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ABSTRACT

In statistical applications it has become increasingly common to encounter data
structures that live on non-linear spaces such as manifolds. Classical linear regres-
sion, one of the most fundamental methodologies of statistical learning, captures
the relationship between an independent variable and a response variable which
both are assumed to live in Euclidean space. Thus, geodesic regression emerged as
an extension where the response variable lives on a Riemannian manifold. The pa-
rameters of geodesic regression, as with linear regression, capture the relationship
of sensitive data and hence one should consider the privacy protection practices
of said parameters. We consider releasing Differentially Private (DP) parameters
of geodesic regression via the K-Norm Gradient (KNG) mechanism for Rieman-
nian manifolds. We derive theoretical bounds for the sensitivity of the parameters
showing they are tied to their respective Jacobi fields and hence the curvature of
the space. This corroborates, and extends, recent findings of differential privacy for
the Fréchet mean. We demonstrate the efficacy of our methodology on the sphere,
Sy C R3, the space of symmetric positive definite matrices, and Kendall’s planar
shape space. Our methodology is general to any Riemannian manifold and thus it
is suitable for data in domains such as medical imaging and computer vision.

1 INTRODUCTION AND MOTIVATION

One of the most foundational tools in statistical analyses is linear regression. In its simplest form,
linear regression learns a linear relationship between an independent variable, the predictor, and a
dependent variable, the response. Typically, these variables are both assumed to lie in a flat, Euclidean
space. However, in modern statistical practices, it is common to encounter data that inherently live
in curved, non-Euclidean spaces such as spherical data (e.g., directional wind data, spatial data,
square-root discrete distributions) (Fisher et al., 1993} |Jeong et al.,[2017), symmetric positive definite
matrices (e.g., covariance matrices, brain tensors) (Fletcher and Joshi, |2004)). For this reason, there
have been many different extensions of regression to non-linear spaces; [Faraway| (2014} considered
regression on metric spaces only requiring pairwise distances between the observations, Wasserstein
Regression (Chen et al.| [2023) captures the relationship between univariate distributions as predictors
and either distributions or scalars as the response, Fréchet Regression (Petersen and Miiller, [2019))
captures the relationship between Euclidean predictors and responses that lie in a metric space, and
Geodesic Regression (Fletcher, [2011)) captures the relationship between Euclidean predictors and
response variables that lie on a Riemannian manifold, for instance.

Whatever space the data may live, the learned relationship between variables relies on data captured
from individuals; these individuals may be concerned with safeguarding their sensitive data. To
protect one’s data, differential privacy (DP,|Dwork et al.,[2006)) has emerged as a leading standard
for data sanitisation. Perhaps surprisingly, differential privacy for a methodology as fundamental as
linear regression is not so straightforward. A common approach for private linear regression involves
sanitizing the matrix of sufficient statistics, AT A, where A is the matrix of data with rows being
observations and columns being features. This is explored by Sheffet| (2019) and | Dwork et al.|(2014)),
although the latter considered this in the case of private PCA. Further, Wang| (2018)), |[Sheftet| (2017),
and Alabi et al.| (2020) survey the landscape of techniques for private linear regression as well as
propose their own algorithms, so all this is to say that the fundamental and seemingly simple task is
not trivial.

Recently, there has been an emergence of extensions of differential privacy techniques into Rie-
mannian manifolds; Reimherr et al.| (2021) considered privately estimating the Fréchet mean on
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Riemannian manifolds and, in the process thereof, extended the Laplace mechanism. They note
that the sensitivity of the Fréchet mean is tied to the curvature of space and inflated for positively
curved manifolds. They further note that sanitising on the manifold incurs less noise than sanitising
in an ambient space under the same privacy budget. Following this work, mechanism design for
manifolds has been developed such as the K-Norm Gradient (KNG) mechanism for manifolds (Soto
et al., 2022)), DP Riemannian optimisation (Han et al., [2024aZb), and extensions of DP definitions
such as Gaussian DP for manifolds (Jiang et al., 2023)).

In this paper, we consider the problem of privately estimating the parameters of geodesic regression
(Fletcher, 2011)), regression with a Euclidean predictor and a response variable on a Riemannian
manifold. Geodesic regression is parametrised by a footpoint, an initial value on the manifold, and a
shooting vector, the average direction of data; our method sanitises the parameters sequentially with
the Riemannian manifold extension of the KNG mechanism (Reimherr and Awan, [2019} |Soto et al.|
2022)). We show that the sensitivity of each parameter is tied to their respective Jacobi field equations
and hence the curvature of the manifold. We demonstrate our methodology on the sphere, the space
of symmetric positive definite matrices, and Kendall’s planar shape space (Kendall| [1984). Our
methodology, however, is general to any Riemannian manifold and simply requires an understanding
of the Jacobi fields which are specific to the manifold of interest.

2 BACKGROUND AND NOTATION

2.1 RIEMANNIAN MANIFOLDS

In the following, we summarise the necessary tools of differential geometry for handling Riemannian
manifolds. Some additional details can be found in[Bland we refer to classical texts such as[Do Carmo
(1992)) and Nakaharal(2018) for a more thorough introduction.

A manifold M is a topological space that is locally equivalent to Euclidean space R™. A manifold
can be further endowed with a metric giving it additional structure such as the ability to measure
angles and lengths. This is a natural generalization of the inner product between vectors in R™ to
an arbitrary manifold. A Riemmanian metric g : T, M — Ris a (0, 2) tensor field on M that is
symmetric g,(U, V) = ¢,(V,U) and positive definite g, (U, U) > 0 where U, V lie on the tangent
space of M at p denoted by 7}, M. A smooth manifold that admits a Riemannian metric is called a
Riemannian manifold.

We can define an exponential map at point p € M as Exp(p, v) := 7, (1) where v : [0,1] — M is
a geodesic. The exponential map, maps a vector v € T, M to y(1) € M. Similarly, we can define
the inverse of the exponential map, the log map, Log(p, q) : ¢ € P — T, M where P C M is the
largest normal neighborhood of p. We use parallel transport to compare and combine vectors on
different tangent spaces of a manifold. Parallel transport provides a way to move tangent vectors
along a curve while preserving their length from one tangent space to another. Given a smooth curve
~(t) starting at point p, parallel transport ensures that the vector v(t), v € T, M, remains ‘straight’
relative to the manifold’s curvature as it moves along the curve ~(t) by satisfying Vv (t) = 0. We
denote I'] v as the parallel transport of vector v € T), M to the tangent space T, M. Since parallel
transport moves tangent vectors along smooth paths in a parallel sense, it preserves the Riemannian
metric and hence angles between vectors. That is, for a smooth curve ~ : [0, 1] — M and tangent

vectors v1, vy € T (9)M we have that (vy, v2)0) = <F7Eé;v1, Fvéé;v2> .
v v 7(1)

Geodesics on a manifold are affected by the curvature of the manifold. Roughly, positive curvature
causes geodesics to converge and negative curvature causes geodesics to diverge. Jacobi equations
are a way of quantifying this dependence of curvature on the geodesic. A vector field satisfying the
Jacobi equation is called a Jacobi field. For a geodesic v and a vector field .J along -y, the Jacobi
equation is defined as,

D? d d
0+ R (0. 57) =0 m

where R is the Riemannian curvature tensor, see[B.2] One should note that the Riemannian curvature
is the more general form of sectional curvature which is used later. An important result of Riemannian
geometry that will be useful later is the Rauch theorem, which states:
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Theorem 2.1 (Rauch Comparison Theorem). For two Riemannian manifolds M, M with curvatures
K(7), K() and geodesics ~ : [0, 8] — M, 7 : [0, 8] — M let J, J be the Jacobi fields along v, 7,
respectively. If K () < K(7) then,

170 < [17])- )

Intuitively, this states that for large curvature geodesics tend to converge, while for small (or negative)
curvature geodesics tend to spread. As curvature increases, lengths shorten.

