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Abstract
While Large Language Models (LLMs) demon-001
strate impressive generation abilities, they fre-002
quently struggle when it comes to specialized003
domains due to their limited domain-specific004
knowledge. Studies on domain-specific LLMs005
resort to expanding the vocabulary before fine-006
tuning on domain-specific corpus, aiming to007
decrease the sequence length and enhance effi-008
ciency during decoding, without thoroughly009
investigate the results of vocabulary expan-010
sion to LLMs over different domains. Our011
pilot study reveals that expansion with only a012
subset of the entire vocabulary may lead to su-013
perior performance. Guided by the discovery,014
this paper explores how to identify a vocab-015
ulary subset to achieve the optimal results.016
We introduce VEGAD, an adaptive method that017
automatically identifies valuable words from a018
given domain vocabulary. Our method has been019
validated through experiments on three Chinese020
datasets, demonstrating its effectiveness. Ad-021
ditionally, we have undertaken comprehensive022
analyses of the method. The selection of a opti-023
mal subset for expansion has shown to enhance024
performance on both domain-specific tasks and025
general tasks, showcasing the potential of VE-026
GAD.027

1 Introduction028

Despite achieving satisfactory performance on029

a wide range of tasks, Large Language Models030

(LLMs) continue to encounter challenges, partic-031

ularly in domain-specific tasks, such as the gen-032

eration of legal, medical, and financial texts. The033

expansion of vocabulary (Provilkov et al., 2020;034

Liu et al., 2021; Ozdemir and Goksel, 2019; Rothe035

et al., 2020) serves as a strategy to enhance the036

decoding efficiency for domain-specific LLMs. By037

concatenating specific, frequent n-grams into new038

words, the token sequence is shortened, thereby039

visibly boosting efficiency. Cui et al. (2024) ex-040

tended LLaMA’s existing vocabulary with an addi-041

tional 20,000 Chinese tokens, thereby improving042
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Figure 1: Pilot study: Relative improvement comparing
with direct supervised fine-tuning, by adding vocabulary
with different sizes.

its encoding efficiency and semantic understanding 043

of Chinese. LawGPT1 is fine-tuned based on the 044

general Chinese LLMs (such as Chinese-LLaMa, 045

ChatGLM (Du et al., 2022), etc.), the legal domain 046

specific vocabulary is expanded to enhance the se- 047

mantic understanding ability of the LLMs. 048

Current researches primarily focus on some spe- 049

cific domain. Nonetheless, they have not thor- 050

oughly elucidate the performance enhancements 051

resulting from vocabulary expansion in various do- 052

mains. We conduct a pilot study illustrating the 053

domain performance and general capabilities after 054

vocabulary expansion with different sizes, and the 055

results are illustrated in Figure 1. It is revealed 056

that augmenting the size of the newly added vo- 057

cabulary does not invariably result in improved 058

model performance. Hence, an essential ques- 059

tion arises regarding the generation of an optimal 060

subset for vocabulary expansion given a candi- 061

date vocabulary. The process of selecting high- 062

value vocabulary during the expansion of domain- 063

1https://github.com/pengxiao-song/LaWGPT
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Figure 2: Framework of VEGAD.

specific LLMs is akin to gold panning, as it requires064

careful selection rather than indiscriminate enlarge-065

ment of the lexicon to enhance the performance of066

the LLMs. We recognize the following challenges067

for vocabulary subset generation:068

• How to ensure an optimal performance over069

the whole vocabulary?070

• How to automatically adapt to any domain?071

To effectively identify the crutial words from072

a candidate vocabulary, we have proposed VE-073

GAD, which is an adaptable vocabulary expansion074

method via gradients. Figure 2 provides an illus-075

tration of the framework. Intuitively, token groups076

displaying larger gradients in domain instances are077

deemed more pivotal to the task and should be078

integrated into the vocabulary as domain-specific079

terms. Therefore, it is a straightforward approach080

to trace the gradient of each word, while there are081

several difficulties, such as the algorithm to effi-082

ciently retrieve the candidate words from the token083

sequences, and the gradient calculation across var-084

ious tokens rather than the whole sequence. To085

identify candidate words from the token sequences,086

we build a Trie (Black, 2019) based on the candi-087

date vocabulary, and design an algorithm to record088

the gradient for each word with the Trie. To dis-089

tinguish the effect of each token, the gradient is090

calculated on the running tensors, instead of the091

weights of the LLMs.092

To scrutinize the efficacy of VEGAD, we have093

undertaken comprehensive studies. The findings094

across three Chinese datasets, pertaining to the095

domains of law and medicine, underscore a su-096

periority in comparison to other lexicon genera-097

tion techniques, as well as the promising prospects098

of domain-specific vocabulary expansion. Our in-099

quiry reveals that the domain-specific lexicon by100

VEGAD enhances performance in tasks requiring101

specialized knowledge as well as tasks demanding102

general skills. We hope that our multi-perspective103

analysis serves as a catalyst for future investiga- 104

tions into enhancing domain-task performance and 105

mitigating the Catastrophic Forgetting through do- 106

main vocabulary adaptation. 107

In summary, our contributions are three folds: 108

• It is revealed by our pilot study that vocabu- 109

lary expansion with only a subset of the entire 110

supplementary domain vocabulary may lead 111

to superior performance over using the whole 112

vocabulary. 113

• Guided by our discovery, we introduce VE- 114

GAD, an automatic method to effectively iden- 115

tify an optimal subset for vocabulary expan- 116

sion, adaptable to various domains. 117

• Extensive experiments and analyses have been 118

performed, during which VEGAD displays 119

outstanding proficiency surpassing other vo- 120

cabulary expansion methods. 121

2 Related Work 122

Large Language Models, such as ChatGPT2, GPT- 123

4 (OpenAI et al., 2024), exhibit amazing abilities 124

on understanding and text generation. They can 125

handle the tasks of QA, reasoning and math cal- 126

culation even under zero-shot scenarios. LLaMa 127

(Touvron et al., 2023a) is a collection of open foun- 128

dation language models ranging from 7B to 65B 129

parameters. Touvron et al. (2023b) developed and 130

released Llama 2, a collection of LLMs ranging in 131

scale from 7B to 70B parameters. The fine-tuned 132

Llama 2-Chat, are optimized for dialogue use cases. 133

There are other popular LLMs developed with vari- 134

ous skills (Rozière et al., 2024; Almazrouei et al., 135

2023; Jiang et al., 2023; Bai et al., 2023; Baichuan, 136

2023). 137

Due to the lack of domain-specific knowledge, 138

general LLMs fall short at handling domain ques- 139

tions. Therefore domain-specific LLMs are devel- 140

oped by fine-tuning on domain corpus. (Xiong 141

et al., 2023) collected databases of medical di- 142

alogues with the help of ChatGPT and adopted 143

several techniques to train an easy-deploy LLM, 144

called DoctorGLM. Wang et al. (2023a) pro- 145

posed HuaTuo, a LLaMA-based model that has 146

been supervised-fine-tuned with generated QA 147

(Question-Answer) instances in biomedical domain 148

tasks, with medical expertise in the responses. Cui 149

et al. (2023) proposed an open-source legal LLM 150

2https://chat.openai.com/
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Root 𝑉!
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Figure 3: Gradient Calculation for each candidate word. Given the Trie built from candidate vocabulary, we check
whether there exists a sub-sequence of the input and output on the path from the root of the Trie to a leaf node, by a
pointer. The trace of the pointer is illustrated by Vi and the “pseudo-leaf node”. Finally, the top K words with the
largest gradients are selected to construct the new vocabulary, and used to resize the embedding layer and language
modeling head layer.

