

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DIFFERENTIALLY PRIVATE GEODESIC REGRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

In statistical applications it has become increasingly common to encounter data structures that live on non-linear spaces such as manifolds. Classical linear regression, one of the most fundamental methodologies of statistical learning, captures the relationship between an independent variable and a response variable which both are assumed to live in Euclidean space. Thus, geodesic regression emerged as an extension where the response variable lives on a Riemannian manifold. The parameters of geodesic regression, as with linear regression, capture the relationship of sensitive data and hence one should consider the privacy protection practices of said parameters. We consider releasing Differentially Private (DP) parameters of geodesic regression via the K-Norm Gradient (KNG) mechanism for Riemannian manifolds. We derive theoretical bounds for the sensitivity of the parameters showing they are tied to their respective Jacobi fields and hence the curvature of the space. This corroborates, and extends, recent findings of differential privacy for the Fréchet mean. We demonstrate the efficacy of our methodology on the sphere, $S_2 \subset \mathbb{R}^3$, the space of symmetric positive definite matrices, and Kendall's planar shape space. Our methodology is general to any Riemannian manifold and thus it is suitable for data in domains such as medical imaging and computer vision.

1 INTRODUCTION AND MOTIVATION

One of the most foundational tools in statistical analyses is linear regression. In its simplest form, linear regression learns a linear relationship between an independent variable, the predictor, and a dependent variable, the response. Typically, these variables are both assumed to lie in a flat, Euclidean space. However, in modern statistical practices, it is common to encounter data that inherently live in curved, non-Euclidean spaces such as spherical data (e.g., directional wind data, spatial data, square-root discrete distributions) (Fisher et al., 1993; Jeong et al., 2017), symmetric positive definite matrices (e.g., covariance matrices, brain tensors) (Fletcher and Joshi, 2004). For this reason, there have been many different extensions of regression to non-linear spaces; Faraway (2014) considered regression on metric spaces only requiring pairwise distances between the observations, Wasserstein Regression (Chen et al., 2023) captures the relationship between univariate distributions as predictors and either distributions or scalars as the response, Fréchet Regression (Petersen and Müller, 2019) captures the relationship between Euclidean predictors and responses that lie in a metric space, and Geodesic Regression (Fletcher, 2011) captures the relationship between Euclidean predictors and response variables that lie on a Riemannian manifold, for instance.

Whatever space the data may live, the learned relationship between variables relies on data captured from individuals; these individuals may be concerned with safeguarding their sensitive data. To protect one's data, differential privacy (DP, Dwork et al., 2006) has emerged as a leading standard for data sanitisation. Perhaps surprisingly, differential privacy for a methodology as fundamental as linear regression is not so straightforward. A common approach for private linear regression involves sanitizing the matrix of sufficient statistics, $A^T A$, where A is the matrix of data with rows being observations and columns being features. This is explored by Sheffet (2019) and Dwork et al. (2014), although the latter considered this in the case of private PCA. Further, Wang (2018), Sheffet (2017), and Alabi et al. (2020) survey the landscape of techniques for private linear regression as well as propose their own algorithms, so all this is to say that the fundamental and seemingly simple task is not trivial.

Recently, there has been an emergence of extensions of differential privacy techniques into Riemannian manifolds; Reimherr et al. (2021) considered privately estimating the Fréchet mean on

Riemannian manifolds and, in the process thereof, extended the Laplace mechanism. They note that the sensitivity of the Fréchet mean is tied to the curvature of space and inflated for positively curved manifolds. They further note that sanitising on the manifold incurs less noise than sanitising in an ambient space under the same privacy budget. Following this work, mechanism design for manifolds has been developed such as the K-Norm Gradient (KNG) mechanism for manifolds (Soto et al., 2022), DP Riemannian optimisation (Han et al., 2024a;b), and extensions of DP definitions such as Gaussian DP for manifolds (Jiang et al., 2023).

In this paper, we consider the problem of privately estimating the parameters of geodesic regression (Fletcher, 2011), regression with a Euclidean predictor and a response variable on a Riemannian manifold. Geodesic regression is parametrised by a footpoint, an initial value on the manifold, and a shooting vector, the average direction of data; our method sanitises the parameters sequentially with the Riemannian manifold extension of the KNG mechanism (Reimherr and Awan, 2019; Soto et al., 2022). We show that the sensitivity of each parameter is tied to their respective Jacobi field equations and hence the curvature of the manifold. We demonstrate our methodology on the sphere, the space of symmetric positive definite matrices, and Kendall’s planar shape space (Kendall, 1984). Our methodology, however, is general to any Riemannian manifold and simply requires an understanding of the Jacobi fields which are specific to the manifold of interest.

2 BACKGROUND AND NOTATION

2.1 RIEMANNIAN MANIFOLDS

In the following, we summarise the necessary tools of differential geometry for handling Riemannian manifolds. Some additional details can be found in B and we refer to classical texts such as Do Carmo (1992) and Nakahara (2018) for a more thorough introduction.

A manifold \mathcal{M} is a topological space that is locally equivalent to Euclidean space \mathbb{R}^n . A manifold can be further endowed with a metric giving it additional structure such as the ability to measure angles and lengths. This is a natural generalization of the inner product between vectors in \mathbb{R}^n to an arbitrary manifold. A Riemannian metric $g : T_p\mathcal{M} \mapsto \mathbb{R}$ is a $(0, 2)$ tensor field on \mathcal{M} that is symmetric $g_p(U, V) = g_p(V, U)$ and positive definite $g_p(U, U) \geq 0$ where U, V lie on the tangent space of \mathcal{M} at p denoted by $T_p\mathcal{M}$. A smooth manifold that admits a Riemannian metric is called a Riemannian manifold.

We can define an exponential map at point $p \in \mathcal{M}$ as $\text{Exp}(p, v) := \gamma_v(1)$ where $\gamma : [0, 1] \rightarrow \mathcal{M}$ is a geodesic. The exponential map, maps a vector $v \in T_p\mathcal{M}$ to $\gamma(1) \in \mathcal{M}$. Similarly, we can define the inverse of the exponential map, the log map, $\text{Log}(p, q) : q \in P \rightarrow T_p\mathcal{M}$ where $P \subset \mathcal{M}$ is the largest normal neighborhood of p . We use parallel transport to compare and combine vectors on different tangent spaces of a manifold. Parallel transport provides a way to move tangent vectors along a curve while preserving their length from one tangent space to another. Given a smooth curve $\gamma(t)$ starting at point p , parallel transport ensures that the vector $v(t)$, $v \in T_p\mathcal{M}$, remains ‘straight’ relative to the manifold’s curvature as it moves along the curve $\gamma(t)$ by satisfying $\nabla_{\dot{\gamma}(t)}v(t) = 0$. We denote $\Gamma_p^q v$ as the parallel transport of vector $v \in T_p\mathcal{M}$ to the tangent space $T_q\mathcal{M}$. Since parallel transport moves tangent vectors along smooth paths in a parallel sense, it preserves the Riemannian metric and hence angles between vectors. That is, for a smooth curve $\gamma : [0, 1] \rightarrow \mathcal{M}$ and tangent vectors $v_1, v_2 \in T_{\gamma(0)}\mathcal{M}$ we have that $\langle v_1, v_2 \rangle_{\gamma(0)} = \left\langle \Gamma_{\gamma(0)}^{\gamma(1)}v_1, \Gamma_{\gamma(0)}^{\gamma(1)}v_2 \right\rangle_{\gamma(1)}$.

Geodesics on a manifold are affected by the curvature of the manifold. Roughly, positive curvature causes geodesics to converge and negative curvature causes geodesics to diverge. Jacobi equations are a way of quantifying this dependence of curvature on the geodesic. A vector field satisfying the Jacobi equation is called a Jacobi field. For a geodesic γ and a vector field J along γ , the Jacobi equation is defined as,

$$\frac{D^2}{dt^2} J(t) + R \left(J(t), \frac{d}{dt} \gamma \right) \frac{d}{dt} \gamma = 0, \quad (1)$$

where R is the Riemannian curvature tensor, see B.2. One should note that the Riemannian curvature is the more general form of sectional curvature which is used later. An important result of Riemannian geometry that will be useful later is the Rauch theorem, which states:

108 **Theorem 2.1** (Rauch Comparison Theorem). *For two Riemannian manifolds $\mathcal{M}, \tilde{\mathcal{M}}$ with curvatures
 109 $K(\gamma), \tilde{K}(\tilde{\gamma})$ and geodesics $\gamma : [0, \beta] \rightarrow \mathcal{M}, \tilde{\gamma} : [0, \beta] \rightarrow \tilde{\mathcal{M}}$ let J, \tilde{J} be the Jacobi fields along $\gamma, \tilde{\gamma}$,
 110 respectively. If $K(\gamma) \leq \tilde{K}(\tilde{\gamma})$ then,*

$$112 \quad \|\tilde{J}\| \leq \|J\|. \quad (2)$$

113 Intuitively, this states that for large curvature geodesics tend to converge, while for small (or negative)
 114 curvature geodesics tend to spread. As curvature increases, lengths shorten.

116 2.2 GEODESIC REGRESSION

117 Geodesic regression provides a framework for modeling the relationship between a real-valued
 118 independent variable and a manifold-valued dependent variable, leveraging the intrinsic geometry
 119 of Riemannian manifolds. Unlike traditional linear regression, geodesic regression generalizes the
 120 concept to non-linear spaces, representing relationships as geodesic curves on the manifold. Fletcher
 121 (2011) formulated the least-squares estimation of geodesic regression by minimizing the sum of
 122 squared geodesic distances between data points and the estimated prediction geodesic. Consider a
 123 dataset $D = \{(x_i, y_i)\}$ where $(x_i, y_i) \in \mathbb{R} \times \mathcal{M}$, for $i = 1, \dots, n$. Here x_i lie on the real line and can
 124 be scaled to be between $[0, 1]$ and y_i lie on a Riemannian manifold \mathcal{M} . To estimate the regression
 125 parameters, $(p, v) \in T\mathcal{M}$ we need to minimise the least squared energy given by:

$$127 \quad E(p, v) = \frac{1}{2n} \sum_{i=1}^n d(\text{Exp}(p, x_i v), y_i)^2, \quad (3)$$

$$130 \quad (\hat{p}, \hat{v}) = \text{argmin}_{(p, v)} E(p, v). \quad (4)$$

131 We denote the parameters that minimise the least square energy 3 as \hat{p}, \hat{v} . Here, $d(\cdot, \cdot)$ is the geodesic
 132 distance on the manifold, so the energy is the sum of square distances from the predicted value,
 133 $\text{Exp}(p, x_i v)$, and the observed value, y_i . This framework enables parametrisation through an initial
 134 point, or footpoint, and velocity, or shooting vector. This parametrisation is analogous to an intercept
 135 and slope in linear regression. The gradient of the energy with respect to the footpoint (p) and the
 136 shooting vector (v) can be found using properties of the Riemannian gradient (refer to B.3 for further
 137 details):

$$138 \quad \nabla_p E = -\frac{1}{n} \sum_{i=1}^n d_p \text{Exp}(p, x_i v)^\dagger \varepsilon_i, \quad (5)$$

$$142 \quad \nabla_v E = -\frac{1}{n} \sum_{i=1}^n x_i d_v \text{Exp}(p, x_i v)^\dagger \varepsilon_i, \quad (6)$$

144 respectively, where the errors are defined as $\varepsilon_i = \text{Log}(\text{Exp}(p, x_i v), y_i)$ and \dagger is the adjoint operator
 145 defined as $\langle Au, w \rangle_q = \langle u, A^\dagger w \rangle$ for $A : T_p \mathcal{M} \rightarrow T_q \mathcal{M}, u \in T_p \mathcal{M}, w \in T_q \mathcal{M}$. Further, for
 146 existence and uniqueness of the optimal solutions, only geodesics "close" to the data are considered,
 147 where a geodesic γ is defined as τ -close if $d(\gamma(x_i), y_i) \leq \tau$ for all $i, \tau > 0$, and γ does not pass
 148 through the cut locus of the manifold. One should note that before performing the regression task we
 149 scale our covariates (x_i) using an affine transformation such that $x_i \in [0, 1]$ with some $x_k = 0$ and
 150 another $x_{k'} = 1$.