2.2 GEODESIC REGRESSION

Geodesic regression provides a framework for modeling the relationship between a real-valued
independent variable and a manifold-valued dependent variable, leveraging the intrinsic geometry
of Riemannian manifolds. Unlike traditional linear regression, geodesic regression generalizes the
concept to non-linear spaces, representing relationships as geodesic curves on the manifold. |[Fletcher
(2011)) formulated the least-squares estimation of geodesic regression by minimizing the sum of
squared geodesic distances between data points and the estimated prediction geodesic. Consider a
dataset D = {(x;,y;)} where (z;,v;) € R x M, fori = 1,...n. Here z; lie on the real line and can
be scaled to be between [0, 1] and y; lie on a Riemannian manifold M. To estimate the regression
parameters, (p,v) € T M we need to minimise the least squared energy given by:

1 n

E(p,'l}) = %Z d(EXp(pawz v)vyi)za (3)
i=1

(p,0) = argming, ) E(p,v). 4

We denote the parameters that minimise the least square energy as p, 0. Here, d(-, -) is the geodesic
distance on the manifold, so the energy is the sum of square distances from the predicted value,
Exp(p, z;v), and the observed value, y;. This framework enables parametrisation through an initial
point, or footpoint, and velocity, or shooting vector. This parametrisation is analogous to an intercept
and slope in linear regression. The gradient of the energy with respect to the footpoint (p) and the
shooting vector (v) can be found using properties of the Riemannian gradient (refer to for further
details):

1n

Vo E=—=) dExp(p,z;v)'e;, 5

pB= =3 X dit(p) e )
171

vasz 'LdvE y g T’ia 6
nE z xp(p,x; v)' e ©)

i=1

respectively, where the errors are defined as £; = Log(Exp(p, x; v), y;) and T is the adjoint operator
defined as (Au,w), = (u, ATw) for A : T,M — TyM,u € T,M,w € T,M. Further, for
existence and uniqueness of the optimal solutions, only geodesics "close" to the data are considered,
where a geodesic « is defined as 7—close if d(y(x;),y;) < 7 for all ¢, 7 > 0, and ~y does not pass
through the cut locus of the manifold. One should note that before performing the regression task we
scale our covariates (x;) using an affine transformation such that z; € [0, 1] with some x; = 0 and
another x;, = 1.

As opposed to linear regression, where the errors are scalar values, here the errors are vec-
tors in the tangent spaces of the predicted values, Tgxp(p,a; v)/M. The derivative of the expo-
nential map with respect to the footpoint p can calculated by varying p along the geodesic
n(s) = Exp(p, suq), where u; € T, M. This will result in the variation of the geodesic given
by c1(s,t) = Exp(Exp(p,sui),twv(s)). Similarly, the derivative of the exponential map with
respect to the shooting vector v is found by a varying v resulting in the variation of geodesic
ca(s,t) = Exp(p, sus + tv), where us € T, M. This gives the derivatives of the exponential map
as:

dp Exp(p,v) ug = 0s¢1(0,1) = J(1 J(0) =wuy, J'(0) =0 @)
dy Exp(p, v) ug = 0s¢2(0,1) = J(1 J(0) =0, J'(0) = usy 3)
where J;(t) are Jacobi fields along the geodesic v(t) = Exp(p, tv).

);
),
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2.3 DIFFERENTIAL PRIVACY

In the modern era of data collection, the protection of privacy of one’s data has become increasingly
prevalent. There is no one consensus on what one means by privacy. However, differential privacy
(Dwork et al., 2006) has recently emerged as a defacto definition. Since its initial definition there
have been many extensions and alternate definitions such as concentrated DP (Dwork and Rothblum|
2016), zero-concentrated DP (zCDP) (Bun and Steinkel [2016), Rényi differential privacy (Mironov},
2017), and Gaussian differential privacy (u—GDP) (Dong et al.,|[2022), for instance. Even though
there are different forms of differential privacy, all definitions rely on the idea of adjacent datasets.

Let D = {(z1,v1),- -, (Zn,yn)} C (R x M) denote a dataset of size n. An adjacent dataset D’
differs from D in exactly one record, or observation, which we can take, without loss of generality, to
be the lasti.e., D' = {(z1,11),. .., (2}, y,,)}. Adjacent datasets are denoted as D ~ D’.

Definition 2.2. A randomised mechanism f(z; D) is said to satisfy pure differential privacy if
P(f(z; D) € A) < exp(e)P(f(2;D') € A),
for given privacy budget € > 0, all D ~ D’, and A is any measurable set in M.

Roughly speaking, for small €, a mechanism that satisfies pure differential privacy is approximately
equally likely to observe a realization from the random mechanism over all adjacent datasets. This
definition of privacy is attractive as it ensures noise calibration relative to an individual’s effect on
the mechanism relative to the entire dataset. Differential privacy is well defined over Riemannian
manifolds via the Riemannian measure (Reimherr et al., 2021)) as it is well defined over measurable
spaces (Wasserman and Zhou, |2010). An attractive property of this definition is the composition of
mechanisms. Given two mechanisms f;, fo with privacy budgets €, €,, respectively, the total privacy
budget is €, + €,,. Note these ¢ are privacy budgets and not the errors & from@

We wish to release private versions of the parameters (p, v), the footpoint, and the shooting vector of
geodesic regression, respectively. Generally speaking, these parameters are not available in closed
form but rather are optimisers of an energy function. As such, it is useful to consider the exponential
mechanism (McSherry and Talwar, 2007)). The exponential mechanism is a randomized mechanism
that releases values nearly optimising an energy function. Generally, it takes the form

f(2;D)  exp{—0 ' E(2; D)},

where o is a spread parameter which determines the noise scale, F/(z; D) is an energy function to be
minimised, and z is the random variable. A particular instantiation of the exponential mechanism
is the K-Norm Gradient mechanism (KNG, Reimherr and Awan, 2019). KNG has been shown to
have statistical utility gains in Euclidean spaces as compared to the exponential mechanism. This
mechanism was extended to Riemannian manifolds (Soto et al.,[2022)) and shown to have similar
utility gains as in the Euclidean case.

