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Abstract

This study proposes and examines an information-theoretic measure of planning in1

incremental speech production, and investigates the effects of planning, predictabil-2

ity, and interference-based measures on lexical substitution errors. We then present3

a rate-distortion theoretic model of speech production that explicates how these4

factors affect the production of lexical substitution errors.5

1 Introduction6

Spontaneous speech is punctuated with disfluencies that reflect delays or interruptions in language7

production mechanisms [1, 2, 3, 4]. One common kind of disfluency is a lexical substitution, where a8

speaker says one word (which we term a distractor) and then corrects it to another word (which we9

term a target) [5]. For example, see the following naturally-occurring utterance from the Switchboard10

corpus [6]:11

(1) and I believe that mental acuity is easy to sustain maintain if you just simply continue to12

exercise your mind13

Here the distractor is sustain, which the speaker corrects to maintain. More generally, several14

prominent models of speech production have attributed hesitations and disfluencies of various kinds15

to difficulties in selecting what word to say next [7, 8, 9].16

Here we develop an information-theoretic analysis of lexical substitution errors in a dataset of17

naturally-occurring disfluencies in the Switchboard corpus, applying a new measure of planning. We18

leverage large language models to estimate the relevant information quantities, and perform a targeted19

analysis that predicts which word is likely to appear as a distractor in each context. Finally, we20

explicate our results within the framework of a rate–distortion theoretic model of speech production.21

1.1 Background and related work22

Computational characterizations of lexical selection have emphasized the effects of word frequency23

and predictability on the ease of retrieving the appropriate word from memory. Low frequency words24

were not only associated with delayed production in naming experiments [10, 11, 12], but were also25

more likely to be preceded by disfluencies in naturalistic speech [13, 14]. Similarly, words that26

were less predictable conditional on the past (low forward predictability) or within the surrounding27

context (low contextual predictability) were also more likely to be preceded by hesitations, repetitions,28

and corrections [1, 15, 13, 16, 17]. Intriguingly, disfluencies and slowdowns in speech were also29

associated with backward transitional probability: the probability of a word given its following30

context [2, 18]; this is usually considered to be related to a speaker’s plans for future production. In31

addition to being a strong predictor of fillers and corrections [19, 20], backward predictability has32
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also been associated with delays caused by the reactivation of past material to aid retrieval of a target33

compatible with the planned future [21].34

A complementary line of experimental research in word production has also demonstrated that35

delays or errors in selecting a target can arise due to the activation accrued by its semantic and/or36

phonological neighbors [22, 23, 24]. The semantic interference effect, in particular, has been a37

robust finding in the Picture Word Interference paradigm, where the degree of semantic relatedness38

between a pictorial target and an orthographic distractor predicts a delay in retrieving the target [25].39

Similarly, the presentation of a phonologically-related distractor has been associated with an increase40

in activation of the segments that the distractor shares in common with the target [26]. Hence, higher41

proximity between the target and distractor along semantic and/or phonological dimensions correlates42

to a greater degree of co-activation during processing.43

1.2 Planning measure44

Integrating perspectives from both lines of inquiry, our analyses of lexical substitution errors in-45

corporate the effects of frequency, incremental production, and planning along with distance-based46

metrics such as phonological and semantic distance. We propose an information-theoretic measure of47

planning based on Pointwise Mutual Information (PMI) [27]. In particular, we use the PMI of a word48

x with the future context cf given the past context cp: pmiFP = ln
p(x|cf ,cp)
p(x|cp) , where p(x | cf , cp)49

is the probability of x given both the preceding and following contexts and p(x|cp) is its forward50

predictability. Unlike backward predictability, pmiFP does not assume that the future is planned51

independent of the past. Rather it serves as a measure of planning that (i) does not commit to a52

particular planning order and (ii) uses the information provided by the past context to estimate the53

association between the word and the future context. Therefore, pmiFP can accommodate both linear54

[28, 29] and hierarchical planning [30, 31]. Previous works investigating backward predictability55

have not considered the integration of past and future context represented in pmiFP. In Section 4, we56

give a more detailed theoretical justification for the use of this measure.57

2 Methods58

We develop a regression model that predicts whether a given word x, as opposed to any other word59

in the vocabulary, is the distractor that the speaker selects and eventually overrides after production.60