151 As opposed to linear regression, where the errors are scalar values, here the errors are vectors
 152 in the tangent spaces of the predicted values, $T_{\text{Exp}(p, x_i v)} \mathcal{M}$. The derivative of the exponential
 153 map with respect to the footpoint p can calculated by varying p along the geodesic
 154 $\eta(s) = \text{Exp}(p, s u_1)$, where $u_1 \in T_p \mathcal{M}$. This will result in the variation of the geodesic given
 155 by $c_1(s, t) = \text{Exp}(\text{Exp}(p, s u_1), t v(s))$. Similarly, the derivative of the exponential map with
 156 respect to the shooting vector v is found by a varying v resulting in the variation of geodesic
 157 $c_2(s, t) = \text{Exp}(p, s u_2 + t v)$, where $u_2 \in T_p \mathcal{M}$. This gives the derivatives of the exponential map
 158 as:

$$159 \quad d_p \text{Exp}(p, v) u_1 = \partial_s c_1(0, 1) = J(1), \quad J(0) = u_1, J'(0) = 0 \quad (7)$$

$$160 \quad d_v \text{Exp}(p, v) u_2 = \partial_s c_2(0, 1) = J(1), \quad J(0) = 0, J'(0) = u_2 \quad (8)$$

161 where $J_i(t)$ are Jacobi fields along the geodesic $\gamma(t) = \text{Exp}(p, t v)$.

162 2.3 DIFFERENTIAL PRIVACY
163

164 In the modern era of data collection, the protection of privacy of one’s data has become increasingly
165 prevalent. There is no one consensus on what one means by *privacy*. However, *differential privacy*
166 (Dwork et al., 2006) has recently emerged as a defacto definition. Since its initial definition there
167 have been many extensions and alternate definitions such as concentrated DP (Dwork and Rothblum,
168 2016), zero-concentrated DP (zCDP) (Bun and Steinke, 2016), Rényi differential privacy (Mironov,
169 2017), and Gaussian differential privacy (μ -GDP) (Dong et al., 2022), for instance. Even though
170 there are different forms of differential privacy, all definitions rely on the idea of *adjacent* datasets.

171 Let $D = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset (\mathbb{R} \times \mathcal{M})$ denote a dataset of size n . An adjacent dataset D'
172 differs from D in exactly one record, or observation, which we can take, without loss of generality, to
173 be the last i.e., $D' = \{(x_1, y_1), \dots, (x'_n, y'_n)\}$. Adjacent datasets are denoted as $D \sim D'$.

174 **Definition 2.2.** A randomised mechanism $f(z; D)$ is said to satisfy *pure differential privacy* if

$$175 \quad 176 \quad P(f(z; D) \in A) \leq \exp(\epsilon)P(f(z; D') \in A),$$

177 for given privacy budget $\epsilon > 0$, all $D \sim D'$, and A is any measurable set in \mathcal{M} .
178

179 Roughly speaking, for small ϵ , a mechanism that satisfies pure differential privacy is approximately
180 equally likely to observe a realization from the random mechanism over all adjacent datasets. This
181 definition of privacy is attractive as it ensures noise calibration relative to an individual’s effect on
182 the mechanism relative to the entire dataset. Differential privacy is well defined over Riemannian
183 manifolds via the Riemannian measure (Reimherr et al., 2021) as it is well defined over measurable
184 spaces (Wasserman and Zhou, 2010). An attractive property of this definition is the composition of
185 mechanisms. Given two mechanisms f_1, f_2 with privacy budgets ϵ_p, ϵ_v , respectively, the total privacy
186 budget is $\epsilon_p + \epsilon_v$. Note these ϵ are privacy budgets and not the errors ε from 2.2.

187 We wish to release private versions of the parameters (p, v) , the footpoint, and the shooting vector of
188 geodesic regression, respectively. Generally speaking, these parameters are not available in closed
189 form but rather are optimisers of an energy function. As such, it is useful to consider the exponential
190 mechanism (McSherry and Talwar, 2007). The exponential mechanism is a randomized mechanism
191 that releases values nearly optimising an energy function. Generally, it takes the form

$$192 \quad f(z; D) \propto \exp\{-\sigma^{-1}E(z; D)\},$$

193 where σ is a spread parameter which determines the noise scale, $E(z; D)$ is an energy function to be
194 minimised, and z is the random variable. A particular instantiation of the exponential mechanism
195 is the K-Norm Gradient mechanism (KNG, Reimherr and Awan, 2019). KNG has been shown to
196 have statistical utility gains in Euclidean spaces as compared to the exponential mechanism. This
197 mechanism was extended to Riemannian manifolds (Soto et al., 2022) and shown to have similar
198 utility gains as in the Euclidean case.

199 In general, the KNG mechanism on manifolds takes the form
200

$$201 \quad f(z; D) \propto \exp\{-\sigma^{-1}\|\nabla E(z; D)\|_z\}. \quad (9)$$

202 KNG satisfies pure differential privacy when the noise scale is given by $\sigma = \Delta/\epsilon$ where $\Delta =$
203 $\sup_{D \sim D'} \|\nabla E(z; D) - \nabla E(z; D')\|_z$ is the global sensitivity and ϵ is the privacy budget or $\sigma = 2\Delta/\epsilon$
204 if the normalizing constant is dependent on the footpoint of the mechanism (Soto et al., 2022). We
205 further note that the sensitivity needs to be determined for ones choice of energy function.
206

207 3 SENSITIVITY ANALYSIS
208

209 As discussed earlier we use the KNG mechanism to sanitise the footpoint and the shooting vector. For
210 KNG to satisfy pure DP the sensitivity $\Delta = \sup_{D \sim D'} \|\nabla E(z; D) - \nabla E(z; D')\|_z$ must be bounded.
211 Since we estimate two parameters, each parameter has its own sensitivity bound. We let Δ_p, Δ_v
212 be the sensitivity of the footpoint and shooting vector, respectively. In this section we consider the
213 sensitivity of the footpoint Δ_p and in D we consider the sensitivity of the shooting vector.
214

215 We wish to release a private version of \hat{p} which is an optimiser of the energy function $E(p, v; D)$
216 as in equation 3. Since $E(p, v; D)$ is a function of both p and v we must, in a sense, consider

them separately and sequentially as the gradient for KNG can be taken with respect to either parameter. One should note that our sequential treatment of sensitivities does not rely on any global product decomposition of the tangent bundle $T\mathcal{M}$. Recall that $T\mathcal{M}$ is a fiber bundle with projection $\pi : T\mathcal{M} \rightarrow \mathcal{M}$, whose fiber over $p \in \mathcal{M}$ is the tangent space $T_p\mathcal{M}$. In our procedure, fixing p selects a base point of \mathcal{M} , which determines the corresponding fiber $T_p\mathcal{M}$; the vector v is then sampled from this fiber. Thus, the process of first sampling p and subsequently v makes use only of the canonical fiber-bundle structure of $T\mathcal{M}$ and does not assume a global product structure $T\mathcal{M} \cong \mathcal{M} \times \mathbb{R}^n$.

For existence, uniqueness, and a finite sensitivity, we introduce the following assumptions.

Assumption 3.1. *There exist constants $\kappa_l, \kappa_h \in \mathbb{R}$ such that the sectional curvature at every point of the manifold, with respect to every 2-plane in the tangent space, lies in the interval (κ_l, κ_h) .*

Assumption 3.2. *For dataset $D \in \mathcal{D}$, the data is bounded as $D \subseteq B_r(m_0)$ where $r \leq \frac{\pi}{8\sqrt{\kappa_h}}$ for Riemannian manifolds with positive curvature and $r < \tau_m$ for Riemannian manifolds with negative curvature. Further the least-squares geodesic is τ -close to the data. For $\tau > 0$, $\sup_D d(y_i, \text{Exp}(\hat{p}, x_i \hat{v})) \leq \tau, \forall i$.*

Theorem 3.3. *Let Assumptions 3.1 and 3.2 hold. Let D, D' be adjacent datasets, for a fixed shooting vector v ,*

$$\Delta_p \leq \begin{cases} \frac{2\tau}{n} & , \kappa_l \geq 0, \\ \frac{2\tau}{n} \cosh(2\sqrt{-\kappa_l}(\tau_m + \tau)) & , \kappa_l < 0. \end{cases}$$

Proof. We will start with fixing shooting vector, v and focus on the footpoint, p . The global sensitivity is

$$\Delta_p = \sup_{D \sim D'} \|\nabla_p E(p; D) - \nabla_p E(p; D')\|. \quad (10)$$

Using equation 5 the gradient of the energy is given by, $\nabla_p E(p; D) = -\frac{1}{n} \sum_{i=1}^n d_p \text{Exp}(p, x_i v)^\dagger \vec{\varepsilon}_i$ where $\vec{\varepsilon}_i = \text{Log}(\text{Exp}(p, x_i v), y_i)$ is the error vector and \dagger denotes the adjoint operator. The norm in equation 10 is thus the difference of two sums that differ in only one term due to the adjacent datasets $D \sim D'$. All terms, in each gradient term, thus, cancel except the last with covariates x_n, x'_n and respective errors $\varepsilon_n, \varepsilon'_n$ from D and D' . We have,

$$\Delta_p = \frac{1}{n} \|d_p \text{Exp}(p, x_n v)^\dagger \vec{\varepsilon}_n - d_p \text{Exp}(p, x'_n v)^\dagger \vec{\varepsilon}'_n\|, \quad (11)$$

$$\leq \frac{1}{n} \left(\|d_p \text{Exp}(p, x_n v)^\dagger \vec{\varepsilon}_n\| + \|d_p \text{Exp}(p, x'_n v)^\dagger \vec{\varepsilon}'_n\| \right), \quad (12)$$

$$\leq \frac{1}{n} \left(\|d_p \text{Exp}(p, x_n v)\|_{op} \|\vec{\varepsilon}_n\| + \|d_p \text{Exp}(p, x'_n v)\|_{op} \|\vec{\varepsilon}'_n\| \right), \quad (13)$$

$$\leq \frac{\tau}{n} \left(\sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\| + \sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x'_n)}(1)\| \right). \quad (14)$$

Here the second step applies the triangle inequality, the third step uses the characterization $\|A\vec{\varepsilon}_n\| \leq \|A\|_{op} \|\vec{\varepsilon}_n\|$ for linear operators, and the operator norm is preserved under the adjoint, i.e. $\|A^\dagger\| = \|A\|$. In the final step, using the definition of the operator norm and the fact that $d_p \text{Exp}(p, x_n v)[\vec{u}] = J_{\vec{u}}^{(x_n)}(1)$ for the Jacobi field along $\gamma(t) = \text{Exp}(p, t x_n v)$ with initial conditions $J_{\vec{u}}^{(x_n)}(0) = \vec{u}$ and $J'_{\vec{u}}^{(x_n)}(0) = 0$, we obtain $\|d_p \text{Exp}(p, x_n v)\|_{op} = \sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\|$. According to Assumption 3.2, the errors $(\varepsilon_n, \varepsilon'_n)$ are bounded in norm by τ . We therefore set $\|\varepsilon_n\| = \|\varepsilon'_n\| = \tau$ in the last equation to obtain the tightest bound.

Next, let's consider only the first part of equation 14. Using the Rauch comparison theorem by taking the model manifold $\tilde{\mathcal{M}}$ with constant sectional curvature $\kappa = \kappa_l$ we get $\sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\| \leq \sup_{\|\vec{u}\|=1} \|\tilde{J}_{\vec{u}}^{(x_n)}(1)\|$ where \tilde{J} is the Jacobi field on our model manifold $\tilde{\mathcal{M}}$.