In general, the KNG mechanism on manifolds takes the form
f(2;D) x exp{—c 7 ||VE(z; D)|..}. 9)

KNG satisfies pure differential privacy when the noise scale is given by 0 = A/e where A =
supp.p ||IVE(z; D)=V E(z; D')||, is the global sensitivity and e is the privacy budget or o = 2A /e
if the normalizing constant is dependent on the footpoint of the mechanism (Soto et al.,|2022)). We
further note that the sensitivity needs to be determined for ones choice of energy function.

3 SENSITIVITY ANALYSIS

As discussed earlier we use the KNG mechanism to sanitise the footpoint and the shooting vector. For
KNG to satisfy pure DP the sensitivity A = supp,.p/ ||VE(2z; D) — VE(z; D')||, must be bounded.
Since we estimate two parameters, each parameter has its own sensitivity bound. We let A, A,
be the sensitivity of the footpoint and shooting vector, respectively. In this section we consider the
sensitivity of the footpoint A, and in@] we consider the sensitivity of the shooting vector.

We wish to release a private version of p which is an optimiser of the energy function E(p,v; D)
as in equation Since E(p,v; D) is a function of both p and v we must, in a sense, consider
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them separately and sequentially as the gradient for KNG can be taken with respect to either
parameter. One should note that our sequential treatment of sensitivities does not rely on any global
product decomposition of the tangent bundle 7M. Recall that 7'M is a fiber bundle with projection
m: TM — M, whose fiber over p € M is the tangent space T}, M. In our procedure, fixing p selects
a base point of M, which determines the corresponding fiber 7}, M; the vector v is then sampled from
this fiber. Thus, the process of first sampling p and subsequently v makes use only of the canonical
fiber-bundle structure of 7'M and does not assume a global product structure 7 M = M x R".

For existence, uniqueness, and a finite sensitivity, we introduce the following assumptions.

Assumption 3.1. There exist constants ki, ki, € R such that the sectional curvature at every point of
the manifold, with respect to every 2-plane in the tangent space, lies in the interval (K, Kp,).

Assumption 3.2. For dataset D € D, the data is bounded as D C B.(mg) where r < ﬁ
for Riemannian manifolds with positive curvature and r < T, for Riemannian manifolds with
negative curvature. Further the least-squares geodesic is T—close to the data. For T > 0,

supp d(y;, Exp(p, z;0)) < 7,Vi.
Theorem 3.3. Let Assumptionsand hold. Let D, D' be adjacent datasets, for a fixed shooting
vector v,

2T

n
2
% cosh(2y/—ki(Tm + 7)) k1 <O.

y Kl Zoa

IN

Proof. We will start with fixing shooting vector, v and focus on the footpoint, p. The global sensitivity
is

Ap = sup [[VpE(p; D) = Vo E(p; DY (10)
Using equation|5|the gradient of the energy is given by, V,E(p; D) = — 3" | d,Exp(p, z; v)' &
where €; = Log(Exp(p, z;v), y;) is the error vector and 1 denotes the adjoint operator. The norm in

equation[I0]is thus the difference of two sums that differ in only one term due to the adjacent datasets
D ~ D'. All terms, in each gradient term, thus, cancel except the last with covariates x,,, 2, and
respective errors &, &/, from D and D’. We have,

1
By = Ll Exp(p. 200)' <5~ dyBxplp, ) 5| (an
n

1 - -

< —(IldpExp(p, 2av)" 5] + [l Exp(p, /o) 5 ) (12)
1 - -

< (I Exp(p. 0) o 155 + ldpExp(p: 27,0) op 151 (13)
T Tn :I;;L

< Z(Csup IEV )+ sup 28 W)]). (14)

llzll=1 llll=1

Here the second step applies the triangle inequality, the third step uses the characterization
Al < [|Allopll€n] for linear operators, and the operator norm is preserved under the adjoint,
i.e. |AT|| = ||A|l. In the final step, using the definition of the operator norm and the fact that
d,Exp(p, z,v)[U] = J, f{”") (1) for the Jacobi field along ~(t) = Exp(p, t ,,v) with initial conditions
Jém")(o) = ¢ and Ji/z(:”’L)(O) = 0, we obtain ||d,Exp(p, 2,0)||op = Sup| =1 HJéw)(l)H According
to Assumption[3.2] the errors (e,, £}, ) are bounded in norm by 7. We therefore set ||e,,|| = [leL,|| = 7
in the last equation to obtain the tightest bound.

Next, let’s consider only the first part of equation[I4] Using the Rauch comparison theorem by taking
the model manifold M with constant sectional curvature £ = ; we get supjz=1 ||/ ff") M| <

supjz=1 | jém") (1)|| where .J is the Jacobi field on our model manifold M.

We can next decompose @ into perpendicular and parallel components to the geodesic. For con-
stant curvature manifolds, [|.Jj(1)|| = ||| and Jy is dependent on the curvature, ||J (1)|| =
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ICy, (p) @], where p = ||, ¥]| is the length of the geodesic and

cos (y/K15) Kk >0,
CH,L(S) =41 y Rl = 07 (15)

cosh (v/—kis) K <O0.

Therefore, we get

sup [[JE (D] < sup /1l |12 + Cr (0217112 (16)
llall=1 ll]|=1
< max(L, |Cy, (p)])- (17)

In C1(s), the maximum of cos is 1 so for non negative ; our maximum will be 1. Additionally with
x; <1, forthe x; < 0 case we get 0 < p < 2(7y,, + 7) (see appendixfor detailed steps) and since
cosh is monotonically increasing, cosh (v/—k;p) < cosh (2v/—k; (7, + 7)), therefore

(¢n) 1 sk >0
sup |[Jz ()| < 18
Wuﬁl Iz (Wl < {cosh 2v—=Fki(Tm + 7)) kK <O. (18)
As this is independent of z,,, we get the sensitivity as,
2
i y Kl > Oa
A, < 2nr (19)
— cosh(2v/—ki(Tm + 7)) , ki <O.
n
O
One can similarly get a bound on the sensitivity Az given by
2
l s Kl Z Oa
n
A5 =9 7 sinh(2y/ZFi(r + 7)) 20)
— sk < 0.

n  —ki(Tm +7)
Refer to appendix [DJ for the proof.

4 EXPERIMENTAL RESULTS

All experimental results were conducted on a 16 GB RAM laptop with Jupyter notebook on Windows
11. We denote the differentially private and non-private pair of footpoint and shooting vector as (p, ¥)
and (p, 0) respectively. The non-private estimates (p, ¢) that minimise the energy E(p, v) are found
using the geodesic regression code from Regmil (2020). We aim to measure how the private estimates
affect the energy E(p, v; D). To sample from the density, we utilize Riemannian Metropolis-Hastings,
the Riemannian analog of the standard MCMC algorithm. We elaborate in appendix [A] specifically
for the sphere and refer to optimization literature such as|Absil et al.| (2008) for more context.

We first sample a set of DP footpoints (p), each with privacy budget ¢,, denoted as P =
{P1,DP2,--.,Pm}. On the tangent space of each footpoint p; € P, we sample a corresponding
set of private shooting vectors V; = {¥;1, U;2, . . ., Uim }» €ach ¥ sampled at a privacy budget of e,,.
Note that for each of the m many footpoints we sample m many shooting vectors on the respective
tangent spaces yielding m? many private pairs.

