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Abstract

Spatial transcriptomics enables interrogating the molecular composition of tissue
with ever-increasing resolution and sensitivity. However, costs, rapidly evolving
technology, and lack of standards have constrained computational methods in ST
to narrow tasks and small cohorts. In addition, the underlying tissue morphology,
as reflected by H&E-stained whole slide images (WSIs), encodes rich information
often overlooked in ST studies. Here, we introduce HEST-1k, a collection of
1,229 spatial transcriptomic profiles, each linked to a WSI and extensive metadata.
HEST-1k was assembled from 153 public and internal cohorts encompassing 26
organs, two species (Homo Sapiens and Mus Musculus), and 367 cancer sam-
ples from 25 cancer types. HEST-1k processing enabled the identification of 2.1
million expression–morphology pairs and over 76 million nuclei. To support its
development, we additionally introduce the HEST-Library, a Python package de-
signed to perform a range of actions with HEST samples. We test HEST-1k and
Library on three use cases: (1) benchmarking foundation models for pathology
(HEST-Benchmark), (2) biomarker exploration, and (3) multimodal representation
learning. HEST-1k, HEST-Library, and HEST-Benchmark can be freely accessed
at https://github.com/mahmoodlab/hest.

1 Introduction

Advances in molecular profiling enable spatially-resolved gene expression analysis with increasingly
large gene panels, enhanced spatial resolution, and greater sensitivity [9, 122]. From the early days of
bulk RNA sequencing constrained by its coarse resolution and limited gene panels, spatially-resolved
technologies have progressed to achieve whole-transcriptome sequencing at sub-cellular resolu-
tion [81]. In cancer research, spatial transcriptomics (ST) holds particular promise for characterizing
the tumor microenvironment, a key element in understanding disease progression and treatment
response [133, 97, 140, 151]. With the large amount of transcriptomics data generated by a single
ST sample (e.g., >10 million transcripts are detected in a typical 10x Genomics Xenium assay),
computational methods are often used to uncover promising biomarkers, such as employing clustering
methods for cell phenotyping [122].

However, high costs and rapidly evolving technology have constrained computational methods to
narrow tasks and data cohorts of only a few patients [103, 63, 135]. Consequently, we observe a lack
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Figure 1: The HEST environment. a. Overview of HEST-1k, a dataset of n=1,229 paired spatial
transcriptomics, H&E-stained whole-slide images and metadata. “Pathological” cases refer to non-
tumor/non-cancer samples; “Tumor” refers to non-cancer samples. b. Overview of HEST-Library
functionalities. c., d., e. Applications of HEST-1k include benchmarking foundation models for
histology (c.), biomarker exploration (d.) and multimodal representation learning (e.).

of standardized resources and unified formats for handling ST, which limits the development of deep
learning models on a large scale [109]. In addition, the underlying tissue morphology, traditionally
visualized in hematoxylin and eosin (H&E)-stained tissue sections (whole-slide images, WSIs), is
often overlooked in ST studies, despite encoding valuable information. In particular, pairs of ST and
WSI enable analyzing expression changes in their morphological context, which may facilitate the
identification of morphological biomarkers (e.g., changes in nuclear shape) that correspond to gene
regulation patterns. Alternatively, pairs of ST and WSI can enable multimodal tissue representation
learning for joint modeling of the morphomolecular signature of tissue at a scale and resolution
beyond bulk RNA sequencing [28]. Finally, the development of “foundation models” for encoding
histopathology images [147, 42, 29, 59, 88] has increased the need for new, diverse, and challenging
benchmarks beyond diagnostic tasks. Using ST, new tasks can be defined to predict gene expression
changes from histology.

Here, we introduce HEST-1k, a collection of paired ST and H&E-stained WSIs curated from public
and internal cohorts (Figure 1.a). HEST-1k comprises 1,229 samples from 153 cohorts encompassing
26 organs, two species (Homo Sapiens and Mus Musculus), and 367 cancer samples from 25 different
subtypes. Processing all samples in HEST-1k resulted in 2.1 million expression–morphology pairs
and 76 million detected nuclei. With new cohorts frequently made public, we also introduce the
HEST-Library, a Python package for interacting with HEST-1k data and assembling new samples
as they become available (Figure 1.b). We highlight the potential of HEST-1k through three use
cases: (i) benchmarking foundation models for histology using the HEST-Benchmark, a set of nine
tasks (eight human cancer types and nine organs) for gene expression prediction from histology
and evaluated on eleven state-of-the-art models (Figure 1.c), (ii) a proof-of-concept demonstrating
the use of HEST-1k for biomarker characterization (Figure 1.d), and (iii) a proof-of-concept for
expression-guided fine-tuning of foundation models for histology (Figure 1.e).
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2 Related work

Libraries for ST analysis. Libraries to process, visualize, and analyze ST have been built around
two core pipelines: Scanpy [149] (and the ANNDATA format) in Python and Seurat [24] in R. Scanpy
has served as the foundation for several subsequent developments such as Squidpy [115] for spatial
data exploration at cellular-, gene-, and morphological-level, SpatialData [95] for multi-technology
integration and deep learning interfacing, STlearn [119] for cell-cell interactions and spatiotemporal
trajectory analyses, and SOPA [21] for designing multistep pipelines. In R, Seurat [24] has been
consolidated with packages such as BayeSpace [159] for clustering and spot super-resolution, and
Giotto suites [26] for preprocessing, data integration and visualization of multiple ST technologies.
10x Genomics also includes proprietary software analytics through the Xenium and Visium Explorer
pipelines for multimodal visualization, nuclear segmentation, and cell deconvolution. However, none
of these pipelines were designed to handle the diversity of legacy data, where datasets can suffer
from missing or incorrect data, such as alignment mismatches, incorrect pixel resolution, inconsistent
image file formats, etc.

Molecular profile prediction from H&E. Molecular profiling from histology images has been
explored both at (1) slide-level to predict bulk molecular status/changes from a WSI and at (2) patch-
level to predict local molecular status/changes from regions-of-interest. (1) Slide-level profiling has
been explored to predict the gene mutations [125, 143, 72, 38, 45, 145, 86], microsatellite instability
[143, 71], and gene expression changes [127, 39, 55, 3], among others. The motivation is two-fold:
First, patient screening to substitute or complement costly clinical molecular assays, and second, to
identify morphological correlates of molecular alterations for discovering novel biomarkers. Such
studies can be conducted on large patient cohorts as they mainly rely on data generated by the
routine clinical workflow (e.g., using TCGA cohorts with >11,000 cases from 33 cancer types). (2)
With ST, several works have explored predicting expression changes from regions-of-interest [55,
152, 116, 160, 121, 108, 107, 32, 144]. Due to limited cohort sizes (typically one to ten patients),
transfer learning has become the norm using pretrained models based on ConvNets [55] or Vision
Transformers [152, 116]. Due to the inherent noise found in transcriptomic measurements, several
methods have been developed for integrating context that can account for global and local information
from surrounding ST spots [58, 32, 160, 144]. While recent technologies offer near-single-cell
resolution (such as Visium HD and Xenium), legacy assays operate at a more coarse resolution,
which can be upsampled using super-resolution techniques [159, 20, 157]. The potential clinical and
research implications of such methods are still being explored, with HEST-1k potentially catalyzing
their large-scale development.

Foundation models in pathology. A fundamental task in computational pathology is to extract
general-purpose embeddings of image patches (typically 256×256 to 512×512-pixel regions) that
can then be used for downstream tasks, such as diagnosis or prognosis prediction. To achieve this,
self-supervised learning (SSL) has been extensively applied [75, 42, 142, 147, 68, 33, 146, 11, 29, 88,
65, 64], such as based on the DINOv2 framework [112]. General-purpose patch encoders are trained
on increasingly large and diverse patient cohorts (e.g., UNI [29] uses a ViT-Large trained on 100k
WSIs, Virchow [142] uses a ViT-Huge trained on more than 1.5M WSIs). Recently, vision-language
encoders designed for pathology have also been proposed [46, 92, 59, 88, 87] and rely on large-scale
paired data scraped from social media, textbooks, or publications. As the number of such models
rapidly increases, new, diverse, and challenging benchmarks are needed to replace or complement
well-established tasks where performance has saturated. HEST-Benchmark aims to address this by
offering a set of nine patch-level tasks for gene expression prediction from histology.

Patch-level benchmarks in histopathology. Early task and dataset contributions in computational
pathology revolved around classifying small regions of interest. Over the years, a variety of bench-
marks have been established: In prostate cancer, Gleason grading at pixel- and patch-level has been
widely explored, with public resources such as AGGC [60], DiagSet [77], and SICAPv2 [129]. In
colorectal cancer, datasets have been proposed for tissue classification, such as HunCRC [118],
UniToPatho [15], MHIST [148], and CRC-100k [73]. In breast cancer, morphological subtyping has
been vastly explored (e.g., for atypical ductal hyperplasia detection), such as BACH [8], BRACS [22],
and BreakHis [131], and for lymph node metastasis detection with Patch CAMELYON (pCAM) [137],
respectively. However, the performance on many of these datasets has saturated; for instance, Gleason
scoring reaches similar or better performance than pathologists [23], which limits objective com-
parisons of new methods and hinders well-informed model selection for developing better features.
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Instead, HEST-Benchmark provides a collection of diverse and challenging tasks that enable assessing
the predictive capabilities of foundation models for histology.

3 HEST-1k Dataset

We present HEST-1k, a dataset of paired ST, H&E-stained WSIs, and metadata (Figure 1.a). To
this end, we extracted all publicly available cohorts that provide ST with H&E-stained whole-slide
images. Specifically, we harvested data from 10x Genomics public datasets (TENX)1, Mendeley
(MEND)2, Spatial-Research (SPA)3, Zenodo (ZEN)4, the National Center for Biotechnology Infor-
mation (NCBI)5, GitHub6, the Human Cell Atlas7, BioStudies8, HTAN9, and internal data cohorts. A
summary of all sources is provided in Appendix Table A1 with specifics in Appendix Table A2, A4,
A6,A7,A8,A9, and A10.

3.1 Metadata

As spatial transcriptomics experiments were not intended for large-scale computational research,
they are provided in various formats (e.g., images can be in JPG or TIFF format, with or without
cross-modal alignment files) and resolutions. We unified all data with comprehensive metadata with
generic-, histology-, and expression-related descriptors for all samples. Generic: We provide the
reference to the original publication, download link, year of publication, license, and sample species.
Each sample is then categorized as either healthy, cancer, tumor (non-cancer), treated (which refers
to a post-compound administration), genetically modified (mostly knock-out mouse samples), or
pathological (i.e., non-tumorous with extra specification). All cancer samples were unified using
the OncoTree code, a taxonomy of cancer types provided by the Memorial Sloan Kettering Cancer
Center10. Finally, we provide the organ using the highest level of the OncoTree taxonomy as a
reference. Expression: We report the number of genes and spots per sample, the spot resolution and
spacing, the total number of reads, and the mean number of reads per spot. We additionally provide
the transcriptomic technology (ST, Visum, Visium HD, or Xenium). Histology: We provide the
image resolution (in µm/pixel) and magnification as 10× (1.15 to 0.8 µm/px), 20× (0.8 to 0.4 µm/px)
and 40× (0.4 to 0.1 µm/px). All images with a pixel size higher than 1.15 µm/px were discarded to
ensure an acceptable image quality. In addition, we provide the image size at the highest resolution
and the tissue preparation protocol (frozen or formalin-fixed paraffin-embedded, FFPE).