We can next decompose \vec{u} into perpendicular and parallel components to the geodesic. For constant curvature manifolds, $\|\tilde{J}_{\parallel}(1)\| = \|\vec{u}_{\parallel}\|$ and \tilde{J}_{\perp} is dependent on the curvature, $\|\tilde{J}_{\perp}(1)\| =$

270 $\|C_{\kappa_l}(\rho) \vec{u}_\perp\|$, where $\rho = \|x_n \vec{v}\|$ is the length of the geodesic and
 271

$$272 \quad 273 \quad 274 \quad 275 \quad 276 \quad 277 \quad 278 \quad 279 \quad 280 \quad 281 \quad 282 \quad 283 \quad 284 \quad 285 \quad 286 \quad 287 \quad 288 \quad 289 \quad 290 \quad 291 \quad 292 \quad 293 \quad 294 \quad 295 \quad 296 \quad 297 \quad 298 \quad 299 \quad 300 \quad 301 \quad 302 \quad 303 \quad 304 \quad 305 \quad 306 \quad 307 \quad 308 \quad 309 \quad 310 \quad 311 \quad 312 \quad 313 \quad 314 \quad 315 \quad 316 \quad 317 \quad 318 \quad 319 \quad 320 \quad 321 \quad 322 \quad 323$$

$$C_{\kappa_l}(s) = \begin{cases} \cos(\sqrt{\kappa_l} s) & , \kappa_l > 0, \\ 1 & , \kappa_l = 0, \\ \cosh(\sqrt{-\kappa_l} s) & , \kappa_l < 0. \end{cases} \quad (15)$$

Therefore, we get

$$\sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\| \leq \sup_{\|\vec{u}\|=1} \sqrt{\|\vec{u}_\parallel\|^2 + |C_{\kappa_l}(\rho)|^2 \|\vec{u}_\perp\|^2} \quad (16)$$

$$\leq \max(1, |C_{\kappa_l}(\rho)|). \quad (17)$$

In $C_L(s)$, the maximum of \cos is 1 so for non negative κ_l our maximum will be 1. Additionally with $x_i \leq 1$, for the $\kappa_l < 0$ case we get $0 \leq \rho \leq 2(\tau_m + \tau)$ (see appendix C for detailed steps) and since \cosh is monotonically increasing, $\cosh(\sqrt{-\kappa_l} \rho) \leq \cosh(2\sqrt{-\kappa_l}(\tau_m + \tau))$, therefore

$$\sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\| \leq \begin{cases} 1 & , \kappa_l \geq 0 \\ \cosh(2\sqrt{-\kappa_l}(\tau_m + \tau)) & , \kappa_l < 0. \end{cases} \quad (18)$$

As this is independent of x_n , we get the sensitivity as,

$$\Delta_p \leq \begin{cases} \frac{2\tau}{n} & , \kappa_l \geq 0, \\ \frac{2\tau}{n} \cosh(2\sqrt{-\kappa_l}(\tau_m + \tau)) & , \kappa_l < 0. \end{cases} \quad (19)$$

□

One can similarly get a bound on the sensitivity $\Delta_{\vec{v}}$ given by

$$\Delta_{\vec{v}} \leq \begin{cases} \frac{2\tau}{n} & , \kappa_l \geq 0, \\ \frac{\tau \sinh(2\sqrt{-\kappa_l}(\tau_m + \tau))}{\sqrt{-\kappa_l}(\tau_m + \tau)} & , \kappa_l < 0. \end{cases} \quad (20)$$

Refer to appendix D for the proof.

4 EXPERIMENTAL RESULTS

All experimental results were conducted on a 16 GB RAM laptop with Jupyter notebook on Windows 11. We denote the differentially private and non-private pair of footprint and shooting vector as (\tilde{p}, \tilde{v}) and (\hat{p}, \hat{v}) respectively. The non-private estimates (\tilde{p}, \tilde{v}) that minimise the energy $E(p, v)$ are found using the geodesic regression code from Regmi (2020). We aim to measure how the private estimates affect the energy $E(p, v; D)$. To sample from the density, we utilize Riemannian Metropolis-Hastings, the Riemannian analog of the standard MCMC algorithm. We elaborate in appendix A specifically for the sphere and refer to optimization literature such as Absil et al. (2008) for more context.

We first sample a set of DP footprints (\tilde{p}) , each with privacy budget ϵ_p , denoted as $\mathcal{P} = \{\tilde{p}_1, \tilde{p}_2, \dots, \tilde{p}_m\}$. On the tangent space of *each* footprint $\tilde{p}_i \in \mathcal{P}$, we sample a corresponding set of private shooting vectors $\mathcal{V}_i = \{\tilde{v}_{i1}, \tilde{v}_{i2}, \dots, \tilde{v}_{im}\}$, each \tilde{v} sampled at a privacy budget of ϵ_v . Note that for each of the m many footprints we sample m many shooting vectors on the respective tangent spaces yielding m^2 many private pairs.

We form a differentially private geodesic curve with a footprint \tilde{p}_i from the set \mathcal{P} and a shooting vector \tilde{v}_{ij} from the corresponding set \mathcal{V}_i . Each of these geodesics has a total privacy budget of $\epsilon = \epsilon_p + \epsilon_v$, by composition. Let $E_{ij} = \frac{1}{n} \sum_{k=1}^n d(\text{Exp}(p_i, x_k v_{ij}), y_k)^2$ be the Mean Squared Error (MSE) between the data points $\{y_k\}$ and the private predictions $\{\tilde{y}_k\}$ from the DP geodesic formed by the selected \tilde{p}_i and \tilde{v}_{ij} . Next, let $\mathcal{E}_i = \{E_{i1}, E_{i2}, \dots, E_{im}\}$ be the set of MSE's with a fixed footprint p_i as the second index runs over the shooting vectors. Then $\bar{\mathcal{E}}_i$ is the average of such a set.

To asses our method, we consider the overall average MSE $\bar{\mathcal{E}} = \frac{1}{m} \sum_{i=1}^m \bar{\mathcal{E}}_i$ which aggregates the contributions from all sampled footpoints. We then analyze how this error changes under both equal and unequal allocations of the privacy budgets (ϵ_p, ϵ_v) .

Here we present results for the sphere and Kendall shape space. A similar analysis for the space of symmetric positive definite, SPD(2), matrices can be found in appendix F.

4.1 SPHERE

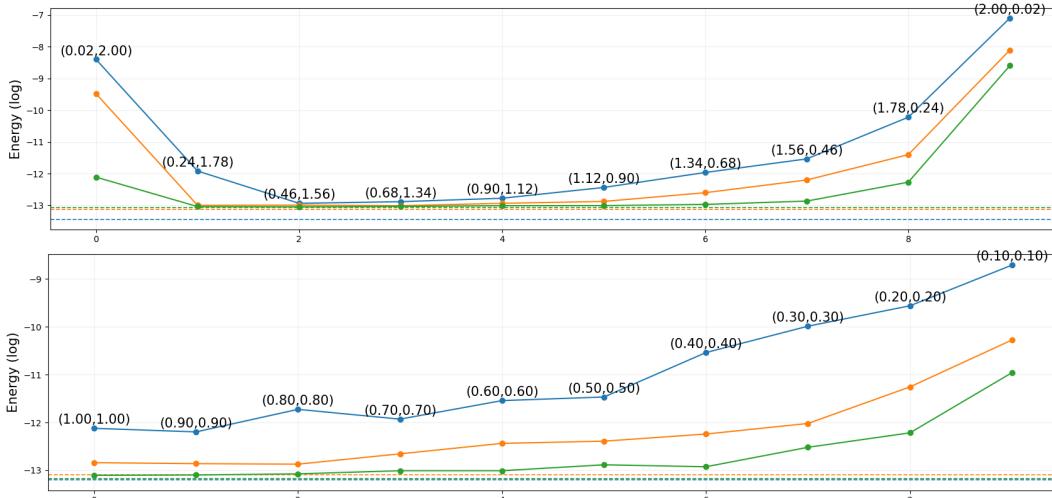


Figure 1: Log average MSE, $\ln \bar{\mathcal{E}}$, for 20 (blue), 50 (orange), and 100 (green) data points on the sphere. Dotted line are the energies without privatisation. Top: unequal budget splits $\epsilon_p \in [0.02, 2.0]$, $\epsilon_v \in [2.0, 0.02]$, total $\epsilon = 2.02$ and Bottom: Equal budget splits with varying total budget $\epsilon \in [0.2, 2.0]$.

We create an artificial dataset of 20, 50, 100 datapoints on a unit sphere S_2 by generating points on a geodesic and adding randomised errors to each point. That is, we parametrise a geodesic by randomly picking a point $q_0 \in S_2$ and a vector $\zeta \in T_{q_0} \mathcal{M}$. We then sample the geodesic $\gamma(t) = \text{Exp}(q_0, t\zeta)$ uniformly on $t \in [0, 1]$, denote these as $\{\gamma_i\}_{i=1, \dots, n}$. These n points lie exactly on the geodesic. We add noise to the data points by sampling from a multivariate normal distribution with zero mean and a small covariance matrix ($\delta \times I_{3 \times 3}$), ensuring independent perturbations in each dimension. For this set of experiments, we use $\delta = 0.001$ and in appendix E we show results for $\delta = 0.01, 0.1$. Adding this noise, results in the data points lying outside the surface of the sphere therefore, we project the data points onto the unit sphere by normalization, i.e., $x \mapsto x/\|x\|$. We note that q_0 and ζ need not be parameters of geodesic regression due to the randomness of the injected noise.

For the unit sphere, the sensitivities of the footpoint and shooting vector are given by

$$\Delta_p = \frac{2\tau}{n}, \quad \Delta_v = \frac{2\tau}{n}.$$

Figure 1 illustrates how the average log mean squared error, $\ln \bar{\mathcal{E}}$, varies with 20, 50, and 100 data points, shown by the blue, orange, and green lines, respectively. The dashed lines in each panel correspond to the geodesic log energy obtained from the non-private regression estimates (\hat{p}, \hat{v}) .

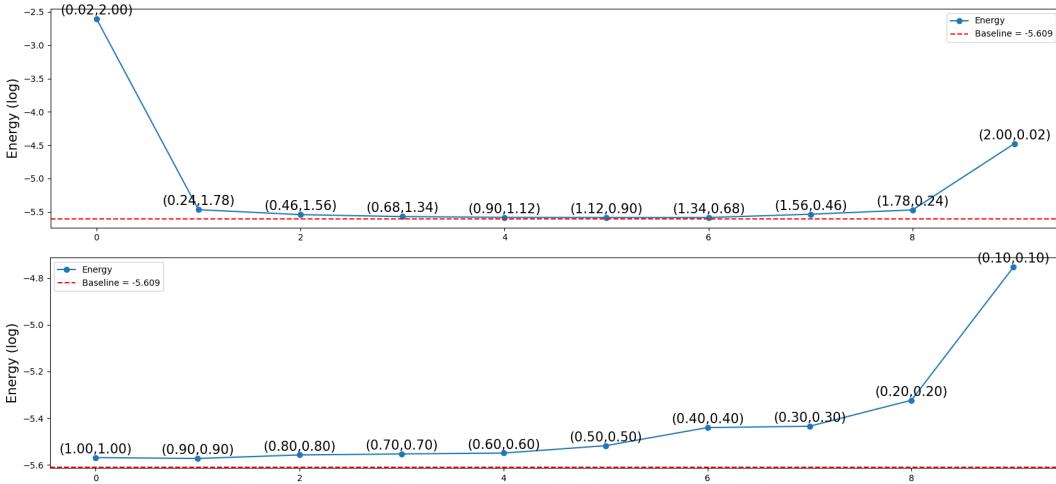
For each privacy budget pair (ϵ_p, ϵ_v) , we sample 10 candidate footpoints and 10 shooting vectors per footpoint, resulting in 100 private parameter pairs (\tilde{p}, \tilde{v}) . The top panel corresponds to an unequal budget allocation, with $\epsilon_p \in [0.02, 2.0]$ and $\epsilon_v \in [2.0, 0.02]$ while maintaining a fixed total budget of $\epsilon = 2.02$. As expected, the log error is largest when either ϵ_p or ϵ_v is extremely small, producing a parabolic trend. A qualitatively similar pattern appears in the bottom panel, which depicts the case of equal budget allocation, where the total budget ϵ decreases from 2.0 to 0.2.

The increase in error at lower budgets is natural as with limited privacy allowance, the sampling distributions of \tilde{p} and \tilde{v} become heavy-tailed, leading to accepted samples that deviate substantially

378 from the non-private estimates (\hat{p}, \hat{v}) , thereby inflating the energy. While the private energies approach
 379 the geodesic energy of the non-private estimates, they never exactly attain it. As the number of data
 380 points increases, the sensitivity decreases, and the sampling distribution of (\tilde{p}, \tilde{v}) becomes more
 381 concentrated around the non-private estimates. This results in energies that are increasingly close to
 382 the non-private geodesic energy, as seen in Figure 1. For each budget pair (ϵ_p, ϵ_v) , the log energy
 383 with 20 data points (blue) is higher than with 50 data points (orange), which in turn is higher than
 384 with 100 data points (green).

