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A Principled Approach to Natural Language Watermarking

ABSTRACT
Recently, there is a surge in machine-generated natural language
content being misused by unauthorized parties. Watermarking is a
well-recognized technique to address the issue by tracing the prove-
nance of the text. However, we found most existing watermarking
systems for texts are subject to ad hoc design and thus suffer from
fundamental vulnerabilities.

We propose a principled design for text watermarking based
on a theoretical information-hiding framework. The watermark-
ing party and attacker play a rate-distortion-constrained capacity
game to achieve the maximum rate of reliable transmission, i.e.,
watermark capacity. The capacity can be expressed by the mutual
information between the encoding and the attacker’s corrupted
text, indicating how many watermark bits are effectively conveyed
under distortion constraints. The system is realized by a learning-
based framework with mutual information neural estimators. In
the framework, we adopt the assumption of an omniscient attacker
and let the watermarking party pit against the attacker who is fully
aware of the watermarking strategy. The watermarking party thus
achieves higher robustness against removal attacks. We further
show that the incorporation of side information substantially en-
hances the efficacy and robustness of the watermarking system.
Experimental results have shown the superiority of our watermark-
ing system compared to the state-of-the-art in terms of capacity,
robustness, and preserving text semantics.

CCS CONCEPTS
•Applied computing→Text editing; • Security and privacy→
Social aspects of security and privacy; • Computing method-
ologies→ Natural language generation.
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1 INTRODUCTION
Unauthorized distribution of texts is an ever-present threat, which
even worsens with the rapid development of language models. Not
only may articles written by human be stolen for misuse, but texts
generated by machine could also be appropriated. For example,
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ChatGPT may be abused for spreading fake information [9] or pla-
giarism of financial report [21]. With it comes the growing concern
about inspecting the source of the texts for intellectual property
protection or detection of language model misuse. Thus tracing text
provenance to establish the ownership of text contents has become
an urgent issue.

Digital watermarking is an effective approach to provenance
tracing, and has been widely applied to images [6, 28], audios [13],
and texts [1, 12, 23, 25–27]. By hiding a piece of information (i.e.,
watermark) into digital carriers and later recovering it, watermark-
ing provides ownership evidence of the carriers. Particularly for
texts, it is required to embed bit strings while maintaining good
text utility. Rule-based methods [23, 25] are mostly founded on
synonym substitution which is powerful in preserving utility, but
neglecting the context often results in semantic changes. Context-
aware methods [26, 27] improve the semantic consistency between
the original and watermarked texts, yet merely robust against sim-
ple substitution attacks [27]. More recently for machine-generated
texts, Abdelnabi and Fritz [1] propose an adversarial watermark-
ing transformer to learn watermark embedding without ground
truth-word substitutions and their locations. Kirchenbauer et al.
[12] propose a watermarking scheme for detection of texts gener-
ated by large language models (LLMs), but it cannot trace identity
at a finer granularity.

As we observe, most existing designs for text watermarking are
ad hoc, lacking grounded theoretical basis and thus are prevented
from wider deployment. First, the watermarking capacity, suggest-
ing how long the bit sequence can be encoded into the text to be
accurately decoded, mostly remains vague in the literature. The
works of Abdelnabi and Fritz [1], Yang et al. [26], Yoo et al. [27] can
only embed a fixed-length bit sequence, which eliminates any pos-
sibility to extend ID sequences for distinguishing more identities.
Second, most watermarking schemes consider weak adversaries.
For Yang et al. [26], Yoo et al. [27], naive word insertion, deletion,
and substitution attacks are only taken into account. For Abdelnabi
and Fritz [1], it assumes a black-box attacker who cannot access the
watermarking model. Such an assumption raises the third common
issue: security by obscurity, i.e., the security mechanism relies on
hiding the details, or some parameters of the design — which is
widely rejected by the community. It is easy for the adversary to
follow the substitution rule and use the public infill model to de-
tect and remove the watermark embedded by Yang et al. [26], Yoo
et al. [27]. Likewise for Abdelnabi and Fritz [1], its security depends
much on the secrecy of the watermarking models, which explains
its poor performance under white-box attacks.

To address the above issues, we resort to the theoretical basis
of the information-hiding framework [19] to seek a principled de-
sign for the text watermarking system. The key idea is to view
watermarking from a communication system perspective — the wa-
termarking capacity is formulated as the maximum rate of reliable
transmission between the encoder and the decoder. Meanwhile, the
rate should be achieved in the presence of a distortion-constrained
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attack channel where the attack strategy is adjusted according to
the watermarking strategy. Hence the capacity is the value of a
mutual-information game between the watermarking party and
the attacker. Our system is robust against realistic attacks in a
transparent manner rather than relying on ‘security by obscurity’,
as the attacker has complete knowledge about the watermarking
approach, enabling it to derive the best attack strategy.