3.2 Histology

All tissue sections were normalized and transformed into a generic TIFF object, a pyramidal image
that can easily be integrated into computational frameworks using OPENSLIDE or viewers such as
QUPATH [14]. In addition, we provide a contour object that delineates all the tissue regions identified
in the image. We developed a robust tissue vs. background detection method where we fine-tuned
a DeepLabV3 [27] model with an ImageNet-pretrained ResNet50 backbone on a set of annotated
segmentation regions (including pen marks, fiducials, multiple stains, artifacts, etc.). From the tissue
segmentation, we extracted 224×224-pixel patches at 20× magnification around each spot. For
Xenium samples, we generated “pseudo-Visium” spots by pooling transcripts on 55 × 55-µm patches
without spacing. This yielded 2.1 million valid patches for which a corresponding expression profile
was derived. Such patching can readily be used for various downstream tasks, such as employed
in the HEST-Benchmark or multimodal fine-tuning of foundation models for histology (Section 5
and 7).

3.3 Nuclear segmentation and classification

In addition to patching, we include nuclear segmentation that delineates each nucleus identified
in all slides from HEST-1k. We used CellViT [61], a state-of-the-art nuclear segmentation model
that was trained on the PanNuke dataset [47, 48]. CellViT enables joint instance segmentation
and classification of each nucleus into five classes: neoplastic epithelial, non-neoplastic epithelial,
inflammatory, stromal, and necrotic. On average, we identified 62.1k nuclei per slide, for a total
1 https://www.10xgenomics.com/datasets 2 https://data.mendeley.com/ 3 https://www.spatialresearch.org/
4 https://zenodo.org/ 5 https://www.ncbi.nlm.nih.gov/gds/ 6 https://github.com/
7 https://data.humancellatlas.org/ 8 https://www.ebi.ac.uk/biostudies/ 9 https://humantumoratlas.org/
10 https://oncotree.mskcc.org
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of 76.4 million nuclei identified across all samples. Among those, 17.6 million are classified as
neoplastic, 21.5 million as stromal, 4.9 million as normal epithelial, 15.4 million as inflammatory, and
76 thousand as necrotic. The resulting nuclear segmentation and classification can easily be visualized
using QUPATH (using geojson) or loaded as Python/R objects (using JSON). For all Xenium samples,
we additionally provide the nuclear and cell segmentation derived from the DAPI staining finely
aligned with the H&E slide.

3.4 Gene expression

All expression data were unified in a ANNDATA object that can be loaded with scanpy. ANNDATA

encodes the gene names (as var) and number of spots (as obs). Each entry represents the raw
transcript counts of a gene in a given spot. No additional normalization was conducted, and we let
users explore various normalization strategies based on needs, e.g., using total count normalization,
log-normalization, etc. In addition, we include metadata to specify the number of genes, the gene
panel, and the tissue site. For all Xenium samples, we also provide the list of all measured transcripts
with their exact 2D position in the tissue (aligned with the H&E slide).

To use the expression in tandem with the WSI, an alignment file describing the mapping between
the image and the spots is needed. However, relying on publicly available alignment information
brings three challenges: (1) most datasets report alignment with respect to a low-resolution version
of the image, (2) they are not standardized, and (3) alignment quality can be low. To address these
limitations, we re-aligned all samples under the same unified format between the WSI and the
corresponding expression profile. For all Visium samples, we developed an automatic alignment
pipeline based on fiducial detection (see Section 4) and embedded the alignment in the scanpy object.
For all Xenium samples, we used the publicly available VALIS [50] pipeline for fine-grained image
registration to align the DAPI image (aligned with the transcripts by design) and the H&E slide.

4 HEST-Library

The HEST-Library is built around scanpy and ANNDATA. At its core, the HEST-Library enables (1)
assembling and querying HEST-1k, (2) visualizing and mitigating batch effects, and (3) running the
HEST-Benchmark (Section 5). We describe its core functionalities, particularly for unifying legacy
data.

Conversion to generic TIFF. We integrate functions to convert a WSI from common formats found
in public ST datasets (e.g., OME.TIF, JPG, BigTIFF, etc.) to a pyramidal generic TIFF format.
Pyramidal formats offer seamless integration with OPENSLIDE (commonly used in computational
pathology pipelines) and QUPATH (open-access software for WSI visualization and annotation).

Automatic alignment in Visium. Spot alignment is crucial to ensure an accurate match between
the ST spots and the WSI. While software such as LoupeBrowser enables manual alignment using
fiducials (i.e., reference markers placed at the corners of the capture area), the process remains time-
consuming when processing large batches of samples. Instead, we implemented an automatic fiducial
detection algorithm based on YOLOv8 [123] for processing Visium samples (Appendix Figure 5).
Specifically, we manually annotated 119 fiducial regions that we further augmented using tissue and
fiducial mixing. We then fine-tuned YOLOv8 pretrained on the COCO dataset. In early versions
that do not provide corner fiducials (e.g., STv1), we realigned using the provided spot position files.
In Xenium, we use VALIS [50] to register the DAPI staining (aligned with the transcripts) with the
H&E image.

Automatic detection of image resolution. From the alignment and the spot resolution, we can infer
the exact pixel size. To this end, we compute the distance in pixel between two neighboring spots
and leverage the known inter-spot distance in µm to estimate the pixel width in µm/px. For Xenium
samples, we use the H&E alignment file provided as part of the assay, which provides an affine
transformation from the DAPI-stained image (with known pixel size) to the H&E image. We then
compared the self-reported image resolution and our re-estimations to manually inspect and correct
discrepancies.

Conversion to ANNDATA. ST data is provided in multiple formats, such as CSV, MEX, TXT, h5, etc.
We provide functions to unify a large set of existing formats into a ANNDATA object that stores the
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raw transcript counts as a matrix of genes by the number of spots, in addition to metadata about the
samples (e.g., the (x,y) coordinates of each spot, the pixel resolution, etc.).

Tissue segmentation and patching. We provide a tissue segmentation pipeline optimized for
Visium/Xenium images. The segmentation can then automatically tessellate the tissue into fixed-size
image patches at a predefined resolution (expressed in µm/px) around each spot.

Automatic HEST-1k download. To facilitate downloading part or all of the HEST-1k dataset (over
>1TB), we implemented an easy download option where the user can specify entries of the metadata,
for instance, to query all human invasive breast cancer cases.

Batch effect visualization and mitigation. We provide functions to help visualize batch effects using
dimensionality reduction techniques with user-prompted stratification (e.g., tissue site, institution,
disease, etc.). In addition, we provide a wrapper of well-established batch effect mitigation strategies
(namely ComBat [158], Harmony [76] and matching mutual nearest neighbors [54]), which can be
applied to a list of HEST samples.

5 HEST-Benchmark

From HEST-1k, we curated the HEST-Benchmark, a set of nine tasks for gene expression prediction
from histology in human cancer samples. The goal is two-fold: (i) benchmarking foundation models
for histology under a diverse and challenging benchmark and (ii) understanding the predictive capa-
bilities of state-of-the-art models in predicting expression from morphology. Compared to existing
tasks (e.g., Camelyon16 [18]), the HEST-Benchmark brings increased morphological diversity and
more complex challenges, particularly with the inherent difficulty of expression prediction.

5.1 Task definition

We define nine tasks with data from eight human cancers and nine organs (eight primary and one
metastatic dataset), which include invasive ductal carcinoma (breast cancer, IDC, Task 1), prostate
adenocarcinoma (prostate cancer, PRAD, Task 2), pancreatic adenocarcinoma (pancreatic cancer,
PAAD, Task 3), skin cutaneous melanoma (skin cancer, SKCM, Task 4), colonic adenocarcinoma
(colon cancer, COAD, Task 5), rectal adenocarcinoma (rectum cancer, READ, Task 6), clear
cell renal cell carcinoma (kidney cancer, ccRCC, Task 7), lung adenocarcinoma (lung cancer,
LUAD, Task 8), and axillary lymph nodes in IDC (metastatic, LYMPH-IDC, Task 9). Additional
information is provided in Appendix Table A11.

For each task, we predict the expression of the top 50 genes with the highest normalized variance
across all samples from 112×112 µm H&E regions (equivalent to 224×224-pixel patches at 20×).
To avoid train/test patient-level data leakage, we use patient-stratified splits, resulting in a k-fold
cross-validation, where k is the number of patients. In ccRCC, we use k/2-fold cross-validation due
to the large number of patients.

5.2 Evaluating foundation model for pathology

We use the HEST-Benchmark to evaluate 11 foundation models for pathology. Namely, ResNet50
(IN) [90] (ImageNet pretrained), CTransPath [146] (adapted MoCov3 pretrained on TCGA and
PAIP), Remedis [11] (SimCLR [30] pretrained on TCGA), Phikon [42] (iBOT pretrained on TCGA),
UNI [29] (DINOv2 ViT-Large pretrained on internal hospital data and GTEx), CONCH [88] (visual-
language model using CoCa pretrained on captions from publications and educational resources),
GigaPath [154] (DINOv2 ViT-giant pretrained on proprietary data), Virchow [142] (DINOv2 ViT-
Huge pretrained on proprietary data), Virchow 2 [162] (DINOv2 ViT-Huge pretrained on proprietary
data), H-Optimus-0 (DINOv2 ViT-giant pretrained on proprietary data), and UNIv1.5 (DINOv2
ViT-giant pretrained on public and proprietary data). Additional information is provided in Table A12
and Appendix C.3.

We learn a regression model to map model-specific patch embeddings (512 to 2,048 dimensions)
to the log1p-normalized expression of the top 50 highly variable genes. All tasks are evaluated
using the Pearson correlation between the predicted and measured gene expression. We report mean
and standard deviation across all folds (or patients). All experiments were run on a single NVIDIA
3090 GPU. We report performance using three downstream regression models: (i) PCA-reduced
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Table 1: Comparison of 11 patch encoders evaluated on the HEST-Benchmark. Reported results
are based on PCA with 256 factors followed by a ridge regression. Model performance measured
with Pearson correlation. Standard deviation is reported across all folds (i.e., patients). Best is bold,
second best is underlined.