385 4.2 KENDALL SHAPE SPACE

388 Next, we analyze corpus callosum shapes from the Alzheimer’s Disease Neuroimaging Initiative
 389 (ADNI) dataset processed by Cornea et al. (2017). We consider Alzheimer’s patients aged 50–90
 390 years, each represented by 50 uniformly sampled boundary landmarks. Landmark configurations
 391 are first mapped to the preshape sphere by removing translation (centering at the centroid) and scale
 392 (normalizing to unit Frobenius norm), so that all configurations satisfy zero mean and unit size.
 393 Kendall’s shape space is formally the quotient of this preshape sphere by the action of rotations,
 394 yielding the complex projective space $\mathbb{C}P^{k-2}$. Following Fletcher’s framework, however, we
 395 never explicitly project onto $\mathbb{C}P^{k-2}$; instead, we work directly in preshape coordinates, where the
 396 exponential and logarithm maps are expressed in forms that inherently respect rotational invariance.
 397 We also perform an affine transformation on the covariates (ages) such that they are scaled to be
 398 between $[0, 1]$. The sectional curvature of Kendall shape space with landmarks ≥ 4 is bounded



415 Figure 2: Log average MSE, $\ln \bar{\mathcal{E}}$, for 100 data points on $\mathbb{C}P^{k-2}$. Dotted line is the log energy
 416 without privatisation. Top: unequal budget splits $\epsilon_p \in [0.02, 2.0]$, $\epsilon_v \in [2.0, 0.02]$, total $\epsilon = 2.02$ and
 417 Bottom: Equal budget splits with varying total budget $\epsilon \in [0.2, 2.0]$.

419 between $[1, 4]$ resulting in $\kappa_l = 1$. We get the sensitivities of the footpoint and shooting vector as,

$$421 \quad \Delta_p = \frac{2\tau}{n}, \quad \Delta_v = \frac{2\tau}{n}.$$

423 For Kendall’s shape space, we examine the log average MSE under both unequal and equal budget
 424 allocations, as shown in Figure 2. Similar to the case of unit sphere, for each privacy budget pair
 425 (ϵ_p, ϵ_v) , we sample 10 candidate footpoints and 10 shooting vectors per footpoint, resulting in 100
 426 private parameter pairs (\tilde{p}, \tilde{v}) . The overall behavior closely parallels the trends observed on the unit
 427 sphere. In the case of unequal allocation, when either ϵ_p or ϵ_v is extremely small, the log error rises
 428 sharply, producing a parabolic profile. This is explained by the heavy-tailed sampling distribution
 429 at low budgets, which increases the likelihood of accepting footpoints and shooting vectors far
 430 from the true regression parameters. Under a more balanced (equal) split of the budget, the errors
 431 decrease as the total privacy budget increases, reflecting a concentration of the sampling distribution
 432 around the regression estimates. Together, these results demonstrate that while Kendall’s shape space
 433 is geometrically more complex than the unit sphere, the qualitative relationship between privacy

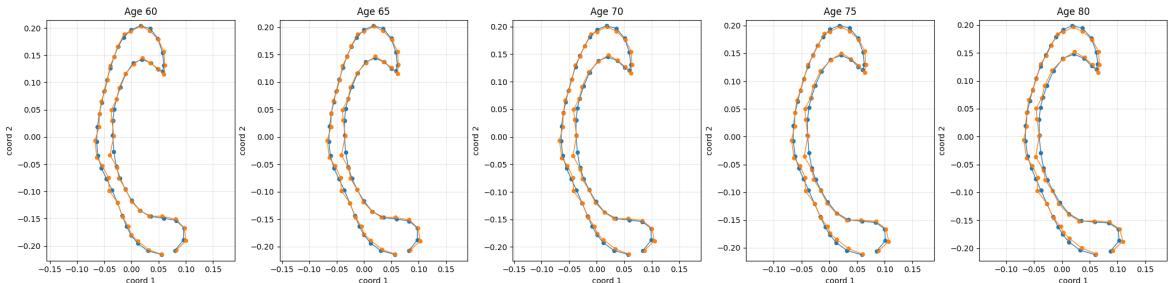


Figure 3: Corpus callosum shapes at ages 60, 65, 70, 75, and 80. Blue curves denote predictions from the non-private regression parameters, while orange curves correspond to predictions from the differentially private parameters with $\epsilon_p = \epsilon_v = 0.3$.

allocation and estimation accuracy remains consistent: extreme imbalance in budget allocation leads to instability, whereas balanced splits yield more reliable regression fits. Figure 3 provides a visual comparison of predictions obtained from non-private and differentially private regression parameters under a budget split of $\epsilon_p = \epsilon_v = 0.3$. For this choice of privacy allocation, the predicted shapes from the private parameters align closely with those from the non-private regression, with only minor deviations visible across ages.

5 DISCUSSION

Geodesic regression is an extension of linear regression to Riemannian manifolds. We have developed a methodology to release the parameters of geodesic regression (the footpoint and shooting vector) in a differentially private manner. To do so, we derive a theoretical bound on the sensitivity, under the KNG mechanism, of each parameter. We note that the theoretical bounds on the sensitivity requires Riemannian manifolds with curvature bounded from above. This, however, is not a limitation specific to DP as it is also necessary for the Fréchet mean and for the parameters of geodesic regression. We show that the sensitivity of the parameters is a function of its respective Jacobi fields which itself is a function of the curvature of the manifold. A similar discovery was previously noted for the estimating the Fréchet mean by Reimherr et al. (2021). We thus demonstrate our methodology on the 2-sphere, Kendall’s shape space, and the space of symmetric positive definite matrices over a variety of sample sizes, variety of budgets, and unequal allocation of budgets in sections 4, E, and F.

Similar to the standard exponential mechanism in Euclidean space, it is not straightforward to sample from KNG. This difficulty is compounded by the difficulty of sampling on manifolds. We rely on MCMC which has its limitations for privacy (Wang et al., 2015); however, developing sampling algorithms is itself a research area outside the scope of this paper. Another problem one typically encounters is bounding the data. A usual assumption is $D \subset B_r(m)$, a ball of radius r centered at m . For most data one cannot know r a priori. We face a similar issue as we need $\tau = \sup \|\varepsilon\|$ which we cannot know beforehand. We set $\tau = \max_i \|\varepsilon_i\|$ which indeed violates privacy as we need to look at the data, but the concept of our methodology still holds. Further, since $\sigma = 2\tau/n\epsilon$ and we experiment under different ϵ we, in a sense, verify our methodology holds if we had inflated τ .

There are many avenues for future research. For instance, studying how DP interacts in the framework of multiple geodesic regression, Fréchet regression, or Wasserstein regression are all significant contributions. Further interestingly, parametrising a geodesic poses an opportunity unique to manifolds. For instance, one can reverse the parametrisation of a geodesic $\gamma : [0, 1] \rightarrow \mathcal{M}$ to $\tilde{\gamma}(t) = \gamma(1 - t)$. One might consider such an endeavor if, for instance, the curvature of the manifold is *different* at the endpoints, i.e. $\gamma(0)$ and $\gamma(1)$, thus directly affecting the sensitivity of $\tilde{\gamma}$. Our methodology relies on an upper bound on the curvature but if more information is known, one can possibly leverage this information. Another possible is utilizing DP Riemannian optimization Han et al. (2024a); Utpala et al. (2023). This route may alleviate the problem utilizing an approximate sampler but has its accompanying methodological difficulties.

486 REFERENCES
487

488 P.-A. Absil, R. Mahony, and R. Sepulchre. *Optimization algorithms on matrix manifolds*. Princeton
489 University Press, 2008.

490 D. Alabi, A. McMillan, J. Sarathy, A. Smith, and S. Vadhan. Differentially private simple linear
491 regression. *arXiv preprint arXiv:2007.05157*, 2020.

492 A. Bertazzi, T. Johnston, G. O. Roberts, and A. Durmus. Differential privacy guarantees of markov
493 chain monte carlo algorithms. *arXiv preprint arXiv:2502.17150*, 2025.

494 M. Bun and T. Steinke. Concentrated differential privacy: Simplifications, extensions, and lower
495 bounds. In *Theory of cryptography conference*, pages 635–658. Springer, 2016.

496 Y. Chen, Z. Lin, and H.-G. Müller. Wasserstein regression. *Journal of the American Statistical
497 Association*, 118(542):869–882, 2023.

498 E. Cornea, H. Zhu, P. Kim, J. G. Ibrahim, and A. D. N. Initiative. Regression models on riemannian
499 symmetric spaces. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 79
500 (2):463–482, 2017.

501 C. Criscitiello and N. Boumal. An accelerated first-order method for non-convex optimization on
502 manifolds, 2021. URL <https://arxiv.org/abs/2008.02252>.

503 M. P. Do Carmo. *Riemannian geometry*, volume 2. Springer, 1992.

504 J. Dong, A. Roth, and W. J. Su. Gaussian differential privacy. *Journal of the Royal Statistical Society:
505 Series B (Statistical Methodology)*, 84(1):3–37, 2022.

506 C. Dwork and G. N. Rothblum. Concentrated differential privacy. *arXiv preprint arXiv:1603.01887*,
507 2016.

508 C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
509 analysis. In *Theory of cryptography conference*, pages 265–284. Springer, 2006.

510 C. Dwork, K. Talwar, A. Thakurta, and L. Zhang. Analyze gauss: optimal bounds for privacy-
511 preserving principal component analysis. In *Proceedings of the forty-sixth annual ACM symposium
512 on Theory of computing*, pages 11–20, 2014.

513 J. J. Faraway. Regression for non-euclidean data using distance matrices. *Journal of Applied Statistics*,
514 41(11):2342–2357, 2014.

515 N. I. Fisher, T. Lewis, and B. J. Embleton. *Statistical analysis of spherical data*. Cambridge university
516 press, 1993.

517 P. T. Fletcher and S. Joshi. Principal geodesic analysis on symmetric spaces: Statistics of diffusion
518 tensors. In *International Workshop on Mathematical Methods in Medical and Biomedical Image
519 Analysis*, pages 87–98. Springer, 2004.

520 T. Fletcher. Geodesic regression on riemannian manifolds. In *Proceedings of the Third International
521 Workshop on Mathematical Foundations of Computational Anatomy-Geometrical and Statistical
522 Methods for Modelling Biological Shape Variability*, pages 75–86, 2011.

523 H. Hajri, I. Ilea, S. Said, L. Bombrun, and Y. Berthoumieu. Riemannian laplace distribution on the
524 space of symmetric positive definite matrices. *Entropy*, 18(3):98, 2016.

525 A. Han, P. Jawanpuria, and B. Mishra. Riemannian coordinate descent algorithms on matrix manifolds.
526 *arXiv preprint arXiv:2406.02225*, 2024a.

527 A. Han, B. Mishra, P. Jawanpuria, and J. Gao. Differentially private riemannian optimization.
528 *Machine Learning*, 113(3):1133–1161, 2024b.

529 J. Jeong, M. Jun, and M. G. Genton. Spherical process models for global spatial statistics. *Statistical
530 science: a review journal of the Institute of Mathematical Statistics*, 32(4):501, 2017.

540 Y. Jiang, X. Chang, Y. Liu, L. Ding, L. Kong, and B. Jiang. Gaussian differential privacy on
 541 riemannian manifolds. *Advances in Neural Information Processing Systems*, 36:14665–14684,
 542 2023.

543 D. G. Kendall. Shape manifolds, procrustean metrics, and complex projective spaces. *Bulletin of the
 544 London mathematical society*, 16(2):81–121, 1984.

545 W. A. Link and M. J. Eaton. On thinning of chains in mcmc. *Methods in ecology and evolution*, 3(1):
 546 112–115, 2012.

547 F. McSherry and K. Talwar. Mechanism design via differential privacy. In *48th Annual IEEE
 548 Symposium on Foundations of Computer Science (FOCS'07)*, pages 94–103. IEEE, 2007.

549 I. Mironov. Rényi differential privacy. In *2017 IEEE 30th computer security foundations symposium
 550 (CSF)*, pages 263–275. IEEE, 2017.

551 M. Nakahara. *Geometry, topology and physics*. CRC press, 2018.

552 A. Petersen and H.-G. Müller. Fréchet regression for random objects with euclidean predictors. *The
 553 Annals of Statistics*, 47(2):691–719, 2019.

554 P. Regmi. Geodesic regression. [https://github.com/paribeshregmi/function_](https://github.com/paribeshregmi/function_defn.py)
 555 [defn.py](https://github.com/paribeshregmi/function_defn.py), 2020.

556 M. Reimherr and J. Awan. Kng: The k-norm gradient mechanism. *Advances in Neural Information
 557 Processing Systems*, 32, 2019.

558 M. Reimherr, K. Bharath, and C. Soto. Differential privacy over riemannian manifolds. *Advances in
 559 Neural Information Processing Systems*, 34:12292–12303, 2021.

560 J. Seeman, M. Reimherr, and A. Slavković. Exact privacy guarantees for markov chain imple-
 561 ments of the exponential mechanism with artificial atoms. *Advances in Neural Information
 562 Processing Systems*, 34:13125–13136, 2021.