However, the theoretical framework is ideal given Nash equilib-
ria and saddle points rarely exist in the capacity game. Nevertheless,
we follow the approach of Moulin and O’Sullivan [19] to extend the
information-hiding framework with distortion constraints and side
information. Importantly, the side information, remaining hidden
from the adversary, plays a key role in improving both capacity
and robustness of our system.

To realize such a theoretical framework, we adopt a learning-
empowered approach inspired by the recent progress in semantic
communication. Rather than embedding bits into exact symbols
transmitted, our system interprets the semantics of the texts and
paraphrases the texts to embed watermarks. Our system is com-
posed of an encoder-decoder net and an attacker net, learning to
maximize and minimize the transmission rate, respectively, under
the constraints that the watermarked text should not be deviating
too much from the original one. We optimize the neural estima-
tors to estimate mutual information which fundamentally exhibits
the capacity and robustness requirements while the distortion con-
straint preserves the semantics of the text.

Our contributions are summarized as follows. First, we propose
the first principled design for natural language watermarking based
on the theoretical information-hiding framework. Second, we build
a semantic learning-based watermarking system to enable end-
to-end training for the rate-distortion-constrained capacity game
between the watermarking party and the attacker. We show each
component of our design, in particular, the mutual information loss,
the side information, etc., all contributes to an improved capacity
and robustness of our system. Last, we verify the advantage of our
principled design by comparing it against multiple state-of-the-
art watermarking systems. Experimental results demonstrate the
superiority of our method in capacity, robustness, and preserving
the semantics of the texts.

2 RELATEDWORK
Natural language watermarking embeds a bit string into a text by
altering it, and later extraction of this string provides evidence of
text ownership. Our work is closely related to the following works.

Moulin and O’Sullivan [19] provide an information-theoretic
analysis for information-hiding systems. The work formalizes hid-
ing capacity which upper-bounds the rates of reliable transmis-
sion and quantifies the fundamental tradeoff between achievable
information-hiding rates and distortion levels. Our work instanti-
ates the theoretical framework for the first time via text-semantic
learning. Through the theoretical lens, we observe most existing
works for watermarking subject to ad hoc designs, violating funda-
mental principles. A detailed discussion can be found in Sec. B.

Traditional natural language watermarking methods are mostly
rule-based. Some methods adjust the appearance of fonts, spac-
ing, etc. throughout the document [4], vulnerable to attacks such

as copy-paste, OCR, and re-typing. Some methods employ lexical
substitution, replacing words with synonyms selected from dictio-
naries [5, 23, 25], ignoring the context and leading to potentially
unnatural watermarked text due to inappropriate synonym choices.
Other methods modify sentence structures, making substantial al-
terations to the original texts [16, 22]. However, these changes are
not universally applicable thereby limiting their capacity.

To avoid the drawback of rule-based methods in generating
rigid watermarking patterns, Yang et al. [26] proposed context-
aware lexical substitution which dynamically generates synonym
candidates based on the text context learned by masked language
model BERT [7]. However, the scheme does not consider robustness:
an attacker can remove up to 80% of the bits of the watermark by
running the same process in CALS and fill the watermark positions
with other words, reported by the authors.

To improve the robustness, Yoo et al. [27] proposed a watermark-
ing scheme that considers potential text corruption onwatermarked
text. It leverages named entity recognition, unsupervised method
YAKE and computation of NLI entailment score to identify features
that are semantically or syntactically essential, and uses them as
anchor points for watermarks. A corruption-resistant infill model is
also trained to be robust on possible types of corruption including
word insertion, substitution and deletion. However, the work only
considers weak adversaries, and the watermark capacity is limited
by the replaceable positions determined by the keywords.

Different from synonym substitution, some methods embed wa-
termarks by paraphrasing the text conditioned on bit strings. For
these watermarking systems, a key feature is the encoder-decoder
framework that learns how to embed and extract watermarks. Ad-
versarial watermarking transformer [1] belongs to this category.
It has a pair of transformers as the encoder and decoder, which
are trained to minimize the bit error of the predicted watermark.
Meanwhile, it uses a discriminator to enhance the naturalness of
the watermarked text. However, the robustness performance of
their work is unsatisfactory in face of white-box attacks. Since our
watermarking system also requires an interpretation of the text
semantics, our work falls into this category, but we take a principled
approach by formulating the information-hiding game between
watermarking party and the adversary.