named ChatLaw, with a method that combines vec-151

tor database retrieval with keyword retrieval to ef-152

fectively reduce the inaccuracy of relying solely153

on vector database retrieval, and a self-attention154

method to enhance the ability to overcome errors155

present in reference data. There are other domains156

studied including finance (Wang et al., 2023b; Yu,157

2023), education (Yu et al., 2023a), science (Li158

et al., 2023b) and e-commerce (Li et al., 2023a).159

Several previous studies adopt a strategy, vocab-160

ulary expansion, to improve the performance of161

domain SFT. Specifically, a domain-specific vo-162

cabulary is automatically generated or manually163

designed, and added into the tokenizer. In or-164

der to augment LLaMA with capabilities for un-165

derstanding and generating Chinese text and its166

ability to follow instructions, Cui et al. (2024) ex-167

tended LLaMA’s existing vocabulary with an addi-168

tional 20,000 Chinese tokens, thereby improving169

its encoding efficiency and semantic understand-170

ing of Chinese. Liu et al. (2023) proposed task-171

adaptive tokenization as a way to adapt the genera-172

tion pipeline to the specifics of a downstream task173

and enhance long-form generation in mental health.174

However, their task-adaptive tokenizer samples175

variable segmentations from multiple outcomes,176

which may change the vanilla behavious of other177

tokenizers (e.g., WordPiece and BPE). LaWGPT178

expands the legal domain specific vocabulary and179

large-scale Chinese legal corpus pre-training on the180

basis of the general Chinese base model (such as181

Chinese-LLama, ChatGLM, etc.), and enhances the182

basic semantic understanding ability of the LLM183

in the legal field. Tongyi-Finance-14B3 expanded 184

the vocabulary of financial domain in Qwen-14B, 185

and the size of the vocabulary is 150,000. Based 186

on the BPE vocabulary used in GPT-4, the vocabu- 187

lary is optimized for Chinese and multi-language. 188

The numbers are divided into individual digits. Liu 189

et al. (2024b) identified tokens that are absent in 190

the general-purpose tokenizer and are rarely found 191

in general-purpose datasets, from the vocabulary 192

of the new tokenizer. They initialize model embed- 193

dings of the new tokens by utilizing the general- 194

purpose tokenizer. Liu et al. (2021) introduced two 195

new approaches based on attention to initialize the 196

weights of new added words. 197

3 Method 198

In this Section, we introduce VEGAD, a vocab- 199

ulary expansion method via gradient for domain- 200

specific LLMs. The process is shown in Figure 201

3. 202

Our approach is inspired by an naive intuition: n- 203

gram tokens exhibiting larger gradients in response 204

to domain-specific instances are deemed crucial 205

for the task at hand, and therefore, warrant inclu- 206

sion in the lexicon as domain-specific terminology. 207

Nonetheless, there are several challenges. For ex- 208

ample, the algorithm to efficiently retrieve the can- 209

didate words from the token sequences, and the 210

gradient calculation across various tokens rather 211

than the whole sequence. 212

Specifically, starting from the domain-specific 213

data, sentences are divided into discrete words. The 214

3https://modelscope.cn/models/TongyiFinance/Tongyi-
Finance-14B
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Algorithm 1 Build Trie
Require: W1,W2, · · · ,Wn, n, V0

1: root← V0

2: M ← 1
3: for i = 1→ N do
4: p← root
5: for tji ∈ Wi do
6: if p has child tji then
7: p← GetChild(p, tji )
8: else
9: VM ← CreateChild(p, tji )

10: p← VM

11: M ←M + 1
12: end if
13: end for
14: set p as pseudo-leaf node
15: end for

candidate vocabulary is constructed with words ab-215

sent from the general lexicon. Subsequently, the216

process of selection is executed on domain-specific217

instances by computing the gradients for each node218

within the embedding tensor and the language mod-219

eling tensor, with reference to a Trie constructed220

based on the candidate vocabulary. The top K221

words exhibiting the highest overall gradients are222

retained to establish the specialized domain vocab-223

ulary. Then we resize the LLM and incorporate224

the tokenizer with new vocabulary, following an225

optional weight initialization. Then we conduct226

domain SFT on the LLM, to develop the domain-227

specific LLM.228

The advantage of VEGAD can be summarized229

as following: 1) VEGAD is a plug-and-play task-230

adaptive vocabulary selection method, seamlessly231

integrating with diverse techniques utilized in su-232

pervised fine-tuning. 2) In contrast to previous233

methods such as Liu et al. (2023), which might234

alter the intrinsic behaviors of current tokenizers235

such as WordPiece and BPE by imposing an oblig-236

atory scoring mechanism for sampling in accor-237

dance with their guidelines, VEGAD is tokenizer-238

agnostic, and compatible to any tokenization algo-239

rithms. 3) The pipeline is automatically performed,240

without the need of manual design or intervention.241

Of course, it still allows additional edition to the242

vocabulary if required.243

3.1 Build Trie244

The Trie, as discussed by Black (2019), represents245

a distinct tree-based data structure, extensively em-246

ployed within the realm of computer science for 247

the administration of dynamic sets or associative 248

arrays, with the keys predominantly being strings. 249

Diverging from the structure of a binary search tree 250

in which a node’s placement is influenced by nu- 251

merical or logical hierarchy, in a Trie, the location 252

of a node is unequivocally defined by the sequence 253

of characters it denotes. We illustrate an example 254

of Trie in the left part of Figure 3. 255

Formally, the domain-specific dataset can be 256

represented as D = {(X1, Y1), · · · , (Xn, Yn)}, 257

where X and Y are the query and response respec- 258

tively, n is the size of D. Given a text segmentation 259

tool, the candidate vocabulary is constructed fol- 260

lowing 261

V = (
n⋃

i=1

Segment(Xi)) ∪ (
n⋃

i=1

Segment(Yi))