IDC PRAD PAAD SKCM COAD READ ccRCC LUAD LYMPH IDC Average

ResNet50 (IN) 0.4741 0.3075 0.3889 0.4822 0.2528 0.0812 0.2231 0.4917 0.2322 0.326
± 0.047 ± 0.0309 ± 0.0754 ± 0.1141 ± 0.0372 ± 0.0517 ± 0.0554 ± 0.0119 ± 0.0491

CTransPath 0.511 0.3427 0.4378 0.5106 0.2285 0.11 0.2279 0.4985 0.2353 0.3447
± 0.0531 ± 0.0458 ± 0.0664 ± 0.0827 ± 0.0557 ± 0.0764 ± 0.0475 ± 0.0414 ± 0.0477

Phikon 0.5327 0.342 0.4432 0.5355 0.2585 0.1517 0.2423 0.5468 0.2373 0.3656
± 0.0914 ± 0.0767 ± 0.0684 ± 0.0549 ± 0.0056 ± 0.0822 ± 0.0263 ± 0.0045 ± 0.0457

CONCH 0.5363 0.3548 0.4475 0.5791 0.2533 0.1674 0.2179 0.5312 0.2507 0.3709
± 0.0842 ± 0.0099 ± 0.0729 ± 0.0542 ± 0.0075 ± 0.0476 ± 0.0353 ± 0.0107 ± 0.042

REMEDIS 0.529 0.3471 0.4644 0.5818 0.2856 0.1145 0.2647 0.5336 0.2473 0.3742
± 0.069 ± 0.0074 ± 0.0722 ± 0.0421 ± 0.02 ± 0.0987 ± 0.0539 ± 0.0326 ± 0.0585

GigaPath 0.5508 0.3708 0.4768 0.5538 0.301 0.186 0.2391 0.5399 0.2493 0.3853
± 0.0726 ± 0.021 ± 0.0489 ± 0.0586 ± 0.0145 ± 0.0704 ± 0.0364 ± 0.0369 ± 0.0522

UNI 0.5702 0.314 0.4764 0.6254 0.263 0.1762 0.2427 0.5511 0.2565 0.3862
± 0.0833 ± 0.0715 ± 0.0687 ± 0.0338 ± 0.0311 ± 0.0565 ± 0.0368 ± 0.0198 ± 0.0436

Virchow 0.5702 0.3309 0.4875 0.6088 0.311 0.2019 0.2637 0.5459 0.2594 0.3977
± 0.0939 ± 0.0081 ± 0.0412 ± 0.0733 ± 0.0083 ± 0.0467 ± 0.039 ± 0.0262 ± 0.043

Virchow2 0.5922 0.3465 0.4661 0.6174 0.2578 0.2084 0.2788 0.5605 0.2582 0.3984
± 0.0814 ± 0.029 ± 0.0676 ± 0.0174 ± 0.0189 ± 0.0502 ± 0.0516 ± 0.0172 ± 0.0296

UNIv1.5 0.5989 0.3645 0.4902 0.6401 0.2925 0.2240 0.2522 0.5586 0.2597 0.4090
± 0.0842 ± 0.0308 ± 0.0502 ± 0.041 ± 0.0142 ± 0.0378 ± 0.04 ± 0.026 ± 0.0424

H-Optimus-0 0.5982 0.385 0.4932 0.6432 0.2991 0.2292 0.2654 0.5582 0.2595 0.4146
± 0.0843 ± 0.0008 ± 0.0443 ± 0.0668 ± 0.0007 ± 0.041 ± 0.0309 ± 0.0324 ± 0.04

embeddings (with n=256 factors) followed by Ridge regression trained with adaptive regularization as
shown in Table 1, (ii) Ridge regression model as shown in Appendix Table A13, and (iii) an XGBoost
regression model with 100 estimators and a maximum depth of 3 as shown in Appendix Table A14.
Our main results are reported using PCA+Ridge (i) and XGBoost (iii). Directly applying Ridge
regression may unfairly penalize models with larger embedding dimensions. To guarantee a fairer
and more objective comparison, we chose to utilize PCA reduction.

5.3 Scaling laws in HEST-Benchmark

Overall, H-Optimus-0 brings the best average Pearson correlation in both PCA+Ridge and XGBoost
evaluation, outperforming the second-best model, UNIv1.5, by 0.56% and 0.69%, respectively.
ResNet50 (IN), the only model that was not pretrained on histology images, leads to the lowest perfor-
mance in both PCA+Ridge and XGBoost. Legacy domain-specific models, such as CTransPath, are
outperformed by all recent models, including UNIv1.5, UNI, GigaPath, Virchow, and H-Optimus-0.
The disparity between the top and bottom domain-specific models is notable, showing an absolute im-
provement of 7.0% for PCA+Ridge and 4.8% for XGBoost. When inspecting individual performance,
we observe large differences across tasks from 0.6432 Pearson correlation in SKCM to 0.2292 in
READ for H-Optimus-0 evaluated using PCA+Ridge.

Model scaling law. By inspecting the number of trainable parameters within the vision encoder for
each model, we can describe how model size influences performance (measured with average Pearson
correlation across all tasks, Figure 2.a). Performance increases with model size following a loga-
rithmic scaling law (Pearson correlation of R=0.81, P-value<0.01). Models considered “parameter-
efficient” are represented on top of the log-transformed linear regression line (e.g., CONCH, UNIv1.5,
and H-Optimus-0). This observation suggests a trade-off between downstream performance and
model size. Despite the observation of a model scaling law, significant variations in performance
among models of identical size persist, such as between H-Optimus-0 and GigaPath, both of which
are ViT-giant models with over one billion parameters.

Data scaling law. We further explored how the number of training samples used for pretraining
each model (i.e., the number of image patches) affects performance. We observe that increasing
the number of patches moderately correlates with the average performance (Pearson correlation of
R=0.48, P-value=0.13). This correlation is weaker than model size, which we hypothesize is due
to this analysis overlooking both the absolute number of WSIs used for pretraining (image patches
are not independently and identically distributed per WSI) and disparities of morphological variety
among WSIs (e.g., staining variation, disease diversity, artifacts, etc.).
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Figure 2: Scaling laws in HEST-Benchmark. a. Model scaling law comparing the number of
training parameters in the vision encoder (log-scale) and the average performance on the HEST-
Benchmark. Pearson correlation between parameters and performance of R=0.81 (P-value < 0.01). b.
Data scaling law comparing the number of image patches used for pretraining (log-scale) and the
average performance on the HEST-Benchmark. Pearson correlation between number of patches and
performance of R=0.48 (P-value=0.13).

Overall, HEST-Benchmark brings new insights into the performance of foundation models for
pathology. We observe that (1) Scaling the model size strongly correlates with average performance,
but the gains grow logarithmically with the number of trainable parameters. (2) Scaling the number
of training patches weakly correlates with a higher performance (also on a logarithmic scale). (3)
Performance remains low for some tasks (e.g., READ and ccRCC), which suggests that (i) the
morphology might not be as reflective of gene expression for some cancer types or (ii) some cohorts
have more noise than others (e.g., due to batch effects, low sensitivity, dropout events, or spillover
between adjacent spots).

6 HEST for biomarker exploration

HEST-1k also enables the analysis of interactions and correlations between tissue morphology (as
seen in H&E) and local gene expression (as provided in ST). Here, we showcase the capabilities
of HEST-1k (1) by studying morphological correlates of expression changes in invasive breast
cancer and (2) by visualizing tumor heterogeneity both on the morphological and molecular sides.
Specifically, we focus on invasive ductal carcinoma (IDC) samples imaged with Xenium. Using
CellViT nuclear segmentation and classification, we identified neoplastic nuclei (exemplified in two
samples: Figure 3.a with n=168,033 nuclei and Appendix Figure 6.a with n=342,018 nuclei). We
then overlay the WSI with the expression of specific genes, such as GATA3, a known prognostic gene
in breast cancer [102](Figure 3.b). This qualitatively shows that high GATA3 expression is associated
with cancerous regions and reveals heterogeneity within invasive regions (e.g., the right-most region
shows higher expression of GATA3 than the rest of the tumor, Figure 3.b). Using the nuclear
segmentation, we can compute human-interpretable features related to nuclear size (area, perimeter,
major axis length, minor axis length, and equivalent diameter), topology and shape (roundness,
ellipticity, eccentricity, extent, and roughness), and cell distribution (cell density and crowdedness).
A heatmap of the nuclear area of neoplastic cells also indicates morphological heterogeneity among
neoplastic regions (Figure 3.c,d). Regions with a high nuclear area and elevated GATA3 expression
notably overlap, suggesting that this tumor exhibits molecular heterogeneity, which to some degree is
morphologically expressed.

To investigate this hypothesis, we measured the Pearson correlation between the expression of GATA3
and nuclear area in neoplastic cells (Figure 3.e). We observe a moderate correlation (R=0.47, P-
value< 10−4), which is also observed in other genes and morphological features (Figure 3.f). Overall,
out of the 12 human-interpretable features we analyzed, we found the highest association with gene
expression for size-related features, while features involving topology, shape, and cell distribution had
a lower correlation (R<0.2). A similar analysis in another IDC sample (Appendix Figure 6.b,c) further
asserted these observations. In particular, we found the highest associations between nuclear size and
expression for the genes FLNB (R=0.45, P-value< 10−4) and TPD52 (R=0.47, P-value< 10−4), both
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Figure 3: HEST for biomarker exploration: Analysis of an invasive ductal carcinoma sample
imaged with Xenium. a. IDC Xenium sample with neoplastic nuclei overlaid in red (nc = 168, 033
detected nuclei). Gray scale bar represents 2 mm. b. Heatmap of Xenium expression of gene
GATA3. Blue and red values indicate above and below the mean (in white), respectively. c. Heatmap
of neoplastic nuclear area. d. Four randomly selected regions with CellViT segmentation of the
neoplastic nuclei. Black scale bar represents 30 µm. e., f. Correlation between nuclear area and
GATA3, and minor axis length and MYBPC1.

involved in breast tumor growth and proliferation [13, 124], and FOXA1 (R=0.47, P-value< 10−4), a
known prognostic factor associated with better survival [12, 150].

Such analysis highlights how HEST-1k can be used to identify fine-grained morphological correlates
of expression. Similar approaches can be used to characterize morphological and molecular tumor
heterogeneity at a larger scale.

7 HEST for multimodal representation learning

Access to spatially-resolved expression–morphology pairs unlocks new directions for multimodal
representation learning. Several problem statements can be explored, such as cross-modal alignment
and retrieval, multimodal fusion, etc. Here, we fine-tune CONCH [88] (ViT-Base model) on five
Xenium invasive breast cancer cases (four ductal and one lobular case) using multimodal contrastive
alignment. We hypothesize that the resulting breast cancer-specific patch encoder, termed CONCH-FT,
can better encode the underlying molecular landscape associated with disease-specific morphologies.
To validate the hypothesis, CONCH-FT is benchmarked on an independent breast cancer cohort for
molecular subtyping against its non-finetuned version.