In some works, the watermark is no longer a string of bits, but
only a statement that the text is watermarked or not. Kirchenbauer
et al. [12] proposed such a method as a post-processing procedure
of texts generated by LLMs. Before a word is generated, it selects
a randomized set of ‘green’ tokens and promotes the use of green
tokens during sampling. The method is only applicable to LLMs,
aiming to protect the intellectual property of language models.

3 PROBLEM FORMULATION
User cases.We consider watermarking as a defense against both
intellectual property (IP) theft as well as LLM abuse.
• IP Protection: Authors embed watermarks (unique identifiers) in
their writings to prove ownership if being copied.
• Provenance Tracking: Responsible LLM owners watermark gen-
erated texts before release to later identify potential misuse (e.g.,
tracking fake news).

2024-04-13 18:34. Page 2 of 1–14.
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The watermarking system could serve as a white-box model for
personal use or as an API service. In the first scenario, users train
the system and use it to detect watermarks in texts crawled online
(e.g., IP protection). The watermark here works as an alarm to
notify users of suspicious texts. In the second scenario, watermark
embedding and extraction are presented as API services for any
authorized party to track the provenance of the text.

Dilemma between public verification and robustness to
removal attacks: it has been recognized that if a watermarking
system allows anyone to verify watermarks, the system would also
allow attackers to iteratively alter the text until the watermark is
removed, thus failing to defend watermark removal attacks [14].
It is a design choice of our work to sacrifice public verifiability
but only to provide service to authorized parties, while achieving
robustness against removal attacks.

The requirements of watermarking are as follows:
⋄ High-capacity. The watermark should not only be accurately em-
bedded into and extracted from the system, but also be sufficiently
long to exhibit a diverse patterns to prevent mimicking attacks.
⋄ Transparency. The watermarked texts should be natural to read
without affecting the original meaning of the texts. Moreover, the
watermark pattern should be stealthy to avoid being detected by
the attacker, which facilitates the removal of the watermark.
⋄ Robustness. In synergy with the transparency requirement, the
watermarking system should resist a variety of removal attacks.
Ideally, if an attacker is able to successfully remove the watermark,
it has to alter the text to an extent that destroys its readability or
even changes the original meaning of the text.

A theoretical framework. Our watermarking system follows
the conventional information-hiding paradigm proposed by Moulin
and O’Sullivan [19] (Fig. 1). We denote the host data (original text)
as 𝑆 ∈ S, side information as 𝐾 ∈ K , and the watermark bitstring
(message) as𝑚 ∈ M. The encoder function 𝑓 creates watermarked
data 𝑋 from 𝑆 , 𝐾 , and 𝑚. This 𝑋 is then attacked by a channel
𝐴(𝑦 |𝑥) that tries to remove𝑚. The decoder 𝜙 uses 𝑌 (the attacked
data) and 𝐾 to estimate the watermark �̂�.

𝑴

𝑺

Encoder
𝒇(𝒔,𝒎, 𝒌)

Attacker
𝑨(𝒚|𝒙)

𝑿 𝒀

Decoder
𝝓(𝒚, 𝒌)

1𝑴𝑲

Figure 1: The information-hiding framework.

The watermarking system should resist removal attacks. The
party controlling 𝑓 and 𝜙 aims to accurately recover the watermark
despite attacks on the watermarked data. In contrast, the attacker
tries to hinder this recovery. We assume that the attacker is omni-
scient that it knows the watermarking strategies and takes moves
accordingly. Hence the adversarial game is formulated as:

max
𝑓 ,𝜙

min
𝐴

𝐽 (𝑓 , 𝐴, 𝜙) . (1)

The transparency requirement is formulated as a constraint,
shown in Eq. (2). The attacker also does not intend to alter the text

significantly, thereby limiting the distortion constraint between 𝑋
and 𝑌 , shown in Eq. (3).

𝐷𝑆,𝑋 ≜
∑︁
𝑠∈𝑆

∑︁
𝑘∈𝐾

∑︁
𝑚∈𝑀

𝑝 (𝑠, 𝑘)𝑑1 (𝑠, 𝑓 (𝑠,𝑚, 𝑘)) ≤ 𝐷1, (2)

𝐷𝑋,𝑌 ≜
∑︁
𝑥 ∈𝑋

∑︁
𝑦∈𝑌

𝑑2 (𝑥,𝑦)𝐴(𝑦 |𝑥)𝑝 (𝑥) ≤ 𝐷2 . (3)

4 A PRINCIPLEDWATERMARKING SYSTEM
In this section, we provide our principled design to the natural
language watermarking system.