Specifically, we examine how proximity to the target, frequency, incremental or forward predictability,61

and planned production guide the selection of a particular distractor given an utterance context.62

Measures63

Frequency: We use the frequencies from the SUBTLEXus corpus [32] to estimate unigram probabil-64

ity p(x) of a given word x65

Predictability-based measures: We estimate the forward, backward, and contextual probabilities66

of targets and distractors using XLNet [33], a large transformer-based model trained on both causal67

and masked modeling objectives. We select utterances where the length of both the preceding and68

following contexts exceed one word. To estimate p(x | cp) and p(x | cf ) for a continuation x, we69

provide as input the past context cp and the future context cf (in reverse) respectively. To estimate70

p(x | cp, cf ), we provide the entire bidirectional utterance context (cp, cf ) to the model with a mask71

applied to x in order to indicate the word to be predicted (see Appendix A for examples).72

Distance measures: We estimate phonological distance between the target and distractor based on73

the Soundex algorithm [34] and semantic distance using cosine distance between pretrained GloVe74

embeddings [35].75

Materials76

For our analyses, we use Switchboard Annotations [36], a human-parsed subset of the Switchboard77

corpus of conversational speech [37] with annotations marking reparanda and repairs. In order to78

extract utterances with lexical substitutions, we identify two distinct signatures characteristic of these79

errors, namely (i) where the distractor or reparandum is immediately followed by the target or repair80

(1) and (ii) where a single word is substituted within a repeated phrase (Appendix A). We restrict81

our analyses to utterances with an equal number of reparanda and repairs in order to exclude cases82

of additions, deletions, or structural revisions. Utterances with multiple substitution errors were83

preprocessed into context frames with single substitution errors (see Appendix A for examples).84
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Figure 1: Left: Increase in log likelihood of isDistractor model with incrementally added predictors,
in the order determined by goodness of fit in single-predictor models: log p, distances, log pFw,
pmiFP, and log pBw. The contribution of log backward probability is not visible. Right: Semantic
and phonological distance to target for actual distractor words (blue) vs. all words in the vocabulary
(red). Actual distractors are both semantically and phonologically close to the targets.

Model85

We use a generalized linear mixed model (GLMM) [38] with a binary dependent variable isDistractor86

and the target identity as a random effect:87

isDistractor(x) ∼ ln p(x)+ln p(x | cp)+pmiFP(x)+phonDist(x, xT )+semDist(x, xT )+(1 | xT )

For each instance of a lexical substitution error (N = 1368), the model above is fit to predict which88

word out of a subset of nontarget words (N = 150) selected from the vocabulary with varying degrees89

of semantic and phonetic relatedness to the target is the chosen distractor.90

We hypothesize that a nontarget x that is more frequent, and has higher forward predictability and91

pmiFP will have a higher likelihood of being the distractor that receives the activation required for92

selection. A word likely to be the distractor will also be co-activated with the target xT by virtue93

of their common semantic and/or phonological features. Hence, we predict that the most probable94

candidate for the distractor will also have lower semantic and/or phonological distance from xT .95

3 Results96

Both predictability and distance-based metrics emerged as significant predictors in the isDistractor97

model. As hypothesized, we observe a strong positive effect of frequency or unigram probability98

(β = 0.240, p < 0.001), forward predictability (β = 0.269, p < 0.001), and pmiFP (β = 0.223, p <99

0.001). In contrast, we find a strong negative effect of semantic (β = −0.695, p < 0.001) and100

phonological distance (β = −0.103, p < 0.001).101

We analyze the effects of individual predictors by examining the goodness-of-fit of the isDistractor102

model with incrementally added features. We observe that a model with pmiFP as the planning103

measure provides a better fit than one with backward predictability (χ2 = 800.5, p < 0.001), the104

measure used in previous work. We also find that when both these predictors are included as planning105

measures, backward predictability has a negligible contribution to the increase in log likelihood106

