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Abstract

Machine learning applied to blockchain graphs offers significant opportunities
for enhanced data analysis and applications. However, the potential of this field
is constrained by the lack of a large-scale, cross-chain dataset that includes hi-
erarchical graph-level data. To address this issue, we present novel datasets
that provide detailed label information at the token level and integrate interac-
tions between tokens across multiple blockchain platforms. We model transac-
tions within each token as local graphs and the relationships between tokens
as global graphs, collectively forming a "Graphs of Graphs" (GoG) approach.
This innovative approach facilitates a deeper understanding of systemic struc-
tures and hierarchical interactions, which are essential for applications such as
link prediction, anomaly detection, and token classification. We conduct a se-
ries of experiments demonstrating that this dataset delivers new insights and
challenges for exploring GoG within the blockchain domain. Our work pro-
motes advancements and opens new avenues for research in both the blockchain
and graph communities. Source code and datasets are available at https:
//github.com/Xtra-Computing/Cryptocurrency-Graphs-of-graphs.

1 Introduction

Machine learning techniques applied to blockchain graphs present significant opportunities for in-
depth data analysis and innovative applications [1, 2]. A comprehensive analysis of graph structures
and patterns reveals valuable insights into transaction activities, including the investigation of transac-
tion patterns, identification of key players, and deployment of tokenomics frameworks [3, 2, 4, 5].
Advanced graph learning algorithms have shown promise in enhancing the detection of various
fraudulent activities [6, 7, 8, 9, 10] and predicting market trends [11, 12]. However, existing studies
in this field face significant limitations due to the restricted availability of open and extensive datasets
that include graph-level data. Most labeled blockchain datasets focus on node-level or edge-level
data, lacking in-depth graph-level or advanced hierarchical graph-level studies [13, 14]. Furthermore,
most existing datasets are confined to single-chain data, which restricts the ability to compare and
understand the complex characteristics of various blockchain systems [15, 16, 17, 18, 3].

Concurrently, the study of Graphs of Graphs (GoG), which captures intricate relationships and
structures across various domains, is gaining traction. This framework is particularly beneficial in
scenarios involving multiple levels of interaction or dependency, such as in chemical, social media,
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and document collection domains [19, 20, 21]. Despite these advancements, most GoG datasets
remain small and static, focusing predominantly on chemical and molecular interactions task [19, 22].
It is not clear whether existing GoG machine learning models can achieve satisfied performance in
large-scale, real-life transaction networks.

To bridge these two gaps, we introduce novel datasets and a new GoG approach tailored to the
blockchain ecosystem. On the blockchain, a wide variety of digital tokens represent diverse assets,
such as DeFi tokens related to decentralized finance products and MEME tokens inspired by internet
memes. While these tokens are distinct, they are interconnected, as they are implemented on the same
blockchain and can interact with the same user groups. This interconnectivity allows us to design
an advanced hierarchical approach that includes local graphs representing individual crypto token
transactions and global graphs depicting inter-token relationships within the blockchain ecosystem.
Our dataset covers two crucial aspects: first, it includes detailed label information for each token graph,
categorizing tokens by behavior, including fraud identification; second, it integrates interactions
between tokens across multiple blockchain platforms. Specifically, our dataset covers 268,282,924
transactions conducted by 18,600,142 cryptocurrency addresses, covering the transaction history of
24,316 tokens on three main EVM chains: Ethereum, Polygon, and Binance Smart Chain (BSC).

We conduct an in-depth analysis of the constructed GoG, employing systematic graph analysis and
extensive machine learning techniques. Our findings indicate that tokens belonging to the same
class can exhibit distinct graph characteristics, such as varying graph size, reciprocity, and clustering
coefficient, depending on the blockchain they are on. Furthermore, tokens with a high number of
edges in local graphs tend to possess high centrality in global graphs. Through experiments on
machine learning models, we observe that methods based on GoG can outperform traditional GNN
methods in anomaly detection, multi-class classification, and link prediction on blockchain graphs
under specific conditions. However, we also note that existing GoG models often underperform in
minor class classification, highlighting the need for more advanced techniques.

In summary, this work makes several key contributions:

* We introduce large-scale, cross-chain graphs-of-graphs datasets, enriching blockchain research
with unprecedented depth of analysis.

* QOur analysis of graph structures within the hierarchical approach reveals intriguing characteristics,
underscoring the diversity of token graph structures across different chains.

* We investigate traditional graph machine learning models and GoG-based models in the datasets.
Experimental results demonstrate that our datasets present new avenues and challenges for the
blockchain and graph community.

2 Literature Review

Blockchain Dataset. A number of datasets have been developed for machine learning tasks on
blockchain platforms. For instance, [15, 16, 17, 18] proposed Ethereum datasets specifically for
account detection and link prediction. [23] introduced datasets for tokens and liquidity pools,
conducting statistical analyses of tokenomics for Ethereum and BSC. [24] utilized both on-chain and
off-chain data for predicting crypto trading prediction. In the realm of blockchain graph datasets, one
pioneering benchmark is Chartalist [14], which encompasses multiple tasks across Bitcoin, Ethereum,
and Dashcoin. However, the inherent differences in blockchain types, such as unspent transaction
output (UTXO) and account-based systems, pose challenges for comparing tasks across these varied
architectures. Recent studies have also focused on Ethereum’s NFT markets. For example, [3]
introduced a live graph lab for temporal graphs, facilitating the study of open, dynamic, and real
transaction graphs from Ethereum NFT transactions. Moreover, [13] highlighted the significant role
of linking on-chain Ethereum accounts with off-chain X accounts, emphasizing the value of off-chain
data in enhancing Ethereum analysis. Despite these advancements, many studies remain focused
on single chains, predominantly Ethereum, and concentrate on node-level or edge-level tasks. This
narrow focus may limit the generalizability of their findings.

Graph Representation Learning. Graph representation learning transforms high-dimensional,
sparse graph data into compact, dense vectors [25]. The main objective is to produce representation
vectors that effectively capture both structural and feature information of extensive graphs [26].
Among various tasks in this field, one key task is graph classification, which focuses on predicting



the properties of whole graphs [27]. This task is widely used in social community analysis [28, 25]
and molecular property prediction [29, 30]. Numerous GNN-based algorithms have been proposed to
address graph classification [31, 32, 33, 34]. Generally, these algorithms employ the message-passing
paradigm to iteratively refine node representations, followed by a graph pooling function to generate
graph-level representations [35, 26].

Graphs-of-Graphs. Graphs-of-graphs (GoG) extends traditional graph theory by structuring indi-
vidual graphs as nodes within a larger, interconnected graph. This structure enables the analysis of
complex relationships between distinct graph-structured data [36]. Initial studies applied GoG to
rank nodes in domain-specific networks [37] and developed clustering methods using non-negative
matrix factorization (NMF) for multi-view and multi-domain graph clustering [21]. Later research
applied the GoG approach to GNNs to enhance graph classification tasks [20, 38]. Recent efforts
have furthered GoG models to improve prediction capabilities in chemical and drug interactions
[19, 22, 39]. Additionally, [40] explored the use of multi-layer network models within Ethereum
and Ripple for anomalous event analysis, demonstrating the effectiveness of similarly structured
concepts in blockchain analytics. However, the application of GoG in blockchain datasets remains
underexplored, indicating a potential area for further research.

In summary, we provide a detailed comparison of related and public datasets with our dataset in
Table 1. Specifically, our dataset includes these unique features: (1) as a graphs-of-graphs dataset, it
comprises large-scale local graphs, dense global graph structures, and real-life temporal edges; (2)
as a blockchain graph dataset, it stands as the first large-scale hierarchical graphs-of-graphs dataset,
encompassing multi-chain transactions and graph-level labels.