Specifically, for each Xenium sample, we extract 112×112-µm image patches centered around each
spot at 20× magnification (0.5µm/px). This yields 47,051 pairs of 224×224-pixel patches and
corresponding expression profile (n=238 common genes in the panel, log1p normalized). We then
embed the data using modality-specific encoders: the image patches using a pretrained CONCH
model and the expression data using a 3-layer MLP (normalized expression data are encoded as
tabular data). The modality-specific embeddings are then aligned using a contrastive objective, i.e.,
InfoNCE loss [111] by fine-tuning the image encoder and training the expression encoder from
scratch. To mitigate over-fitting, we use the following training recipe: (1) Finetune only the last 3
layers of CONCH, (2) employ a layer-wise learning decay factor of 0.7, and (3) employ patch-level
image augmentation. Additional details are provided in Appendix.

We evaluate the resulting CONCH-FT model to predict ER, PR, and HER2 expression status (binary)
from WSIs in the BCNB dataset [153] (n=1,058 WSIs). To generate a slide representation for a
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Table 2: CONCH fine-tuning on invasive breast cancer. Logistic regression evaluation for
ER/PR/HER2 status on BCNB (binary task, n=1,058 WSIs). A WSI is represented by the av-
erage of the patch embeddings within each WSI. We report the mean ± standard deviation computed
over all folds (or patients) for ROC-AUC (AUC) and balanced accuracy (Bal.acc.). Best is bold.

Rank ER PR HER2
AUC Bal.acc. AUC Bal.acc. AUC Bal.acc.

CONCH 144.66 0.881 0.745 0.810 0.698 0.715 0.624
CONCH-FT 146.47 0.884 0.752 0.818 0.714 0.724 0.615

WSI, we take the average of the patch embedding in the WSI (mean pooling), which is subsequently
mapped to the expression status using logistic regression (Table 2). The simple mean pooling
approach to embedding the slide without additional fine-tuning on the downstream tasks highlights
the expressivity of the learned latent space. We observe that CONCH-FT outperforms CONCH on
most metrics, demonstrating that pan-tissue histology patch encoders can be further fine-tuned to
obtain better tissue-specific patch encoders. This is further validated by the larger rank induced by the
patch embedding space [49] for CONCH-FT, suggesting better expressivity of the patch embeddings.
While these results are based on only five paired WSIs, we anticipate additional benefits when training
with larger disease-specific cohorts.

8 Discussion

Summary. We assembled HEST-1k, a dataset comprising paired spatial transcriptomics, H&E-stained
whole-slide images, and comprehensive metadata built from public and internal cohorts. HEST-1k
includes 1,229 samples, encompassing 2.1 million spots and over 76 million cells. The scale and
comprehensiveness of HEST-1k, supported by the HEST-Library, enable exploring directions such
as biomarker exploration and multimodal representation learning. Additionally, motivated by the
need for new, diverse, and challenging patch-level benchmarks, we curated the HEST-Benchmark, a
set of nine tasks covering eight cancer types and nine organs for gene expression prediction from
histology. The HEST-Benchmark revealed data and model scaling laws across 11 foundation models
of different dimensions and pretraining scale [88].

Limitations. Our study includes a few limitations. First, research data, such as those generated
in spatial transcriptomic, are inherently noisy. While we tried to minimize “label” noise (e.g.,
by re-estimating image magnification and alignment, and unifying cancer samples using oncotree
code taxonomy), staining and compression artifacts, varying acquisition protocols, among others,
can negatively impact the quality of HEST-1k. Second, batch effects (on both the imaging and
transcriptomic sides) can be significant across samples, datasets, and technologies. While this
study does not explore batch effects quantification or mitigation, we provide a set of helpers in
HEST-Library to let users explore this direction. Lastly, although the HEST-Library was designed
for versatility, it cannot cover all existing formats and should rather be viewed as a blueprint for
processing ST data in a consistent and unified manner.

Future work. Spatial transcriptomics is rapidly evolving, with new datasets frequently published. As
they become available, we will keep updating HEST-1k with new resources. This study merely starts to
uncover the potential of HEST-1k for advancing translational research and biomarker exploration, and
we plan to explore these capabilities further. Additionally, the prospects for multimodal representation
learning with HEST-1k are promising and are expected to grow with the addition of more data.

10



Acknowledgements

We thank Dr. Maxime Meylan for his insights and guidance on accessing data published in [103].
We thank Rushin Gindra for his support in inspecting HEST-1k data, reporting issues, and providing
references. HEST is supported by the Brigham and Women’s Hospital (BWH) President’s Fund, Mass
General Hospital (MGH) Pathology, and the National Institute of Health (NIH) National Institute of
General Medical Sciences (NIGMS) through R35GM138216. S.J.W. is supported by the Helmholtz
Association under the joint research school “Munich School for Data Science - MUDS” and the
Add-on Fellowship of the Joachim Herz Foundation.

Checklist

1. Do the main claims made in the abstract, and introduction accurately reflect the paper’s
contributions and scope? [Yes] Each claim: HEST-1k, HEST-Library, HEST-Benchmark,
HEST for biomarker exploration, and multimodal fine-tuning are supported by dedicated
sections in the main text, in addition to supplementary information provided in the appendix.
In addition, all the code to reproduce results is made available.

2. Did you describe the limitations of your work? [Yes] We discuss limitations in the Discus-
sion.

3. Did you discuss any potential negative societal impacts of your work? [Yes] We discuss
potential negative societal impacts in the section Ethical considerations, intended usage,
and license.

4. Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes]

5. Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] In the abstract, we provide a
link to access the HEST page on GitHub. HEST-Library includes a link to download all data
and to run the HEST-Benchmark. Finally, we provide all metadata associated with HEST-1k
in a CSV as part of the supplementary material.

6. Did you specify all the training details (e.g., data splits, hyperparameters, how they were cho-
sen)? [Yes] When relevant, we provide training details, such as in the HEST-Benchmark.

7. Did you report error bars? [Yes] HEST-Benchmark results include standard deviation
computed from cross-validation across all patients.

8. Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes]

9. If your work uses existing assets, did you cite the creators? [Yes] All public resources used
in this study are cited in Appendix Table A2, A4, A6, A7, A8, A9 and A10.

10. Did you mention the license of the assets? [Yes] Metadata associated with HEST-1k includes
the license under which data were originally published. We ensured that the reported license
allowed the distribution and creation of derivatives of the data.

11. Did you include any new assets either in the supplemental material or as a URL? [Yes] As
part of HEST-1k, we include internal datasets (see Appendix Table A9).

12. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] We used public resources for which the license was allowing redis-
tributing the work. Users are welcome to inspect the individual IRBs of each publicly
available resource.

13. Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We manually ensured that none of the published
and distributed data includes personally identifiable information or offensive content, such
as personal health information.
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A Ethical considerations, intended usage and license

All resources provided as part of this study are strictly for research purposes and must not be utilized
to support any diagnostic procedures. Users are hereby notified that the nuclear segmentation and
classification components are derived from a publicly available model. Consequently, this model
should not be regarded as the definitive standard, and users should exercise particular caution when
utilizing this part of the dataset. Despite our efforts to exclude sensitive information, such as patient
names, addresses, and social security numbers, users are expressly prohibited from attempting to
reverse engineer the data to extract confidential patient information. In the presumption that users
will adhere to the aforementioned restrictions, we have not identified any potential adverse social
impacts that could arise from the use of HEST-1k.

The dataset is hosted on the HuggingFace Dataset webpage. All instructions are provided in the main
README of HEST-Library. From there, users can choose to download HEST-1k in its entirety or a
subset (e.g., only breast cancer samples). The HEST-1k, HEST-Benchmark, and HEST library are
released under the Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA
4.0 Deed)11.

B Background

This study connects two fields: (1) computational pathology, which primarily uses routinely acquired
clinical data to determine outcomes such as disease diagnosis from H&E-stained digitized tissue
11 https://creativecommons.org/licenses/by-nc-sa/4.0/
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sections, and (2) spatial transcriptomics, which so far has been confined to biological research and
aims to identify new biomarkers predictive of disease progression or response to treatment, among
others.

B.1 Computational pathology

Research in computational pathology [130] has primarily focused on classifying digitized WSIs into
clinical outcomes. Unlike natural image classification tasks such as ImageNet, a WSI may reach
sizes of up to 150,000 × 150,000 pixels at 20× magnification (0.5µm/pixel). The challenge of
managing the large size of WSIs has been one the central themes of the field, primarily through the
adoption of multiple instance learning (MIL) for weakly-supervised classification [62]. MIL employs
a two-step process: (1) Initially, the tissue is segmented from the background and then tessellated
into patches, usually 256 × 256 pixels, akin to an ImageNet sample, and each patch is compressed
into a patch embedding using a pretrained patch encoder. (2) Subsequently, these patch embeddings
are aggregated using a learnable neural network, such as an attention-based network, a graph neural
network, or a Transformer, to produce a slide embedding [62, 128]. This slide embedding is then used
to classify specific targets of interest, such as cancer histological subtyping, morphological subtyping,
mutation prediction, or survival analysis.

Such frameworks have been shown to achieve better or similar performance than humans for Gleason
grading in prostate cancer[23], metastasis detection in lymph nodes[18], determining the origin of a
cancer of unknown primary[89], predicting heart transplant rejection[83], among others.

B.2 Spatial transcriptomics (ST)

ST enables the measurement of gene activity and the mapping of its corresponding location in the
tissue. In this study, we collected samples from two ST paradigms: sequencing-based (ST, Visium,
Visium HD) and imaging-based (Xenium).

Visium (HD) / Spatial Transcriptomics: Visium-HD and its predecessors Visium and Spatial
Transcriptomics (STv1) refer to a family of sequencing-based products for spatially resolving large
transcript panels, whose main difference lies in the resolution and spacing between the expression
measurement, called a spot. These spots capture mRNA from tissue sections placed on the chip,
and the location-specific barcodes contained in each of the spots bind to the RNA to retain spatial
information. The RNA molecules are then washed off the slides and processed by a sequencing
instrument. Using a sequencing-based method allows the reuse of existing sequencing instruments
developed in the fields of single-cell and bulk transcriptomics, hence benefiting from existing
technological advancements and allowing whole transcriptome analysis. A fundamental drawback of
current sequencing-based methods is the inherent RNA resolution limitation imposed by the size of
the spots (e.g., 55µm in Visium).

Xenium: Xenium is an imaging-based spatial profiling technology that offers in situ RNA capturing
on tissue sections by imaging fluorescent RNA markers derived from padlock probes and rolling
circle amplification chemistry. This approach provides the exact 2D location of each measured
transcript. As of 2024, Xenium cannot perform whole transcriptome measurements and is limited to
gene panels of up to 5,000 genes.

C HEST

C.1 HEST-1k

We provide a comprehensive description of all publicly available and internal cohorts integrated into
HEST-1k.

C.2 HEST-Library

The HEST-Library helps transform unstructured spatial transcriptomics and histology data into a
unified format. An overview of the HEST-Library is provided in Figure 4. An example of fiducial
detection is presented in Figure 5.
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Table A1: HEST-1k data overview. All samples include a license that allows sharing and redistribut-
ing. National Center for Biotechnology Information: NCBI.