We form a differentially private geodesic curve with a footpoint p; from the set P and a shooting
vector v;; from the corresponding set V;. Each of these geodesics has a total privacy budget of
€ = €, + €y, by composition. Let E;; = + 37" | d(Exp(p;, 2 vij), yx)? be the Mean Squared
Error (MSE) between the data points {yy } and the private predictions {yj } from the DP geodesic
formed by the selected p; and 0;;. Next, let & = {Ej1, Ejs, ... Ej, } be the set of MSE’s with a
fixed footpoint p; as the second index runs over the shooting vectors. Then &; is the average of such a
set.
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To asses our method, we consider the overall average MSE £ = % >t & which aggregates the
contributions from all sampled footpoints. We then analyze how this error changes under both equal
and unequal allocations of the privacy budgets (e, €, ).

Here we present results for the sphere and Kendall shape space. A similar analysis for the space of
symmetric positive definite, SPD(2), matrices can be found in appendix

4.1 SPHERE
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Figure 1: Log average MSE, In &, for 20 (blue), 50 (orange), and 100 (green) data points on the
sphere. Dotted line are the energies without privatisation. Top: unequal budget splits ¢, € [0.02, 2.0],
€y, € [2.0,0.02], total ¢ = 2.02 and Bottom: Equal budget splits with varying total budget ¢ €
[0.2,2.0].

We create an artificial dataset of 20, 50, 100 datapoints on a unit sphere S by generating points on a
geodesic and adding randomised errors to each point. That is, we parametrise a geodesic by randomly
picking a point ¢y € Sz and a vector ¢ € T,, M. We then sample the geodesic v(t) = Exp(qo, t¢)
uniformly on ¢ € [0, 1], denote these as {~; }i=1,...,. These n points lie exactly on the geodesic. We
add noise to the data points by sampling from a multivariate normal distribution with zero mean and
a small covariance matrix (§ X I3x3), ensuring independent perturbations in each dimension. For this
set of experiments, we use § = 0.001 and in appendix [E] we show results for § = 0.01,0.1. Adding
this noise, results in the data points lying outside the surface of the sphere therefore, we project the
data points onto the unit sphere by normalization, i.e., x — z/||z||. We note that g and ¢ need not
be parameters of geodesic regression due to the randomness of the injected noise.

For the unit sphere, the sensitivities of the footpoint and shooting vector are given by

2 2
A==, A, =2
n n
Figureillustrates how the average log mean squared error, In &, varies with 20, 50, and 100 data
points, shown by the blue, orange, and green lines, respectively. The dashed lines in each panel
correspond to the geodesic log energy obtained from the non-private regression estimates (, 0).

For each privacy budget pair (e, €, ), we sample 10 candidate footpoints and 10 shooting vectors per
footpoint, resulting in 100 private parameter pairs (p, 9). The top panel corresponds to an unequal
budget allocation, with €, € [0.02,2.0] and ¢, € [2.0,0.02] while maintaining a fixed total budget of
€ = 2.02. As expected, the log error is largest when either ¢, or ¢, is extremely small, producing a
parabolic trend. A qualitatively similar pattern appears in the bottom panel, which depicts the case of
equal budget allocation, where the total budget € decreases from 2.0 to 0.2.

The increase in error at lower budgets is natural as with limited privacy allowance, the sampling
distributions of p and v become heavy-tailed, leading to accepted samples that deviate substantially
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from the non-private estimates (p, 0), thereby inflating the energy. While the private energies approach
the geodesic energy of the non-private estimates, they never exactly attain it. As the number of data
points increases, the sensitivity decreases, and the sampling distribution of (p, ?) becomes more
concentrated around the non-private estimates. This results in energies that are increasingly close to
the non-private geodesic energy, as seen in Figure[l| For each budget pair (¢, €,), the log energy
with 20 data points (blue) is higher than with 50 data points (orange), which in turn is higher than
with 100 data points (green).

4.2 KENDALL SHAPE SPACE

Next, we analyze corpus callosum shapes from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset processed by (Cornea et al.| (2017). We consider Alzheimer’s patients aged 5090
years, each represented by 50 uniformly sampled boundary landmarks. Landmark configurations
are first mapped to the preshape sphere by removing translation (centering at the centroid) and scale
(normalizing to unit Frobenius norm), so that all configurations satisfy zero mean and unit size.
Kendall’s shape space is formally the quotient of this preshape sphere by the action of rotations,
yielding the complex projective space CP¥~2. Following Fletcher’s framework, however, we
never explicitly project onto CP*~2; instead, we work directly in preshape coordinates, where the
exponential and logarithm maps are expressed in forms that inherently respect rotational invariance.
We also perform an affine transformation on the covariates (ages) such that they are scaled to be
between [0, 1]. The sectional curvature of Kendall shape space with landmarks > 4 is bounded
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Figure 2: Log average MSE, In &, for 100 data points on CP*~2. Dotted line is the log energy
without privatisation. Top: unequal budget splits €, € [0.02,2.0], €, € [2.0,0.02], total € = 2.02 and
Bottom: Equal budget splits with varying total budget € € [0.2, 2.0].

between [1, 4] resulting in x; = 1. We get the sensitivities of the footpoint and shooting vector as,

2 P
A=, A, =21
n n

For Kendall’s shape space, we examine the log average MSE under both unequal and equal budget
allocations, as shown in Figure 2| Similar to the case of unit sphere, for each privacy budget pair
(€p, €), we sample 10 candidate footpoints and 10 shooting vectors per footpoint, resulting in 100
private parameter pairs (p, ©) The overall behavior closely parallels the trends observed on the unit
sphere. In the case of unequal allocation, when either €, or ¢, is extremely small, the log error rises
sharply, producing a parabolic profile. This is explained by the heavy-tailed sampling distribution
at low budgets, which increases the likelihood of accepting footpoints and shooting vectors far
from the true regression parameters. Under a more balanced (equal) split of the budget, the errors
decrease as the total privacy budget increases, reflecting a concentration of the sampling distribution
around the regression estimates. Together, these results demonstrate that while Kendall’s shape space
is geometrically more complex than the unit sphere, the qualitative relationship between privacy
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Figure 3: Corpus callosum shapes at ages 60, 65, 70, 75, and 80. Blue curves denote predictions
from the non-private regression parameters, while orange curves correspond to predictions from the
differentially private parameters with €, = ¢, = 0.3.

allocation and estimation accuracy remains consistent: extreme imbalance in budget allocation leads
to instability, whereas balanced splits yield more reliable regression fits. Figure [3|provides a visual
comparison of predictions obtained from non-private and differentially private regression parameters
under a budget split of ¢, = ¢, = 0.3. For this choice of privacy allocation, the predicted shapes
from the private parameters align closely with those from the non-private regression, with only minor
deviations visible across ages.