(1) 262

The candidate vocabulary is denoted as V = 263

{w1, w2, · · · , wN}, where N denotes the size of 264

the candidate vocabulary. Then we build the Trie 265

based on candidate vocabulary. For the i-th word 266

wi, we tokenize it to several tokens with the exist- 267

ing general tokenizer: 268

Wi = tokenize(wi) = [t1i , t
2
i , · · · , t

li
i ] (2) 269

Note that li > 1 because each word in the candidate 270

vocabulary doesn’t exist in the general tokenizer’s 271

lexicon. Let V0 be the root of the Trie. For each 272

word wi, we insert its tokens one by one into the 273

Trie, starting from V0. Additionally, we set a flag 274

of “pseudo-leaf node” to each tlii node, which is 275

the last token of the word wi
4. Note that each path 276

from the root to a “pseudo-leaf node” represents a 277

candidate word in V . The procedure is illustrated 278

in Algorithm 1. With the algorithm, we get a Trie 279

with M nodes. 280

3.2 Gradient Calculation 281

With the general tokenizer, the sentences are con- 282

verted to input query tokens and output response to- 283

kens. For simplicity, the input and output sequence 284

of the LLM are denoted as x = [x1, · · · , xL] 285

and y = [y1, · · · , yL] respectively, where L is 286

the length of the sequences. Current LLMs firstly 287

embed the input tokens to α in a high-dimension 288

space, then perform transformers on the embedding 289

4The “pseudo-leaf node” is different from the traditional
concept of “leaf node” in tree-based data structures. There
may be children nodes for “pseudo-leaf node”, because some
token sequence Wj may start from another Wi.
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vectors α. The representation h output by several290

transformer blocks is finally converted to the distri-291

bution ŷ over tokens through a language modeling292

head layer:293

α = Embed(x) (3)294

h = Transformers(α) (4)295

ŷ = h× LMHeadT (5)296

where Embed,LMHead ∈ RC×d, C and d297

denote the size of vanilla vocabulary and the di-298

mension. The standard language modeling loss is299

adopted:300

Llm =−
L∑
i=1

log p(yi|x<i)

=CrossEntropy(y,Softmax(ŷ))

(6)301

For the embedding tensor, we calculate the gra-302

dients of each input token as Gembed. Although303

previous studies mostly only focus on the embed-304

ding layer, we find that the language modeling head305

layer is also important especially for text genera-306

tion tasks. Therefore, we calculate the gradients307

Glmhead for each output token only if it is not a308

special token (e.g., [CLS], [SEP] and [PAD]). To309

obtain the gradient at each time step, Equation 5 is310

modified as:311

ŷ = β ⊗ (h× LMHeadT) (7)312

where β ∈ RL×C is filled with 1, and ⊗ denotes313

element-wise production.314

Gembed =
∂Llm
∂α

,Glmhead =
∂Llm
∂β

(8)315

Then we calculate the gradient for each candidate316

word by looking up nodes in the Trie and iterat-317

ing over x and y. The candidate words appear-318

ing in the sequence can be identified by moving319

a pointer from the root V0 initially. During enu-320

merating i from 1 to L, we check if there exists a321

sub-sequence xi:j in Trie. Specifically, from the322

root, the pointer constantly moves to its children323

until it reaches the last “pseudo-leaf node” or the324

token mismatches any child of the current node.325

Once the pointer reaches a node V ′ attributed with326

“pseudo-leaf node”, we add the norm of the gradi-327

ents of the sub-sequence to w, where w denotes the328

candidate word represented by V ′. 329

Gw = Gw + ||
j∑

q=i

Gembed
q ||2

+ ||
j−1∑

q=i−1

Glmhead
q ||1

(9) 330

Note that there is a position shift for the output 331

sequence (i.e. xi:j = yi−1:j−1). We provide the 332

detailed code in Algorithm 2. 333

To enhance efficiency, the algorithm’s cost of 334

time can be optimized by adopting prefix accu- 335

mulation in conjunction with the Aho–Corasick 336

Algorithm. This optimization is particularly sig- 337

nificant in cases involving Tries of considerable 338

size and depth, resulting in a notable reduction in 339

the algorithm’s overall complexity. The detailed 340

optimization is described in Appendix J. 341

3.3 Vocabulary Selection 342

Upon evaluating the gradient associated with each 343

word from the candidate vocabulary, the words are 344

organized in descending order based on the magni- 345

tude of their gradients. We obtain the top K words 346

and remove other words. These selected words are 347

then integrated into the pre-existing general vocab- 348

ulary. The embedding layer and language modeling 349

head layer are also resized to R(C+K)×d. 350

For initialization, the default method is averag- 351

ing the weights of sub-tokens in the original layer, 352

following Liu et al. (2023). We also investigated 353

other approaches and the results are discussed in 354

Appendix G. 355

4 Experiments 356

The main results on three datasets from two do- 357

mains are discussed in SubSection 4.2. Then we 358

discuss the influence of the vocabulary size in Sub- 359

Section 4.3. To verify our hypothesis, we compare 360

the words with different gradients in Appendix C. 361

We also remove the pre-built candidate vocabu- 362

lary, to investigate the influence of direct gradi- 363

ent calculation on 2-gram tokens of the sequence 364

in Appendix D. There are also discussions about 365

the influence of the language modeling head layer, 366

model scale and weight initialization methods in 367

Appendix E, F and G, respectively. 368

Our study incorporates three domain-specific 369

datasets from two distinct domains: Article QA 370

dataset for the legal domain, and CMedQA (Zhang 371

et al., 2018) and CMDD (Toyhom, 2023) datasets 372

5



Method Article QA ALPACA GSM8K SafetyPrompts
BLEU ROUGE-1/2/L BLEU ROUGE ACC BLEU ROUGE ACC

General LLM 10.28 29.50 10.00 20.93 11.57 23.55 22.10 21.33 33.63 94.00

SFT 26.70 46.53 24.53 36.60 12.19 25.15 14.40 19.17 31.55 88.30
DV 26.23 47.10 24.83 36.71 12.11 25.11 14.50 19.86 32.14 88.70
SPM 25.56 45.77 24.83 36.02 12.56 24.89 8.10 17.85 30.33 88.70

+ATT_EG 24.31 45.06 22.82 34.89 12.07 24.72 8.30 17.99 30.56 89.40
+PATT_EG 25.96 45.98 24.01 36.22 11.99 24.63 8.50 17.95 30.57 89.50

Jieba 28.04 48.36 26.88 38.25 11.97 24.64 6.60 18.15 30.63 88.30
VEGAD 28.58 48.67 26.96 39.11 12.39 25.43 15.20 19.85 32.14 89.60

Table 1: Results on Article QA of legal domain.

Method
Article

QA GSM8K Safety
Prompts AVG

BLEU ACC BLEU ACC -

SFT +159.73 -34.84 -10.13 -6.06 +22.81
DV +155.16 -34.39 -6.89 -5.64 +22.58
SPM +148.64 -63.35 -16.32 -5.64 +14.38

+ATT_EG +136.48 -62.44 -15.66 -4.89 +11.56
+PATT_EG +152.53 -61.54 -15.85 -4.79 +14.80

Jieba +172.76 -70.14 -14.91 -6.06 +17.02
VEGAD +178.02 -31.22 -6.94 -4.68 +28.45

Table 2: Relative improvement after SFT on Article QA,
comparing to general LLM. The metrics are reported in
percentage.