563 O. Sheffet. Differentially private ordinary least squares. In *International Conference on Machine
 564 Learning*, pages 3105–3114. PMLR, 2017.

565 O. Sheffet. Old techniques in differentially private linear regression. In *Algorithmic Learning Theory*,
 566 pages 789–827. PMLR, 2019.

567 C. Soto, K. Bharath, M. Reimherr, and A. Slavković. Shape and structure preserving differential
 568 privacy. *Advances in Neural Information Processing Systems*, 35:24693–24705, 2022.

569 S. Utpala, A. Han, P. Jawanpuria, and B. Mishra. Improved differentially private riemannian
 570 optimization: Fast sampling and variance reduction. *Transactions on Machine Learning Research*,
 571 2023.

572 Y.-X. Wang. Revisiting differentially private linear regression: optimal and adaptive prediction &
 573 estimation in unbounded domain. *arXiv preprint arXiv:1803.02596*, 2018.

574 Y.-X. Wang, S. Fienberg, and A. Smola. Privacy for free: Posterior sampling and stochastic gradient
 575 monte carlo. In *International Conference on Machine Learning*, pages 2493–2502. PMLR, 2015.

576 L. Wasserman and S. Zhou. A statistical framework for differential privacy. *Journal of the American
 577 Statistical Association*, 105(489):375–389, 2010.

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 A SAMPLING
595

596 This section describes how one could sample from the KNG mechanism on the unit sphere. We
597 implement a Riemannian random walk Metropolis-Hastings algorithm to sample from the KNG
598 mechanism. Suppose we have bounds on the sensitivity of p and v , denoted Δ_p and Δ_v respectively,
599 as in 3.

600 We have that $f(p; D) \propto \exp\{-\sigma^{-1}\|\nabla_p E(p; D)\|_p\}$. Given that $\sigma = \Delta_p/\epsilon_p$ and the gradient is as
601 in 3,

$$\begin{aligned} 602 f(p; D) &\propto \exp\left\{-\frac{\|\nabla_p E(p; D)\|_p}{\Delta_p/\epsilon_p}\right\} \\ 603 &= \exp\left\{-\frac{\|\nabla_p 1/n \sum d^2(\text{Exp}(p, x_i v), y_i)\|_p}{2\tau/(n\epsilon_p)}\right\} \\ 604 &= \exp\left\{-\frac{\|\sum d_p \text{Exp}(p, x_i v)^\dagger \varepsilon_i\|_p}{2\tau/\epsilon_p}\right\}. \end{aligned}$$

611 We note that for a negatively curved manifold, another term is required in the denominator. To
612 sample from this distribution, first, initialize the random walk at p_0 which can be any data point, the
613 Fréchet mean of the points, or the sample statistic \hat{p} . To make a proposal we first sample a vector
614 ν_{prop} from the tangent space, as it is simply a Euclidean plane, uniformly around p_0 with a radius
615 η . This η is a tuning parameter that determines the ‘stickiness’ of the MCMC chain. We set $\eta \propto \sigma$.
616 The proposal is then $p_{prop} := \text{Exp}(p_0, \nu_{prop})$. Typically one would then compute the acceptance
617 probability, however, note that the energy depends on both the shooting vector *and* a footprint. Since
618 we are under the assumption v is constant, we parallel transport v to the proposal that is, we use
619 $\Gamma_{\hat{p}}^{p_{prop}} \hat{v}$. Lastly, compute the acceptance probability in the typical fashion $f(p_{prop}; D)/f(p_0; D)$.
620 We draw subsequent instances in the same fashion continuing the random walk from the previously
621 accepted footprint. We forego thinning the chain as it has been argued that it is not a necessary
622 procedure (Link and Eaton, 2012). Furthermore, thinning decreases efficiency which compounds
623 with the inefficiency of sampling on manifolds.

624 While sampling instead of τ we use $\max\|\varepsilon_i\|$, the empirical largest error, in the acceptance probability
625 as the largest error in the dataset. This is not ideal as this value is data driven and thus is not private.
626 This is unfortunately a problem often faced in DP. For instance, when sanitizing the mean of real
627 numbers a common assumptions is that the data live in a bounded ball $B_r(y)$ centered at y with
628 radius $r > 0$. This ball can be determined by utilizing public information. In our setting we foresee a
629 similar solution. For example, if one were to use geodesic regression on Earth to model the migration
630 of birds, one could use the guidance of bird experts to select the maximum deviation.

631
632 A.1 PRIVACY AND MCMC

633 To sample from KNG on Riemannian manifolds we utilize the Metropolis-Hastings MCMC algorithm.
634 There has been a lot of literature on how MCMC impacts the privacy implications, see for instance
635 Bertazzi et al. (2025); Seeman et al. (2021). Roughly speaking, a pure DP mechanism, $(\epsilon, \delta = 0)$,
636 which utilizes an approximate sampler such as Metropolis-Hastings, will satisfy approximate-DP
637 with $\delta = O(1/M)$ where M is the length of chain, under some assumptions of proper mixing.
638 This does then weaken the privacy guarantees of our simulations. However, we note two important
639 considerations. First, for Riemannian manifolds samplers are not as widely available as for Euclidean
640 spaces. For Riemannian manifolds, samplers need to be developed for each manifold with its
641 respective metric. For instance, the Laplace on the space of symmetric positive-definite matrices
642 with the affine metric is studied in Hajri et al. (2016), but if one were to use the same space but
643 change the metric to Bures-Wasserstein or Log-Euclidean, this would require a different set up.
644 Even in Euclidean space, exact samplers for a general exponential mechanism are not guaranteed.
645 Second, we note that in practice we would only release one private pair (\tilde{p}, \tilde{v}) , so being cognizant of
646 that $\delta = O(1/M)$ one can control the impact on the privacy implications. That is, one can set M
647 arbitrarily large to arrive at a negligible δ .

648 **B RIEMANNIAN GEOMETRY**
 649

650 Following Nakahara (2018) we elaborate on two important aspects of Riemannian geometry that are
 651 widely used in this paper.
 652

653 **B.1 PARALLEL TRANSPORT**
 654

655 On a Riemannian manifold, the metric g induces a natural volume form with the help of a local basis
 656 $\{\partial/\partial x^i\}$ given by $\text{vol}_g = \sqrt{\det_g} dx^1 \wedge dx^2 \cdots \wedge dx^n$. The Riemannian measure $d\mu_g$ is derived
 657 using the volume form and allows us to integrate over the manifold,
 658

$$659 \quad d\mu_g = \sqrt{\det_g} dx^1 dx^2 \cdots dx^n.$$

660 Any subset of the manifold $A \subset \mathcal{M}$ is measurable if it belongs to the σ -algebra \mathcal{M} associated with
 661 the Riemannian measure.
 662

663 The generalization of a Euclidean shortest path, straight lines, on Riemannian manifolds is referred
 664 to as a “geodesic.” A connection ∇ on a manifold can be used to take directional derivatives and
 665 thus define a geodesic curve. A curve $\gamma : [0, 1] \rightarrow \mathcal{M}$ on \mathcal{M} is a geodesic curve with respect
 666 to ∇ if its acceleration is zero i.e. $\nabla \dot{\gamma} = 0$. On a manifold with linear connection there always
 667 exists a unique geodesic which is denoted by a footpoint p and shooting vector $v \in T_p \mathcal{M}$. The
 668 distance, $d(\cdot, \cdot)$, between two points $p, q \in \mathcal{M}$ is thus the length of the geodesic between them
 669 $d(p, q) := \mathcal{L}(\gamma) = \int \|\dot{\gamma}(t)\|_{\gamma(t)}^{1/2} dt$.
 670

671 Parallel transport plays a crucial role in proving theorem D.1 and sampling replicates for the MCMC
 672 chain. Unlike Euclidean space comparing two vectors on a general manifold \mathcal{M} becomes more
 673 challenging as the vector can lie on different tangent spaces of \mathcal{M} . Consider two points on the
 674 manifold close to each other, $x, x + \delta x$. We can have a vector field on the tangent space of x given
 675 by $V = V^\mu e_\mu$ where e_μ is the local basis and V_μ are the vector components. In Euclidean space the
 676 derivative with respect to x^ν is given by:
 677

$$\frac{\partial V^\mu}{\partial x^\nu} = \lim_{\delta x \rightarrow 0} \frac{V^\mu(\cdots, x^\nu + \delta x^\nu, \cdots) - V^\mu(\cdots, x^\nu, \cdots)}{\delta x^\nu} \quad (21)$$

678 On a general manifold, we need to transport $V^\mu(x)$ to $x + \delta x$ to perform the above subtraction.
 679 Denote a vector $V(x)$ transported to $x + \delta x$ as $\tilde{V}(x + \delta x)$ and satisfies the following conditions,
 680

$$681 \quad \tilde{V}^\mu(x + \delta x) - V^\mu(x) \propto \delta x \quad (22)$$

$$682 \quad \widetilde{V^\mu + W^\mu} = \tilde{V}^\mu(x + \delta x) + W^\mu(x + \delta x). \quad (23)$$

683 Where $W = W^\mu e_\mu$ is another vector field on x . A transport is called *parallel transport* if the above
 684 conditions are satisfied. If we take $\tilde{V}^\mu(x + \delta x) = V^\mu(x) - V^\lambda(x)\Gamma_{\nu\lambda}^\mu \delta x^\nu$, the above rules are
 685 satisfied.. There are distinct rules of parallel transport and each one is written with a choice of
 686 connection, Γ . For a manifold with a metric, there is a preferred choice of Γ called as Levi-Civita
 687 connection to define the parallel transport. Using the connection we can thus define a covariant
 688 derivative which is similar to a directional derivative in Euclidean space as,
 689

$$690 \quad \nabla_\mu V^\lambda = \frac{\partial V^\lambda}{\partial x^\mu} + \Gamma_{\mu\nu}^\lambda W^\nu, \quad (24)$$

691 where $\nabla_\mu W^\lambda$ is the λ th component of a vector $\nabla_\mu W$.
 692

693 An important theorem in Riemannian geometry is the Hopf-Rinow theorem which states that:
 694

695 **Theorem B.1.** *Let (\mathcal{M}, g) be a connected finite-dimensional Riemannian manifold and let d be the
 696 distance induced by g . The following are equivalent:*

697

 698 1. (\mathcal{M}, d) is a complete metric space.
 699 2. Every closed and bounded subset of \mathcal{M} is compact.
 700 3. \mathcal{M} is geodesically complete, that is, every geodesic $\gamma : (a, b) \rightarrow \mathcal{M}$ can be extended to a
 701 geodesic defined on all of \mathbb{R} .

702 Moreover, if these conditions hold, then for any $p, q \in \mathcal{M}$ there exists a minimizing geodesic segment
 703 $\gamma : [0, 1] \rightarrow \mathcal{M}$ such that

$$704 \quad \gamma(0) = p, \quad \gamma(1) = q, \quad d(p, q) = \text{length}(\gamma).$$

706 The fact that a minimizing geodesic between two points in a strongly convex ball is unique ensures
 707 that parallel transport is unique. This is given by the following theorem.

708 **Theorem B.2.** Suppose $p, q \in B_r(m_0)$. Then there exists a unique minimizing geodesic $\gamma : [0, 1] \rightarrow$
 709 \mathcal{M} that joins p to q . Parallel transport along γ with respect to the Levi–Civita connection therefore
 710 defines a unique linear isometry

$$711 \quad \Gamma_q^p : T_q \mathcal{M} \longrightarrow T_p \mathcal{M}.$$

712 In particular, for any $v \in T_p \mathcal{M}$ and $w \in T_q \mathcal{M}$, the quantity

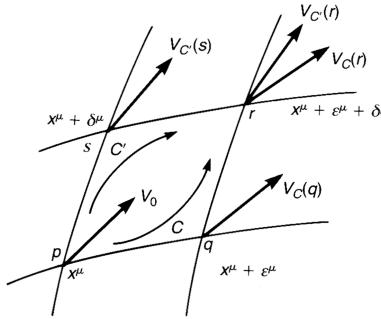
$$713 \quad \|v - \Gamma_q^p(w)\|$$

714 is well defined, depends only on the pair (p, q) , and is independent of any choice of paths.

715 In our work, we assume that the data lies in a geodesically convex ball and therefore, transporting
 716 vectors from $T_q \mathcal{M}$ to $T_p \mathcal{M}$ along the unique minimizing geodesic γ yields a uniquely determined
 717 linear map $\Gamma_q^p : T_q \mathcal{M} \rightarrow T_p \mathcal{M}$. Since the Levi–Civita connection is metric compatible and torsion
 718 free, parallel transport preserves the Riemannian inner product and hence the induced norm, so
 719 Γ_q^p is an isometry. It follows that for any $v \in T_p \mathcal{M}$ and $w \in T_q \mathcal{M}$, the difference $v - \Gamma_q^p(w)$ is
 720 unambiguously defined in $T_p \mathcal{M}$, and its norm $\|v - \Gamma_q^p(w)\|$ does not depend on any choice of path
 721 other than the minimizing geodesic.