5 DISCUSSION

Geodesic regression is an extension of linear regression to Riemannian manifolds. We have developed
a methodology to release the parameters of geodesic regression (the footpoint and shooting vector) in
a differentially private manner. To do so, we derive a theoretical bound on the sensitivity, under the
KNG mechanism, of each parameter. We note that the theoretical bounds on the sensitivity requires
Riemannian manifolds with curvature bounded from above. This, however, is not a limitation specific
to DP as it is also necessary for the Fréchet mean and for the parameters of geodesic regression. We
show that the sensitivity of the parameters is a function of its respective Jacobi fields which itself is a
function of the curvature of the manifold. A similar discovery was previously noted for the estimating
the Fréchet mean by Reimherr et al.|(2021). We thus demonstrate our methodology on the 2-sphere,
Kendall’s shape space, and the space of symmetric positive definite matrices over a variety of sample
sizes, variety of budgets, and unequal allocation of budgets in sections ] [E| and [

Similar to the standard exponential mechanism in Euclidean space, it is not straightforward to sample
from KNG. This difficulty is compounded by the difficulty of sampling on manifolds. We rely on
MCMC which has its limitations for privacy (Wang et al., 2015); however, developing sampling
algorithms is itself a research area outside the scope of this paper. Another problem one typically
encounters is bounding the data. A usual assumption is D C B,.(m), a ball of radius r centered at m.
For most data one cannot know  a priori. We face a similar issue as we need 7 = sup ||¢|| which
we cannot know beforehand. We set 7 = max; ||&;|| which indeed violates privacy as we need to
look at the data, but the concept of our methodology still holds. Further, since 0 = 27 /ne and we
experiment under different € we, in a sense, verify our methodology holds if we had inflated .

There are many avenues for future research. For instance, studying how DP interacts in the framework
of multiple geodesic regression, Fréchet regression, or Wasserstein regression are all significant con-
tributions. Further interestingly, parametrising a geodesic poses an opportunity unique to manifolds.
For instance, one can reverse the parametrisation of a geodesic v : [0,1] = M to ¥(t) = v(1 — t)
One might consider such an endeavor if, for instance, the curvature of the manifold is different at the
endpoints, i.e. v(0) and (1), thus directly affecting the sensitivity of p. Our methodology relies on
an upper bound on the curvature but if more information is known, one can possibly leverage this
information. Another possible is utilizing DP Riemannian optimization |Han et al.|(2024a)); [Utpala
et al.[(2023). This route may alleviate the problem utilizing an approximate sampler but has its
accompanying methodological difficulties.

-0.10 -0.05 000 005 010 015
coord 1
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A SAMPLING

This section describes how one could sample from the KNG mechanism on the unit sphere. We
implement a Riemannian random walk Metropolis-Hastings algorithm to sample from the KNG
mechanism. Suppose we have bounds on the sensitivity of p and v, denoted A, and A, respectively,
as in[3

We have that f(p; D) < exp{—0c ||V, E(p; D)|,}. Given that 0 = A, /e, and the gradient is as

in[3]

f(p; D) o exp {_W}
= ex _val/nZdQ(EXp(p, xiy),yi)”p
=e p{ 2 (ne) }
_ || > d,Exp(p, xﬂ/)TEin
- {_ 27/€p } .

We note that for a negatively curved manifold, another term is required in the denominator. To
sample from this distribution, first, initialize the random walk at py which can be any data point, the
Fréchet mean of the points, or the sample statistic p. To make a proposal we first sample a vector
Vprop from the tangent space, as it is simply a Euclidean plane, uniformly around py with a radius
7. This 7 is a tuning parameter that determines the ‘stickiness’ of the MCMC chain. We set 1 « o.
The proposal is then pyop := EXp(po, Vprop). Typically one would then compute the acceptance
probability, however, note that the energy depends on both the shooting vector and a footpoint. Since
we are under the assumption v is constant, we parallel transport v to the proposal that is, we use
I‘g"”’"@. Lastly, compute the acceptance probability in the typical fashion f(pprop; D)/ f(po; D).
We draw subsequent instances in the same fashion continuing the random walk from the previously
accepted footpoint. We forego thinning the chain as it has been argued that it is not a necessary
procedure (Link and Eaton, 2012). Furthermore, thinning decreases efficiency which compounds
with the inefficiency of sampling on manifolds.

While sampling instead of 7 we use max ||&;]|, the empirical largest error, in the acceptance probability
as the largest error in the dataset. This is not ideal as this value is data driven and thus is not private.
This is unfortunately a problem often faced in DP. For instance, when sanitizing the mean of real
numbers a common assumptions is that the data live in a bounded ball B,.(y) centered at y with
radius 7 > 0. This ball can be determined by utilizing public information. In our setting we foresee a
similar solution. For example, if one were to use geodesic regression on Earth to model the migration
of birds, one could use the guidance of bird experts to select the maximum deviation.

A.1 PRIVACY AND MCMC

To sample from KNG on Riemannian manifolds we utilize the Metropolis-Hastings MCMC algorithm.
There has been a lot of literature on how MCMC impacts the privacy implications, see for instance
Bertazzi et al.|(2025)); [Seeman et al.| (2021). Roughly speaking, a pure DP mechanism, (¢,d = 0),
which utilizes an approximate sampler such as Metropolis-Hastings, will satisfy approximate-DP
with § = O(1/M) where M is the length of chain, under some assumptions of proper mixing.
This does then weaken the privacy guarantees of our simulations. However, we note two important
considerations. First, for Riemannian manifolds samplers are not as widely available as for Euclidean
spaces. For Riemannian manifolds, samplers need to be developed for each manifold with its
respective metric. For instance, the Laplace on the space of symmetric positive-definite matrices
with the affine metric is studied in Hajri et al.| (2016), but if one were to use the same space but
change the metric to Bures-Wasserstein or Log-Euclidean, this would require a different set up.
Even in Euclidean space, exact samplers for a general exponential mechanism are not guaranteed.
Second, we note that in practice we would only release one private pair (p, ¥), so being cognizant of
that § = O(1/M) one can control the impact on the privacy implications. That is, one can set M
arbitrarily large to arrive at a negligible J.

12
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B RIEMANNIAN GEOMETRY

Following |Nakahara| (2018)) we elaborate on two important aspects of Riemannian geometry that are
widely used in this paper.

B.1 PARALLEL TRANSPORT

Ona Riemannian manifold, the metric g induces a natural volume form with the help of a local basis
{0/0x"} given by vol, = /dety dz* A dz?--- A dz™. The Riemannian measure dy, is derived
using the volume form and allows us to integrate over the manifold,

dpg = /dety detdx? - - - da™.

Any subset of the manifold A C M is measurable if it belongs to the - algebra M associated with
the Riemmanian measure.