Resource Number of datasets Number of samples Size (GB, raw)
10x Genomics 87 112 275
Mendeley 9 118 181
Spatial-Research 4 139 18
Zenodo 4 21 18
NCBI 43 696 298
Internal 3 28 60
Miscellaneous 4 114 147
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Figure 4: Overview of HEST-Library functionalities. HEST was designed to transform legacy
data scrapped in multiple public repositories, such as NCBI, into unified HEST objects that can easily
be integrated into computational pipelines.

C.3 HEST-Benchmark

Gene selection, XGBoost Forest, and Ridge regression models: We learn a regression model
that maps the patch embeddings of each encoder to its corresponding gene expression profile. The
XGboost model uses 100 estimators, a 0.1 learning rate, a max depth of 3, 0.8 subsampling, gamma
of 0.0, regression alpha of 0.0, and regression lambda of 1.0. Additional information can be found
in the XGBoost API12. The Ridge regression uses a fixed L2 regularization coefficient λ set to
100/MC, where M is the embedding dimension and C = 50 is the number of targets trained with
the Regularized Least-Squares Routine solver (sklearn implementation). Both regression models are
trained to predict a panel constituted of the 50 most variable genes of each task. Specifically, for each

12 https://xgboost.readthedocs.io/en/stable/python/python_api.html
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Figure 5: Fiducial detection and automatic alignment in Visium. Corner fiducials on 6.5×6.5mm
and 11mm×11mm Visium slides are automatically detected with a finetuned Yolov8 model. The spot
coordinates are then derived if at least 3 of the 4 corner fiducials are detected. This process enables
automatically estimating the pixel resolution.

task, we select the 50 most variable genes across all spots and samples after excluding the genes that
have non-zero counts in less than 10% of the spots.

Benchmark task description: We provide complementary information on each task introduced as
part of the HEST-Benchmark.

Task 1: Prediction of expression in invasive ductal carcinoma (breast cancer, IDC). We used
all publicly available Xenium samples available on 10x Genomics (“FFPE Human Breast using the
Entire Sample Area”, 2 patients) and two samples published in [63] (TENX95, TENX99, NCBI783,
NCBI785). All samples are FFPE sections imaged with the Xenium pipeline v1.

Task 2: Prediction of expression in prostate adenocarcinoma (prostate cancer, PRAD). We
used all 23 Visium samples (fresh frozen sections) from 2 patients published in [40] (MEND139
to MEND162). Both patients were diagnosed with prostatic acinar adenocarcinoma with a (4+3)
Gleason score (ISUP group 4).

Task 3: Prediction of expression in pancreatic adenocarcinoma (pancreatic cancer, PAAD).
We used 3 samples from 3 different patients from 10x Genomics (“FFPE Human Pancreas with
Xenium Multimodal Cell Segmentation” and “Pancreatic Cancer with Xenium Human Multi-Tissue
and Cancer Panel”). All samples are FFPE sections processed with Xenium pipeline v1 (TENX116,
TENX126, TENX140).

Task 4: Expression prediction in skin cutaneous melanoma (skin cancer, SKCM). We used 2
samples from 2 different patients from 10x Genomics website (“Human Skin Data with Xenium
Human Multi-Tissue and Cancer Panel”). All samples are FFPE sections processed with Xenium
pipeline v1 (TENX115, TENX117).

Task 5: Prediction of expression in colon adenocarcinoma (colon cancer, COAD). We used
4 COAD samples from 2 different patients available on 10x Genomics (TENX111, TENX147,
TENX148, TENX149). All samples are fresh frozen sections processed with Visium.

Task 6: Prediction of expression in rectal adenocarcinoma (rectum cancer, READ). We used 4
READ samples from 2 different patients published in [135]. All samples are fresh frozen sections
processed with Visium (ZEN36, ZEN40, ZEN48, ZEN49).

Task 7: Prediction of expression in clear cell renal cell carcinoma (kidney cancer, ccRCC). We
used the 24 ccRCC samples of 24 different patients published in [103]. All samples are fresh frozen
sections processed with Visium (INT1 to INT24).
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Task 8: Prediction of expression in lung adenocarcinoma (lung cancer, LUAD). We used 2 LUAD
samples from 2 different patients from 10x genomics (“Preview Data: FFPE Human Lung Cancer
with Xenium Multimodal Cell Segmentation”). All samples are fresh frozen sections processed with
Xenium pipeline v1 (TENX118, TENX141).

Task 9: Prediction of expression in axillary lymph nodes in IDC patients. We used 4 axillary
lymph node samples from 2 IDC patients published in [84]. All samples are fresh frozen sections
processed with Visium (NCBI681, NCBI682, NCBI683, NCBI684).

We provide a brief description of each patch encoder assessed with the HEST-Benchmark.

ResNet50 (IN) [90]: This model uses a ResNet50 backbone [56] trained on ImageNet [35] (1.2
million natural images). Following prior work [90], the patch embeddings are extracted by taking the
representation at the penultimate layer before final classification.

CTransPath [146]: This model uses a “Tiny” Swin Transformer backbone [85] with a window size
of 14 (Swin-T/14, 28 million parameters) pretrained on TCGA and PAIP datasets (17 million images)
using MoCoV3 [31].

Remedis [11]: This model uses a ResNet-152×2 (232 million parameters) initialized with the “Big
Transfer”-medium protocol [74] on ImageNet-22K and pretrained with SimCLR [30] on TCGA.

Phikon [42]: This model uses a Vision Transformer-Base (ViT-B, 86 million parameters) [37] trained
on TCGA data using iBOT [161].

UNI [29]: This model uses a ViT-Large (ViT-L, 307 million parameters) [37] trained on 100 million
histology images (over 100,000 slides) from proprietary and public data using DINOv2 [112].

CONCH [88]: This model uses a ViT-B (86 million parameters) trained on a smaller version of UNI
using iBOT, and then fine-tuned on 1.17 million histology image–caption pairs extracted from online
educational and research resources using CoCa [156].

GigaPath [154]: This model uses a ViT-giant (1.13 billion parameters) trained on 1.3 billion image
patches from 171,189 WSIs at 20× magnification using DINOv2.

Virchow [142]: This model uses a ViT-Huge (632M parameters) trained on 2 billion image patches
and 1.5M WSIs at 20× magnification using DINOv2.

Virchow 2 [162]: This model uses a ViT-Huge (632M parameters) trained on 1.9B patches and 3.1M
WSIs using DINOv2

H-Optimus-0: This model uses a ViT-giant (1.13B parameters) trained 273 million image patches
from 500,000 WSIs at 20× magnification using DINOv2.

UNIv1.5: This model uses a ViT-giant (1.13B parameters) trained on 432 million image patches
from 350,000 WSIs using DINOv2.

D HEST for multimodal representation learning

We provide additional information regarding CONCH fine-tuning using multimodal alignment.
CONCH-FT model, a ViT-Base model initialized with CONCH weights, was fine-tuned for 50 epochs
using a cosine learning rate scheduler, with a base learning rate of 10−4 for the image encoder and
10−3 for the expression encoder. Only the last 3 layers of the model were fine-tuned, with a layer-wise
learning decay rate of 0.7. For training with the infoNCE loss, a contrastive temperature of 10−2

and batch size of 1,024 pairs of patch and transcriptomics were used. A combination of random
horizontal/vertical flip and color jittering was employed for image patch augmentation.

The rank of the embedding space (also referred to as smooth rank measure [49]) measures the quality
of the embeddings produced from encoders trained in unsupervised or self-supervised manners.
Given the patch embedding matrix H ∈ RN×d and d < N , where N is the number of patches and d
is the feature dimension, we compute the rank as the entropy of the d L1-normalized singular values
of H .
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E HEST for discovery

Cells were segmented and classified using CellViT [61]. To find the gene expression profile of each
neoplastic cell, we matched each cell to its corresponding cell index in Xenium by assigning the index
for which the distance between the cell centroids was the smallest. After matching all neoplastic
cells, only those cells for which the assignment was unique were kept. After this filtering step, an
average of 91% of the cells per sample were kept while 9% of the cells were discarded.

Figure 6: HEST for biomarker discovery: Analysis of an invasive ductal carcinoma Xenium
sample. a. IDC Xenium sample with neoplastic nuclei overlaid in red (nc=342,018 detected nuclei).
Six randomly selected regions with CellViT segmentation of the neoplastic nuclei. Black scale bar
represents 30 µm. b. Pearson correlation between the major axis length of neoplastic nuclei and
the log1p-normalized expression of TPD52. c. Analogous analysis between nuclear area and FLNB
expression.

F Datasheet for HEST-1k

We provide a DataSheet for HEST-1k that summarizes the contributions, analyses, and intended
usages presented in the study.

F.1 Motivation for dataset creation

• Why was the dataset created? HEST-1k was designed with three key applications: (1) mul-
timodal representation learning of histology and transcriptomics, (2) biomarker exploration
and characterization, and (3) benchmarking foundation models for pathology. Despite many
publicly available resources, no existing unified and user-friendly formatting was available
to bring ST into the world of deep learning.

• What (other) tasks could the dataset be used for? Are there obvious tasks for which it
should not be used? Users are welcome to introduce new, creative ways to use the dataset.
However, users are not allowed to try to retrieve patient information from the existing data.
A dedicated section is provided to discuss ethical considerations and intended usage.

• Has the dataset been used for any tasks already? If so, where are the results so others
can compare (e.g., links to published papers)? The metadata attached to HEST-1k reports
all samples that were made public as part of a publication (peer-reviewed or not).
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• Who funded the creation of the dataset? HEST is supported by the Brigham and Women’s
Hospital (BWH) President’s Fund, Mass General Hospital (MGH) Pathology, and the
National Institute of Health (NIH) National Institute of General Medical Sciences (NIGMS)
through R35GM138216.

F.2 Dataset composition

• What are the instances? The modalities used in this study are histopathology whole-slide
images, gene expression data, and derivatives of these two modalities, such as nuclear
segmentation and classification maps.

• Are relationships between instances made explicit in the data Each whole-slide image
maps to a unique gene expression profile in an unequivocal way.

• What data does each instance consist of? Imaging data consists of Generic TIFF ob-
jects stored in a pyramidal format, and gene expression data consists of scanpy objects.
Derivatives are stored in JSON files, parquet files, and Hierarchical Data Format (HDF)
files.

• Is there a label/target associated with instances? If the instances are related to people,
are subpopulations identified (e.g., by age, gender, etc.), and what is their distribution?
Each sample pair (slide and expression profile) is associated with comprehensive metadata.
All metadata information is thoroughly described in the main paper. Age and gender are
only reported in a subset of cases.