Table 1: Comparisons among open-source graphs-of-graphs and blockchain graph datasets with ours.
The symbol "-" indicates data that is not related or applicable.

Glraph' Multi-chain | Density | V& Num- | Ave. Num. [ o0
Dataset Field evel comparabil- global local local graph Dynamic
(token) ity graph graph graph intra-inter edge
labels node edge
Graphs-of-graphs datasets
CCI900 [39] Chemical - - 4.4%x1071 254 26.5 1707.3 X
CCI950 [39] Chemical - - 4.8x1074 26.2 274 511.4 X
NetBasedDDI [39] Drug - - 0.7x107L 24.8 26.7 4422 X
ZhangDDI [39] Drug - - 0.3 252 27.0 1490.0 X
ChChMiner [39] Drug - - 0.5x107! 27.8 29.6 1418.9 X
DeepDDI [39] Drug - - 0.1 275 29.2 6153.8 X
Arxiv [38] Text - - 2.8x1074 30.9 200.1 23.31 X
QQ [38] Social - - 2.7x1073 291.2 2467.7 800.6 X
Blockchain graph datasets
Chartlist [14] Blockchain X X - v
LiveGraphLab [3] | Blockchain X X - v
EX-Graph [13] | Blockchain X X - - - - v
Ethereum 0.3 1493.7 2225.2 14273.2 v
Ours Blockchain v Polygon 0.5 1184.2 2523.6 525.1 v
BSC 0.6 1650.5 3346.4 4660.0 v

3 Dataset Details

3.1 Background

Blockchain and Cryptocurrency. Blockchain technology operates on a decentralized network
secured by cryptographically linked blocks. This structure ensures data immutability and verifiability,
supporting secure, irreversible, and transparent transactions. Cryptocurrencies, built on this technol-
ogy, facilitate secure digital transactions without a central authority, enhancing user anonymity while
complicating fraud detection.

EVM and ERC20. The Ethereum Virtual Machine (EVM) supports an account-based model that
enables direct value transfers and complex features like smart contracts. This model has become a
standard for blockchain networks and decentralized applications, utilized across prominent networks
such as Ethereum, Polygon, and Binance Smart Chain (BSC). The ERC20 standard on Ethereum and
the BEP20 standard on BSC provide a framework for fungible tokens, promoting interoperability and
simplifying the trading process across platforms.



Accounts and Transactions. On EVM-compatible chains, two primary account types exist: exter-
nally owned accounts (EOAs) and smart contracts. EOAs resemble traditional bank accounts but are
controlled by individual private keys, while smart contracts are programmable accounts that execute
automatically under specified conditions. Each account has a unique address, maintains a balance,
and is controlled by a private key. Transactions include details such as the sender’s and receiver’s
addresses, timestamps, values, and the transaction hash, ensuring that each transaction is immutable
and traceable.

3.2 Data Collection

This section summarizes the statistics of our datasets, focusing on ERC20 tokens on Ethereum and
Polygon, and BEP20 tokens on BSC. These token standards are among the most popular in the
blockchain industry [41]. Our datasets include three independent sets, each targeting a different
blockchain, comprising a total of 268,282,924 transactions conducted by 18,600,142 addresses across
24,316 tokens. These transactions record the full history of these tokens from the inception to
February 2024. Detailed statistics are presented in Table 2.

Table 2: Statistics of the datasets.

Chain # Token Start Month End Month # Transactions # Addresses # Categories
Ethereum | 14,464 2016-02 2024-02 81,788,211 10,247,767 290
Polygon 2,353 2020-08 2024-02 64,882,233 1,801,976 112
BSC 7,499 2020-09 2024-02 121,612,480 6,550,399 149

Transaction Data. All blockchain transactions are transparent, traceable, and publicly available,
achieved through the secure linkage of blocks using cryptographic techniques [42]. Prominent
blockchain explorers provide tools to easily access blockchain transaction data. We utilize public
APIs from Etherscan?, Polygonscan3, and Bscscan® to facilitate the collection of token transactions.
Each transaction includes sender and recipient addresses, transfer value, timestamp, unique transaction
hash, and other relevant details.

Tags. We collect category tags of the tokens from the three prominent blockchain explorers as labels.
We reviewed the tags for all ERC20 and BEP20 tokens launched no later than February 2024 across
these platforms. We filtered the tokens to include only those with more than 10,000 addresses or
1,000,000 transactions to ensure fair data distribution. The label details are as follows:

* For fraud cases, we labeled tokens flagged by explorers as suspicious phishing or hack tokens.
These include various kinds of spammed tokens, such as those that have been spammed to many
users or those that pretend to be famous tokens, like fake USDT. In total, 7,198 fraud tokens were
identified, representing 29.6% of the dataset.

* For other classes, we labeled tokens using the category tags given by the explorers. The most
popular classes in the dataset include DeFi tokens, which are related to decentralized finance
products; MEME tokens, often inspired by internet memes and characters; and Gaming tokens,
which are associated with electronic gaming.

Figure 1a represents the diversity of categories within our dataset as a label cloud. In total, 313
categories are found in these tokens. However, the distribution of categories is very skewed, as shown
in Figure 1b. Specifically, the top 5 categories on each chain can cover more than half of all tokens in
our dataset.

3.3 Graph Construction

In this section, we present how we construct our Graphs of Graphs (GoG) datasets. We build two
types of graphs: local graphs that represent transactions of tokens, and global graphs that represent
token-token relationships. Figure 2 illustrates a sample of our GoG structure.

*https://etherscan.io/
*https://polygonscan.com/
*https://bscscan.com/
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Figure 1: Token categories analysis.

=
o ~
—
Local Graph i" i" .
i i Node Type
~E l E

u
l
8-

ll

Iﬁ

Wallet
Contract

Edge Type

—— Token relation

=> Transaction

Global Graph %

Figure 2: A sample GoG structure with 5 tokens. Blue wallets and contracts are involved in
transactions of multiple tokens, while black wallets and contracts are involved in only one token’s
transactions.

3.3.1 Local Graph Construction

A local graph represents transactions of a single token. Defined as Gjocai = (N1, E1), the graph
consists of | Ny, | nodes representing accounts and |Er,| edges representing transactions. Each edge
(e = (u,v,w,t)) signifies a transaction from account u to v, involving a value w transferred at time ¢.
The timestamp ¢ indicates when the transaction occurs, with the first transaction timestamp marking
when the token becomes active on-chain.

3.3.2 Global Graph Construction

A global graph aims to model the correlation of various tokens across blockchain platforms.
Specifically, we model the transaction networks of individual tokens into nodes, forming a graph
Ggiobat = (NG, Eg). N¢ denotes the set of all local graphs, and E¢ represents the inter-token
relationships. The edges in the global graph are weighted by the Jaccard Coefficient, defined as:

|AN B|
|AU B|

where A and B are the node sets of the local transaction graphs for two distinct tokens. The Jaccard
Coefficient quantifies the degree of overlap in user bases between different tokens, offering insights
into the inter-connectedness and user-sharing across tokens. Each edge weight reflects this inter-
connectedness, providing a measure of relational strength and activity overlap between tokens at a
global scale. This approach of finding common addresses is inspired by previous studies on social
media groups [20] and multi-layer blockchain analysis [40]. We remove the null address® when
measuring to prevent all tokens involved in transactions with null addresses from being connected.
As new transactions are executed on the blockchain platforms, global edges in our graph dynamically
adapt to changes in local transaction information, as detailed in Appendix D.