The generalization of a Euclidean shortest path, straight lines, on Riemannian manifolds is referred
to as a “geodesic." A connection V on a manifold can be used to take directional derivatives and
thus define a geodesic curve. A curve 7 : [0,1] — M on M is a geodesic curve with respect
to V if its acceleration is zero i.e. V4 = 0. On a manifold with linear connection there always
exists a unique geodesic which is denoted by a footpoint p and shooting vector v € T, M. The
distance, d(-,-), between two points p,q € M is thus the length of the geodesic between them

d(p.q) = L() = [ 4]}t

Parallel transport plays a crucial role in proving theorem [D.T]and sampling replicates for the MCMC
chain. Unlike Euclidean space comparing two vectors on a general manifold M becomes more
challenging as the vector can lie on different tangent spaces of M. Consider two points on the
manifold close to each other, z, z + dx. We can have a vector field on the tangent space of  given
by V.= V*# e, where ¢, is the local basis and V,, are the vector components. In Euclidean space the
derivative with respect to z¥ is given by:

aV/L . VN(...71-’/_’_61'”7...)_‘//1'(...’:L'V,...)
= lim
or?  sz—0 oxv

2

On a general manifold, we need to transport V#(x) to x 4+ dx to perform the above subtraction.
Denote a vector V () transported to « + dx as V(2 + dx) and satisfies the following conditions,

VA (x4 6z) — VH(x) « bz (22)
Vi W = Vi (x4 0z) + WH(x + ox). (23)

Where W = W#e, is another vector field on . A transport is called parallel transport if the above
conditions are satisfied. If we take V*(z + dz) = V#(x) — V*(2)T'¥, 6z, the above rules are
satisfied.. There are distinct rules of parallel transport and each one is written with a choice of
connection, I'. For a manifold with a metric, there is a preferred choice of I' called as Levi-Civita
connection to define the parallel transport. Using the connection we can thus define a covariant
derivative which is similar to a directional derivative in Euclidean space as,

owA
A
vV, V= Dk

+I, W, (24)

where V,,W* is the Ath component of a vector V,,W.

An important theorem in Riemannian geometry is the Hopf-Rinow theorem which states that:

Theorem B.1. Let (M, g) be a connected finite-dimensional Riemannian manifold and let d be the
distance induced by g. The following are equivalent:

1. (M, d) is a complete metric space.
2. Every closed and bounded subset of M is compact.
3. M is geodesically complete, that is, every geodesic v : (a,b) — M can be extended to a

geodesic defined on all of R.
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Moreover, if these conditions hold, then for any p,q € M there exists a minimizing geodesic segment
v :[0,1] — M such that

¥(0)=p, ~(1)=gq,  d(p,q) =length(y).

The fact that a minimizing geodesic between two points in a strongly convex ball is unique ensures
that parallel transport is unique. This is given by the following theorem.
Theorem B.2. Suppose p,q € B,.(mq). Then there exists a unique minimizing geodesic ~ : [0,1] —
M that joins p to q. Parallel transport along v with respect to the Levi—Civita connection therefore
defines a unique linear isometry

re:ToM — TyM.
In particular, for any v € T, M and w € Ty M, the quantity

lo =g ()]

is well defined, depends only on the pair (p, q), and is independent of any choice of paths.

In our work, we assume that the data lies in a geodesically convex ball and therefore, transporting
vectors from T, M to T}, M along the unique minimizing geodesic -y yields a uniquely determined
linear map I'Y : T, M — T}, M. Since the Levi—Civita connection is metric compatible and torsion
free, parallel transport preserves the Riemannian inner product and hence the induced norm, so
'} is an isometry. It follows that for any v € T, M and w € Ty M, the difference v — I’} (w) is
unambiguously defined in 7;, M, and its norm [|v — I'} (w)|| does not depend on any choice of path
other than the minimizing geodesic.

B.2 RIEMANNIAN CURVATURE TENSOR

The geometric meaning of the curvature of a manifold and the Riemann curvature tensor is understood
by parallel transporting a vector V; at p to a different point ¢ along two distinct curves C' and C”.
One can notice in Figure [ that the resulting two vectors are different from each other. This non-
integrability of parallel transport defines the intrinsic notion of curvature of a manifold.

Vel(n)

Vel

Xt + gt 4 ok

V()

Figure 4: The vector Vj is parallel transported along the curves C' and C” resulting in Vo (r) and
Ve (). The difference between these resulting vectors at the point r represents the curvature of the
manifold (Nakaharal 2018)).

Take four points on a manifold defined by the vertices of an infinitesimal parallelogram, p = z*,q =
oh 4+ et s =t + §H,r =zt 4+ 0* + €. We can parallel transport a vector V{y along two curves
defined by C' = pgr and C' = p sr. The resulting vectors V4 (r) and V{4, can be written in terms of
the original vector V; € T, M as,

VA(r) = V' = VT ()" — VETh, (0)8" — VE(@aIY, )~ Th (0)Tup() 8 (29)
VA () = Vi = Ve ()8 — VeTh (D) — V@I, ) — TonmTan(p))es”.  (26)

Once we have parallel transported the vectors on the tangent space of r we can quantify their

difference as
Ver(r) = Ve (r) = Vi (03D () — 0,14, (p) = IX, ()%, (p) + L. (DT, (p))e0” (27
=VyRY, 6. (28)

The Riemann curvature tensor (R"

\) 18 defined as this difference and represents the curvature.
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B.3 PROOF FOR GRADIENT OF ENERGIES

We will prove

n

1
VpE(p,v) = — Z (dpExp(p, xiv))T% g; = Log(n;,y:), ni:=Exp(p,ziv), (29)
i=1
where 1 denotes the adjoint operator. For a linear map A : T, M — T, M we define A" : T, M —
T,M by
(Au, w), = (u, ATw), foralluc T,M, w € T, M.
Given the smooth function F (1) = £d?(n,y), one can easily prove that V,,F(n) = —Log(n,y). We

will also use the fact that the Riemannian gradient is that which is uniquely defined in terms of the
directional derivative as:
d
Sl o) = dPmle] = (TF@), w), (30)
=0

This follows from differentiating a function F' : M — R along a curve 7(s) with 7(0) = w.

Next, for fixed p € M and v € T, M, consider the geodesic y(t) = Exp(p, tv). Let p; := p(s) be a
smooth curve with py = p and pg = u € T}, M. Further, let v, € T}, M be the parallel transport of v
along p; (so Vvs|s=o = 0). Define the variation by geodesics

c(s,t) = Exp(ps, tvs).
Then J(t) := 9,¢(0,t) is a Jacobi field along ~ with initial conditions J(0) = u, J'(0) = 0 and
dpExp(p, v)[u] = 95¢(0,1) = J(1). 31

We want the change in geodesic energy if we perturb p along p,. Using 7;(s) = Exp(ps, x;v) together
with the chain rule and equation [30] we obtain,

1 d

VpE = ——
P 2nds|,_,

1
d(ni(s)ayi)Z = %<Vnd(nayi)2|n:m(0)a > = < Eis 771 >

i

where 7;(0) = d,Exp(p, z;v)[u]. Hence

d 1 2
Bl 30" = (= <o dBxplp )l
Summing over i we have,
d 1 — 1 n :
B, Fpe) = 5 20 (e dBxp(pm)ul) = ~(u, > (A Exp(p, ) (<)) .

where the last equality is the definition of the adjoint. Because this holds for every u € T), M, the
Riemannian gradient at p is

1 n
VoE(pv) = " (dBxp(p.xiv)) e, (32)

i=1

as claimed. One can follow similar steps for the gradient with respect to v to derive,

f% le (dUExp(p, xiv))T ;. (33)

i=1

VoE(p,v)

C BOUND ON GEODESIC LENGTH p

Let M be a Riemmanian manifold with sectional curvature bounded as k; < k < kj and k; < 0.
{(z4,y:)}Y, be data with y; € M and suppose there exists mg € M and 7,,, > 0 such that

yi € B (mg) for all ;.