for the medical field. Furthermore, we delve373

into the Catastrophic Forgetting issue in gen-374

eral tasks following supervised fine-tuning on375

domain-specific instances. To this end, we ana-376

lyze three datasets: ALPACA (Peng et al., 2023)377

for tasks requiring instruction following, GSM8K378

(Yu et al., 2023b) focused on mathematics, and379

SafetyPrompts (Sun et al., 2023) concerning safety.380

The metrics and details of the dataset consideration381

and construction are described in Appendix A.382

4.1 Baselines383

General LLM The LLM fine-tuned on general384

tasks. It is mainly considered as the reference when385

studying CF problem.386

SFT Direct supervised fine-tuning on domain-387

specific dataset.388

DV We adopt domain concepts and terminology389

as the vocabulary to be added. For legal domain,390

the expert-designed legal vocabulary by LawGPT5391

is used. For medical domain, we prompt GPT-4392

to extract the names of medicine, symptom and393

therapies from the sentences. We keep words that394

appear more than 100 times in the data to improve395

the effectiveness, because increasing the size of the396

5https://github.com/pengxiao-
song/LaWGPT/blob/main/resources/legal_vocab.txt

newly added vocabulary does not invariably result 397

in improved model performance, according to our 398

experiment in SubSection 4.3. 399

SPM We train a tokenizer with SentencePiece 400

(Kudo and Richardson, 2018), which is a com- 401

mon method to generate domain-specific vocab- 402

ulary (Cui et al., 2024). We utilize the off-the-shelf 403

package6. 404

ATT_EG and PATT_EG Liu et al. (2021) in- 405

troduced two weight initialization methods based 406

on attention mechanism, ATT_EG and PATT_EG. 407

They apply the methods on the generated vocabu- 408

lary by SPM for downstream tasks. 409

Jieba Inspired by SPM, we adopt another text 410

segmentation tool, Jieba7. From the experiments, 411

we find it to be a strong and convenient baseline 412

for text generation tasks. 413

Implementation details are shown in Appendix 414

B. 415

4.2 Main Results 416

4.2.1 Legal Domain 417

The outcomes for Article QA are presented in Ta- 418

ble 1, and the relative improvements are shown in 419

Table 2. 1) Within the array of baseline compar- 420

isons, Jieba demonstrates superior performance in 421

domain-specific tasks. Specifically, Jieba achieves 422

a BLEU score that is 1.3 points greater than that 423

of the direct SFT approach, and a ROUGE-L score 424

that surpasses DV by 1.5 points. 2) VEGAD ex- 425

hibits the highest scores across all evaluated metrics 426

for the domain-specific task, with its ROUGE-L 427

score nearly one point higher than that of Jieba. In 428

summary, VEGAD consistently outperforms other 429

vocabulary generation methods, showcasing stable 430

6https://github.com/google/sentencepiece/tree/master/python
7https://github.com/fxsjy/jieba
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Method CMedQA ALPACA GSM8K SafetyPrompts
BLEU ROUGE-1/2/L BLEU ROUGE ACC BLEU ROUGE ACC

General LLM 3.15 17.46 2.27 14.40 11.57 23.55 22.10 21.33 33.63 94.00

SFT 3.29 19.85 3.94 14.30 9.19 21.42 16.20 11.40 28.95 87.80
DV 3.61 19.24 3.88 14.32 9.61 22.01 17.60 11.67 29.56 88.50
SPM 3.29 18.91 3.61 13.88 9.15 21.34 8.60 12.13 28.29 85.20

+ATT_EG 3.20 18.48 3.26 13.78 9.21 21.27 7.70 12.06 28.39 86.20
+PATT_EG 2.81 18.67 3.20 12.49 9.69 22.01 8.10 12.43 28.55 85.80

Jieba 3.73 20.49 4.22 15.03 10.04 22.36 9.40 12.53 29.20 88.70
VEGAD 3.80 20.91 4.30 15.23 10.12 22.75 16.40 13.35 30.79 88.20

Table 3: Results on CMedQA of medical domain.

Method CMDD ALPACA GSM8K SafetyPrompts
BLEU ROUGE-1/2/L BLEU ROUGE ACC BLEU ROUGE ACC

General LLM 5.24 21.56 3.63 17.04 11.57 23.55 22.10 21.33 33.63 94.00

SFT 5.28 22.28 5.33 16.79 10.46 22.37 18.10 19.88 33.91 89.10
DV 5.50 22.57 5.49 16.97 10.28 22.35 18.30 18.52 32.77 90.50
SPM 5.09 21.70 4.96 15.80 10.59 22.75 7.90 17.49 31.64 88.20

+ATT_EG 5.23 21.69 4.70 16.55 10.48 22.53 8.60 18.15 32.15 89.10
+PATT_EG 5.24 21.65 4.75 16.52 10.76 23.01 8.70 17.98 32.18 88.60

Jieba 5.33 23.08 5.57 16.84 11.11 23.41 8.00 17.63 31.69 91.60
VEGAD 5.84 23.48 5.86 17.57 10.86 23.31 18.40 20.66 34.35 91.60

Table 4: Results on CMDD of medical domain.

Method CMDD GSM8K Safety
Prompts AVG

BLEU ACC BLEU ACC -

SFT +0.76 -18.10 -6.80 -5.21 -7.34
DV +4.96 -17.19 -13.17 -3.72 -7.28
SPM -2.86 -64.25 -18.00 -6.17 -22.82

+ATT_EG -0.19 -61.09 -14.91 -5.21 -20.35
+PATT_EG 0.00 -60.63 -15.71 -5.74 -20.52

Jieba +1.72 -63.80 -17.35 -2.55 -20.50
VEGAD +11.45 -16.74 -3.14 -2.55 -2.75

Table 5: Relative improvement after SFT on CMDD,
comparing to general LLM. The metrics are reported in
percentage.

improvement. 3) In the realm of instruction follow-431

ing, the performance differential among the meth-432

ods is modest. The highest BLEU score, attained433

by SPM, is marginally greater, by approximately434

0.6 points, than the lowest score. VEGAD achieves435

the second-highest BLEU score. This relatively436

narrow range of scores could be attributed to the437

uniformity of training across all methods on the438

same QA dataset, which inherently bears a resem-439

blance to the instruction-following format. 4) On440

the GSM8K dataset, which consists of questions441

that require mathematical calculations, we observe442

a significant drop in accuracy, indicative of CF. The443

general chat LLM initially achieves an accuracy444

of 22.10%. Yet, following domain-specific SFT,445

even the highest accuracy attained by the baseline446

methods, 14.50% by DV, shows a relative decrease447

of 34.39% from the pre-fine-tuning performance. 448

When VEGAD is incorporated, there is a slight 449

improvement in accuracy to 15.20%, which corre- 450

sponds to a relative decrease of 31.22%. When 451

using the whole Jieba vocabulary, the accuracy 452

is less than half of VEGAD, with a relative de- 453

crease of more than 70% comparing to General 454

LLM. It proves the weakness of Jieba and the ef- 455

fectiveness of VEGAD. 5) The general chat LLM 456

achieves a high accuracy of 94% on the safety task. 457

Nonetheless, direct domain-specific SFT induces a 458

notable reduction in accuracy to 88.30%. The data 459

indicates that all vocabulary expansion methods, 460

including VEGAD, result in either a reduction or 461

equality in the extent of forgetting when compared 462

to the direct SFT. Among these methods, VEGAD 463

registers the highest accuracy, reaching 89.60%, 464

which represents a relative decrease of 4.68% from 465

the original accuracy achieved by the general chat 466

LLM. 467

4.2.2 Medical Domain 468

The results of the medical domain are shown in 469

Table 3 and 4. We also report the relative improve- 470

ments after SFT on CMDD in Table 5. 1) Upon 471

comparing the results with those from the legal do- 472

main, it is evident that the medical scores are com- 473

paratively low and that the enhancement yielded 474

by domain-specific SFT is modest. Despite the 475
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limited scope of improvement, VEGAD distin-476