Edge weight: J(A, B) =

>Null address: 0x0000000000000000000000000000000000000000.



4 Observations and Analysis

4.1 Local Graph Analysis

We examine several graph properties within distinct classes of local graphs to deepen our understand-
ing of token transfer networks. Figure 3 displays three crucial graph properties: number of edges,
reciprocity, and clustering coefficient, segmented by the top five most prevalent classes across three
blockchains. Notably, the "FxChild" class is exclusive to Polygon, while the other four classes are
observed across all chains.

Finding (1): The distribution of token categories varies across different chains. Tokens within
the same class can exhibit distinct network characteristics depending on the blockchain.
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Figure 3: Distribution of graph properties across three chains.

Figure 3a illustrates the distribution of the number of edges across token graphs on three blockchains.
While DeFi, MEME, and Gaming tokens generally show a comparable number of edges, Fraud
tokens consistently exhibit fewer edges across all platforms, with a notably higher node count on
Polygon. This suggests less connectivity among participants in fraud-related activities.

Figure 3b shows the reciprocity of these token graphs, reflecting the proportion of mutual connections.
Results indicate that MEME tokens display higher reciprocity, aligning with the interactive nature of
these communities. In contrast, Fraud tokens show the lowest reciprocity, indicating that fraudulent
transactions are less likely to be reciprocal, possibly due to their unilateral nature.

Figure 3c presents the clustering coefficient, which indicates how closely nodes in a graph cluster,
reflecting the formation of tight-knit groups or collusive clusters. A higher average clustering
coefficient suggests the presence of prevalent cliques or active trading communities. Fraud tokens
demonstrate the lowest clustering coefficients, suggesting sparse connectivity, whereas MEME tokens
exhibit the highest, indicative of tight-knit communities. Additionally, tokens on BSC display the
widest range and highest clustering coefficients compared to those on Ethereum and Polygon, pointing
to more clustered network structures on BSC.

4.2 Global Graph Analysis

To understand how the Graph of Graphs (GoG) approach enhances our comprehension of the intricate
relationships and interactions within the ERC20 markets, we perform sophisticated network analyses,
focusing on edge weight analysis and node centrality to identify influential tokens.

Finding (2): The predominance of low edge weights across the network suggests limited
interaction between different tokens. High weights are predominantly observed among local
graphs within the same class, especially those implicated in fraudulent activities.

Edge weights in the global graph, determined by the Jaccard coefficient of common nodes, illustrate
the interconnectedness of tokens based on shared investors or smart contracts. We analyze the
distribution of edge weights in the global networks, as demonstrated in Figure 4. This distribution is
predominantly characterized by small values, indicating sparse connections across most token pairs,
although there are exceptions with a few highly interconnected node pairs. Moreover, as shown in
Table 3, the contract pairs with the highest weights on each blockchain consistently involve local
graphs within the same class, notably marked by a prevalence of fraud-related contracts. This pattern
suggests concentrated activity or potential collusive behaviors within these groups of tokens.
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Figure 4: Cumulative distribution of edge weights in three global graphs.
Table 3: Top 3 connected contracts with highest weight across different chains.
Chain |  Contractl Contract2 |  Classl Class2 | Edge Weight
0x3d09...c6lcce  0x6752...1e761a Fraud Fraud 1.0
Ethereum | 0xa034...145c1b  0x5fbf...762f24 Fraud Fraud 1.0
0xb3£6...7d8429  0x6249...29af88 | Deprecated Deprecated 1.0
0x8db0...06f7ec ~ 0x36f5...c72c5b FxChild FxChild 1.00
Polygon Oxbbcc...85¢429  Oxla8a...6f5f68 FxChild FxChild 0.98
Oxa7e8...9304f7  0Oxee35...52699¢ Gaming Gaming 0.97
Oxaf71...020ac2  0x362d...881ffc | Play-to-Earn  Play-to-Earn 1.0
BSC Oxaefe...55eab2  0x9775...4e74ec Fraud Fraud 1.0
0x51b0...42a2e4  0x9775...4e74ec Fraud Fraud 1.0

Finding (3): A higher number of edges in local graphs typically correlates with central roles
in global graphs, highlighting a strong relationship between transaction activity and centrality
within the blockchain ecosystem.
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Figure 5: Global node degree centrality vs. local graph number of edge.

Node degree centrality is a critical metric for identifying hub nodes—those that are most intercon-
nected within the market. We analyze node degree centrality within each global graph, aiming to
identify tokens that act as central nodes in their respective markets. First, we find that tokens with
high node degrees tend to belong to the most popular classes in the blockchain. More than 70% of the
top 10 nodes with the largest degree centrality belong to the most popular classes, including Fraud,
FxChild, and Gaming. Second, we explore the correlation between node degree centrality in global
graphs and the number of edges in local graphs, as illustrated in Figure 5. Results reveal that token
graphs with a higher number of edges are more likely to become high-degree nodes in global graphs.
Interestingly, we found that very few tokens have between 150 and 250 transactions, which creates a
noticeable gap in the Figure 5a.

S Downstream Applications

The observations presented earlier provide a comprehensive overview of our GoG datasets. Our
findings highlight how the GoG approach enhances our understanding of the complex transfer graphs
across various token classes. These properties introduce new challenges for several downstream tasks.
In this section, we investigate two studied tasks to address these questions:



* QI: How can the GoG approach improve accurate classification of token graph categories?
* Q2: How can the GoG approach improve fraud detection performance on blockchain graphs?

* Q3: How do graph learning models perform across different blockchain datasets?

Additionally, we explore investment prediction as a future edge prediction task in Appendix F. These
experiments demonstrate the capability of the GoG approach to handle various graph learning tasks
in the blockchain domain, thereby underscoring its potential for practical applications.

5.1 Multi-class Graph Classification

Graph classification is a crucial aspect of graph learning research [43]. By predicting the attributes of
each graph within a collection, graph classification facilitates exploration across various domains,
including image classification [44], document analysis [45], and chemical discovery [46]. In this
section, we focus on multi-class graph classification, aiming to categorize tokens into distinct classes.
Given the scarcity of some minor classes, we concentrate on the top token categories within each
chain for our classification task. Specifically, we classify tokens into two groups: (1) the top 3
categories, and (2) the top 5 categories.

Models. We compare two groups of models. Group 1 consists of GNN models applied to individual
graphs, including: (1) GCN [31], (2) GAT [47], (3) GIN [48], (4) ResidualGCN [49], and (5)
GraphSage [50]. Group 2 comprises GNN models tailored for handling collections of graphs,
including: (1) SEAL [20], which applies a self-attentive graph embedding approach using GCN
as the base model to embed individual graph instances into fixed-length vectors for classification;
(2) GoGNN [19], which enhances GCN’s capabilities by incorporating an attention-based pooling
mechanism and GAT to effectively identify key substructures within local graphs; and (3) DVGGA
[39], which combines a denoising autoencoder with a self-attentive GNN and readout function.

Settings. We filter out token graphs with fewer than five nodes or edges to maintain data integrity.
After applying this criterion, less than 2% of tokens were removed from all three datasets, ensuring
that our analysis still represents the majority of the data. Guided by insights from subsection 4.2,
we establish a threshold for edge weight, including only weights exceeding 0.01 to identify closely
connected tokens. When experimenting with both groups of models, we utilize incoming degree,
outgoing degree, and total degree as node features for the local graphs. For a fair comparison, we
conduct all experiments as supervised learning tasks. The dataset is divided into training and testing
sets following an 80/20 ratio. Then, we employ Macro-F1 and Micro-F1 as evaluation metrics.
Macro-F1 computes the Fl-score separately for each class and then averages them, giving equal
importance to all classes regardless of their frequency. In contrast, Micro-F1 assigns more weight to
classes with higher frequencies, reflecting their prevalence in the dataset.Due to the imbalance in our
dataset, we primarily use Macro-F1 for model comparisons. Each experiment is repeated three times
with different seeds, and we report the average performance and standard deviation.