(Figure 1).107

4 Model sketch108

To explicate our results, we present a sketch of a model of speech production within a rate–distortion109

framework, deriving an optimal probabilistic policy pg(x | cp) for the selection of a word x given110

a communicative goal g and current state cp consisting of a sequence of previous words, subject to111

a constraint on the policy’s usage of information about the goal g [39, 40, 41, 42, 43, 44, 45, 46].112

Following Todorov [39]’s KL-control framework, a policy is selected to maximize an average113

future-discounted value-to-go114

vg(x | cp) = ℓg(x | cp) + α ⟨vg(x | x, cp)⟩p∗
g(x|cp)

, (1)

where α ∈ [0, 1] is a future-discount parameter, ⟨·⟩p indicates an average over distribution p, p∗g(x | cp)115

is an optimal policy, and ℓ(x | cp) is the local value of an action x given goal g and state cp. The116
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local value is given by the communicative value of a word x minus a control cost term which reflects117

the KL divergence between the policy pg and an automatic policy p0 which is not conditional on the118

goal g:119

ℓg(x | cp) = Rg(x | cp)︸ ︷︷ ︸
Communicative value

− ln
pg(x | cp)
p0(x | cp)︸ ︷︷ ︸

Control cost

. (2)

Communicative value Rg is meant to signify how well the word x conveys the speaker’s intended120

message to a listener. Viewed within a rate-distortion theoretic framework, maximizing the com-121

municative value corresponds to minimizing the distortion subject to the rate or control cost, which122

quantifies the amount of information about the goal used to determine the optimal action. Given this123

setting, the policy that maximizes average value-to-go as derived by [39] is124

p∗g(x | cp) ∝ exp{ln p0(x | cp) +Rg(x | cp) + α ⟨v(x | cp, x)⟩}. (3)

We propose that the selection of the next word in speech is determined by Eq. 3. The policy predicts125

that what matters for the selection of a word x is (1) predictability given past context cp, (2) the126

communicative value Rg of the word with respect to the current goal and state, and (3) the expected127

value of words following x, a kind of planning effect.128

4.1 Application to lexical substitution errors129

We consider lexical substitution errors to reflect cases where there are two words (the target and the130

distractor) that both receive high probability under Eq. 3. In that case, a word is likely to appear as a131

distractor whenever any of the three terms inside Eq. 3 are high. We will see that these correspond to132

forward predictability, semantic and phonetic distance, and pmiFP respectively.133

To understand the effect of the communicative value of word x, we consider the difference in134

communicative value between the distractor x and target xT , ∆Rg = Rg(x | cp) − Rg(xT | cp).135

This value differential ∆Rg corresponds to a negative communicative cost for saying x instead of136

xT . This cost should reflect both semantic distance, because semantically similar words will share137

many of their features relevant for communicative goals, and phonetic distance, because phonetically138

similar words may be indistinguishable to a listener.139

In order to draw out predictions from Eq. 3, we make three simplifying assumptions. First, we140

assume production consists of a word x followed by a second word representing the entire future of141

the utterance, cf . Second, we assume that the production of the future cf is deterministic given the142

communicative goal, and third, that the communicative value of cf is independent of the choice of x.143

Under these assumptions, the policy in Eq. 3 simplifies to144

p∗g(x | cp) ∝ exp{ln p0(x | cp) + ∆Rg + α ln p0(cf | cp, x)}. (4)

Rewriting the probability of the future cf using Bayes’ Rule in terms of the probability of the current145

word x given the future cf , p0(x | cp, cf ), we get146

p∗g(x | cp) ∝ exp

 ln p0(x | cp)︸ ︷︷ ︸
Forward predictability

+ ∆Rg︸︷︷︸
Distance

+α ln
p0(x | cp, cf )
p0(x | cp)︸ ︷︷ ︸

pmiFP

, (5)

where the three terms correspond to factors that were shown to predict which words appear as147

distractors in our corpus studies, including pmiFP. See Appendix B for full derivations. In addition,148

the frequency effects that we observe may be accommodated by adding an additional control cost for149

use of information about the state cp, but we leave this modeling question to future work.150

5 Conclusion151

We have presented an analysis of lexical substitution errors in speech that predicts which words152

surface as distractors, and shown how the results can be accommodated in a rate–distortion control153

framework. The work opens the way for information-theoretic models of speech production that are154

tightly linked with rate–distortion models in other fields such as neuroscience and psychophysics.155
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A Appendix: Lexical substitution examples and data processing269