• Is everything included or does the data rely on external resources? (e.g., websites,
tweets, datasets) If external resources, a) are there guarantees that they will exist, and
remain constant, over time; b) is there an official archival version. Are there licenses,
fees or rights associated with any of the data? We provide all data as part of the HEST-1k
release. In addition, a link to the original data is provided in the metadata. Each sample is
associated with a license as provided by the original publication, where we ensured that the
reported license allowed for distributing and creating derivatives of the data.

• Are there recommended data splits or evaluation measures? HEST-1k comes with the
HEST-Benchmark, a series of tasks for gene expression prediction from histology images.
All patient-stratified splits are specified in the attached comma-separated values (CSV) files.

• What experiments were initially run on this dataset? Have a summary of those
results and, if available, provide the link to a paper with more information here. All
experiments run with HEST-1k are described in this study. The reader can refer to the
main text for a thorough description of all experiments (see HEST-Benchmark, HEST for
biomarker exploration, HEST for multimodal representation learning).

F.3 Data collection process

• How was the data collected? The data were manually inspected and curated by the authors
of the present study.

• Who was involved in the data collection process? All authors of the present study were
involved in the data collection, inspection, and curation. The reader can refer to the original
publication to understand how the data were originally acquired.

• Over what time frame was the data collected? Does the collection time frame match
the creation time frame? The original data comprise publications from 2016 to 2024. As
the dataset grows, more recent publications might be included in HEST-1k.

• Does the dataset contain all possible instances? Or is it, for instance, a sample (not
necessarily random) from a larger set of instances? All pairs of gene expression data and
whole-slide images of the underlying studies were included and are unique.

• Is there information missing from the dataset and why? (this does not include intention-
ally dropped instances; it might include, e.g., redacted text, and withheld documents)
Is this data missing because it was unavailable? Original publications may include some
missing information, such as the alignment file between the slide and the expression profile.
We developed computational tools to minimize missing information and reach near-complete
metadata.

18



• Are there any known errors, sources of noise, or redundancies in the data? All whole-
slide images have been manually inspected. The quality from one sample to another varies
significantly, for instance, due to poor staining, compression artifact, lower resolution, etc.
Gene expression data are inherently noisy. Users can decide to apply post-hoc normalization
methods to reduce noise, e.g., stain normalization on the imaging side or batch effect
mitigation on the transcriptomics side.

F.4 Data preprocessing

• What preprocessing/cleaning was done? All whole-slide images were converted into
pyramidal TIFF objects with re-estimated pixel resolution. All alignment files have been
manually inspected and included if missing. All gene expression data have been transformed
into scanpy objects following the same process.

• Was the “raw” data saved in addition to the preprocessed/cleaned data? (e.g., to
support unanticipated future uses) Raw data are downloaded but not publicly shared. In
the case of public samples, users can re-download them using the metadata provided as part
of the dataset release.

• Is the preprocessing software available? Yes, the source code to preprocess HEST-1k is
made publicly available as part of the HEST library.

F.5 Dataset distribution

• How is the dataset distributed? HEST-1k is distributed using HuggingFace Datasets.

• When will the dataset be released/first distributed? The dataset is public and can be
accessed through the HuggingFace Datasets interface.

• What license (if any) is it distributed under? Are there any copyrights on the data? The
dataset is distributed under the Attribution-NonCommercial-ShareAlike 4.0 International
license (CC BY-NC-SA 4.0 Deed).

• Are there any fees or access/export restrictions? No access/export restrictions unless they
violate the terms of the above-mentioned license (CC BY-NC-SA 4.0 Deed).

• Who is supporting/hosting/maintaining the dataset? How does one contact the
owner/curator/manager of the dataset? The dataset is maintained by the authors of
the publication.

• Will the dataset be updated? How often and by whom? How will updates/revisions be
documented and communicated (e.g., mailing list, GitHub)? Is there an erratum? The
dataset might evolve as additional samples become publicly available. Dataset versioning
will be put in place.

• If the dataset becomes obsolete how will this be communicated? The GitHub README
will be updated.

• Is there a repository to link to any/all papers/systems that use this dataset? There is no
repository to link papers that use HEST-1k. Users are required to cite HEST-1k if they use it
in their own research.

• If others want to extend/augment/build on this dataset, is there a mechanism for
them to do so? If so, is there a process for tracking/assessing the quality of those
contributions. What is the process for communicating/distributing these contributions
to users? Users are welcome to contact us if they would like to provide additional data that
meets our standards. We do not have a dedicated system to communicate these contributions.
Newly added data will be tracked in the versioning.

F.6 Legal and ethical considerations

• If the dataset relates to people (e.g., their attributes) or was generated by people, were
they informed about the data collection? (e.g., datasets that collect writing, photos,
interactions, transactions, etc.) HEST-1k does not include patient information (such as
name, address, etc.).
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• If it relates to other ethically protected subjects, have appropriate obligations been
met? (e.g., medical data might include information collected from animals) For animal
samples (Mus musculus tissue), we refer to the original publication for an in-depth analysis.

• If it relates to people, were there any ethical review applications/reviews/approvals?
(e.g. Institutional Review Board applications) For human tissue, we refer to the original
publication for an in-depth analysis. Internal cohorts were ethically reviewed and collected
as part of dedicated IRBs.

• If it relates to people, could this dataset expose people to harm or legal action? (e.g.,
financial, social or otherwise) What was done to mitigate or reduce the potential for
harm? No, patients cannot be linked to the corresponding histology and gene expression
profile.

• If it relates to people, does it unfairly advantage or disadvantage a particular social
group? In what ways? How was this mitigated? Most datasets do not include specific
demographics. When reported, we include this information in the metadata associated with
each sample. To our knowledge, the representation of HEST-1k does not unfairly advantage
or disadvantage a particular social group.

• Does the dataset contain information that might be considered sensitive or confidential?
(e.g., personally identifying information) No.

• Does the dataset contain information that might be considered inappropriate or offen-
sive? No.

G Author statement

The authors of this paper bear all responsibility in case of violation of rights associated with HEST-1k,
HEST-Library, and HEST-Benchmark.
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Table A2: Datasets gathered from 10x Genomics portal. n: number of samples in the cohort.

Collection name Organ Technology n
Num.
genes

Adult Mouse Brain (FFPE) Brain Visium 1 19,465
Adult Mouse Brain Coronal Section (Fresh Frozen) 1 Brain Visium 1 32,285
Adult Mouse Brain Coronal Section (Fresh Frozen) 2 Brain Visium 1 32,285
Adult Mouse Kidney (FFPE) Kidney Visium 1 19,465
Adult Mouse Olfactory Bulb Brain Visium 1 32,285
Characterization of immune cell populations in the tumor
microenvironment of colorectal cancer using high definition
spatial profiling [110]

Bowel Mixed 8 18,085

FFPE Human Breast using the Entire Sample Area Breast Xenium 2 541
FFPE Human Breast with Custom Add-on Panel Breast Xenium 2 541
FFPE Human Breast with Pre-designed Panel Breast Xenium 2 541
FFPE Human Pancreas with Xenium Multimodal Cell Seg-
mentation Pancreas Xenium 1 541

FFPE Human Prostate Adenocarcinoma with 5K Human
Pan Tissue and Pathways Panel Prostate Xenium 1 10,006

FFPE Human Skin Primary Dermal Melanoma with 5K
Human Pan Tissue and Pathways Panel Skin Xenium 1 10,017

Fresh Frozen Mouse Colon with Xenium Multimodal Cell
Segmentation Bowel Xenium 1 541

Fresh Frozen Mouse Brain Hemisphere with 5K Mouse Pan
Tissue and Pathways Panel Brain Xenium 1 13,780

Fresh Frozen Visium on CytAssist: Human Breast Cancer,
Probe-Based Whole Transcriptome Profiling Breast Visium 1 18,085

Fresh Frozen Visium on CytAssist: Mouse Brain, Probe-
Based Whole Transcriptome Profiling Brain Visium 1 19,465

Human Bone and Bone Marrow Data with Custom Add-on
Panel Bone Xenium 3 541

Human Brain Cancer, 11 mm Capture Area (FFPE) Brain Visium 1 18,085
Human Breast Cancer (Block A Section 1) Breast Visium 1 33,538
Human Breast Cancer (Block A Section 2) Breast Visium 1 33,538
Human Breast Cancer: Ductal Carcinoma In Situ, Invasive
Carcinoma (FFPE) Breast Visium 1 17,943

Human Breast Cancer: Targeted, Immunology Panel Breast Visium 1 1,056
Human Breast Cancer: Visium Fresh Frozen, Whole Tran-
scriptome Breast Visium 1 36,601

Human Breast Cancer: Whole Transcriptome Analysis Breast Visium 1 32,285
Human Cerebellum: Targeted, Neuroscience Panel Brain Visium 1 1,186
Human Cerebellum: Whole Transcriptome Analysis Brain Visium 1 1,186
Human Cervical Cancer (FFPE) Cervix Visium 1 17,943
Human Colon Preview Data (Xenium Human Colon Gene
Expression Panel) Bowel Xenium 2 541

Human Colorectal Cancer, 11 mm Capture Area (FFPE) Bowel Visium 1 18,085
Human Colorectal Cancer: Targeted, Gene Signature Panel Bowel Visium 1 1,142
Human Colorectal Cancer: Whole Transcriptome Analysis Bowel Visium 1 36,601
Human Glioblastoma: Targeted, Pan-Cancer Panel Brain Visium 1 1,253
Human Glioblastoma: Whole Transcriptome Analysis Brain Visium 1 36,601
Human Heart Heart Visium 1 36,601
Human Heart Data with Xenium Human Multi-Tissue and
Cancer Panel Heart Xenium 1 541

Human Intestine Cancer (FPPE) Bowel Visium 1 17,943
Human Kidney Preview Data (Xenium Human Multi-Tissue
and Cancer Panel) Kidney Xenium 2 541

Human Kidney, 11 mm Capture Area (FFPE) Kidney Visium 1 18,085
Human Liver Data with Xenium Human Multi-Tissue and
Cancer Panel Liver Xenium 2 541

Human Lung Cancer (FFPE) Lung Visium 1 18,085
Human Lung Cancer, 11 mm Capture Area (FFPE) Lung Visium 1 18,085

Human Lymph Node Lymph
node Visium 1 36,601
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Table A3: Datasets gathered from 10x Genomics portal. Continuation.