Results. The results of the 3-class and 5-class classification tasks are summarized in 3. Several
notable observations emerge from these results. First, GoG models exhibit superior performance
compared to individual GNN models across most tasks in both classification scenarios. Specifically,
SEAL demonstrates the best F1-macro performance, showing up to 28% and 16% improvements
respectively in the 3-class category on BSC, and up to 44% and 11% improvements respectively
in the 5-class category on Ethereum, compared to the average performance of non-GoG models.
Second, as the classification task becomes more complex by including additional minor classes, the
performance of both model groups notably declines. The advantage of GoG models over individual
GNN models diminishes in 5-class classification compared to 3-class classification, emphasizing the
necessity for further development of advanced GoG models, especially for minor-class classification.
Third, all model groups demonstrate less satisfactory performance on the Polygon dataset. This
could be attributed to the dataset’s smaller size and greater imbalance compared to others. Therefore,
there is a clear need for devising robust graph learning models capable of effectively capturing the
intricacies of the Polygon dataset. In Appendix G, we conducted experiments predicting the class
label of younger tokens using the information about older tokens. Results show that for Ethereum and
BNB, the performance shows slight differences from the results in Table 4. However, for Polygon,
the performance deteriorates significantly.



Table 4: 3-class and 5-class classification performance by blockchain.
\ Ethereum Polygon BSC

Model | Fl-macro Fl-micro | Fl-macro Fl-micro | Fl-macro F1-micro

3-Class Classification

GCN 62.48+6.31 85.05+138 28.82+136 742440583 51.43+593 57.02+337
GAT 60.22+7.04 84.62+123 29.90+2.60 73.94+1.79 54.48+6.15 59.96+3.19
GIN 39.79+11.02 78.58+3.07 28.82+153 74.26+083 43.29+293 55.90+2.56

Residual GCN 62.85+6.07 84.18+150 28.50+035 74.37 +0.18 50.73+459 56.78+229
GraphSage 64.17+38.53 85.51+205 31. 714256 74.48+0.68 56.70+6.12 61.36+2.78
SEAL 67.31 £360 86.65 +130 | 29.64+170 T74.51 +0.16 | 63.77 £059 65.59 +0.42
GoGNN 64.20-+4.29 85.89+047 | 36.11 050 66.09+11.02 53.98+455 58.03+2.90
DVGGA 37.23+1057 77.84+4.16 28.44+0.004 74.22+017 41.31+867 47.03+764

5-Class Classification

GCN 36.88+4.90 78.37+181 16.40+0.65 68.79-+0.66 27.49+327 43.09+2.12
GAT 36.46+4.44 78.46+142 | 20.04 £354  68.85+1.08 29.85+3.12 44.97 +277
GIN 19.24 1462 71.31+218 16.41+065 68.82+0.63 22014232 41.33 1319

Residual GCN 33.724+5.56 76.69+1.91 16.47 +0.6 68.6+1230 23.8245.09 40.33+3.90
GraphSage 38.914531 79.73+1.97 18.01+1.64 68.88+0.65 30.22+334 46.15+220

SEAL 45.09 + 1079  81.59 +2.06 16.90+0s2  69.02 +0.15 | 31.83 +331  46.50 + 1.93
GoGNN 32.514358 71.74+6.56 19.70+2.62 59.19+ 1241 23.3345.42 38.54+630
DVGGA 21.60+7.21 71.70+229 18.03+238 67.20+2.42 16.92+5.77 34.91+489

5.2 Graph Anomaly Detection

Anomaly detection is a significant task in machine learning with numerous applications, including
anti-money laundering [51], social media analysis [52], and disease detection [53]. In this section, we
focus on detecting anomalies in tokens, specifically identifying fraudulent tokens from non-fraudulent
ones. Given the skewness of fraud and non-fraud tokens, we approach graph anomaly detection as an
unsupervised learning task.

Models. We compare two groups of models. Group 1 includes anomaly detection methods for
multivariate data, such as probabilistic and outlier ensemble methods. Specifically, we compare (1)
COPOD [54], (2) IForest [55], (3) DIF [56], and (4) VAE [57]. Group 2 includes anomaly detection
methods on graphs, primarily GNN+AE methods. Specifically, we compare (1) GAE [58], (2) DONE
[59], (3) DOMINANT [60], (4) AnomalyDAE [61], and (5) CoLA [62]. Detailed introductions of
these methods are presented in Appendix E.

Settings. We use the same dataset settings as in subsection 5.1 to filter out small token graphs and
build global graphs. For multivariate data analysis, drawn from our observations in subsection 4.1,
we measure various graph properties, including the number of nodes, edges, assortativity, density, and
reciprocity. These features are normalized to ensure consistency across the dataset. Our experimental
setup follows the frameworks provided by PyOD [63] and PyGOD [64]. The dataset is divided into
train/validation/test sets following an 80/10/10 ratio. Evaluation metrics include the area under the
curve (AUC) and Average Precision (AP). AUC measures the model’s ability to rank anomalies
higher than normal instances, while AP quantifies the precision-recall balance, providing insights
into model performance regarding the anomaly detection task.

Results. The performance of graph anomaly detection methods across three blockchains is summa-
rized in Table 7. Interestingly, on the BSC dataset, most graph outlier detection methods outperform
those based on graph structural data. For example, AnomalyDAE shows up to 3.34% improvement
in AUC and 54.20% improvement in AP, compared to the average performance of detection mod-
els based on graph structural data. However, on Ethereum and Polygon, methods based on graph
structural data demonstrate superior performance. This variation may be attributed to differences in
fraudulent token behaviors and network structures specific to each blockchain. Additionally, consis-
tent with the findings in subsection 5.1, both groups of methods exhibit poorer performance on the
Polygon dataset, highlighting the need for further research. In Appendix H, we explored an additional
method to represent token graphs by employing the DeepWalk algorithms [65]. Results show that



Table 5: Graph anomaly detection performance by blockchain. We report the ratio of number of
non-fraud:fraud case of each data at the top.

Ethereum (8387: 6022) Polygon (2257: 58) BSC (6339: 1042)

Model AUC AP AUC AP AUC AP
COPOD 83.27+1.00 27.25+04 60.52+13.27 11.33 + 649  52.87+200 14.18+0.69
IForest 84.10+055 26.93+056 64.33+11.43 10.79+5.67 58.36+2.83 11.58+157
DIF 84.56 + 131 32.69+0.95 68.04+10.11 7.9912.06 51.57+049 17.52+205
VAE 67.25+161 31.46+0.49 72.45 + 1041 10.56+5.09 59.03+0.20 18.70+1.13
GAE 70.85+258 31.21+0.68 62.16+0.09 3.85+0.01 56.33+125 17.11+035
DONE 74.93 1291 29.03+0.92 62.21+030 1.95+0.07 65.86+3.70 10.64+1.10

DOMINANT  75.18+260  43.14 +19.69 70.45+7.93 3.55+148 78.87 + 023 8.49+003
AnomalyDAE  65.82+847 39.24 11009 60.94+3.06 3.72+042 62.494923 22,71 +6.98
CoLA 65.15+7.17 35.80+7.04 54.90+2.74 3.51+064 60.87+3.63 19.64 +6.29

while GoG models benefit from the use of the DeepWalk algorithm, the performance of multivariate
outlier detection methods decreases. In general, the adoption of the GoG approach presents new
opportunities to enhance graph anomaly detection in the blockchain domain, as evidenced by the
varied performance observed across different blockchains.