4.1 System Design
Following the requirement in Sec. 3, we propose a learning-based
watermarking system inspired by the recent progress in semantic
communication for text transmission.

Taking text 𝑠 , watermark bit string𝑚, and side information 𝑘 as
inputs, the encoder outputs a watermarked text 𝑥 within the distor-
tion constraint of Eq. (2). The main body of the encoder contains
a transformer encoder which maps 𝑠 into the feature space and a
transformer decoder that composes the features of 𝑠 ,𝑚, and 𝑘 to
construct 𝑥 . The attacker attempts to erase the watermark from 𝑥 by
feeding it into a transformer with a similar structure to the encoder,
and outputs the de-watermarked text 𝑦, which is also known as
the corrupted watermarked text. The attacker is also constrained
by Eq. (3) as it expects to keep the semantics and readability of 𝑦.
Given 𝑦, the decoder extracts a bit string �̂� which is an estimate
of𝑚, by a transformer encoder concatenated with a linear layer
mapping features of 𝑦 to the feature of �̂�.

It is important to note that the side information 𝑘 is shared be-
tween the encoder and the decoder, but not available to the attacker.
The possible side information ranges from an empty message to any
data dependent or independent of 𝑠 . Examples of side information
can be: the original text, a hash value of the original text, partial in-
formation of 𝑠 , locations of the watermark, a random string, etc. As
discussed in Moulin and O’Sullivan [19], without the side informa-
tion, it is likely for the omniscient attacker to decode the watermark
and to remove it from 𝑥 . From a game-theoretic perspective, such
side information gives the watermarking party an advantage to
win and poses as a key component to robustness. Meanwhile, the
existence of 𝑘 incapacitates public verification since only those who
have 𝑘 could extract the watermarks. Our system can also be public
verifiable with 𝑘 being none, yet losing some robustness according
to the dilemma arguments in Sec. 3.

To enhance the transparency, a discriminator, modeled as a trans-
former encoder, is set to tell 𝑠 and 𝑥 apart by producing a score
between 0 and 1, indicating the resemblance of 𝑥 to 𝑠 . Such a score
can be propagated backward to the encoder to keep the generated
texts resembling the original. To enhance the discriminative capa-
bility of the discriminator and consequently improve the robustness
of the watermarked 𝑥 , we incorporate the watermark bit string𝑚
as a condition to the discriminator, resulting in a structure akin to
a conditional GAN [18]. The encoder plays as the generator fight-
ing against the discriminator by minimizing the discriminator loss
𝐿disc (𝑋, 𝑆 |𝑀), i.e., drawing the distribution of 𝑥 closer to that of 𝑠 .

2024-04-13 18:34. Page 3 of 1–14.
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Sampling

Figure 2: Overview of our principled watermarking system.

In constructing the framework, we inherit the setting of Moulin
and O’Sullivan [19] that the attacker knows the encoder and de-
coder models, watermarked text but not the side information or the
original text. This is in accord with the omniscient attacker assump-
tion that the watermarking party can only assume the worst-case
adversary in designing its strategy, and the fact that the attacker
cannot access original texts or the side information.

4.2 Training Losses
The encoder-decoder net of the watermarking party is trained under
the omniscient attacker assumption. We follow Thm. 4.4 of Moulin
and O’Sullivan [19] to give the rate of reliable transmission for the
watermarking party. By the information-hiding paradigm, we use
𝑈 to denote the encoding of the encoder, by which the transformer
decoder constructs 𝑋 . The payoff function consists of mutual infor-
mation losses that

𝐽 (𝑓 , 𝐴, 𝜙) = 𝐼 (𝑈 ;𝑌 |𝐾) − 𝐼 (𝑈 ; 𝑆 |𝐾), (4)

where 𝐼 (𝑈 ;𝑌 |𝐾) represents the mutual information between en-
coding and text corrupted by the attacker, 𝐼 (𝑈 ; 𝑆 |𝐾) denotes the
mutual information between encoding and the original text, both
conditioned on the side information.

Following the dirty paper theorem (Eq. (7.7) in El Gamal and
Kim [8]), the watermarking party aims to maximize the first term
to recover the watermark from 𝑌 , while minimizing the second
term to restrain the impact of the original text on𝑈 . The attacker’s
payoff is negative to that of the watermarking party to undermine
the hiding capacity. The attack strategy is chosen from the class
of {𝐴(𝑓 , 𝜙)} with distortion constraints 𝐷1, 𝐷2. Hence the problem
of seeking the optimal watermarking strategy turns to be a rate-
distortion-constrained capacity game. It is pointed out by Moulin
and O’Sullivan [19] that the optimal attack is the solution to a rate-
distortion problem and the optimal watermarking strategy is the
solution to a constrained capacity problem.