15



Under review as a conference paper at ICLR 2026

Before performing the regression task we reparameterise the predictors so that for some index k we
have x, = 0. Consider the geodesic regression model
g = Exp(p, z:0),
and assume the fit is 7-close:
d(Gi,y:) < 7 for all 4.
Define the geodesic reach from the intercept

p = max d(p, §i).

Since z; = 0, we have g = Exp(p,0) = p. By 7-closeness, d(p, yk) = d(Yx,yx) < 7. Because
yx € By, (mg), we have d(yx, mg) < Tp,. The triangle inequality gives

d(ﬁ,mo) d(p7yk)+d(ykam0) < T+ T

Now, fix any ¢. By the triangle inequality and the 7-closeness assumption,
d(p,9:) < d(p, i) + d(yi, Gi)
< (d(p,mo) + d(mo,y:)) + 7
S(T+Tm)+Tm +7
=21 + 7).
Taking the maximum over ¢ yields p < 2(7,, + 7).

D SENSITIVITY BOUND FOR THE SHOOTING VECTOR

In section [3]it was shown how to bound the sensitivity for the footpoint. In this section, we give the
theorem with proof to bound the sensitivity for the shooting vector. As before we will use the KNG
mechanism focusing on the shooting vector. If the assumption [3.1) and [3.2] are satisfied the bound on
the sensitivity A, is given by:
Theorem D.1. Let Assumptionsand hold. Let D, D' be adjacent datasets, for a fixed shooting
vector v,

Ay = sup [VsE(p; D) = VaB(p; DI,

2T
y Rl 207
n

< 27 sinh (V—ri7)
= /7_1‘” )

Proof. We will start with fixing the footpoint p and focus on the shooting vector, ¢. The global
sensitivity is

IN

K1 <0

Ay = sup [VsE(p; D) = VaB(p: D)l (34)
Usmg the chain rule, the gradient of the energy is given by, VzE(p;D) =
— LN i dyExp(p, x;v)' & where &; = Log(Exp(p,2,v), i) is the error vector and {

denotes the adjoint operator. The norm in equation [34]is thus the difference of two sums that differ in
only one term due to the adjacent datasets D ~ D’. All terms, thus, cancel except the last. We have,

Ay = %Hwn dgExp(p, z,v)' &5, — !, dgExp(p, 2/,v)1 &’ | (33)
<~ (lken deBxp(p, 200)' <3 + 2, dsBxp(p, 20)' 1] ), (36)
< L (Lo ldsExp(p, 700)' o i + I lsBxp(p, 70 o I2°1), 3T
g%(l [AEXD (D, 200) lop 151 + |dEXP (0, 7,0) o 151, (38)
< (s W1+ su 5 )) (39)

llll= llll=1
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Here the second step applies the triangle inequality, the third step uses the characterization
ARl < ||Allopllen]l for linear operators, and the operator norm is preserved under the ad-
joint, i.e. ||AT| = ||A|| and x,,, 2!, € [0,1] we can substitute ¥, = 2/, = 1 to get the worst
upper bound. In the final step we use the definition of operator norm and equation (8| to get
| d5Exp(p, ©1,0)|lop = sup|gy=1 |dzExp(p, 2nv) ]| = sup)zj=1 ||Jl(7m")(1)|| where @ is deviation
of #. The initial conditions on .J\"") (t) are J2"")(0) = i, J"*)(0) = 0. The 7 comes out as we
have assumed that the data is 7-close, with ||e,, ||, ||}, || < 7 in line with assumption 3.2]

Next let’s consider only the first part of equation [39] (second part will follow the same analysis).
We will use the Rauch comparison theorem by taking the model manifold with constant sectional
curvature K = K.

sup |75 (D] < sup T (1)

u
llall=1 llll=1

Where J is the Jacobi field on our model manifold M. We can next decompose @ in perpendicular

and parallel components to the geodesic, ||j|| (DIl = ||| and J) is dependent on the curvature,
[T (D) = | S”T(p) @ ||, where p = |z, 9] is the length of the geodesic.
\/%Sin (\/EZS) N 07

Sﬁl (S) = § y Rl = 07 (40)

\/;m sinh (v/—k1s) k1 <0

Therefore, we get:

o " Sk (P) 191 -
s (D)< s \/ a2 + 1222 e e @

llzll=1
S (p)
P

< max(1, | ) (42)

In S,;, (s) maximum of sin is 1 so for non negative x; our maximum will be 1. For x; < 0, we
have z,, € [0,1] and 0 < p < 2(7,, + 7) (check appendix [C] for detailed steps) and since sinh is
monotonically increasing sinh (v/—k;p) < sinh (21/—k; (7, + 7)), therefore :

sup [l (1) < {1 \ . =0 (43)
=1 - I et sinh (2/—ki (T + 7)) K1 < 0.
As this is independent of x,,, finally we get the sensitivity as:
2*7, ki >0,
Ag < Znsinh(Z\/Tq(Tm ) (44)
n N=k(Tm+T1)

E EFFECT OF DATA SPREAD ON UNIT SPHERE

For the experiments on the unit sphere, recall that data points were generated by perturbing locations
on the sphere with Gaussian noise sampled from a multivariate normal distribution with zero mean
and covariance matrix 6 I3y 3, fixing 6 = 0.001 in the main text. In this appendix, we study the effect
of larger noise by increasing ¢ to 0.01 and 0.1. Figure[5|provides a visual illustration of the data
together with the non-private geodesic and the private geodesics obtained under equal allocation of
the privacy budget, with total budget e € [2.0, 0.2]. The geodesics are color—coded according to their
total privacy budgets: darker blue indicates a smaller total budget. For each row, the second panel
provides a zoomed—in view for clarity. In the top row (§ = 0.01), some private geodesics with smaller
budgets (shown in purple and blue) deviate farther from the data. When the noise level increases
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Figure 5: Visual representation of 50 data points (blue dots) along with non-private geodesic and
private geodesics for equal allocation of privacy budgets with total budget € € [2.0 — 0.2] in ten steps
and varying errors J. Top row: For § = 0.01, Bottom row: § = 0.1

Energy (log)
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(1.00,1.00) (0.90,0.90) (0.80,0.80

0 2 a 6 8

Figure 6: Log-average MSE, In&, on the unit sphere with 50 data points for § = 0.001 (blue),
0 = 0.01 (orange), and 6 = 0.1 (green). Dotted lines indicate the corresponding energies without
privatization.

to 0 = 0.1, this deviation becomes even more pronounced, with the low—budget geodesics pushed
further away from the data.

This behavior is reflected quantitatively in the log-average MSE. Figure[6] shows that, as the noise
level increases, the non-private log energy also increases, and for each fixed J, the log-average MSE
exhibits the same trend observed earlier: higher error for smaller total privacy budgets.