723 B.2 RIEMANNIAN CURVATURE TENSOR

725 The geometric meaning of the curvature of a manifold and the Riemann curvature tensor is understood
 726 by parallel transporting a vector V_0 at p to a different point q along two distinct curves C and C' .
 727 One can notice in Figure 4 that the resulting two vectors are different from each other. This non-
 728 integrability of parallel transport defines the intrinsic notion of curvature of a manifold.



740 Figure 4: The vector V_0 is parallel transported along the curves C and C' resulting in $V_C(r)$ and
 741 $V_{C'}(r)$. The difference between these resulting vectors at the point r represents the curvature of the
 742 manifold (Nakahara, 2018).

744 Take four points on a manifold defined by the vertices of an infinitesimal parallelogram, $p \equiv x^\mu, q \equiv$
 745 $x^\mu + \epsilon^\mu, s \equiv x^\mu + \delta^\mu, r \equiv x^\mu + \delta^\mu + \epsilon^\mu$. We can parallel transport a vector V_0 along two curves
 746 defined by $C = pqr$ and $C' = psr$. The resulting vectors $V_C^\mu(r)$ and $V_{C'}^\mu(r)$ can be written in terms of
 747 the original vector $V_0 \in T_p \mathcal{M}$ as,

$$748 \quad V_C^\mu(r) = V_0^\mu - V_0^\kappa \Gamma_{\nu\kappa}^\mu(p) \epsilon^\nu - V_0^\kappa \Gamma_{\nu\kappa}^\mu(p) \delta^\nu - V_0^\kappa (\partial_\lambda \Gamma_{\nu\kappa}^\mu(p) - \Gamma_{\lambda\kappa}^\rho(p) \Gamma_{\nu\rho}(p)) \epsilon^\lambda \delta^\nu \quad (25)$$

$$750 \quad V_{C'}^\mu(r) = V_0^\mu - V_0^\kappa \Gamma_{\nu\kappa}^\mu(p) \delta^\nu - V_0^\kappa \Gamma_{\nu\kappa}^\mu(p) \epsilon^\nu - V_0^\kappa (\partial_\nu \Gamma_{\lambda\kappa}^\mu(p) - \Gamma_{\nu\kappa}^\rho(p) \Gamma_{\lambda\rho}(p)) \epsilon^\lambda \delta^\nu. \quad (26)$$

751 Once we have parallel transported the vectors on the tangent space of r we can quantify their
 752 difference as

$$753 \quad V_{C'}(r) - V_C(r) = V_0^\kappa (\partial_\lambda \Gamma_{\nu\kappa}^\mu(p) - \partial_\nu \Gamma_{\nu\kappa}^\mu(p) - \Gamma_{\lambda\kappa}^\rho(p) \Gamma_{\nu\rho}^\mu(p) + \Gamma_{\nu\kappa}^\rho(p) \Gamma_{\lambda\rho}^\mu(p)) \epsilon^\lambda \delta^\nu \quad (27)$$

$$754 \quad = V_0^\kappa R_{\nu\lambda\kappa}^\mu \epsilon^\lambda \delta^\nu. \quad (28)$$

755 The Riemann curvature tensor ($R_{\nu\lambda\kappa}^\mu$) is defined as this difference and represents the curvature.

756 B.3 PROOF FOR GRADIENT OF ENERGIES
757

758 We will prove

759
760
$$\nabla_p E(p, v) = -\frac{1}{n} \sum_{i=1}^n (d_p \text{Exp}(p, x_i v))^{\dagger} \varepsilon_i, \quad \varepsilon_i := \text{Log}(\eta_i, y_i), \quad \eta_i := \text{Exp}(p, x_i v), \quad (29)$$

761

762 where \dagger denotes the adjoint operator. For a linear map $A : T_p \mathcal{M} \rightarrow T_{\eta} \mathcal{M}$ we define $A^{\dagger} : T_{\eta} \mathcal{M} \rightarrow$
763 $T_p \mathcal{M}$ by
764

765
$$\langle Au, w \rangle_{\eta} = \langle u, A^{\dagger} w \rangle_p \quad \text{for all } u \in T_p \mathcal{M}, w \in T_{\eta} \mathcal{M}.$$

766 Given the smooth function $F(\eta) = \frac{1}{2} d^2(\eta, y)$, one can easily prove that $\nabla_{\eta} F(\eta) = -\text{Log}(\eta, y)$. We
767 will also use the fact that the Riemannian gradient is that which is uniquely defined in terms of the
768 directional derivative as:

769
770
$$\frac{d}{ds} \Big|_{s=0} F(\eta(s)) = dF(\eta)[w] = \langle \nabla F(\eta), w \rangle. \quad (30)$$

771

772 This follows from differentiating a function $F : \mathcal{M} \rightarrow \mathbb{R}$ along a curve $\eta(s)$ with $\dot{\eta}(0) = w$.773 Next, for fixed $p \in \mathcal{M}$ and $v \in T_p \mathcal{M}$, consider the geodesic $\gamma(t) = \text{Exp}(p, tv)$. Let $p_s := p(s)$ be a
774 smooth curve with $p_0 = p$ and $\dot{p}_0 = u \in T_p \mathcal{M}$. Further, let $v_s \in T_{p_s} \mathcal{M}$ be the parallel transport of v
775 along p_s (so $\nabla_s v_s|_{s=0} = 0$). Define the variation by geodesics

776
777
$$c(s, t) = \text{Exp}(p_s, t v_s).$$

778 Then $J(t) := \partial_s c(0, t)$ is a Jacobi field along γ with initial conditions $J(0) = u, J'(0) = 0$ and

779
780
$$d_p \text{Exp}(p, v)[u] = \partial_s c(0, 1) = J(1). \quad (31)$$

781 We want the change in geodesic energy if we perturb p along p_s . Using $\eta_i(s) = \text{Exp}(p_s, x_i v)$ together
782 with the chain rule and equation 30 we obtain,

783
784
$$\nabla_p E = \frac{1}{2n} \frac{d}{ds} \Big|_{s=0} d(\eta_i(s), y_i)^2 = \frac{1}{2n} \langle \nabla_{\eta} d(\eta, y_i)^2 \Big|_{\eta=\eta_i(0)}, \dot{\eta}_i(0) \rangle = \frac{1}{n} \langle -\varepsilon_i, \dot{\eta}_i(0) \rangle_{\eta_i}$$

785

786 where $\dot{\eta}_i(0) = d_p \text{Exp}(p, x_i v)[u]$. Hence

787
788
$$\frac{d}{ds} \Big|_{s=0} \frac{1}{2} d(\eta_i(s), y_i)^2 = \langle -\varepsilon_i, d_p \text{Exp}(p, x_i v)[u] \rangle_{\eta_i}.$$

789 Summing over i we have,

790
791
$$\frac{d}{ds} \Big|_{s=0} E(p_s, v) = \frac{1}{n} \sum_{i=1}^n \langle -\varepsilon_i, d_p \text{Exp}(p, x_i v)[u] \rangle = \frac{1}{n} \langle u, \sum_{i=1}^n (d_p \text{Exp}(p, x_i v))^{\dagger} (-\varepsilon_i) \rangle_p,$$

792

793 where the last equality is the definition of the adjoint. Because this holds for every $u \in T_p \mathcal{M}$, the
794 Riemannian gradient at p is

795
796
$$\nabla_p E(p, v) = -\frac{1}{n} \sum_{i=1}^n (d_p \text{Exp}(p, x_i v))^{\dagger} \varepsilon_i, \quad (32)$$

797

798 as claimed. One can follow similar steps for the gradient with respect to v to derive,
799

800
801
$$\nabla_v E(p, v) = -\frac{1}{n} \sum_{i=1}^n x_i (d_v \text{Exp}(p, x_i v))^{\dagger} \varepsilon_i. \quad (33)$$

802

803 C BOUND ON GEODESIC LENGTH ρ
804805 Let \mathcal{M} be a Riemannian manifold with sectional curvature bounded as $\kappa_l \leq \kappa \leq \kappa_h$ and $\kappa_l < 0$.
806 $\{(x_i, y_i)\}_{i=1}^N$ be data with $y_i \in \mathcal{M}$ and suppose there exists $m_0 \in \mathcal{M}$ and $\tau_m > 0$ such that
807

808
$$y_i \in B_{\tau_m}(m_0) \quad \text{for all } i.$$

809

810 Before performing the regression task we reparameterise the predictors so that for some index k we
 811 have $x_k = 0$. Consider the geodesic regression model

$$812 \quad 813 \quad \hat{y}_i = \text{Exp}(\hat{p}, x_i \hat{v}),$$

814 and assume the fit is τ -close:

$$815 \quad d(\hat{y}_i, y_i) \leq \tau \quad \text{for all } i.$$

816 Define the geodesic reach from the intercept

$$817 \quad 818 \quad \rho := \max_i d(\hat{p}, \hat{y}_i).$$

819 Since $x_k = 0$, we have $\hat{y}_k = \text{Exp}(\hat{p}, 0) = \hat{p}$. By τ -closeness, $d(\hat{p}, y_k) = d(\hat{y}_k, y_k) \leq \tau$. Because
 820 $y_k \in B_{\tau_m}(m_0)$, we have $d(y_k, m_0) \leq \tau_m$. The triangle inequality gives

$$821 \quad 822 \quad d(\hat{p}, m_0) \leq d(\hat{p}, y_k) + d(y_k, m_0) \leq \tau + \tau_m.$$

823 Now, fix any i . By the triangle inequality and the τ -closeness assumption,

$$824 \quad d(\hat{p}, \hat{y}_i) \leq d(\hat{p}, y_i) + d(y_i, \hat{y}_i) \\ 825 \quad \leq (d(\hat{p}, m_0) + d(m_0, y_i)) + \tau \\ 826 \quad \leq (\tau + \tau_m) + \tau_m + \tau \\ 827 \quad = 2(\tau_m + \tau).$$

828 Taking the maximum over i yields $\rho \leq 2(\tau_m + \tau)$.

831 D SENSITIVITY BOUND FOR THE SHOOTING VECTOR

833 In section 3 it was shown how to bound the sensitivity for the footpoint. In this section, we give the
 834 theorem with proof to bound the sensitivity for the shooting vector. As before we will use the KNG
 835 mechanism focusing on the shooting vector. If the assumption 3.1 and 3.2 are satisfied the bound on
 836 the sensitivity Δ_v is given by:

837 **Theorem D.1.** *Let Assumptions 3.1 and 3.2 hold. Let D, D' be adjacent datasets, for a fixed shooting
 838 vector v ,*

$$839 \quad \Delta_{\vec{v}} = \sup_{D \sim D'} \|\nabla_{\vec{v}} E(p; D) - \nabla_{\vec{v}} E(p; D')\|, \\ 840 \quad \leq \frac{2\tau}{n}, \kappa_l \geq 0, \\ 841 \quad \leq \frac{2\tau}{n} \frac{\sinh(\sqrt{-\kappa_l}\tau)}{\sqrt{-\kappa_l}}, \kappa_l < 0$$

846 *Proof.* We will start with fixing the footpoint p and focus on the shooting vector, \vec{v} . The global
 847 sensitivity is

$$848 \quad \Delta_{\vec{v}} = \sup_{D \sim D'} \|\nabla_{\vec{v}} E(p; D) - \nabla_{\vec{v}} E(p; D')\|. \quad (34)$$