Mutual information neural estimation. It is difficult to write
the exact expression for the mutual information. Fortunately, mu-
tual information neural estimation (MINE [3]) provides a theoretical

lower bound 𝐼Θ (𝑋 ;𝑌 ) for the approximation of 𝐼 (𝑋 ;𝑌 ). Specifically,

𝐼Θ (𝑋 ;𝑌 ) = sup
𝜃 ∈Θ
E𝑃 (𝑋,𝑌 ) [𝑇 (𝜃 )] − log(E𝑃𝑋 𝑃𝑌 [𝑒

𝑇 (𝜃 ) ]) (5)

≜ sup
𝜃 ∈Θ

𝐿𝑇 (𝑋 ;𝑌 ) (6)

where 𝑇 ∈ 𝑇Θ is a network with parameters 𝜃 ∈ Θ, 𝑃 (𝑋,𝑌 ) denotes
the joint probability distribution, and 𝑃𝑋 , 𝑃𝑌 means the marginal
probability distribution of 𝑋 and 𝑌, respectively. Hence 𝐼 (𝑋 ;𝑌 ) can
be estimated by maximizing 𝐿𝑇 (𝑋 ;𝑌 ) on sampled instances from
corresponding distributions over 𝜃 . Here we adopt a transformer
encoder concatenated with a linear layer as the model for 𝑇 .

In the case where side information 𝐾 is present, for example,
in calculating 𝐼 (𝑋 ;𝑌 |𝐾), we sample from the joint distribution
𝑃 (𝑋,𝑌,𝐾) , and the marginal distributions 𝑃𝑋 and 𝑃 (𝑌,𝐾) .

Message reconstruction. To successfully embed a bit sequence
𝑀 as watermark into the original text, the watermarking party
trains its pair of encoder and decoder with a bit-by-bit message
reconstruction loss 𝐿bit. We compute 𝐿bit as the binary cross en-
tropy loss between the embedded message𝑀 and the predicted one
�̂� ∈ {𝑀𝑥 , 𝑀𝑦}, where𝑀𝑥 and𝑀𝑦 respectively denotes the water-
mark decoded from the watermarked text 𝑋 and the corrupted text
𝑌 . We also provide the decoder another label 𝑀𝑛 for every 𝑛-bit
sequence embedded to distinguish watermark patterns at the mes-
sage level. For example, a 1-out-of-16 categorical label is assigned
to a 4-bit watermark. Combined, the message reconstruction losses
are formulated as

𝐿bit (𝑀, �̂�) = BinaryCrossEntropy(𝑀, �̂�),
𝐿msg (𝑀𝑛, 𝑀𝑛) = CrossEntropy(𝑀𝑛, 𝑀𝑛) .

(7)

Distortion constraints. In terms of Eq. (2) and (3), different
forms of 𝑑1, 𝑑2 can be applied as the distortion constraints. We pro-
pose two distance measures: the first is the text reconstruction loss
and the second is a discriminator loss. The former reconstructs 𝑆
from 𝑋 or 𝑌 by the cross entropy loss, denoted by 𝐿rec (·, ·). The
discriminator loss is computed as a part of the conditional genera-
tive adversarial network (GAN) structure to distinguish 𝑋 from 𝑆

conditioned on message𝑀 which is embedded in 𝑋 . That is,

𝐿disc (𝑋, 𝑆 |𝑀) = − log(𝐷𝑖𝑠𝑐 (𝑆,𝑀)) − log(1 − 𝐷𝑖𝑠𝑐 (𝑋,𝑀)) (8)
2024-04-13 18:34. Page 4 of 1–14.
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where 𝐷𝑖𝑠𝑐 means the discriminator network. The network seems
to discriminate 𝑋 and 𝑆 , it in fact infers the presence of 𝑀 in the
given texts. The encoder 𝑓 , on the other hand, pits against the
discriminator to generate 𝑋 close to 𝑆 .