Collection name Organ Technology n
Num.
genes

Human Ovarian Cancer (FFPE) Ovary Visium 1 17,943
Human Ovarian Cancer, 11 mm Capture Area (FFPE) Ovary Visium 1 18,085
Human Prostate Cancer, Acinar Cell Carcinoma (FFPE) Prostate Visium 1 17,943
Human Prostate Cancer, Adenocarcinoma with Invasive Car-
cinoma (FFPE) Prostate Visium 1 17,943

Human Skin Data with Xenium Human Multi-Tissue and
Cancer Panel Skin Xenium 2 541

Human Skin Preview Data (Xenium Human Skin Gene Ex-
pression Panel with Custom Add-On) Skin Xenium 1 541

Human Skin Preview Data (Xenium Human Skin Gene Ex-
pression Panel) Skin Xenium 1 541

Human Tonsil Data with Xenium Human Multi-Tissue and
Cancer Panel

Lymph
node Xenium 2 541

Mouse Bone Data with Custom Add-on Panel Bone Xenium 3 541
Mouse Brain Coronal Section 1 (FFPE) Brain Visium 1 19,465
Mouse Brain Coronal Section 2 (FFPE) Brain Visium 1 19,465
Mouse Brain Section (Coronal) Brain Visium 1 31,053
Mouse Brain Serial Section 1 (Sagittal-Anterior) Brain Visium 1 31,053
Mouse Brain Serial Section 1 (Sagittal-Posterior) Brain Visium 1 31,053
Mouse Brain Serial Section 2 (Sagittal-Anterior) Brain Visium 1 31,053
Mouse Brain Serial Section 2 (Sagittal-Posterior) Brain Visium 1 31,053
Mouse Embryo, 11 mm Capture Area (FFPE) Embryo Visium 1 19,465
Mouse Kidney Section (Coronal) Kidney Visium 1 31,053
Mouse Tissue Microarray in 3x3 Layout with 1 mm Edge to
Edge Spacing (FFPE) Lung/Brain Visium 1 19,465

Mouse Tissue Microarray in 3x3 Layout with 2 mm Edge to
Edge Spacing (FFPE) Lung/Brain Visium 1 19,465

Mouse Tissue Microarray in 5x5 Layout with 1 mm Edge to
Edge Spacing (FFPE) Kidney/BrainVisium 1 19,465

Normal Human Prostate (FFPE) Prostate Visium 1 17,943
Pancreatic Cancer with Xenium Human Multi-Tissue and
Cancer Panel Pancreas Xenium 1 538

Preservation Method Comparison on CytAssist: FFPE
Mouse Brain (Sagittal), 11 mm Capture Area Brain Visium 1 19,465

Preservation Method Comparison on CytAssist: Fixed
Frozen Mouse Brain (Sagittal), 11 mm Capture Area Brain Visium 1 19,465

Preservation Method Comparison on CytAssist: Fresh
Frozen Mouse Brain (Sagittal), 11 mm Capture Area Brain Visium 1 19,465

Preservation Method Comparison on Visium CytAssist:
FFPE Mouse Brain (Sagittal), 11 mm Capture Area Brain Visium 1 19,465

Preservation Method Comparison on Visium CytAssist:
Fixed Frozen Mouse Brain (Sagittal), 11 mm Capture Area Brain Visium 1 19,465

Preservation Method Comparison on Visium CytAssist:
Fresh Frozen Mouse Brain (Sagittal), 11 mm Capture Area Brain Visium 1 19,465

Preview Data: FFPE Human Lung Cancer with Xenium
Multimodal Cell Segmentation Lung Xenium 1 541

Preview Data: FFPE Human Lymph Node with 5K Pan
Tissue and Pathways Panel Lymphoid Xenium 1 11,094

Visium CytAssist Gene Expression Libraries of Post-
Xenium Human Colon Cancer (FFPE) Bowel Visium 4 18,085

Visium CytAssist Gene Expression Libraries of Post-
Xenium Mouse Brain (FF) Brain Visium 4 19,465

Visium CytAssist, Mouse Embryo, 11 mm Capture Area
(FFPE) Embryo Visium 1 19,465

Visium HD Spatial Gene Expression Library, Mouse Kidney
(FFPE) Kidney Visium HD 1 19,059

Visium HD Spatial Gene Expression Library, Mouse Embryo
(FFPE) Embryo Visium HD 1 19,059

Visium HD Spatial Gene Expression Library, Human Pan-
creas (FFPE) Pancreas Visium HD 1 18,085

Whole Mouse Pup Preview Data (Xenium Mouse Tissue
Atlassing Panel)

Whole or-
ganism Xenium 1 541
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Table A4: Datasets gathered from NCBI.

Publication Organ Technology n
Num.
genes

10X Visium Spatial transcriptomics of murine colon at d14
(mucosa healing) in B cell sufficient-deficient mice [117] Bowel Visium 2 31,053

10X Visium Spatial transcriptomics of murine colon in
steady state and during recovery after DSS colitis [117] Bowel Visium 2 31,053

A Spatial Transcriptomic atlas of the human kidney papilla
identifies significant immune injury in patients with stone
disease [25]

Kidney Visium 7 36,601

A cellular hierarchy in melanoma uncouples growth and
metastasis [69] Skin Visium 3 31,053

A new epithelial cell subpopulation predicts response to
surgery, chemotherapy, and immunotherapy in bladder can-
cer [2, 52]

Bladder Visium 4 33,538

A novel model of binge ethanol exposure reveals enhanced
neurodegeneration with advanced age [7] Brain Visium 4 32,285

A single-cell transcriptomic analysis of endometriosis [43] Uterus Visium 2 36,601
Distinct mesenchymal cell states mediate prostate cancer
progression [114] Prostate Visium 2 32,589

Epithelial Plasticity and Innate Immune Activation Promote
Lung Tissue Remodeling following Respiratory Viral Infec-
tion [19]

Lung Visium 1 32,285

Image-based spatial transcriptomics identifies molecular
niche dysregulation associated with distal lung remodeling
in pulmonary fibrosis [136]

Lung Xenium 20 17,145

Gene expression within a human choroidal neovascular mem-
brane using spatial transcriptomics [141] Eye Visium 5 36,601

Genome-wide Spatial Expression Profiling in Formalin-fixed
Tissues [53] Kidney Visium 14 33,538

High-resolution mapping of the tumor microenvironment
using integrated single-cell, spatial, and in situ analysis [63] Breast Xenium 4 541

Identification of TREM1+CD163+ myeloid cells as a delete-
rious immune subset in HCC [51] Liver Visium 2 36,601

Integration of spatial and single cell transcriptomics localizes
epithelial-immune cross-talk in kidney injury [41] Kidney Visium 4 33,538

Molecular Atlas of the Adult Mouse Brain [113] Brain
Spatial
Transcrip-
tomics

75 23,371

Regional differential gene expression analyses of brains from
four 24w-old Nf1+- mice Brain Visium 4 32,285

SARS-CoV-2 Niches in Human Placenta Revealed by Spatial
Transcriptomics [16] Uterus Visium 16 36,612

Schwann Cells Shape Tumor Cells and Cancer-Associated
Fibroblasts in the Pancreatic Ductal Adenocarcinoma Mi-
croenvironment [155]

Pancreas Visium 4 20,615

Single Cell and Spatial Analysis of Human Squamous Cell
Carcinoma [66] Skin

Spatial
Transcrip-
tomics

12 17,138

Single-cell profiling of primary and paired metastatic lymph
node tumors in breast cancer patients [84]

Lymph
node Visium 4 33,931
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Table A5: Datasets gathered from NCBI. Continuation.

Publication Organ Technology n
Num.
genes

Single-cell and spatial transcriptomics characterization of
the immunological landscape in the healthy and PSC human
liver [5]

Liver Visium 4 36,601

Single-nucleus Ribonucleic Acid-sequencing and Spatial
Transcriptomics Reveal the Cardioprotection of Shexiang
Baoxin Pill (MUSKARDIA) in Mice with Myocardial
Ischemia-Reperfusion Injury [82]

Heart Visium 2 32,285

Spatial Multimodal Analysis: MALDI-MSI and Spatial Tran-
scriptomics within the same tissue section [138] Brain Visium 19 32,285

Spatial RNA sequencing of regenerating mouse hindlimb
muscle [100] Muscle Visium 3 33,217

Spatial Total RNA-Sequencing of regenerating mouse
hindlimb muscle and Type 1-Lang reovirus-infected mouse
heart [101]

Muscle Visium 7 55,414

Spatial localization with Spatial Transcriptomics for an atlas
of healthy and injured cell states and niches in the human
kidney [79]

Kidney Visium 23 33,538

Spatial sequencing of Foreign body granuloma [78] None Visium 1 15,524
Spatial transcriptomics landscape of non-communicable in-
flammatory skin diseases [126] Skin Visium 59 20,613

Spatial transcriptomics of adenoid cystic carcinoma of the
lacrimal gland [106] Eye Visium 1 17,943

Spatial transcriptomics of the mouse brain across three age
groups Brain Visium 6 32,285

Spatial transcriptomics reveal unnresolved wound repair as
potential driver of PFA Ependymoma progression [44] Brain Visium 14 36,601

Spatiotemporal dynamics of molecular pathology in amy-
otrophic lateral sclerosis [94]

Spinal
cord

Spatial
Transcrip-
tomics

302 12,572

The neurons that restore walking after paralysis [70] Spinal
cord Visium 16 22,127

Visium spatial transcriptomics analysis of lacrimal gland
during chronic inflammation progression [98] Eye Visium 4 32,285

YAP Drives Assembly of a Spatially Colocalized Cellular
Triad Required for Heart Renewal [80] Heart Visium 2 32,285

Zika virus co-opts miRNA networks to persist in placental
microenvironments detected by spatial transcriptomics [17] Placenta Visium 8 32,298

Mouse model Heptablastoma spatial transcriptomics [120] Liver Visium 10 31,053

Table A6: Datasets gathered on Spatial-Research.

Publication Organ Technology n
Num.
genes

A spatiotemporal organ-wide gene expression and cell atlas
of the developing human heart [10] Heart

Spatial
Transcrip-
tomics

19 39,739

Integrating spatial gene expression and breast tumour mor-
phology via deep learning [55] Breast

Spatial
Transcrip-
tomics

68 16,744

Spatial deconvolution of HER2-positive breast cancer delin-
eates tumor-associated cell type interactions [4] Breast

Spatial
Transcrip-
tomics

36 15,045

Visualization and analysis of gene expression in tissue sec-
tions by spatial transcriptomics [134] Brain

Spatial
Transcrip-
tomics

16 16,573
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Table A7: Datasets gathered on Mendeley.

Publication Organ Technology n
Num.
genes

Ex-ST [6] Brain Visium 5 31,053
Genome-wide spatial expression profiling in formalin-fixed
tissues [139] Brain Visium 15 31,053

Human ileum, Visium [104] Bowel Visium 4 33,538
Human squamous cell carcinoma [1] Skin Visium 4 33,538
Prostate needle biopsies pre- and post-ADT: Count matrices,
histological-, and Androgen receptor immunohistochemistry
images [96]

Prostate
Spatial
Transcrip-
tomics

24 26,437

Spatially resolved clonal copy number alterations in benign
and malignant tissue [40] Prostate Visium 23 33,538

Spatially resolved transcriptomic profiling of degraded [105] Bowel Visium 35 17,943
spatialRNAseq heart raw suppdata Heart Visium 4 54,848
spatialRNAseq ileum raw suppdata Bowel Visium 4 54,848

Table A8: Datasets gathered on Github and the Human Cell Atlas data explorer.