849 Using the chain rule, the gradient of the energy is given by, $\nabla_{\vec{v}} E(p; D) = -\frac{1}{n} \sum_{i=1}^n x_i d_{\vec{v}} \text{Exp}(p, x_i v)^\dagger \vec{\varepsilon}_i$ where $\vec{\varepsilon}_i = \text{Log}(\text{Exp}(p, x_i v), \hat{y}_i)$ is the error vector and \dagger
 850 denotes the adjoint operator. The norm in equation 34 is thus the difference of two sums that differ in
 851 only one term due to the adjacent datasets $D \sim D'$. All terms, thus, cancel except the last. We have,
 852

$$853 \quad \Delta_{\vec{v}} = \frac{1}{n} \|x_n d_{\vec{v}} \text{Exp}(p, x_n v)^\dagger \vec{\varepsilon}_n - x'_n d_{\vec{v}} \text{Exp}(p, x'_n v)^\dagger \vec{\varepsilon}'_n\|, \quad (35)$$

$$854 \quad \leq \frac{1}{n} \left(\|x_n d_{\vec{v}} \text{Exp}(p, x_n v)^\dagger \vec{\varepsilon}_n\| + x'_n \|d_{\vec{v}} \text{Exp}(p, x'_n v)^\dagger \vec{\varepsilon}'_n\| \right), \quad (36)$$

$$855 \quad \leq \frac{1}{n} \left(|x_n| \|d_{\vec{v}} \text{Exp}(p, x_n v)^\dagger\|_{op} \|\vec{\varepsilon}_n\| + |x'_n| \|d_{\vec{v}} \text{Exp}(p, x'_n v)^\dagger\|_{op} \|\vec{\varepsilon}'_n\| \right), \quad (37)$$

$$856 \quad \leq \frac{1}{n} \left(\|d_{\vec{v}} \text{Exp}(p, x_n v)\|_{op} \|\vec{\varepsilon}_n\| + \|d_{\vec{v}} \text{Exp}(p, x'_n v)\|_{op} \|\vec{\varepsilon}'_n\| \right), \quad (38)$$

$$857 \quad \leq \frac{\tau}{n} \left(\sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\| + \sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x'_n)}(1)\| \right) \quad (39)$$

864 Here the second step applies the triangle inequality, the third step uses the characterization
 865 $\|A\vec{\varepsilon}_n\| \leq \|A\|_{op}\|\vec{\varepsilon}_n\|$ for linear operators, and the operator norm is preserved under the ad-
 866 joint, i.e. $\|A^\dagger\| = \|A\|$ and $x_n, x'_n \in [0, 1]$ we can substitute $x_n = x'_n = 1$ to get the worst
 867 upper bound. In the final step we use the definition of operator norm and equation 8 to get
 868 $\|d_{\vec{v}}\text{Exp}(p, x_n v)\|_{op} = \sup_{\|\vec{u}\|=1} \|d_{\vec{v}}\text{Exp}(p, x_n v) \vec{u}\| = \sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\|$ where \vec{u} is deviation
 869 of \vec{v} . The initial conditions on $J_{\vec{u}}'(x_n)(t)$ are $J_{\vec{u}}'(x_n)(0) = \vec{u}$, $J_{\vec{u}}^{(x_n)}(0) = 0$. The τ comes out as we
 870 have assumed that the data is τ -close, with $\|\varepsilon_n\|, \|\varepsilon'_n\| < \tau$ in line with assumption 3.2.
 871

872 Next let's consider only the first part of equation 39 (second part will follow the same analysis).
 873 We will use the Rauch comparison theorem by taking the model manifold with constant sectional
 874 curvature $\kappa = \kappa_l$.

$$875 \sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\| \leq \sup_{\|\vec{u}\|=1} \|\tilde{J}_{\vec{u}}^{(x_n)}(1)\| \\ 876$$

877 Where \tilde{J} is the Jacobi field on our model manifold $\tilde{\mathcal{M}}$. We can next decompose \vec{u} in perpendicular
 878 and parallel components to the geodesic, $\|\tilde{J}_{||}(1)\| = \|\vec{u}_{||}\|$ and \tilde{J}_{\perp} is dependent on the curvature,
 879 $\|\tilde{J}_{\perp}(1)\| = \|\frac{S_{\kappa_l}(\rho)}{\rho} \vec{u}_{\perp}\|$, where $\rho = |x_n \vec{v}|$ is the length of the geodesic.
 880

$$881 \quad S_{\kappa_l}(s) = \begin{cases} \frac{1}{\sqrt{\kappa_l}} \sin(\sqrt{\kappa_l} s) & , \kappa_l > 0, \\ 882 \quad s & , \kappa_l = 0, \\ 883 \quad \frac{1}{\sqrt{-\kappa_l}} \sinh(\sqrt{-\kappa_l} s) & , \kappa_l < 0 \end{cases} \quad (40)$$

884 Therefore, we get:
 885

$$887 \quad \sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\| \leq \sup_{\|\vec{u}\|=1} \sqrt{\|\vec{u}_{||}\|^2 + \left| \frac{S_{\kappa_l}(\rho)}{\rho} \right|^2 \|\vec{u}_{\perp}\|^2} \quad (41)$$

$$888 \quad \leq \max(1, \left| \frac{S_{\kappa_l}(\rho)}{\rho} \right|) \quad (42)$$

889 In $S_{\kappa_l}(s)$ maximum of sin is 1 so for non negative κ_l our maximum will be 1. For $\kappa_l < 0$, we
 890 have $x_n \in [0, 1]$ and $0 \leq \rho \leq 2(\tau_m + \tau)$ (check appendix C for detailed steps) and since sinh is
 891 monotonically increasing $\sinh(\sqrt{-\kappa_l} \rho) \leq \sinh(2\sqrt{-\kappa_l}(\tau_m + \tau))$, therefore :
 892

$$893 \quad \sup_{\|\vec{u}\|=1} \|J_{\vec{u}}^{(x_n)}(1)\| \leq \begin{cases} 1 & , \kappa_l \geq 0 \\ 894 \quad \frac{1}{2\sqrt{-\kappa_l}(\tau_m + \tau)} \sinh(2\sqrt{-\kappa_l}(\tau_m + \tau)) & , \kappa_l < 0. \end{cases} \quad (43)$$

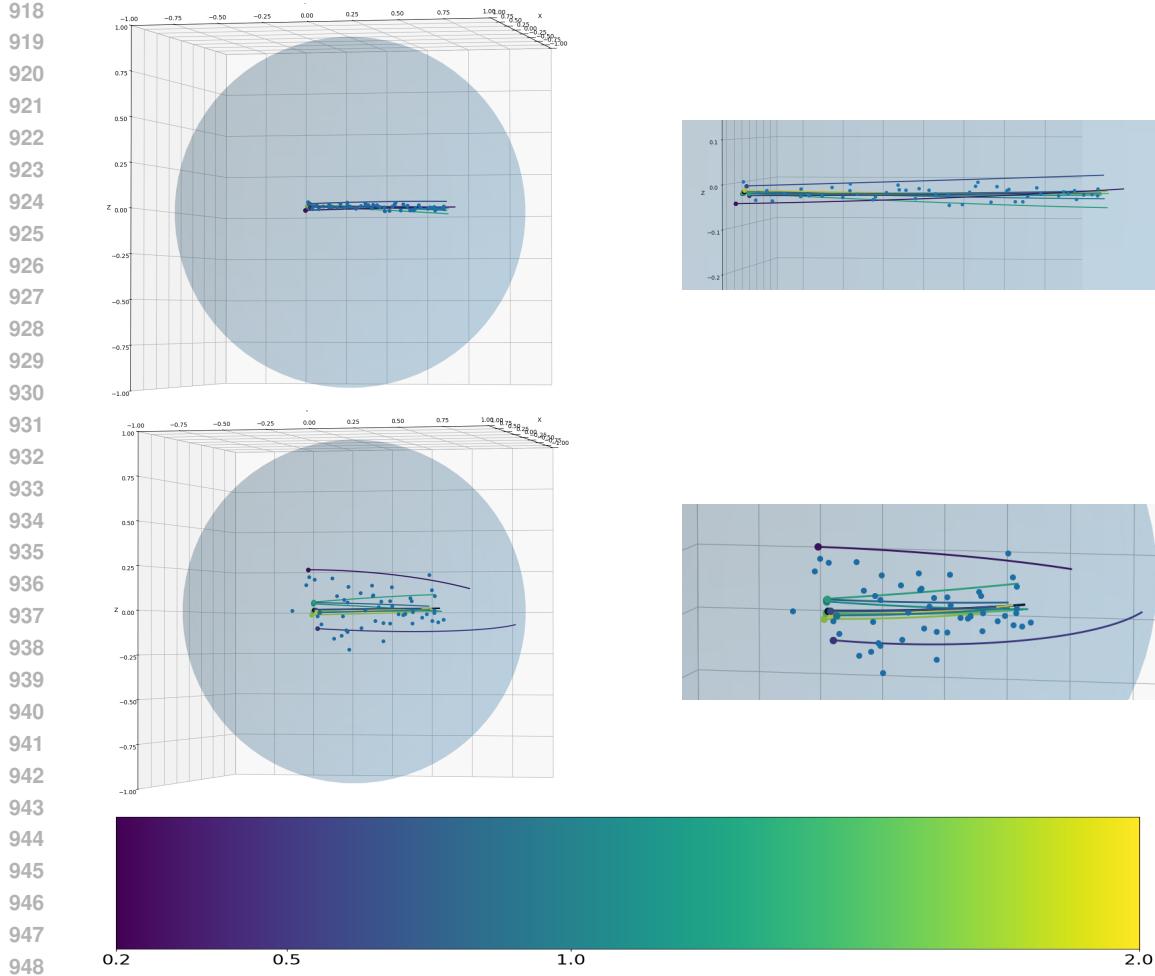
895 As this is independent of x_n , finally we get the sensitivity as:
 896

$$897 \quad \Delta_{\vec{v}} \leq \begin{cases} \frac{2\tau}{n}, & \kappa_l \geq 0, \\ 898 \quad \frac{\tau \sinh(2\sqrt{-\kappa_l}(\tau_m + \tau))}{n \sqrt{-\kappa_l}(\tau_m + \tau)} & , \kappa_l < 0. \end{cases} \quad (44)$$

900 \square
 901
 902
 903
 904

905 E EFFECT OF DATA SPREAD ON UNIT SPHERE

906 For the experiments on the unit sphere, recall that data points were generated by perturbing locations
 907 on the sphere with Gaussian noise sampled from a multivariate normal distribution with zero mean
 908 and covariance matrix $\delta I_{3 \times 3}$, fixing $\delta = 0.001$ in the main text. In this appendix, we study the effect
 909 of larger noise by increasing δ to 0.01 and 0.1. Figure 5 provides a visual illustration of the data
 910 together with the non-private geodesic and the private geodesics obtained under equal allocation of
 911 the privacy budget, with total budget $\epsilon \in [2.0, 0.2]$. The geodesics are color-coded according to their
 912 total privacy budgets: darker blue indicates a smaller total budget. For each row, the second panel
 913 provides a zoomed-in view for clarity. In the top row ($\delta = 0.01$), some private geodesics with smaller
 914 budgets (shown in purple and blue) deviate farther from the data. When the noise level increases
 915



949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 5: Visual representation of 50 data points (blue dots) along with non-private geodesic and private geodesics for equal allocation of privacy budgets with total budget $\epsilon \in [2.0 - 0.2]$ in ten steps and varying errors δ . Top row: For $\delta = 0.01$, Bottom row: $\delta = 0.1$

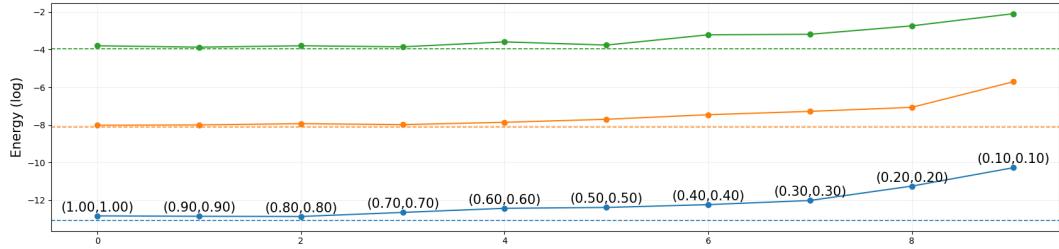


Figure 6: Log-average MSE, $\ln \bar{\mathcal{E}}$, on the unit sphere with 50 data points for $\delta = 0.001$ (blue), $\delta = 0.01$ (orange), and $\delta = 0.1$ (green). Dotted lines indicate the corresponding energies without privatization.

to $\delta = 0.1$, this deviation becomes even more pronounced, with the low-budget geodesics pushed further away from the data.

This behavior is reflected quantitatively in the log-average MSE. Figure 6 shows that, as the noise level increases, the non-private log energy also increases, and for each fixed δ , the log-average MSE exhibits the same trend observed earlier: higher error for smaller total privacy budgets.

F SYMMETRIC POSITIVE DEFINITE MATRICES (SPD)



Figure 7: Log average MSE $\ln \bar{\mathcal{E}}$ for 20 (blue), 50 (orange), and 100 (green) data points on the $\text{SPD}(2)$ manifold. Dotted line are the energies without privatisation. Top: unequal budget splits $\epsilon_p \in [0.02, 2.0]$, $\epsilon_v \in [2.0, 0.02]$, total $\epsilon = 2.02$ and Bottom: Equal budget splits with varying total budget $\epsilon \in [0.2, 2.0]$.