We denote the distortion constraints as 𝐿𝐷𝑆,𝑋
and 𝐿𝐷𝑋,𝑌

:

𝐿𝐷𝑆,𝑋
= 𝐿rec (𝑆, 𝑋 ) +max(0,−𝐿disc (𝑋, 𝑆 |𝑀) − 𝐷1), (9)

𝐿𝐷𝑋,𝑌
= 𝐿rec (𝑋,𝑌 ). (10)

The negative of 𝐿disc is an equivalent representation of the Jensen-
Shannon (JS) divergence between 𝑋 and 𝑆 at convergence [10].
The encoder gets penalized when the negative of 𝐿disc goes over
threshold 𝐷1. In practice, we use 𝐿rec (𝑌, 𝑆) to replace 𝐿rec (𝑋,𝑌 ) in
Eq. (10) for better and stabler optimization performance. It does not
break our assumption on the omniscient attacker by informing it
about the original text.

Knowledge distillation. To promote the naturalness of water-
marked text, we integrate a knowledge distillation module to let
the encoder learn language characteristics from a pre-trained BERT
model [7]. Specifically, we minimize the following cross-entropy
loss between the output of the encoder and the probabilistic pre-
diction of BERT provided the same text context. This knowledge
distillation can also be viewed as a ‘soft’ reconstruction in which
synonyms are used to construct the watermarked text. We carefully
exclude the punctuations or special tokens as they do not have
suitable substitutes. Thus the knowledge distillation loss is:

𝐿kd = −
∑︁
𝑖:𝑠𝑖∉P

|V |∑︁
𝑘=1

𝑃bert (𝑠𝑖 = 𝑘 |𝑆−𝑖 ) · log 𝑃𝑒𝑛𝑐 (𝑥𝑖 = 𝑘 |𝑆,𝑚)

−
∑︁
𝑖:𝑠𝑖 ∈P

log 𝑃𝑒𝑛𝑐 (𝑥𝑖 = 𝑠𝑖 |𝑆,𝑚) (11)

whereV is the vocabulary set, 𝑃bert (𝑠𝑖 |𝑆−𝑖 ) is the probability of the
𝑖-th word in the original text 𝑆 predicted by BERT, and 𝑃𝑒𝑛𝑐 (𝑥𝑖 |𝑆,𝑚)
is the probability of the 𝑖-th word in the watermarked text 𝑋 pre-
dicted by the encoder.

To sum up, the watermarking party optimizes the payoff function
𝐽 (𝑓 , 𝐴, 𝜙) and the message reconstruction loss while keeping the
distortion distance 𝐷𝑆,𝑋 under control, by jointly updating the
encoder and decoder:

𝐿wm = −𝐽 (𝑓 , 𝐴, 𝜙) + 𝐿bit + 𝐿msg + 𝐿𝐷𝑆,𝑋
+ 𝐿kd . (12)

The attacker, plays against the encoder and decoder by optimizing
the payoff in the opposite direction. However, we observe that the
mutual information loss as the attacker’s payoff does not deliver
performant attacks, and thus we adopt a simpler but more powerful
attack in practice:

𝐿atk = 𝐿rec (𝑌, 𝑆), (13)
referred to as ‘adaptive attack’ since the attacker can ‘adapt’ to any
the watermarking strategy by learning to recover the original text
from the watermarked text directly. Notice that we have weight
factors for each additive loss term above and omit them here for
conciseness.

4.3 Two Stages of Watermarking
Our watermarking system works at two stages: an offline stage for
training different components of the system and an online stage
for the actual watermarking encoding and decoding service.

Algorithm 1 Training of the principled watermarking system.

Input: (a) Text set S, side information generator K ; (b) encoder 𝑓 ,
decoder 𝜙 , attacker 𝐴, discriminator 𝐷𝑖𝑠𝑐 , MINE net 𝑇1,𝑇2; (c)
distortion constraints 𝐷1, 𝐷2; (d) MINE iterations 𝑁𝑚 , discrim-
inator iterations 𝑁𝑑 , attacker iterations 𝑁𝑎 , epochs 𝑁𝑒

Output: Trained encoder 𝑓 ∗, trained decoder 𝜙∗
1: for 𝑡𝑒 = 1 to 𝑁𝑒 do
2: for 𝑠 in S do
3: 𝑘 ← K(𝑠),𝑚 ← random bits, 𝑥 ← 𝑓 (𝑠,𝑚, 𝑘), 𝑦 ← 𝐴(𝑥),