Publication Organ Technology n
Num.
genes

A spatially resolved atlas of the human lung characterizes a
gland-associated immune niche[93] Lung Visium 20 17,922

Molecular cartography uncovers evolutionary and microen-
vironmental dynamics in sporadic colorectal tumors[57] Colon Visium 41 19,366

Spatially resolved multiomics of human cardiac niches[67] Heart Visium 41 33,538
Transcriptome-scale spatial gene expression in the human
dorsolateral prefrontal cortex[99] Brain Visium 12 33,538

Table A9: Internal datasets.

Publication Organ Technology n
Num.
genes

Prostate ST Internal Prostate Visium 4 17,943
Tertiary lymphoid structures generate and propagate
anti-tumor antibody-producing plasma cells in renal
cell cancer [103]

Lymph
node Visium 24 17,943

Table A10: Datasets gathered on Zenodo.

Publication Organ Technology n
Num.
genes

Charting the Heterogeneity of Colorectal Cancer Consen-
sus Molecular Subtypes using Spatial Transcriptomics:
datasets [135]

Bowel Visium 14 36,601

Demo 10x Visium dataset for STQ [34] Skin Visium 1 68,886
Nextflow Pipeline for Visium and H&E Data from Patient-
Derived Xenograft Samples [36] Skin Visium 4 68886

Spotiphy: generative modeling in single-cell spatial whole
transcriptomics [132] Brain Visium 2 32,285
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Table A11: Overview of the HEST-Benchmark. Each task involves predicting the expression levels
of the 50 most variable genes from 112×112 µm H&E-stained image patches centered on each spatial
transcriptomics spot. The tasks are formulated as multivariate regression problems. The Oncotree
code describes the cancer type diagnosed in samples, e.g., PAAD denotes pancreatic adenocarcinoma.
Additional information is provided in the Appendix.

Task ID Oncotree Organ Number of
Patients

Number of
Samples Technology

Task 1 [63] IDC Breast 4 4 Xenium
Task 2 PRAD Prostate 2 23 Visium
Task 3 PAAD Pancreas 3 3 Xenium
Task 4 SKCM Skin 2 2 Xenium
Task 5 [135] COAD Colon 2 4 Xenium
Task 6 [135] READ Rectum 2 4 Visium
Task 7 [103] ccRCC Kidney 24 24 Visium
Task 8 LUAD Lung 2 2 Xenium

Task 9 [84] IDC Axillary
lymph nodes 4 4 Visium

Table A12: State-of-the-art foundation models for histology evaluated on HEST-Benchmark. B:
Base, L: Large, H: Huge, G: Giant. ∗: number of patches during pretraining, ∗∗: number of patches
during fine-tuning.

Name Number of Number of Magnification Model Training Number of
slides patches recipe parameters

ResNet50 (IN) [91] N/A 1.2M N/A ResNet-50 Supervised 23M
CTransPath [147] 32k 17M 10× Swin-T MoCov3 28M
Remedis [11] 10k 10M 20× ResNet-152 iBOT 232M
Phikon [42] 6k 43.3M 20× ViT-B iBOT 86M
UNI [29] 100k 100M 20× ViT-L DINOv2 307M
CONCH [88] N/A 16M∗ + 1.17M∗∗ Many ViT-B CoCa 86M
GigaPath [154] 171k 1.3B 20× ViT-g DINOv2 1.13B
Virchow [142] 1.5M 2B 20× ViT-H DINOv2 632M
Virchow 2 [162] 3.1M 1.9B Many ViT-H DINOv2 632M
H-Optimus-0 500K 273M 20x ViT-g DINOv2 1.13B
UNIv1.5 350K 432M 20x ViT-g DINOv2 1.13B

Table A13: HEST-Benchmark evaluated using Ridge regression. Model performance measured
with Pearson correlation. Best is bold, second best is underlined.

IDC PRAD PAAD SKCM COAD READ ccRCC LUAD LYMPH IDC Average
REMEDIS 0.4936 0.2632 0.2881 0.4117 0.151 0.0776 0.2201 0.3114 0.1694 0.2651

± 0.0725 ± 0.0821 ± 0.0544 ± 0.0384 ± 0.0147 ± 0.0684 ± 0.0418 ± 0.0432 ± 0.0365

GigaPath 0.532 0.3035 0.3172 0.2231 0.163 0.1236 0.2172 0.3144 0.1925 0.2652
± 0.0812 ± 0.0279 ± 0.0165 ± 0.0071 ± 0.041 ± 0.0379 ± 0.0479 ± 0.0871 ± 0.0304

UNIv1.5 0.5657 0.3065 0.3004 0.258 0.1982 0.1077 0.2023 0.3084 0.1998 0.2719
± 0.0866 ± 0.02 ± 0.0199 ± 0.0514 ± 0.0262 ± 0.0222 ± 0.0595 ± 0.0747 ± 0.0129

H-Optimus-0 0.5789 0.2561 0.3367 0.2778 0.1605 0.1228 0.2342 0.3143 0.1976 0.2754
± 0.0899 ± 0.0003 ± 0.0428 ± 0.0048 ± 0.0522 ± 0.0309 ± 0.0373 ± 0.083 ± 0.0253

Virchow2 0.5666 0.2972 0.2718 0.303 0.1814 0.1208 0.2257 0.3017 0.2172 0.2762
± 0.0848 ± 0.037 ± 0.0387 ± 0.0184 ± 0.0326 ± 0.0526 ± 0.0433 ± 0.1199 ± 0.019

Virchow 0.5583 0.2744 0.3361 0.3389 0.1825 0.0955 0.2375 0.2897 0.2081 0.2801
± 0.0876 ± 0.0019 ± 0.037 ± 0.0063 ± 0.0369 ± 0.0527 ± 0.0371 ± 0.0785 ± 0.0234

ResNet50 0.4453 0.2753 0.3432 0.413 0.2009 0.0669 0.2103 0.4001 0.203 0.2842
± 0.0377 ± 0.0622 ± 0.0654 ± 0.0814 ± 0.061 ± 0.0646 ± 0.0548 ± 0.0637 ± 0.0536

CTransPath 0.4996 0.2895 0.3826 0.4038 0.1751 0.0909 0.2139 0.4026 0.2089 0.2963
± 0.0594 ± 0.0724 ± 0.066 ± 0.065 ± 0.0423 ± 0.0808 ± 0.0438 ± 0.07 ± 0.0367

Phikon 0.5259 0.2493 0.3594 0.3684 0.1697 0.1136 0.253 0.4224 0.2151 0.2974
± 0.0791 ± 0.1264 ± 0.0707 ± 0.1061 ± 0.0562 ± 0.0749 ± 0.0483 ± 0.0579 ± 0.0416

UNI 0.563 0.257 0.3768 0.3433 0.1839 0.1239 0.2395 0.3714 0.2236 0.2981
± 0.0771 ± 0.0819 ± 0.0555 ± 0.0556 ± 0.0509 ± 0.0434 ± 0.0557 ± 0.1098 ± 0.0289

CONCH 0.528 0.3604 0.4224 0.5079 0.2467 0.1443 0.2356 0.4957 0.2462 0.3541
± 0.0794 ± 0.0135 ± 0.0773 ± 0.0281 ± 0.0045 ± 0.0455 ± 0.0387 ± 0.0203 ± 0.0349
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Table A14: HEST-Benchmark evaluated using XGBoost regression. Model performance measured
with Pearson correlation. Best is bold, second best is underlined.

IDC PRAD PAAD SKCM COAD READ ccRCC LUAD LYMPH IDC Average
ResNet50 (IN) 0.4646 0.3433 0.4017 0.4707 0.2892 0.0586 0.181 0.4967 0.2284 0.326

± 0.0353 ± 0.0168 ± 0.0648 ± 0.0834 ± 0.0115 ± 0.069 ± 0.0502 ± 0.01 ± 0.0511

CTransPath 0.4738 0.3514 0.4257 0.5304 0.2921 0.0996 0.2026 0.5225 0.234 0.348
± 0.0394 ± 0.0032 ± 0.0701 ± 0.073 ± 0.0018 ± 0.0766 ± 0.0387 ± 0.0063 ± 0.0613

Phikon 0.4704 0.3943 0.3988 0.5323 0.277 0.1451 0.213 0.542 0.2443 0.3575
± 0.0672 ± 0.0123 ± 0.0598 ± 0.0607 ± 0.0098 ± 0.0851 ± 0.0362 ± 0.017 ± 0.0632

GigaPath 0.5222 0.3749 0.4415 0.5297 0.2876 0.1609 0.2207 0.5506 0.2464 0.3705
± 0.0641 ± 0.0103 ± 0.058 ± 0.0376 ± 0.0039 ± 0.0777 ± 0.0402 ± 0.0108 ± 0.0526

CONCH 0.5175 0.3784 0.4428 0.5766 0.3215 0.1431 0.1738 0.5581 0.2554 0.3742
± 0.0602 ± 0.0124 ± 0.0657 ± 0.0519 ± 0.0062 ± 0.0665 ± 0.0544 ± 0.0081 ± 0.0605

REMEDIS 0.5116 0.3526 0.4621 0.5885 0.319 0.1129 0.2303 0.562 0.2521 0.3768
± 0.0594 ± 0.0073 ± 0.0555 ± 0.0253 ± 0.0101 ± 0.0846 ± 0.0393 ± 0.0057 ± 0.0601

Virchow2 0.5378 0.3772 0.4237 0.5565 0.281 0.1779 0.2428 0.5641 0.2582 0.3799
± 0.0685 ± 0.007 ± 0.0525 ± 0.0152 ± 0.0162 ± 0.077 ± 0.0361 ± 0.0069 ± 0.0504

UNI 0.538 0.3513 0.451 0.6089 0.2921 0.1679 0.235 0.5357 0.2456 0.3806
± 0.0603 ± 0.0162 ± 0.0587 ± 0.0294 ± 0.0191 ± 0.0641 ± 0.0381 ± 0.0057 ± 0.05

Virchow 0.5309 0.3447 0.4448 0.6089 0.3275 0.1419 0.2307 0.5643 0.2617 0.3839
± 0.0764 ± 0.0117 ± 0.0501 ± 0.0165 ± 0.0254 ± 0.0669 ± 0.0336 ± 0.0091 ± 0.0537

UNIv1.5 0.555 0.3654 0.434 0.6025 0.336 0.1742 0.2166 0.5634 0.2515 0.3887
± 0.0763 ± 0.0098 ± 0.0568 ± 0.0385 ± 0.0179 ± 0.0568 ± 0.0337 ± 0.0054 ± 0.0434

H-Optimus-0 0.5564 0.3829 0.4445 0.6502 0.2922 0.1731 0.2402 0.5654 0.2555 0.3956
± 0.0777 ± 0.0049 ± 0.0563 ± 0.0326 ± 0.0063 ± 0.0777 ± 0.0348 ± 0.0084 ± 0.0522
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