6 Conclusion

In this paper, we introduced a novel dataset based on the Graphs of Graphs (GoG) approach within
the blockchain domain. Our dataset includes local graphs that detail individual token transactions
and global graphs that model interactions between tokens across multiple blockchain platforms. This
approach provides a comprehensive view of transaction activities within the blockchain ecosystem.
We conducted systematic analyses and experiments using the GoG approach, revealing significant
patterns and characteristics in the blockchain environment. Our findings suggest that GoG models
have the potential improve various applications, such as link prediction, anomaly detection, and token
classification, especially when compared to traditional GNN methods. We believe this work lays a
foundation for future research in graph learning and encourages further exploration of the complex
relationships within blockchain networks.

7 Border Impact and Limitation

Our datasets offer researchers fresh opportunities to explore and analyze blockchain graphs. Insights
from this analysis could aid in developing stronger market structures and enhanced security protocols
within crypto token platforms. Our classification and anomaly detection models aim to enhance
predictive capabilities, particularly in situations where labels may be incomplete or unavailable. For
instance, while only a small fraction of existing tokens has been labeled by blockchain explorers,
there are over 900,000 ERC20 tokens on Ethereum, with new tokens being launched daily that may
not yet be classified. Our models can predict these labels more quickly and provide detailed insights.
By leveraging similarities within the data, the GoG approach reduces reliance on labeled data and
improves the accuracy of predictions for unlabeled tokens.

However, our datasets have several limitations that must be acknowledged. First, the lack of restric-
tions on creating multiple accounts on the same blockchain allows a single entity to control multiple
accounts. This can distort interaction patterns and connectivity metrics within our GoG datasets.
Second, while our model is designed to enhance predictive capabilities in cases where labels are
incomplete, it is limited by the fact that only a small fraction of existing tokens has been labeled by
blockchain explorers. Although we rely on trusted blockchain explorers for labeling, there is always
a risk of misclassification, especially with fraudulent tokens. Therefore, our model is intended to
augment, not replace, human judgment; predictions should be viewed as suggestions that require
further scrutiny. Third, the public nature of blockchain data raises privacy concerns. Our datasets
link transactions to wallet addresses, potentially enabling the tracking of individual behaviors, which
could lead to targeted advertising or surveillance.
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A Background

In this section, we provide an overview of blockchain technology and cryptocurrency, laying the
groundwork for understanding the subsequent discussions in this paper.

Blockchain and Cryptocurrency. Blockchain technology has gained growing attention recently
for its strong security features and decentralized structure. It is characterized by a sequence of
cryptographically secured blocks that operate on a network of nodes [42]. This design ensures data
immutability and verifiability while allowing universal access, enabling participants to interact with
the ledger from anywhere at any time. Once recorded on the ledger, transactions become irreversible
and are executed securely and transparently, which helps safeguard the integrity of data exchanges.

With the support of blockchain technology, cryptocurrencies have surged in popularity as an innovative
means of conducting secure digital transactions. Unlike traditional currencies, cryptocurrencies
operate without a centralized authority and are managed through decentralized systems. This
decentralization maintains participant anonymity, offering robust privacy protection; however, it
complicates efforts to identify fraudulent activities within the market.

Blockchain Models and EVM Chains. Various operational models exist within blockchain technol-
ogy. For instance, Bitcoin, the first cryptocurrency network, operates using the Unspent Transaction
Output (UTXO) model [66]. In this model, each transaction utilizes unspent outputs from previous
transactions as inputs, generating new unspent outputs for subsequent transactions. This method pre-
serves transaction integrity by streamlining ownership verification and enhancing security measures
related to transaction immutability.

In contrast, the Ethereum Virtual Machine (EVM) introduced an account-based model, akin to
traditional banking systems, where balances are maintained in user accounts [67]. This model
enables direct value transfer and supports advanced features such as smart contracts, which are
self-executing agreements with terms embedded directly within the blockchain. Due to its versatility
and strong developer support, the EVM has become the standard for building blockchain networks
and decentralized applications. The three notable EVM-based networks discussed in this work are
Ethereum, Polygon, and Binance Smart Chain [68]:

» Ethereum, the pioneering EVM chain, has developed a robust platform for decentralized applica-
tions. It supports a wide range of decentralized services, from financial transactions to games and
autonomous organizations. Its native token, Ether, holds the second-largest market capitalization,
second only to Bitcoin.

* Polygon enhances Ethereum’s functionality as an EVM-compatible chain by offering faster transac-
tions and reduced fees. Functioning as a sidechain to Ethereum, it addresses scalability issues with
a multi-chain infrastructure, which is particularly advantageous for developers seeking efficient
transaction throughput within the Ethereum ecosystem.

* Binance Smart Chain provides a similar EVM-compatible environment with a focus on scalability
and user experience. It has carved out a niche by emphasizing rapid transactions and minimal fees,
particularly attracting decentralized finance (DeFi) applications and NFTs.

ERC20 and BEP20 Standards. The ERC20 standard defines a framework for fungible tokens on
the Ethereum blockchain. These fungible tokens are digital assets that are identical in type and value,
making them interchangeable with one another. This standardization simplifies the process of trading
and exchanging tokens and enhances their interoperability across various applications. Similarly,
BEP20 is a standard used on the Binance Smart Chain (BSC), mirroring many of the functionalities
of ERC20 while optimizing for faster transactions and lower fees.

Accounts and Transactions. EVM-compatible chains typically support two principal types of
accounts: External Owned Accounts (EOAs) and smart contracts. EOAs function much like traditional
bank accounts, as they are directly managed by users through a private key, granting them full
autonomy over transactions. In contrast, smart contracts are autonomous programs that reside on
the blockchain and execute automatically when predefined conditions are met. These programs are
crucial for a variety of operations on EVM chains, from facilitating transactions in the token markets
to managing decentralized finance (DeFi) protocols and automated governance mechanisms.

A transaction includes various details, such as the sender’s and recipient’s actions, signature, nonce,
data, gas limit, maximum priority fee per gas, and maximum fee per gas. In the token market, these
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transactions facilitate diverse blockchain events like token issuance and transfers. This architectural
framework not only supports complex financial interactions but also enhances security across the
blockchain ecosystem.

B Supplemental Related Work

Graphs-of-Graphs Analysis. The analysis of Graphs-of-Graphs (GoG) systems has become a
crucial method for understanding complex relationships within and across different network layers in
various domains. For instance, Chen et al. [69] examined the dynamics of event propagation on social
platforms like Twitter. They analyzed follower link roles by grouping users based on their language
settings, treating these groups as local graphs, with following or retweeting relationships represented
as edges. Similarly, Wang et al. [70] modeled intra-level and inter-level causal relationships within
interdependent networks, effectively tracing and identifying root causes in complex interconnected
system structures. In more specialized applications, Liu et al. [71] employed GoG to enhance
hazard identification at construction sites. They mapped interactions between characters and hazard
networks, simplifying complex network structures to improve safety outcomes. Additionally, Chen
et al. [72, 73] investigated the manipulation of connectivity in multi-layered networks, uncovering
the structural dynamics that govern these complex systems. These studies underscore the powerful
capability of GoG analysis in providing a deeper understanding of intricate graph systems.