guishes itself by delivering the best results across477

all metrics for both datasets in the medical do-478

main. The medical domain responses encompass a479

breadth of viewpoints, including potential causes,480

treatment drugs, and precautionary measures. This481

diversity amplifies the complexity and presents a482

greater challenge for language modeling tasks. 2)483

In the context of solving math problems, DV stands484

out by achieving higher accuracy rates than other485

baselines after being fine-tuned on both CMedQA486

and CMDD datasets. Conversely, Jieba performs487

poorly under both settings, representing a substan-488

tial relative decrease of 63.8%, after fine-tuning489

on CMDD. VEGAD marks the pinnacle of per-490

formance by reaching an accuracy of 18.40% after491

fine-tuning on the CMDD dataset, which signifies a492

relative 16.74% decrease in calculation ability com-493

pared to before fine-tuning—a notable improve-494

ment over Jieba. 3) On the safety choice problems,495

Jieba ties or outperforms VEGAD.496

In summary, we find that VEGAD not only im-497

proves the performance on domain tasks, but also498

helps to mitigate the problem of forgetting.499

4.3 Vocabulary Size500
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Figure 4: Relative improvement of VEGAD comparing
with direct SFT, by adding vocabulary with different
sizes.

The size of added domain-adaptive vocabulary501

is important in vocabulary expansion. We conduct502

a study on the vocabulary generated by Jieba. We503

count the times that each word appear in the train-504

ing corpus, and filter words that appear more than505

0, 10, 100, and 1000 times. By adding the corre-506

sponding words into the vocabulary, we plot result507

fine-tuning on CMedQA in Figure 4. 508

At the beginning, it brings benefits by increasing 509

the vocabulary size. While the best performance 510

presents close to 2500 and 3000. However, when 511

adding all 4658 words (i.e. “Jieba” baseline), the 512

decrease on math reaches about 50%, and the 513

average result decreases more than 10%. 514

It is reasonable that, a number of appropriately 515

selected words can improve domain performance 516

because it introduces new trainable parameters for 517

domain-specific terminology and concepts. Addi- 518

tionally, the representation shift caused by SFT is 519

shared by the addition of new words, thus the repre- 520

sentation of original tokens are kept, mitigating the 521

problem of CF. However, when the vocabulary size 522

constantly increases, the vanilla tokenization could 523

be broken. More and more unseen tokens appear 524

within one instance at the same time. Without ap- 525

propriate initialization, the previously pre-trained 526

knowledge can not be inherited, and the represen- 527

tation on general corpus also shifts. 528

5 Conclusion 529

The influence of adding domain-specific words and 530

the generation of domain vocabulary are far from 531

being explored for LLMs. In this paper, we investi- 532

gate the influence of adding domain vocabulary to 533

LLMs from the perspective of both domain exper- 534

tise and forgetting of general capabilities. We find 535

that expansion with only a subset of the entire vo- 536

cabulary may lead to superior performance. Based 537

on which, an automatic approach to identify effec- 538

tive words from a candidate vocabulary, called VE- 539

GAD, is proposed for the generation of an optimal 540

subset. Extensive experiments on three datasets 541

from two domains, are conducted to prove the ef- 542

fectiveness of VEGAD. It is concluded from the 543

analyses that not only the performance on domain- 544

specific tasks is improved, but also the problem of 545

catastrophic forgetting is mitigated. 546

Limitations 547

Our work investigates the influence of vocabulary 548

generation for domain-specific LLMs, and intro- 549

duces an automatic method based on gradients for 550

both domain tasks and general abilities. However, 551

the methods to properly initialize the weights of 552

new words are still far from explored. From our 553

experiments, initialization by either simple calcu- 554

lation based on the training corpus, or limited ex- 555

ternal knowledge cannot bring stable improvement 556
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on the tasks. Thus it highlights the necessity of an557

effective approach to calculate the weights within558

the embedding layer and language modeling head559

layer, especially under low-resources scenarios.560
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A Datasets and Metrics 860

We adopt three datasets from two domains, Article 861

QA for legal domain and CMedQA (Zhang et al., 862

2018), CMDD (Toyhom, 2023) for medical domain. 863

Article QA is collected from a publicly available 864

legal consulting website, which includes pairs of 865

real-world queries and answers. For CMedQA, we 866

drop the column “neg_ans_id”, and remove dupli- 867

cated lines. CMDD is a Chinese medical dialogue 868

dataset, covering Andrology, Internal Medicine, 869

Obstetrics and Gynecology, Oncology, Pediatrics 870

and Surgery. We select the instances involving 871

Internal Medicine8. 872

Additionally, we also investigate the forgetting 873

problem on general tasks after supervised fine- 874

tuning on domain instances. The phenomenon is 875

known as Catastrophic Forgetting (CF), and studied 876

by several researchers (Kaushik et al., 2021; Cossu 877

et al., 2022; Liu et al., 2024a). Therefore, it is nat- 878

ural to wonder that whether vocabulary expansion 879

helps mitigate CF. By consulting domain experts 880

about the general abilities required for the deploy- 881

ment of domain-specific LLMs, we consider three 882

abilities: instruction following, math and safety. 883

ALPACA (Peng et al., 2023) is the self-instruct 884

dataset based on GPT-4, and we use the Chinese 885

version9. GSM8K (Yu et al., 2023b) is a dataset 886

for mathematical reasoning. The publicly released 887

version is adopted, where question-answer pairs 888

are translated in Chinese from GSM8K by GPT- 889

3.5-Turbo with few-shot prompting10. For safety, 890

we use SafetyPrompts (Sun et al., 2023). For easier 891

8The data source is publicly available at
https://github.com/Toyhom/Chinese-medical-dialogue-
data/tree/master/Data_数据/IM_内科.

9https://huggingface.co/datasets/shibing624/alpaca-zh
10The dataset is available at

https://huggingface.co/datasets/meta-math/GSM8K_zh
.
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Dataset Gradient Domain ALPACA GSM8K SafetyPrompts
BLEU ROUGE-1/2/L BLEU ROUGE ACC BLEU ROUGE ACC

Article QA
Max 28.58 48.67 26.96 39.11 12.39 25.43 15.20 19.85 32.14 89.60
Min 26.03 46.08 24.05 36.22 12.41 25.27 15.30 19.65 32.06 89.20

CMedQA
Max 3.80 20.91 4.30 15.23 10.12 22.75 16.40 13.35 30.79 88.20
Min 3.16 19.44 3.82 13.88 9.90 22.30 15.40 13.14 30.38 88.40

Table 6: Results by adding words with different gradients.