�̂� ← 𝜙 (𝑦, 𝑘);
4: for 𝑡𝑚 = 1 to 𝑁𝑚 do
5: Calculate 𝐿𝑇1 (𝑈 ;𝑌, 𝐾); Calculate 𝐿𝑇2 (𝑈 ; 𝑆, 𝐾);
6: Update 𝑇1,𝑇2 by maximizing 𝐿𝑇1 , 𝐿𝑇2 respectively;
7: end for
8: for 𝑡𝑑 = 1 to 𝑁𝑑 do
9: Calculate 𝐿disc by Eq. (8);
10: Update Disc by minimizing 𝐿disc;
11: end for
12: for 𝑡𝑎 = 1 to 𝑁𝑎 do
13: Calculate 𝐿atk by Eq. (13);
14: Update 𝐴 by minimizing 𝐿atk;
15: end for
16: Calculate 𝐿wm by Eq. (12);
17: Update 𝑓 and 𝜙 jointly by minimizing 𝐿wm ;
18: end for
19: end for
20: 𝑓 ∗ ← 𝑓 ; 𝜙∗ ← 𝜙 ;

Offline stage. The training procedure of our framework is
shown in Alg. 1. In each training iteration, we follow the workflow
in Fig. 1 to optimize 𝑓 and 𝜙 , with additional inner loops optimizing
the mutual information estimators𝑇1,𝑇2, the discriminator, and the
in-loop attacker channel.

Online stage: The watermarking system runs as open APIs
including an encoder and a decoder. The user (text owner) first
registers its identity-representing watermark with the system, and
submits its created text, and side information (if any) to the encoder
API. The API returns watermarked text. For the case without side
information, anyone can verify ownership by submitting the target
text to the decoder API to extract the watermark. For the case with
side information, the authorized verifier submits the key along with
the target text to the decoder API for watermark extraction. Finally,
our system decides whether the extracted watermark agrees with
the previously registered one to confirm the ownership of the target
text.

5 EVALUATION
We evaluate our watermarking system on real-world natural lan-
guage datasets from the capacity, transparency and robustness
perspectives by comparing it with the state-of-the-art baselines.
Ablation study is performed on the payoff function, which reveals
the necessity of principled design. Then we investigate how differ-
ent forms of side information affect watermarking. We also show
how our framework can be applied to ownership verification. Due
to space limit, we leave more experimental results to Appendix C, D

2024-04-13 18:34. Page 5 of 1–14.
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and G, w.r.t. the capability of watermark removal attacks, the abla-
tion study, and the transferability of our system to unseen datasets,
respectively.1

5.1 Experimental Setup
Datasets.We use the word-level WikiText-2 (WT2 [17]) dataset for
evaluation. The dataset is curated from Wikipedia articles, contain-
ing about 2 million words for training, 200k words for validation
and 200k words for testing. The training set of WT2 is a publicly
available and unwatermarked dataset, which is accessible to both
the watermarking party and the attacker. It is used for offline train-
ing as well as training the attacker model. The validation and test
sets are considered private unwatermarked datasets that are inac-
cessible to the attacker. They are used to assess the performance of
watermarking techniques.

Baselines.We compare our method to AWT [1], CALS [26] and
IF [27]. AWT is the pioneering work that applies transformers to
watermarking, following a machine-translation framework. CALS
and IF are the two latest works that utilize context-aware rules
to locate the embedding positions, and employ infilling models to
select candidate words for watermarking. They are both featured
by excellent naturalness, readability and fluency.

Metrics. To evaluate the performance of watermarks, we use
the following metrics according to the requirements in Sec. 3.
• Capacity of a watermarking scheme refers to the maximum

number of bits that can be embedded in each token, i.e., bit per token
(BPT). Considering that the encoding-decoding process may intro-
duce errors, we also adopt bit accuracy as a performance indicator,
which is the ratio of the number of correctly decoded bits to the
total number of bits. For fairness, we assess message bit accuracy
across different BPTs to constitute a holistic view of capacity.
• Transparency is gauged by the ability to preserve the original

meaning of the sentence. We use meteor [2] and SBERT [20] scores
between the original and watermarked sentences for transparency.
Meteor score evaluates the quality of machine translation output
from combined perspectives of precision, recall, stemming, and
synonymy. SBERT score measures the l2 norm between features
of two sequences, where features are the output of a pre-trained
BERT base model. Higher meteor scores and lower SBERT distances
indicate better semantic similarity and relatedness.
• Robustness refers to the system’s ability to survive watermark

removal attacks. To evaluate the robust capacity of a watermark-
ing system, we measure the message bit accuracy under various
removal attacks at different BPTs. In addition, wemeasure the differ-
ence in transparencymetrics before and after attacks to demonstrate
the degradation of text semantics. A larger difference indicates that
the attacker must compromise significant text utility in order to
eliminate the watermark.