C Basic Structure Properties

In this section, we explore several fundamental graph properties relevant to our analysis, as discussed
in subsection 4.1 and subsection 5.2. We measure seven key graph properties: the number of nodes,
the number of edges, density, assortativity, reciprocity, clustering coefficient, and effective diameter.
These properties provide a comprehensive structural overview of the graph, which is essential for
understanding its characteristics and implications in the context of token transfer networks.

First, we consider the number of nodes and edges, which quantitatively describe the scale and potential
complexity of the graph. Density, assortativity, and reciprocity offer insights into the connectivity
and interaction patterns among nodes, reflecting how edges are distributed and whether similar nodes
preferentially connect to each other. Additionally, the clustering coefficient and effective diameter
provide a view of the overall compactness and reachability within the graph.

Density. The density of a graph measures its compactness and connectivity. In this study, density is
calculated as:
_ B

VIV - 1)

where | E| is the number of edges, and |V| is the number of nodes. In token transfer graphs, a lower
density suggests a fragmented or developing market, indicative of fewer interactions or participants.
Conversely, a high density indicates a mature market with frequent transactions between participants.
This distinction is crucial for understanding market dynamics.

D

Assortativity. The assortativity coefficient quantifies the tendency of nodes to connect with others
that share similar attributes. Specifically, assortativity is calculated by:

. — 2ger F@) = 1) (FG) = f)
Ve (F0) = 11 T per (FG) — 12)°

This metric is particularly relevant in token transfer graphs, as it measures how frequently addresses
transact with others of similar characteristics. A higher assortativity may indicate a market dominated
by similar types of transactions or participants. However, it is important to note that this is a trend
observed in our data rather than an absolute rule. Understanding this property aids in identifying
market segmentation.

Reciprocity. Reciprocity measures the likelihood of directed connections being reciprocated. It is

calculated by:
_ HGj) eG: (i) € Gl
[E(G)]
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This metric is crucial for understanding mutual interactions between addresses, such as reciprocal
trading patterns. In token transfer graphs, a higher reciprocity suggests a strong bidirectional
transactional relationship, indicating trust or partnership between nodes. This insight is vital for
assessing the stability of relationships within the graph.

Clustering Coefficient. The clustering coefficient measures how closely nodes in a graph tend
to cluster together. This metric is essential in token transfer graphs, as it indicates the extent to
which nodes form tightly-knit groups, which may suggest collusive behavior or strong community
structures. We primarily use the average clustering coefficient to assess overall network cohesion and
the potential for collaborative behavior among participants. It is calculated as:

1 n
Cayg = — C;
27(7)
ki(ki — 1)
In the token transfer graph, a higher average clustering coefficient suggests a network characterized

by prevalent cliques or groups that engage in frequent interactions, potentially indicating tight-knit
trading communities.

C; =

Effective Diameter. The effective diameter provides insight into the average separation between
node pairs across the graph. We measure the effective diameter by performing breadth-first search
(BFS) from a sample of randomly selected nodes to provide a broad and representative overview of
the graph’s structure. The effective diameter is then defined as the 90th percentile of the shortest
path lengths obtained from these BFS runs. This approach estimates how far apart nodes are on
average, considering the most representative paths rather than extremes. The effective diameter
reflects how easily a token can circulate within the network, a key factor in assessing liquidity and
market efficiency. This metric is particularly important for understanding the graph’s accessibility.

D Temporal Properties Analysis

To reveal the temporal changes in the GoG systems of the three blockchains, we analyze the yearly
variation of some fundamental properties of the global graphs. Nodes represent tokens, and an edge
between two nodes indicates that the tokens share common addresses during that year.

First, we examine the dynamics of the number of nodes and edges, as illustrated in Figure 6. Across
the Ethereum, Polygon, and BSC ERC20 token networks, we observe a consistent trend of significant
growth in both nodes and edges. This growth reflects increased adoption and diversification of
blockchain platforms. Over the past three years, the average increase in the number of nodes in the
global graphs is 42.49% for Ethereum, 33.08% for Polygon, and 65.18% for BSC. These figures
indicate substantial changes in the dataset. Notably, Ethereum exhibits the most mature growth
pattern, particularly with a significant acceleration since 2020. In contrast, Polygon shows robust
growth; however, it has a slower increase in edges compared to nodes, suggesting a less interconnected
network than Ethereum’s GoG. Meanwhile, BSC experiences a rapid rise in both nodes and edges
but begins to show signs of stabilization in 2023, indicating a maturing of its initial expansion phase.
These patterns highlight that while all networks are expanding, the nature and rate of growth vary
among the different blockchains.
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Figure 6: Yearly number of nodes and edges of three global graphs.

Second, we analyze the density and average clustering coefficient of the three global graphs, as
shown in Figure 7. A common trend emerges across Ethereum and BSC: both density and clustering
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coefficient tend to decrease as the network size increases. This trend indicates sparser connections
as these networks expand, especially pronounced in the BSC network, which reflects significant
diffusion from its originally dense structure. Conversely, Polygon exhibits a different pattern; both
metrics initially increase and then stabilize. This indicates that the GoG not only grows but also
effectively maintains or enhances its clustering. Such behavior suggests robust internal structuring
that preserves community integrity even as the network scales. These observations highlight varied
adaptive strategies within blockchain networks, with the Polygon GoG notably sustaining community
cohesion amidst growth.
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Figure 7: Yearly density and clustering coefficients of three global graphs.

E Model Implementation Details

In this section, we introduce the models and hyperparameters we used for the multi-class classification
and anomaly detection tasks.

E.1 Multi-class classification

Models. We conduct experiments on two groups of models: (1) 5 GNN models on individual graphs,
and (2) 3 GoG-based GNN models on graphs-of-graphs.

Group (1) includes GNN models for individual graphs:

* Graph Convolutional Network (GCN) [31] utilizes a layer-wise propagation rule based on spectral
graph convolutions, enabling it to learn representations that capture graph structure and node
features effectively.

* Graph Attention Network (GAT) [47] introduces an attention mechanism in the propagation step,
allowing nodes to dynamically weigh the contributions of their neighbors.

* Graph Isomorphism Network (GIN) [48] is designed to capture the power of the Weisfeiler-
Lehman graph isomorphism test. It approximates the Weisfeiler-Lehman graph isomorphism test
by adjusting aggregators to better distinguish between different graph structures.

* Residual Graph Convolutional Network (Residual GCN) [49] incorporates residual connections
into the graph convolutional layers to improve gradient flow during training, which enhances the
learning of deeper GNN architectures by mitigating the vanishing gradient problem.

* GraphSAGE [50] generates node embeddings by sampling and aggregating features from a node’s
local neighborhood. Its inductive learning framework supports embedding generation for unseen
data, making it scalable and efficient for large graphs.

Group (2) includes models designed for graphs-of-graphs:

» Semi-supervised Graph Classification via Cautious Iteration (SEAL) [20] utilizes a self-attentive
graph embedding method with GCN as a backbone to embed graph instances into fixed-length
vectors, facilitating graph-based classification tasks. It enhances the encoding of local graph
structures and their relationships within a larger graph context.

* Graph of Graphs Neural Network (GoGNN) [19] extends traditional GCN capabilities by integrating
an attention-based pooling mechanism and GAT. It effectively identifies significant substructures
within local graphs and interactions within the interaction graph, providing a powerful framework
for analyzing complex graph relationships.

20



* Denoising Variational Graph Autoencoder (DVGGA) [39] employs a denoising variational autoen-
coder combined with a self-attentive graph neural network and a readout operation. This model is
adept at handling noise in graph data, making it suitable for tasks requiring robust feature extraction
and anomaly detection in noisy environments.