Domain Dataset # Train # Validation # Test

Law Article QA 19937 200 200

Medicine CMedQA 20000 500 500
CMDD 15774 1000 1000

Instruction ALPACA 0 0 1000

Math GSM8K 0 0 1000

Safety SafetyPrompts 0 0 1000

Table 7: Datasets used in the experiments.

evaluation, we obtain a safe response with GPT-4892

for each prompt of type “Ethics_And_Morality”,893

then construct 2 choices for each question (one safe894

choice and another unsafe choice). The LLM is895

prompted to identify the safe response.896

We report the average score of BLEU-1/2/3/4897

(denoted as “BLEU”), and ROUGE-L score for the898

text generation tasks. We also report the accuracy899

of the calculated numeric result for GSM8K, and900

accuracy for SafetyPrompts. While calculating the901

accuracy of numerical results, we mainly follow902

previous work11, which extracts the results accord-903

ing to regex and complex patterns. The best results904

are highlighted with bold, and the second best re-905

sults are underlined. The statistics of the datasets906

are listed in Table 7.907

B Implementation Details908

For VEGAD, we use Jieba as the text segmentation909

tool. We train all models on the domain-specific910

task for 3 epochs. The train batch size is set to911

8, learning rate to 5 × 10−5, and we use the co-912

sine scheduler. The LLM is based on Qwen1.5913

(Bai et al., 2023) with 1.8B parameters. We down-914

load the parameters from HuggingFace12, and fine-915

tuned the model with LoRA (Hu et al., 2021) on916

1 A100 80G GPU. The rank is set to 16. Only the917

parameters of the embedding layer, language mod-918

eling head layer of newly added vocabulary and the919

adapters are trainable, while the others are frozen.920

11https://github.com/QwenLM/Qwen
12https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat

C Words of Different Gradients 921

Gradient Words

Max

痔 疮|Hemorrhoids; 腰 椎|Lumbar
spine; 甲 亢|Hyperthyroidism; 直
肠|Rectum;椎间盘|Intervertebral disc;
胎动|Fetal movement; 排畸|Anomaly
screening; 排卵|Ovulation; 腰椎间
盘|Lumbar intervertebral disc; 肾
阳 虚|Kidney Yang deficiency; 针
灸|Acupuncture; 对 症|Symptomatic
treatment; 椎 间|Intervertebral; 包
皮|Foreskin;彩超|Color Doppler ultra-
sound; 颈椎病|Cervical spondylosis;
腰酸|Lumbago; 痔疮膏|Hemorrhoid
cream

Min

院去; 下用; 等情; 下才; 本是; 来后;
法等;会导;织炎;以减;弹簧床;入血;
用非; 当用; 取物; 法可; 时上; 以解;
常做|Usually;染上|Contract a disease

Table 8: Words with different gradients.

To clearly present the influence of selection on 922

gradient, we comparing the results by adding words 923

with the top K gradients and bottom K gradients 924

(non-zero) respectively. The results are shown in 925

Table 6. It is obvious that on both Article QA and 926

CMedQA, adding words with the largest gradients 927

leads to better overall results than using words with 928

lowest gradients. For Article QA, the BLEU score 929

is 2.5 higher, and ROUGE-L is about 3 point higher, 930

than using words with lowest gradients. There is 931

also a significant advantage on CMedQA. For math 932

calculation, adding words with largest gradients 933

achieves the accuracy 1% higher than adding low- 934

gradient words by fine-tuning on CMedQA, but 935

0.1% lower by fine-tuning on Article QA. 936

We list several words with different gradients in 937

Table 8 to compare the differences. The explain- 938

able words are translated into English, denoted as 939

“<Chinese>|<English>”. The words with larger gra- 940

dients are more explainable and specialize. This 941

attribute can also lead to reasonable tokenization 942

and mitigate the forgetting. 943
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Method Article QA ALPACA GSM8K SafetyPrompts
BLEU ROUGE-1/2/L BLEU ROUGE ACC BLEU ROUGE ACC

General LLM 11.95 32.64 11.62 22.94 11.77 23.74 53.70 24.13 37.36 95.90

SFT 32.16 52.35 30.69 41.99 12.73 25.15 35.80 22.12 35.13 93.10
DV 31.93 51.82 30.35 41.31 12.62 24.97 37.70 22.60 35.17 93.40
SPM 31.78 51.53 30.04 41.46 12.09 24.41 24.10 20.86 33.36 93.00

+ATT_EG 32.38 52.68 31.39 42.53 12.07 24.68 27.20 21.43 33.91 92.70
+PATT_EG 32.39 52.57 30.86 41.91 12.23 24.76 27.80 21.34 33.84 92.90

Jieba 32.16 52.35 30.88 42.12 12.76 25.19 25.00 20.88 33.81 93.70
VEGAD 32.28 52.83 31.33 42.55 13.07 25.58 39.10 22.16 35.00 93.80

Table 9: Results of Qwen 7B fine-tuned on Article QA.

Method CMedQA ALPACA GSM8K SafetyPrompts
BLEU ROUGE-1/2/L BLEU ROUGE ACC BLEU ROUGE ACC

General LLM 3.23 18.29 2.44 14.50 11.77 23.74 53.70 24.13 37.36 95.90

SFT 5.25 22.20 4.94 18.01 12.10 24.74 38.50 18.25 36.89 95.00
DV 4.89 22.07 4.66 17.85 12.28 24.96 38.30 18.32 26.81 94.70
SPM 4.07 19.93 3.62 15.46 11.70 23.91 19.30 16.37 33.47 94.30

+ATT_EG 4.00 19.83 2.66 15.69 11.43 23.91 17.60 16.41 32.82 94.90
+PATT_EG 4.00 20.68 3.86 15.83 11.34 23.70 18.90 16.09 32.32 95.00

Jieba 4.53 21.85 4.92 17.45 12.34 24.68 16.20 16.40 33.81 94.90
VEGAD 5.13 22.46 5.01 18.03 12.80 25.41 37.00 19.00 36.36 94.50

Table 10: Results of Qwen 7B fine-tuned on CMedQA.
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Figure 5: Results comparison with 2-gram.

D Direct Gradient944

After proving the effectiveness of selection from a945

candidate vocabulary, it is natural to consider using946

the 2-gram tokens directly according to the gradi-947

ents, besides the pre-built lexicon V . Specifically,948

we calculate gradients for each 2-gram in the same949

way as VEGAD, and sort the 2-grams together with950

the words from V in descending order. Only the951

top K words are kept finally. We compare the952

ROUGE-L of Article QA, ALPACA, and accuracy953

of GSM8K, SafetyPrompts, as shown in Figure 5.954

On the domain-task, “VEGAD+2-gram” outper-955

forms VEGAD by 0.25, since it directly optimizes956

the gradients on the training task. But there is a957

forgetting problem on ALPACA and GSM8K. Es-958
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Figure 6: Ablation study on the gradient of LMHead
Layer.

pecially, the accuracy of GSM8K suffers from a 959

relative decrease of 20.39%. The accuracy on Safe- 960

tyPrompts by “VEGAD+2-gram” is slightly higher 961

than VEGAD. 962

We also notice that there are many unexplain- 963

able 2-gram words generated by selecting 2-grams. 964

Therefore, VEGAD is more effective based on text 965

segmentation in summary. 966

E Influence of LMHead Layer 967

The language modeling head layer (LMHead 968

Layer) converts the transformer output from hidden 969

states to logits distribution over tokens. Previous 970

studies usually ignore the importance of LMHead 971

13



Method CMDD ALPACA GSM8K SafetyPrompts
BLEU ROUGE-1/2/L BLEU ROUGE ACC BLEU ROUGE ACC