18



Under review as a conference paper at ICLR 2026

F SYMMETRIC POSITIVE DEFINITE MATRICES (SPD)

(2.00,0.02)

Energy (log)

46,1.56) (0.68,1.34) (0.90,1.12

Energy (log)

Figure 7: Log average MSE In & for 20 (blue), 50(orange), and 100(green) data points on the
SPD(2) manifold. Dotted line are the energies without privatisation. Top: unequal budget splits
ep € [0.02,2.0], €, € [2.0,0.02], total € = 2.02 and Bottom: Equal budget splits with varying total
budget € € [0.2,2.0].

We generated synthetic data on the manifold of 2 x 2 symmetric positive definite matrices, SPD(2),
by sampling points along a geodesic with added noise. Two random matrices p, ¢ € SPD(2) were
chosen, and the initial tangent vector was set to v = Log(p, ¢) using the affine-invariant metric.
For covariates = € [0, 1], clean responses were obtained as Yciean(2) = Exp(p, zv). To model
observational variability, each ycean () Was perturbed by isotropic Gaussian noise in the tangent
space, & ~ N(0,02T), and mapped back as y(z) = EXp(Yctean, £). We used o = 0.01, producing
small deviations from the underlying geodesic, so that the dataset consists of pairs {(z;, ;) }¥.; with
y; € SPD(2).

For the SPD(2) manifold, under an affine-invariant metric, the sectional curvature is bounded by
[—%, 0)(Criscitiello and Boumal, [2021)) resulting in x; = —%. The sensitivities of the footpoint and
shooting vector are given by

A, = 27 cosh (2\/3(7’m +7)).
n

T 1 1
Aq} = ————sinh (2\/7(7-771, + T))~
ERVEICES 2

Figure [7|shows the behavior of the average log mean squared error, In &, for datasets of size 20, 50,
and 100, depicted by the blue, orange, and green curves, respectively. The dashed curves in each
panel indicate the geodesic log energy corresponding to the non-private regression estimates (p, 9).

For each pair of privacy budgets (e,, €, ), we generate 100 private parameter pairs (p, ¥) by sampling
10 candidate footpoints and 10 shooting vectors per footpoint. The top panel reports the case of
an unequal budget split, with €, € [0.02,2.0] and €, € [2.0,0.02], keeping the total budget fixed
at € = 2.02. In this setting, the log error is maximal when either €, or ¢, is very small, yielding a
parabolic trend reminiscent of what we observed on the sphere and Kendall shape space. The bottom
panel presents the equal budget allocation, where the overall privacy budget decreases from 2.0 to
0.2, producing a qualitatively similar pattern.

At smaller budgets, the observed increase in error is expected: tighter privacy constraints induce
heavy-tailed sampling distributions for p and v, leading to accepted samples that deviate noticeably
from the non-private estimates (p, 9) and thereby inflate the energy. Although the private estimates
yield energies that approach those of the non-private regression, they do not coincide exactly. As the
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x = 0.000 x = 0.242 x = 0.495 x = 0.747 x = 1.000
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’

Figure 8: SPD(2) matrices as ellipses for equally spaces covariates. Blue curves denote predictions
from the non-private regression parameters, while magenta curves correspond to predictions from the
differentially private parameters with ¢, = ¢, = 0.2.

sample size grows, the sensitivity reduces, which in turn sharpens the sampling distribution of (p, ¥)
around the non-private solution. Consequently, the private energies converge more closely to the
geodesic energies, as seen in Figure Across all budget pairs (¢, €,), the error for 20 data points
(blue) exceeds that for 50 points (orange), which is in turn higher than that for 100 points (green).

We know that any element of SPD(2) can be expressed as a real symmetric 2 x 2 matrix y =

b

eigendecomposition y = UAU T, where U € SO(2) contains the orthonormal eigenvectors and
A = diag(\1, \g) with A1, Ao > 0 are the eigenvalues. Geometrically, this representation allows one

to view y as defining an ellipse with axes y/A; and /A2 oriented according to U.

a b . . . . .
( C) with a,c > 0 and ac — b?> > 0 to ensure positive definiteness. Such a matrix admits an

Figure [8] compares predictions from the non-private estimates (blue) with those from the private
estimates using (¢, = ¢, = 0.2) (magenta) with the ellipse representation. Although representing
SPD(2) matrices as ellipses offers an intuitive view of their eigenvalues and orientations, this
visualization can be misleading: ellipses that appear similar may be far apart in the Riemannian
metric, while visually distinct ones may in fact be close.

G VALIDITY OF SENSITIVITY BOUNDS

In this section, we present evidence of the validity of the sensitivity bounds for the unit sphere and
SPD(2) found in Section and @ We create artificial adjacent datasets D, D', each of n data points
on the given manifold. This is done by generating n + 1 data points on the sphere by the same
mechanism mentioned at the start of Section [d.T]and [F} then removing the first data point for the
dataset D and the last data point for the dataset D’.

e

51
Number of elements

Figure 9: Box plots for ratios 7, and r, for 20 pairs of adjacent datasets on a unit sphere with
0 = 0.001. Left: Box plot of the ratio 7, = A:fjhy /ASTP for 20, 50, 100 data points on a unit sphere.

Right: Box plot of the ratio r, = A /AP for 20, 50, 100 data points on a unit sphere.

20



Under review as a conference paper at ICLR 2026

Let us define an experimental sensitivity for the footpoint p as AS™ = ||V, E(p; D) — V, E(p; D')||
and for the shooting vector v as AS*? = |V, E(p; D) — V,E(p; D')||. We call these experimental
bounds as the gradients depend on the generated datasets. Next, we define theoretical sensitivity
bounds as, A" = supp_p ||V, E(p; D) — V,E(p; D')|| and A, = supp.p ||V E(v; D) —
V,E(v; D")||. From section [4.1]we know that the theoretical bounds for the unit sphere are given
by Alhv = AhY = 27 Here we take 7 = maxp, - {€;}, where {¢;} is the combined set of errors

in datasets D, D’. To check the validity of our theoretical sensitivity bounds we calculate the ratios
Al thy . .

Ty = ﬁ7 Ty = ﬁgw . We expect the theoretical bounds to be always greater than the experimental

ones as they are defined to be the supremum over all possible adjacent datasets. Thus the ratios 7,

and r, are expected to be greater than one.

Figure 10: Box plots for ratios r, and r,, for 20 pairs of adjacent datasets on SPD(2) with o = 0.01.
Left: Box plot of the ratio r, = A;’”’/Affﬁ for 20, 50, 100 data points on SPD(2). Right: Box plot
of the ratio 7, = A" /A%P for 20, 50, 100 data points on SPD(2).

v

Figure |9| displays the box plots for the ratios r, = A;hy JAZP and 7, = A /AP computed
for datasets of size 20, 50, and 100 on the unit sphere. Each box plot is obtained from 20 pairs
of adjacent datasets. The ratios are consistently greater than one and concentrated near one, with
only a small number of outliers, indicating that the theoretical sensitivity bounds are both valid and
tight. Figurepresents the corresponding ratios for datasets on the SPD(2) manifold, again using
20 adjacent pairs for each dataset size. The results exhibit the same qualitative behavior, with all
ratios exceeding one and remaining close to unity, further confirming the validity and tightness of the
bounds in this setting.
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