Model structures. For GNN models targeting individual graphs, we employ a configuration that
includes two GNN layers followed by a fully connected layer for classification. This two-layer setup,
consistent with the backbone design of SEAL [20], ensures fair comparisons. Each layer transforms
node features to enhance feature extraction, using ReL.U activation and dropout for regularization.
Following the convolution layers, a global mean pooling layer aggregates node features into a cohesive
graph-level representation. This representation is then processed through a fully connected layer,
which outputs class probabilities using a logarithmic softmax function. For GoG models, we utilize
publicly available code from the Github repositories of the original studies. For GOGNN and DVGGA,
we adapt the original code from edge prediction to node classification tasks on the global graph.

Hyperparameters. For individual GNN models, we configure each layer with a dimension of 16, a
dropout rate of 0, a learning rate of 0.01, and set the number of training epochs to 50. Cross-entropy
serves as the loss function. For GoG-based models using a single GCN model as the backbone, we
ensure that the dimensions and dropout rates are consistent with those of the individual GNN models.
To fine-tune additional hyperparameters, we experiment with various settings listed in Table 6 to
achieve optimal performance.

Table 6: GoG models parameter settings.

Model Parameter Values

SEAL First dense neurons 16, 32, 64
Second gcn dimensions 8, 16
Number of epochs 50, 100, 150
Weight 0, 0.001, 0.00001

GOGNN  Nhid 32,64, 128
Number of epochs 50, 100, 150
Pooling rate 0.4, 0.5, 0.6

DVGGA  Vgae hidden dimensions 8, 16, 32
Number of epochs 50, 100, 150

E.2 Anomaly Detection

Models. We test two groups of models: (1) 4 models for multivariate anomaly detection, and (2) 5
models for the graph anomaly detection.

Group (1) includes probabilistic-based and outlier ensembles methods designed for multivariate
anomaly detection:

* Copula-Based Outlier Detection (COPOD) [54] is a probabilistic model that leverages the advan-
tages of copulas for outlier detection. It does not assume a normal distribution of data, making it
robust and effective in identifying outliers in various datasets with complex distributions.

* Isolation Forest (IForest) [55] utilizes a decision tree structure to isolate outliers by randomly
selecting features and split values between the feature’s maximum and minimum. Its efficiency and
scalability make it well-suited for large datasets.

* Deep Isolation Forest (DIF) [56] extends the traditional isolation forest by incorporating deep
learning techniques to enhance its capability to handle high-dimensional and complex structured
data.

* Variational Autoencoder (VAE) [57] is a generative model that uses a neural network architecture to
model data distributions and encode data into a latent space. It is widely used for anomaly detection
by reconstructing inputs and measuring reconstruction errors to identify anomalies.

Group (2) includes anomaly detection methods on graphs, primarily utilizing GNN combined with
Autoencoder techniques:
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* Graph Autoencoder (GAE) [58] employs a graph convolutional network to encode the graph
structure into a latent space, then reconstructs the graph to identify anomalies by measuring
reconstruction loss.

* Detection of Outliers in Network Data (DONE) [59] integrates graph structural information with
node feature information to detect anomalous nodes effectively within graph data.

* Deep Anomaly Detection on Attributed Networks (DOMINANT) [60] uses a deep autoencoder
model adapted to graph data, enhancing the ability to capture non-linearities and complex patterns
in the data, which helps in identifying both global and local anomalies in graphs.

e Anomaly Detection with Autoencoder (AnomalyDAE) [61] is an autoencoder-based model that
particularly focuses on detecting anomalies in dynamic graphs by learning a representation that
captures both the graph structure and changes over time.

* Contrastive Learning for Anomaly Detection (CoLA) [62] utilizes contrastive learning to differenti-
ate between normal and abnormal nodes, leveraging the discriminative power of contrastive loss to
enhance anomaly detection performance in graph settings.

Hyperparameters. We test on the following hyperparameters in Table 7 and select the best setting
with superior performance.

Table 7: Models of anomaly detection parameter settings. n represents the number of features.

Model Parameter Values
COPOD Contamination 0.01 to 0.1 (linear space)
Isolation Forest Number of estimators 100, 200

Maximum samples 256, 512

DIF Contamination 0.01 to 0.05 (linear space)

VAE Encoder neurons n/4, n/2, min(20, n)
Decoder neurons n/4, n/2, min(20, n)
Contamination 0.1 to 0.3 (linear space)

DOMINANT, DONE, GAE, Hidden dimensions 16, 32, 64

AnomalyDAE, CoLA Learning rate 0.01, 0.005, 0.1

Number of epochs 50, 100, 150

F Global Link Prediction

Link prediction is an essential task in graph learning, widely applied in recommendation systems [74]
and social media analysis [75]. In the context of blockchain analysis, predicting interactions between
tokens is essential for forecasting future market behaviors. This section focuses on global edge
prediction, specifically aiming to forecast interactions for newly launched tokens using information
from existing tokens.

Models. We compare two groups of models based on the previous section subsection 5.1. The
first group consists of traditional Graph Neural Network (GNN) models applied to global token
graphs. The second group includes Graphs of Graphs (GoG) models, which leverage the hierarchical
structure of token-to-token interactions. We provide a detailed comparison of performance metrics to
substantiate our claims regarding the effectiveness of these models.

Settings. Our analysis focuses on the most recent tokens launched within the past year. We divided
global token-token interactions into training and test sets, following an 80/20 ratio based on the tokens’
launch times. Node degree serves as the primary feature for local graph embeddings, consistent with
our approach in the classification task. We evaluate model performance using accuracy and AUC,
supplemented by precision and recall to provide a comprehensive assessment.

Results. The performance of global edge prediction methods across three blockchains is summa-
rized in Table 8. As shown, GoG models do not consistently outperform individual GNN models,
particularly on the BSC dataset. One potential reason for these results is that the node degree, used
as a node feature in this experiment, may not be as effective for predicting global edges as it is for

22



Table 8: Edge prediction performance by blockchain.

\ Ethereum Polygon BSC
Model | Accuracy AUC | Accuracy AUC | Accuracy AUC
GCN 58.07+036 62.02+023 59.64+17 66.92+537 66.73+3.12 72.87+3.42
GAT 50.80-+0.43 54.5042.43 50.70+2.07 54.64+4.47 52.82+077 53.62+236
GIN 56.48+1.61 56.36+1.77 59.03+347 58.17+433 59.98+261 63.57 1348

Residual GCN | 50.31+037 50.66-+0.54 49.91+o0.08 49.92+0.10 50.41+043 50.74+0.94
GraphSage 50.92+1.03 53.67+2.11 56.63+sss  60.17x1283 | 71.02 £005 78.07 +1.08
SEAL 57.09+1.64 64. 741483 56.98+493 64.62+1034 56.52+462 58.05+6.04
GoGNN 66.94 +208 72.04 +241 57.10+521 56.72+475 58.99+277 66.25+1.84
DVGGA 50.40+1.79 62.93+173 | 7238 +136  76.00 £032 | 63.63+404 69.11+3095

classification tasks. This suggests that further exploration of edge feature engineering could enhance
the predictive capabilities of GoG models for token-token interactions.

Additionally, the dynamic nature of blockchain networks presents opportunities to monitor and predict
future token-token interactions, which could forecast significant market trends. However, most current
GoG models are not designed with dynamic algorithms [19, 20], highlighting both challenges and
potential areas for further research. We recommend future work to explore the integration of dynamic
features and more sophisticated edge feature engineering to improve prediction accuracy. In summary,
our findings indicate that while GoG models show promise, there is a need for further refinement and
exploration of features to enhance their predictive performance in the context of blockchain networks.