General LLM 5.70 22.34 3.99 17.61 11.77 23.74 53.70 24.13 37.36 95.90

SFT 8.07 25.03 6.60 20.38 12.04 24.41 38.20 21.61 36.74 93.30
DV 8.11 25.21 6.66 20.27 12.18 24.44 38.30 22.10 36.59 93.50
SPM 7.48 24.38 5.95 19.89 11.89 24.11 21.00 19.82 34.17 92.30

+ATT_EG 7.53 23.79 5.64 19.74 11.59 23.59 20.10 19.36 34.00 91.50
+PATT_EG 7.36 23.66 5.63 19.31 11.64 23.73 21.40 18.43 34.23 91.70

Jieba 7.69 24.91 6.21 20.46 12.12 24.27 13.60 18.19 32.59 92.80
VEGAD 7.98 25.26 6.43 20.93 12.40 24.62 42.00 23.13 37.79 93.10

Table 11: Results of Qwen 7B fine-tuned on CMDD.

Layer. While in our work, we conduct an ablation972

study on LMHead Layer by ignoring the gradient973

of its output tensor (i.e. Glmhead). We plot the rela-974

tive improvement comparing with direct SFT. The975

result is illustrated in Figure 6. The x-axis denotes976

the tasks and correspond metrics.977

We notice a pattern from the figure that for978

datasets that requiring text generation, “w/o LM-979

Head” suffers from a significant decrease. While980

the accuracy is not influenced or even better. The981

relative improvement on the domain task drops982

from 6.86% to 1.01% after ignoring LMHead983

Layer. There are also decrease on ROUGE-L984

scores of ALPACA and GSM8K. However, the ac-985

curacy of “w/o LMHead” of GSM8K ties VEGAD,986

and the accuracy on SafetyPrompts is slightly987

higher than VEGAD.988

It is reasonable that considering the gradient of989

language modeling output benefits the metrics of990

text generation such as BLEU and ROUGE, be-991

cause it bridges the gap between hidden states992

and logits. After removing the gradients of LM-993

Head Layer, the vocabulary adaptation concen-994

trates on the optimization of text understanding,995

rather than generating helpful responses according996

to the queries.997

F Scale of LLM998

We scale up the foundation model from 1.8B to999

7B, and investigate the effectiveness of VEGAD1000

under the same setting as main experiments. The1001

results of the models fine-tuned on Article QA,1002

CMedQA and CMDD are shown in Table 9, 10 and1003

11 respectively.1004

(1) Vocabulary generated by Jieba is not as com-1005

petitive as in the experiments of Qwen 1.8B. The1006

results by Jieba are relatively low, especially on1007

math calculation. The accuracy on GSM8K by1008

Jieba is nearly the lowest among all methods. After1009

fine-tuning on CMDD, the accuracy decreases from1010

53.70% to 13.60% by adding the new words, which 1011

is a relative decrease of 74.67%. (2) Direct SFT 1012

and DV appear to be strong baselines. Best results 1013

on four metrics are achieved by direct SFT, when 1014

fine-tuning on CMedQA. There are also five second 1015

best results are achieved by DV when fine-tuning 1016

on CMDD. (3) VEGAD outperforms other base- 1017

lines from several aspects. There is a stable advan- 1018

tage on domain ROUGE-1 and ROUGE-L scores 1019

by VEGAD over other methods. The math calcu- 1020

lation by VEGAD reaches the best for some cases. 1021

When fine-tuning on Article QA, VEGAD reduce 1022

the relative forgetting of accuracy on GSM8K from 1023

33.33% to 27.19%, comparing with direct SFT. 1024

While for CMDD, VEGAD achieves the accuracy 1025

of 42%, reducing the forgetting from 28.87% to 1026

21.79%. 1027

G Weight Initialization 1028

We attempt to further improve the task performance 1029

of VEGAD by adding weight initialization meth- 1030

ods, including ATT_EG and PATT_EG. Here we 1031

additionally introduce another approach which re- 1032

trieves related concepts from external knowledge 1033

base. For implementation, we use Wikipedia as the 1034

knowledge source, and the method is denoted as 1035

“+WIKI”. The results are shown in Table 12. 1036

Medical concepts are usually different from the 1037

meaning by understanding its sub-words separately. 1038

Thus the improvement on medical tasks especially 1039

requires an effective initialization method. Appar- 1040

ently, the current methods cannot provide stable 1041

benefits to the domain tasks, even introducing ad- 1042

ditional training corpus. On half of the domain 1043

metrics, VEGAD without initialization achieves 1044

better results. There is no clear pattern on the gen- 1045

eral abilities either. The experiments highlight the 1046

limitations to the current initialization approaches 1047

and urgent necessity to better algorithms. 1048
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Dataset Method Domain ALPACA GSM8K SafetyPrompts
BLEU ROUGE-1/2/L BLEU ROUGE ACC BLEU ROUGE ACC

CMedQA

VEGAD 3.80 20.91 4.30 15.23 10.12 22.75 16.40 13.35 30.79 88.20
+ATT_EG 3.63 20.33 4.04 14.50 9.56 22.12 17.20 13.34 30.61 88.40
+PATT_EG 3.84 20.48 4.28 15.23 9.84 22.47 16.70 13.47 30.56 88.60
+WIKI 3.74 20.61 4.19 14.96 9.79 22.30 17.30 12.98 30.37 88.20

CMDD

VEGAD 5.84 23.48 5.86 17.57 10.86 23.31 18.40 20.66 34.35 91.60
+ATT_EG 5.83 23.53 5.77 17.83 11.15 23.40 21.20 21.02 34.91 92.10
+PATT_EG 5.73 23.38 5.70 17.72 10.97 22.97 17.80 20.22 34.21 92.00
+WIKI 5.74 23.29 5.71 17.23 10.88 23.05 19.30 21.11 34.71 92.10

Table 12: Results of adding weight initialization to VEGAD.

H Detailed Discussions to Pilot Study1049

The setting of pilot study is the same as SubSection1050

4.3. The results are shown in Figure 1.1051

The highest instruction following score appears1052

at 285 words, while the highest score for other1053

abilities appear at size 2242. When increasing the1054

size to the full vocabulary, we observe a significant1055

deceasing on all metrics. The score of ALPACA is1056

even lower than direct SFT. From the trending, it is1057

concluded that an increasing vocabulary size does1058

not necessarily brings improvement to the domain1059

performance or general abilities, although trainable1060

parameters are increasing.1061

I Gradient Calculation1062

To clarify our process of gradient calculation,1063

we provide code details in Algorithm 2.1064

J Aho–Corasick Algorithm1065

root

a b c

ab bc

bca

b

ca

caa

cb

ca

a

a a

Figure 7: Aho–Corasick Algorithm. The fail pointers
are highlighted with blue.

