

second module (CGM2) is an experimental dataset containing aerial images of concrete cracks that139

are manually segmented by domain experts [20, 21]. These cracks show similar morphologies to140

typical AM cracks with some differences. We used this module to assess the performance of an141

existing empirical dataset from a different application, which needs minimal data preparation. Our142

final endeavor to simulate crack-like features involves the introduction of a synthetic random crack143

generator (CGM3), which is explained below.144

Synthetic Random Crack Generator. To simulate the morphology of typical cracks in 2D slices145

of AM parts, we used different random variable generators that sample from uniform and normal146

distributions to initialize the crack dimensions. First, the center of the crack is sampled from147

the uniform distribution (Cx,0, Cy,0) ∼ Uc((0, 0), (ps, ps)), where ps stands for the size of an148

equidimensional patch. Once the center of the crack is determined, a horizontal crack profile can be149

generated by stacking a sequence of vertical lines with decaying lengths on both sides. The initial150

(and maximum) thickness of the crack is sampled from a uniform distribution (Equation 1). The151

horizontal crack is propagated from left and right by stacking more vertical lines. To mimic the152

irregular geometry of cracks, the lengths of successive vertical lines are calculated based on the153

recursive sequence (Equation 2), and a normal random variable is added to the centerline (Equation154

3).155

t0 ∼ Ut(tmin, tmax) (1)

ti,side = ti−1,side × (1− |t ∼ N (0, DF )|), i = 1, 2, ... (2)

Cy,i,side = Cy,i−1,side + y ∼ N (0, SF ), i = 1, 2, ... (3)

where tmin and tmax are minimum and maximum initial crack thicknesses that may exist in the part156

and come from the physical understanding of an expert. side can be either left or right, and DF157
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Figure 2: Left: an unprocessed 2624×2624 cross-section of the Inconel 939 XCT volume; the
cross-section is a 16-bit grayscale image; right: the cropped and readjusted image; the cropped image
is 1590×1872 in this figure.

stands for Decay Factor. The smaller the DF , the greater the crack length. The vertical position of158

the center point of the ith line is denoted by Cy,i, and SF stands for Smoothness Factor. Larger SF s159

will generate more jagged cracks. The same procedure would generate vertical cracks by stacking160

horizontal lines along the y axis. For each patch, a number of horizontal and vertical cracks are161

generated and then an augmentation operation is performed similar to the one proposed by [18]. An162

example of the final patch containing the synthetic cracks is shown in Figure 3(right).163

4 Evaluation164

4.1 Evaluation settings165

4.1.1 Dataset166

The experimental dataset studied in this paper is the 3D virtualization of a 2×2×5 mm3 Inconel167

939 bar fabricated by Laser Powder Bed Fusion (L-PBF) additive manufacturing method scanned168

by Thermo Fisher HeliScan microCT. The details about the fabrication conditions and processing169

parameters are described elsewhere [22]. The tomography volume contains 2624×2624×7868 voxels,170

each with 0.71 microns in size. Each cross-sectional slice is a 2624×2642 16-bit grayscale image,171

each contains the pure black out-of-window area, the background, the base metal, and the internal172

features (Figure 2(left)). The internal features are mostly 2D cross-sections of planar cracks in 3D,173

alongside occasional occurrences of small pores.174

4.1.2 Data preparation175

Since the focus is on detecting the features within the base metal, we crop the images to a smaller frame176

that only encompasses the sample as closely as possible. Then, the image brightness and contrast177

are readjusted to increase the difference between the areas with high and low X-ray attenuation.178

(Figure 2(right)).179

We trained the architecture with the proposed CGMs described in Section 3.2. A few samples of the180

generated crack-like features are shown in Figure 3. Each cropped image is divided into 256×256181

non-overlapping patches for populating the dataset. We used the slices containing cracks for mask182

frames. Since there is no separate view of the exact same frame with the absence of crack features183

available, we chose another patch from the same slice with only base metal and no cracks. Although184

this frame does not exactly correspond to the mask image, it is presumed to have the same statistical185

features as the background. This assumption is valid as Ma et al. [18] showed this algorithm is robust186

to unpaired mask and contrast frames.187
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Figure 3: Left: synthesized fractal features [18]; middle: concrete crack masks [20, 21]; right:
random crack generation with SF = 0.01 and DF = 1.

4.1.3 Training and Metrics188

We implemented the architecture in the PyTorch [23] with CUDA compatibility. The assigned189

computational node has one NVIDIA V100S GPU, with 32 GB of memory. The optimizer is Adam190

[24], and the mean square error criterion is chosen as the GAN loss. The UNet-256 generator191

and PatchGAN discriminator modules shown in Figure 1 have 54.4 and 2.76 million parameters,192

respectively.193

4.2 Results194

We trained and tested the CycleGAN network with all the candidate CGMs and evaluated the results195

visually in Figure 4. Based on the results, the synthesized fractal features (CGM1) cannot represent196

the mechanical cracks as the network is nowhere close to generating satisfactory segmentation results.197

On the other hand, the datasets generated by the concrete crack (CGM2) and synthetic crack (CGM3)198

modules successfully conveyed the necessary contextual information which is successfully captured199

by the cycleGAN architecture. A closer look at the results shows that the network trained by concrete200

cracks tends to look for thicker cracks and miss the narrow tips. Conversely, the network trained201

by synthetic cracks actively looks for and identifies narrow tips of the cracks, which has a huge202

importance in predicting fatigue life. However, focusing on narrow features comes at the price203

of discontinued segmentation of thick features, which can be resolved by a set of erosion/dilation204

operations.205

Another observation during training was that the architecture tends to not only find the narrow tips206

of the cracks but also predict the crack propagation paths (Figure 5). This means if we incorporate207

the physical and thermodynamics equations that determine the granular and intergranular behavior208

of the material into the crack generation module, we may be able to estimate the crack propagation209

direction based on theoretical equations. However, this claim needs to be validated by loading the210

part under a certain direction to force the target crack to propagate, which is left for future research.211

5 Conclusion212

This work evaluates the potentials of self-supervised learning in defect quantification of Additive Man-213

ufacturing (AM) parts scanned by X-ray Computed Tomography (XCT). An Inconel 939 fabricated214

using the Laser Powder Bed Fusion (L-PBF) method, which contains cracks is taken as an example.215

In an attempt to address the uncertainty of the training data, a self-supervised approach along with a216

random crack generation module is proposed to eliminate the need for manually segmented images.217

The experiments show that the proposed method generates promising results in terms of detecting218

the fine-grained crack features and capturing the narrow tips, which are critical in assessing fatigue219

life. Moreover, investigating the training process has shown some potential for predicting the crack220

propagation paths by incorporating physics-based rules into the training phase.221
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Figure 4: Comparing the segmentation results with different CGMs.
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Figure 5: Evaluation of the segmentation results during training shows that the network tends to find
the crack propagation path.
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