G Multi-Class Graph Classification - Temporal Split

In this section, we present additional experiments that focus on predicting the class label of younger
tokens using information derived from older tokens. To simulate a realistic scenario where future
tokens are classified based on historical data, we implement a temporal split of the dataset. Specifically,
we divide the tokens into training and test sets following an 80/20 ratio based on their first transaction
timestamps. This approach enables evaluation of the model’s performance within a time-sensitive
context, which is crucial for applications in dynamic environments like blockchain.

The experimental settings align with those described in subsection 5.1. The results of these experi-
ments are summarized in Table 9, which provides a comparative analysis of classification performance
across different models and blockchain platforms.

Upon comparing these results with those presented in Table 4, we observe that the performance for
Ethereum and BNB shows only slight differences regardless of the node-splitting method employed.
However, for Polygon, we note a significant deterioration in performance. This discrepancy may be
due to Polygon’s status as the fastest of the major Ethereum-based chains [76], leading to varying
transaction patterns across different time periods. These findings suggest that while our methods
demonstrate competitive performance, further investigation is warranted to understand the underlying
factors affecting classification accuracy across different blockchains.

H Graph Anomaly Detection with Deepwalk Embeddings

In this section, we present an effective method for representing token graphs in anomaly detection
tasks by employing the DeepWalk algorithm [65]. DeepWalk is well-known for generating robust
graph embeddings through the simulation of random walks. This approach captures the network
topology and provides a nuanced representation of graph structures.

We configured DeepWalk with a walk length of 20 and performed 40 walks per node on each token
transaction graph. This configuration strikes a balance between the depth and breadth of neighborhood
exploration, ensuring that the embeddings accurately capture the structural and contextual nuances of
the token graphs. We then aggregated these node embeddings into a unified graph-level representation
by computing their mean, resulting in an embedding of 32 dimensions for each graph.
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Table 9: 3-class and 5-class classification performance by blockchain (node split by time).

\ Ethereum Polygon BSC
Model | Fl-macro Fl-micro | Fl-macro Fl-micro | Fl-macro F1-micro
3-Class Classification
GCN 60.16+5.60 87.70+053 22.37+057 48.22+0.67 50.01 4527 57.39+378
GAT 57.50+6.25 87.33+1.16 26.00+2.67 48.91+1.02 51.15+652 59.48+558
GIN 60.38+5.76 87.68+0.94 21. 744121 48.03+063 42.56+2.73 56.59+3.65
Residual GCN | 40.62-+s.06 83.83+1.41 22.86+1.02 48.24 1055 48.09+5.30 60.13+2.95
GraphSage 61.71+627 88.25+0.97 24914187 48.72+055 53.86+6.99 62.16+4.28
SEAL 67.42 105 88.72 +033 | 27.20x1s1  49.37 £059 | 55.14+562  64.03 +3.82
GoGNN 66.10+1.98 88.28+080 | 30.85 +232  44.75+409 | 61.80 £0s50 62.17+033
DVGGA 53.80+1.98 75.60+7.67 28.22+1.44 41.52+0098 24.03+1378 35.37+1533
5-Class Classification
GCN 38.75+5.44 85.18+093 12.11+053 41.16+095 26.76+3.74 47.21+433
GAT 37.02+5.64 85.24+1.07 16.63 +304  42.10+227 28.43+4.08 49.37 +5.87
GIN 22.69+1.43 80.65+052 12.15+077 41.06+0.76 22.02+2.97 43.48+5.33
ResidualGCN | 41.19+545 85.00+1.13 12.03+05s 41.15+070 24.38+434 47.78+6.34
GraphSage 40.51 4582 86.31+1.10 14.97 +1.69 41.98+0.69 27.89+5.48 49.06-+6.33
SEAL 48.85 + 052  86.29+027 15544232 4241 +015 | 30.41 +181  52.65 + 1.09
GoGNN 45254583  86.36 +0.76 14.49+1.04 41.77 +0.60 28.294351 52.11+266
DVGGA 25.35+428 68.96+16.54 11.65+0.01 41.03+0.00 10914272 31.36+4.46

Table 10: Graph anomaly detection performance using DeepWalk. We report the ratio of number of
non-fraud:fraud case of each data at the top.

Ethereum (8387: 6022)

Polygon (2257: 58)

BNB (6339: 1042)

Model ‘ AUC AP ‘ AUC AP AUC AP
COPOD 50.87+0.09 42.57 070 62.16+33 34241162 52.47 047 13.82+001
IForest 50.43 1028 42.69+1.07 60.95+57 3114112 52144117 14.02+055
DIF 50.58+031 42.10+0.89 59.72+6s8s 2.80+055 52.16+072 13.77 +o091
VAE 50.77 +034 42.87+094 61.86+7.98 3.47+1.69 51.69+1.24 14.00+0.1
GAE 51.22+139 41.44+056 60.81+125 540 242 | 61.15+267 24.02 £1.92
DONE 68.86 + 1027 32.89+557 71.29 + 221 1.63+0.06 77.55+013 8.62+0.01
DOMINANT 60.92+457 38.124263 67.15+341 2431100 | 79.73 £0.07 8.42+0.01
AnomalyDAE | 65.14+363  46.12 + 1008 | 57.90+358 3441031 52.75+098 15.67+020
CoLA 50.51+0.42 41.90+044 59.61+3.94 2.67+077 54.87+0.03 14.88+0.56

The results of our anomaly detection analysis using the DeepWalk algorithm are presented in
Table 10. Notably, the GoG models generally outperform multivariate outlier detection methods in
our experiments, although this may vary depending on the specific characteristics of each dataset.
When comparing the results in Table 7, the superiority of GoG models is evident across all three
blockchains when using the DeepWalk algorithm, particularly in scenarios with high fraud rates.

It is important to note that the anomaly detection performance on Polygon remains the poorest among
the chains, consistent with previous findings in subsection 5.2. While GoG models benefit from the
use of the DeepWalk algorithm, the performance of multivariate outlier detection methods appears to
decrease. This suggests that the DeepWalk algorithm significantly enhances the effectiveness of GoG
models in identifying anomalies.

I Details of Compute Resources

We use two machine, one for experiements of inidividual GNN, one for experiements of GoG-based
GNN. First, all experiments involving individual GNN models were conducted on machine outfitted
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with eight NVIDIA GeForce GPUs, each with a maximum power capacity of 350W and 24,576
MiB of available memory. Second, all experiments utilizing GoG-based GNN models were carried
out on the machine equipped with eight NVIDIA A100-SXM4-80GB GPUs. These GPUs, each
with a maximum power capacity of 400W and a substantial 81,920 MiB of memory, are specifically
chosen for their high performance and large memory capacity, which are ideal for the complex and
memory-intensive computations required by GoG-based GNN models.

J License

The dataset is released under the Creative Commons Attribution-NonCommercial-ShareAlike (CC
BY-NC-SA) license.

K Hosting Plan

We choose GitHub as our hosting platform for both code and data due to its ease of use, cost-
effectiveness, and scalability. Ensuring easy access to our data is crucial. To facilitate straightforward
and reliable data retrieval, we will maintain a curated interface. We are committed to keeping our
platform stable and functional, with regular updates and maintenance to ensure our repository remains
up-to-date, bug-free, and efficient.

Our project is driven by a commitment to open access. By regularly updating our GitHub repository,
we ensure that users have timely access to the latest data. We believe that GitHub’s user-friendly
environment will provide a dependable and efficient solution for sharing our data with the global
community.
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