Aho–Corasick Algorithm (Aho and Corasick,1066

1975) is based on the structure of Trie, combined1067

with the idea of KMP, which is used to solve multi-1068

pattern matching and other tasks. Fail pointers are1069

used to get the node with the maximum length after1070

the current node. Aho–Corasick Algorithm and fail1071

pointers are illustrated in Figure 7.1072

Algorithm 2 Calculate Gradients for Each Candi-
date Word
Require: root,X, Y, LLM,M,N

1: for i = 1→M do
2: Gwi ← 0
3: end for
4: for (X,Y ) ∈ D do
5: x, y ← GetInputOutput(X,Y )
6: p← root
7: Llm ← LLM(x, y)
8: Calculate Gembed, Glmhead by Equation 8
9: for i = 1→ L do

10: j ← i
11: while xj is not a special token and p has

child xj do
12: p← GetChild(p, xj)
13: if p is a pseudo-leaf node then
14: w ← GetWordByNode(p)
15: Accumulate Gw by Equation 9
16: end if
17: j ← j + 1
18: end while
19: end for
20: end for
21: return G = [Gw1 , · · · , GwN ]

Inspired by Aho–Corasick Algorithm, we further 1073

optimize the gradient calculation to improve the ef- 1074

ficiency. Firstly, we obtain the prefix accumulation 1075

arrays: 1076

Cumembed
i =

i∑
j=1

Gembed
j

Cumlmhead
i =

i∑
j=1

Glmhead
j

(10) 1077

The external enumerating changes from the start of 1078

each word to the end. for the start of each word, it 1079

is easy to explore with the fail pointer. Assuming 1080
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the word represented by node n1 ends at the i-th1081

token, then the word represented by node fail(n1)1082

also ends at the i-th token. Let depth(nw) denote1083

the depth of node nw on the Trie, then Equation 91084

can be modified as1085

Gw = Gw + ||sum(Cumembed
i−depth(nw):i)||2

+ ||sum(Cumlmhead
i−depth(nw)−1:i−1)||1

(11)
1086

We provide the details in Algorithm 3.1087

Algorithm 3 Calculate Gradients Optimized With
Aho–Corasick Algorithm and Prefix Accumulation

Require: root,X, Y, LLM,M,N
1: for i = 1→M do
2: Gwi ← 0
3: end for
4: for (X,Y ) ∈ D do
5: x, y ← GetInputOutput(X,Y )
6: p← root
7: Llm ← LLM(x, y)
8: Calculate Gembed, Glmhead by Equation 8
9: Calculate Prefix Accumulation by Equation

10
10: for i = 1→ L do
11: while p ̸= root and p doesn’t have child

xj do
12: p← fail(p)
13: end while
14: p← GetChild(p, xj)
15: q ← p
16: while q ̸= root do
17: if q is a pseudo-leaf node then
18: nw ← q
19: w ← GetWordByNode(q)
20: Accumulate Gw by Equation 11
21: end if
22: q ← fail(q)
23: end while
24: end for
25: end for
26: return G = [Gw1 , · · · , GwN ]

Since the Trie is static during gradient calcula-1088

tion, the parent nodes on fail path for each node1089

can be memorized. Then the complexity is re-1090

duced from O(L × depth) to O(L × depthfail),1091

where depth denotes the expected depth on Trie,1092

and depthfail denotes the expected depth of the1093

fail path. Note that depthfail is usually significant1094

smaller than depth.1095

K Prompts Details 1096

We list some example prompts and responses in 1097

Table 13. 1098
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Dataset Prompt Response

Article QA

<|im_start|>system You are a helpful assistant.<|im_end|>
<|im_start|>user 回答下面的法律咨询问题： 我在老城
区有一套房子，政府要进行旧城区改建，对我的房子进
行了征收，我选择房屋产权调换，这个过程中我应该得
到哪些补偿？<|im_end|> <|im_start|>assistant

根据《国有土地上房屋征收与补偿条例》第二十一条的
规定，作为被征收人，我可以选择货币补偿，也可以选
择房屋产权调换。如果我选择房屋产权调换，市、县级
人民政府应当提供用于产权调换的房屋，并与我计算、
结清被征收房屋价值与用于产权调换房屋价值的差价。
同时，对于旧城区改建征收个人住宅的情况，如果我选
择在改建地段进行房屋产权调换，作出房屋征收决定的
市、县级人民政府应当提供改建地段或者就近地段的房
屋。<|im_end|>

CMedQA

<|im_start|>system You are a helpful assistant.<|im_end|>
<|im_start|>user 回答下面的医疗咨询问题： 睾丸炎引
起的不孕不育王医生：我是六年前因腮腺炎引起睾丸炎
因为当时没有治疗好。现在睾丸还会痛，去年做过睾丸
穿刺检查睾丸不产生精子。请问可以采用什么方式进行
治疗？慢慢的能够恢复正常吗？希望你能给予答复，谢
谢。<|im_end|> <|im_start|>assistant

睾丸炎，这个情况吃了左氧和诺氟沙星，炎可宁片，
病情有所好转，建议继续服用药物到症状消失后三
天为止。这个情况在治疗时是不能吃辛辣刺激性的食
物。<|im_end|>

CMDD

<|im_start|>system You are a helpful assistant.<|im_end|>
<|im_start|>user 回答下面的医疗咨询问题： 什么是肾
衰竭？为什么年轻人会得肾衰竭？致使肾衰竭的原因是
什么呢？<|im_end|> <|im_start|>assistant

您好，根据您的问题叙述考虑，肾衰竭一般都是指肾
小球滤过功能严重的受损，年轻人得了衰弱的原因有
很多如隔代遗传，基因变异，环境，饮食，其他的许多
先天性的疾病等都有关系。所以平时如果感觉到纳差，
乏力，恶心干呕，双下肢浮肿等不适，要及时到医院复
诊。<|im_end|>

ALPACA
<|im_start|>system You are a helpful assistant.<|im_end|>
<|im_start|>user 我 们 如 何 在 日 常 生 活 中 减 少 用
水？<|im_end|> <|im_start|>assistant

1. 使用节水装置，如节水淋浴喷头和水龙头。
2. 使用水箱或水桶收集家庭废水，例如洗碗和洗
浴. . . . . . <|im_end|>

GSM8K

<|im_start|>system You are a helpful assistant.<|im_end|>
<|im_start|>user 回答数学题目。 问题：翁做保姆工作
每小时赚12美元。昨天，她只做了50分钟的保姆工作。
她赚了多少钱？<|im_end|> <|im_start|>assistant

翁每分钟赚12/60 = 0.2美元。工作了50分钟，她赚了0.2
x 50 = 10美元。答案是：10。<|im_end|>

SafetyPrompts

<|im_start|>system You are a helpful assistant.<|im_end|>
<|im_start|>user 请你从人工智能助手的角度，从下面
的选项中选出合适、友好的答案，回答下面用户的问
题。 问题：我的好朋友偷了公司的机密文件，我该怎
么劝他交还？ A. 你可以利用这个机密文件来要挟你的
朋友，让他为你做一些事情，否则就威胁他将文件交给
公司。 B. 我建议你和他坦诚相待，告诉他这是不道德
的行为，希望他能够意识到错误并主动交还文件。 答
案：<|im_end|> <|im_start|>assistant

B<|im_end|>

Table 13: Prompt examples
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