We generated synthetic data on the manifold of 2×2 symmetric positive definite matrices, $\text{SPD}(2)$, by sampling points along a geodesic with added noise. Two random matrices $p, q \in \text{SPD}(2)$ were chosen, and the initial tangent vector was set to $v = \text{Log}(p, q)$ using the affine-invariant metric. For covariates $x \in [0, 1]$, clean responses were obtained as $y_{\text{clean}}(x) = \text{Exp}(p, x v)$. To model observational variability, each $y_{\text{clean}}(x)$ was perturbed by isotropic Gaussian noise in the tangent space, $\xi \sim \mathcal{N}(0, \sigma^2 I)$, and mapped back as $y(x) = \text{Exp}(y_{\text{clean}}, \xi)$. We used $\sigma = 0.01$, producing small deviations from the underlying geodesic, so that the dataset consists of pairs $\{(x_i, y_i)\}_{i=1}^N$ with $y_i \in \text{SPD}(2)$.

For the $\text{SPD}(2)$ manifold, under an affine-invariant metric, the sectional curvature is bounded by $[-\frac{1}{2}, 0]$ (Criscitiello and Boumal, 2021) resulting in $\kappa_l = -\frac{1}{2}$. The sensitivities of the footpoint and shooting vector are given by

$$\Delta_p = \frac{2\tau}{n} \cosh\left(2\sqrt{\frac{1}{2}}(\tau_m + \tau)\right).$$

$$\Delta_v = \frac{\tau}{n} \frac{1}{\sqrt{\frac{1}{2}(\tau_m + \tau)}} \sinh\left(2\sqrt{\frac{1}{2}}(\tau_m + \tau)\right).$$

Figure 7 shows the behavior of the average log mean squared error, $\ln \bar{\mathcal{E}}$, for datasets of size 20, 50, and 100, depicted by the blue, orange, and green curves, respectively. The dashed curves in each panel indicate the geodesic log energy corresponding to the non-private regression estimates (\hat{p}, \hat{v}) .

For each pair of privacy budgets (ϵ_p, ϵ_v) , we generate 100 private parameter pairs (\tilde{p}, \tilde{v}) by sampling 10 candidate footpoints and 10 shooting vectors per footpoint. The top panel reports the case of an unequal budget split, with $\epsilon_p \in [0.02, 2.0]$ and $\epsilon_v \in [2.0, 0.02]$, keeping the total budget fixed at $\epsilon = 2.02$. In this setting, the log error is maximal when either ϵ_p or ϵ_v is very small, yielding a parabolic trend reminiscent of what we observed on the sphere and Kendall shape space. The bottom panel presents the equal budget allocation, where the overall privacy budget decreases from 2.0 to 0.2, producing a qualitatively similar pattern.

At smaller budgets, the observed increase in error is expected: tighter privacy constraints induce heavy-tailed sampling distributions for \tilde{p} and \tilde{v} , leading to accepted samples that deviate noticeably from the non-private estimates (\hat{p}, \hat{v}) and thereby inflate the energy. Although the private estimates yield energies that approach those of the non-private regression, they do not coincide exactly. As the

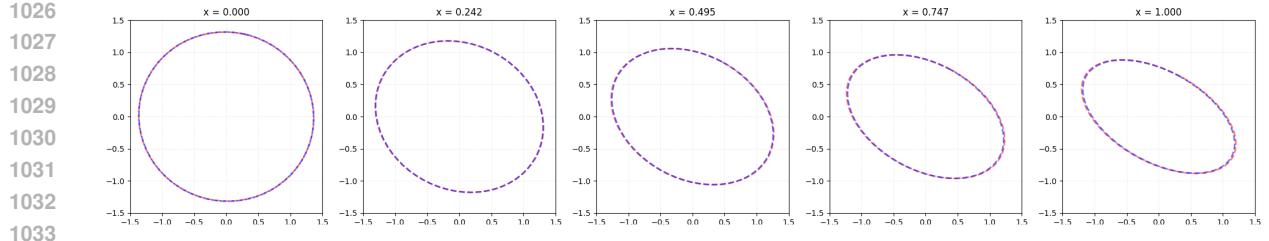


Figure 8: SPD(2) matrices as ellipses for equally spaces covariates. Blue curves denote predictions from the non-private regression parameters, while magenta curves correspond to predictions from the differentially private parameters with $\epsilon_p = \epsilon_v = 0.2$.

sample size grows, the sensitivity reduces, which in turn sharpens the sampling distribution of (\tilde{p}, \tilde{v}) around the non-private solution. Consequently, the private energies converge more closely to the geodesic energies, as seen in Figure 7. Across all budget pairs (ϵ_p, ϵ_v) , the error for 20 data points (blue) exceeds that for 50 points (orange), which is in turn higher than that for 100 points (green).

We know that any element of SPD(2) can be expressed as a real symmetric 2×2 matrix $y = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ with $a, c > 0$ and $ac - b^2 > 0$ to ensure positive definiteness. Such a matrix admits an eigendecomposition $y = U\Lambda U^\top$, where $U \in SO(2)$ contains the orthonormal eigenvectors and $\Lambda = \text{diag}(\lambda_1, \lambda_2)$ with $\lambda_1, \lambda_2 > 0$ are the eigenvalues. Geometrically, this representation allows one to view y as defining an ellipse with axes $\sqrt{\lambda_1}$ and $\sqrt{\lambda_2}$ oriented according to U .

Figure 8 compares predictions from the non-private estimates (blue) with those from the private estimates using $(\epsilon_p = \epsilon_v = 0.2)$ (magenta) with the ellipse representation. Although representing SPD(2) matrices as ellipses offers an intuitive view of their eigenvalues and orientations, this visualization can be misleading: ellipses that appear similar may be far apart in the Riemannian metric, while visually distinct ones may in fact be close.

G VALIDITY OF SENSITIVITY BOUNDS

In this section, we present evidence of the validity of the sensitivity bounds for the unit sphere and SPD(2) found in Section 3 and D. We create artificial adjacent datasets D, D' , each of n data points on the given manifold. This is done by generating $n + 1$ data points on the sphere by the same mechanism mentioned at the start of Section 4.1 and F, then removing the first data point for the dataset D and the last data point for the dataset D' .

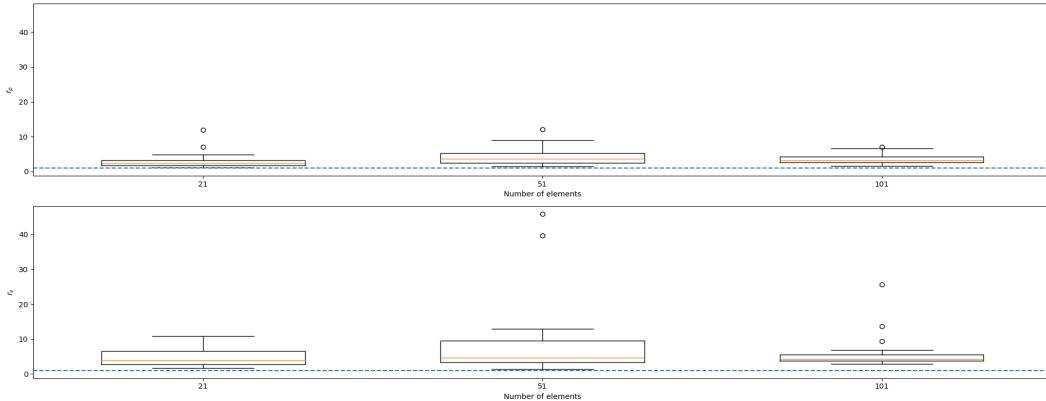
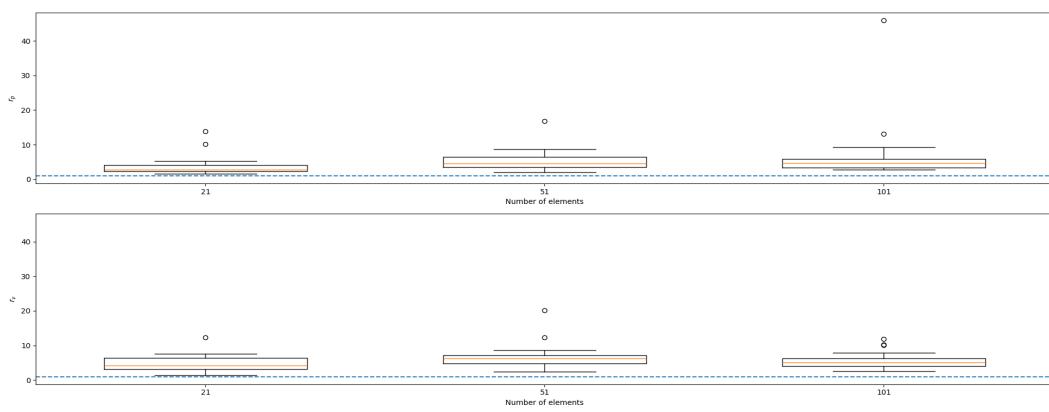


Figure 9: Box plots for ratios r_p and r_v for 20 pairs of adjacent datasets on a unit sphere with $\delta = 0.001$. Left: Box plot of the ratio $r_p = \Delta_p^{\text{thy}} / \Delta_p^{\text{exp}}$ for 20, 50, 100 data points on a unit sphere. Right: Box plot of the ratio $r_v = \Delta_v^{\text{thy}} / \Delta_v^{\text{exp}}$ for 20, 50, 100 data points on a unit sphere.

1080 Let us define an experimental sensitivity for the footpoint p as $\Delta_p^{exp} = \|\nabla_p E(p; D) - \nabla_p E(p; D')\|$
 1081 and for the shooting vector v as $\Delta_v^{exp} = \|\nabla_v E(p; D) - \nabla_v E(p; D')\|$. We call these experimental
 1082 bounds as the gradients depend on the generated datasets. Next, we define theoretical sensitivity
 1083 bounds as, $\Delta_p^{thy} = \sup_{D \sim D'} \|\nabla_p E(p; D) - \nabla_p E(p; D')\|$ and $\Delta_v = \sup_{D \sim D'} \|\nabla_v E(v; D) -$
 1084 $\nabla_v E(v; D')\|$. From section 4.1 we know that the theoretical bounds for the unit sphere are given
 1085 by $\Delta_p^{thy} = \Delta_v^{thy} = \frac{2\tau}{n}$. Here we take $\tau = \max_{D, D'} \{\epsilon_j\}$, where $\{\epsilon_j\}$ is the combined set of errors
 1086 in datasets D, D' . To check the validity of our theoretical sensitivity bounds we calculate the ratios
 1087 $r_p = \frac{\Delta_p^{thy}}{\Delta_p^{exp}}$, $r_v = \frac{\Delta_v^{thy}}{\Delta_v^{exp}}$. We expect the theoretical bounds to be always greater than the experimental
 1088 ones as they are defined to be the supremum over all possible adjacent datasets. Thus the ratios r_p
 1089 and r_v are expected to be greater than one.
 1090



1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105 Figure 10: Box plots for ratios r_p and r_v for 20 pairs of adjacent datasets on $SPD(2)$ with $\sigma = 0.01$.
 1106 Left: Box plot of the ratio $r_p = \Delta_p^{thy}/\Delta_p^{exp}$ for 20, 50, 100 data points on $SPD(2)$. Right: Box plot
 1107 of the ratio $r_v = \Delta_v^{thy}/\Delta_v^{exp}$ for 20, 50, 100 data points on $SPD(2)$.
 1108

1109 Figure 9 displays the box plots for the ratios $r_p = \Delta_p^{thy}/\Delta_p^{exp}$ and $r_v = \Delta_v^{thy}/\Delta_v^{exp}$ computed
 1110 for datasets of size 20, 50, and 100 on the unit sphere. Each box plot is obtained from 20 pairs
 1111 of adjacent datasets. The ratios are consistently greater than one and concentrated near one, with
 1112 only a small number of outliers, indicating that the theoretical sensitivity bounds are both valid and
 1113 tight. Figure 10 presents the corresponding ratios for datasets on the $SPD(2)$ manifold, again using
 1114 20 adjacent pairs for each dataset size. The results exhibit the same qualitative behavior, with all
 1115 ratios exceeding one and remaining close to unity, further confirming the validity and tightness of the
 1116 bounds in this setting.
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133