Example of a lexical substitution within repeated material:270

1 so until i see the entire quote old guard of the soviet military of the soviet government271

completely roll over and disappear preferably buried i still consider them a threat272

Example of utterance with multiple substitution errors preprocessed into contexts with single substi-273

tution errors:274

A it depends on whether you whether we figure that we have a defense oriented military or an275

aggressive aggression oriented military276

a it depends on whether [you/we] figure that we have a defense oriented military or an277

aggression oriented military278

b it depends on whether we figure that we have a defense oriented military or an [aggres-279

sion/aggressive] oriented military280

Examples of preprocessed XLnet inputs for estimating forward, backward, and masked probabilities:281

A.3 it depends on whether <mask>282

A.4 military oriented aggression an or military oriented defense a have we that figure <mask>283

A.5 it depends on whether <mask> figure that we have a defense oriented military or an aggres-284

sion oriented military285

Code for preprocessing, calculating metrics, and analysis can be found at: InfoTheoreticDisfModel286
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B Appendix: Derivation of pmiFP from the speech production model287

Starting with policy of Eq. 3, we can get to Eq. 5 by assuming (1) production consists of a word288

x followed by a second word representing the entire future of the utterance, cf , (2) production of289

the future cf is deterministic given the communicative goal, and (3) that the communicative value290

of cf is independent of the choice of x. Under these assumptions, the policy in Eq. 3. The first291

assumption means that we only need to consider a finite time horizon with one future action. The292

second assumption means that the policy p∗g(c | cp, x) = δccf . The third assumption means that293

Rg(cf | x, cp) is the same for all x. These assumptions represent a scenario where the speaker has294

high certainty about what they will say next, and where the next part of an utterance is relatively295

independent of the current part, for example at the end of a phrase or clause.296

We start with the policy probability (setting α = 1 to save writing):297

p∗g(x | cp) ∝ exp{ln p0(x | cp) +Rg(x | cp) + ⟨v(x′ | cp, x)⟩}. (6)

First, we rewrite Rg(x | cp) = Rg(xT | cp) + ∆Rg. Because Rg(xT | cp) is not a function of the298

action under consideration x, it can be absorbed into the normalizing constant of Eq. 3, giving299

p∗g(x | cp) ∝ exp{ln p0(x | cp) + ∆Rg + ⟨v(x′ | cp, x)⟩}. (7)

Now using assumption (1), we can rewrite the policy in Eq. 3 as:300

p∗g(x | cp) ∝ exp

{
ln p0(x | cp) + ∆Rg −

〈
Rg(c | cp, x) + ln

p∗g(c | cp, x)
p0(c | cp, x)

〉
p∗
g(c|cp,x)

}
. (8)

Using p∗g(c | cp, x) = δccf for the expectation over future actions (assumption 2), we get301

p∗g(x | cp) ∝ exp

{
ln p0(x | cp) + ∆Rg +Rg(cf | cp, x)− ln

1

p0(cf | cp, x)

}
. (9)

Because Rg(cf | cp, x) is invariant to x (assumption 3), it can be absorbed into the implicit normaliz-302

ing constant of Eq. 9, giving303

p∗g(x | cp) ∝ exp{ln p0(x | cp) + ∆Rg + ln p0(cf | cp, x)}. (10)

Now applying Bayes’ rule to the term ln p0(cf | cp, x), and then applying logarithm rules, we get304

p∗g(x | cp) ∝ exp

{
ln p0(x | cp) + ∆Rg + ln

p0(x | cp, cf )p0(cf | cp)
p0(x | cp)

}
(11)

= exp

{
ln p0(x | cp) + ∆Rg + ln

p0(x | cp, cf )
p0(x | cp)

+ ln p0(cf | cp)
}
. (12)

Again, the last term is invariant to x, so it can be absorbed into the normalizing constant, leaving us305

with the policy considered in the main text306

p∗g(x | cp) ∝ exp

{
ln p0(x | cp) + ∆Rg + ln

p0(x | cp, cf )
p0(x | cp)

}
. (13)
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