Implementation details. The default setting of our experi-
ments is as follows. We select a dimension size of 512 for all trans-
former blocks and embeddings. Each transformer encoder or trans-
former decoder contains 3 layers with 4 attention heads. The feed-
forward dimension is set to 2048. The dropout rate is set to 0.1.
Both 𝑁𝑑 and 𝑁𝑎 in Alg. 1 are set to 1, and the training batch size is
set to 50. We use the Adam optimizer [11] with 𝛽1 = 0.9, 𝛽2 = 0.98

1The appendix is attached in supplemental materials.
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Figure 3: The capacity and transparency performance of dif-
ferent watermarking schemes. (Our setup: 𝐷1 = 0, K=None)
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Figure 4: The robustness performance of different water-
marking schemes against DAE. (Our setup: 𝐷1 = 0, K=None)

and 𝜖 = 10−9 for training. To reduce memory usage, we only retain
the top-32 probabilities for each BERT prediction in knowledge
distillation. Logit outputs of BERT are passed through a softmax
layer with temperature 10. With regard to side information 𝐾 and
distortion constraint 𝐷𝑆,𝑋 , we set 𝐾 = None and 𝐷1 = 0 by default.
In particular, 𝐾 = None ensures a fair comparison between our
method and baselines.

The encoder and decoder are adversarially trained against the
attacker. Length of each token sequence is sampled with 95% prob-
ability from a Gaussian distribution N(80, 52) and 5% probability
fromN(40, 52), for obtaining sequences of varied lengths. All mod-
els are trained on Ubuntu 22.04.2 LTS with a single NVIDIA RTX
3090 GPU. Detailed information about the training time and GPU
memory cost is documented in Appendix F.

5.2 Performance of Watermarks
We compare our method to baselines in terms of capacity, trans-
parency and robustness.

We evaluate the capacity and transparency under different BPTs
in Fig. 3. Note that the bit per token for CALS and IF is not adjustable
as the number of bits to be embedded are defined by their position
selection algorithms. Hence in Fig. 3 and 4, the performance for
CALS and IF is represented by a single point respectively. In terms
of capacity, these two rule-based methods reach 100% bit accuracy
due to their deterministic algorithms: the prediction of watermark
positions as well as the selection of candidate words can be decided
without any error, given the watermarked text is not corrupted by
adversary. Our method shares a similar capacity performance with

2024-04-13 18:34. Page 6 of 1–14.
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Table 1: Robustness against adaptive attack, ours vs. baselines.
The bit accuracy on corrupted texts represents the robust
capacity of the watermarking system, while SBERT increase
and meteor drop denote the decline of text quality before
and after attacks. The arrows indicate desirable directions.
(Ours setup: 𝐷1 = 0, K=None)

BPT Bit Acc (corrupted) ↑ Meteor Drop ↑ SBERT Increase ↑
AWT Ours AWT Ours AWT Ours

0.050 0.615 0.714 0.026 0.057 0.512 1.227
0.057 0.624 0.702 0.026 0.059 0.487 1.300
0.067 0.612 0.688 0.028 0.063 0.549 1.517
0.080 0.605 0.674 0.033 0.071 0.648 1.777
0.100 0.623 0.654 0.029 0.070 0.560 1.820
0.133 0.612 0.623 0.036 0.080 0.638 2.197
0.200 0.617 0.606 0.048 0.097 0.935 2.894

that of AWT, and is merely 0.028, 0.031 shy of AWT in terms of bit
accuracy at 0.13, 0.2 BPT, respectively.

Our transparency described by Meteor score is slightly lower
than that of AWT, mostly because the metric directly describes the
number of changed tokens, but our method tends to frequently
replace the original tokens with synonyms. That would not nec-
essarily result in a worse transparency, as indicated by the SBERT
distance where ours largely remains comparable to that of AWT.
CALS and IF enjoys better transparency since their infill models
always predict candidate words with minimum effect on text se-
mantics.

For robustness, our primary focus is on two categories of attacker
models: the denoising auto encoder (DAE) [24] and the adaptive
attacker. A thorough description and comparison of the attacks can
be found in Appendix C.

In face of DAE attack (Fig. 4), our method achieves a remark-
able robustness in terms of robust capacity at greater transparency
losses, indicating that not only does our method successfully defend
DAE, but also induces the attacker to ruin the usability of the water-
marked text. DAE attack is most effective to AWT and CALS as their
bit accuracies decline significantly from that of plain capacity. IF,
instead, sacrifices transparency to gain a better robustness against
DAE, revealing the tradeoff between transparency and robustness
to some extent.

The results against adaptive attack in Table 1 also demonstrate
the better robustness performance of our model. We omit the rule-
based methods, i.e., CALS and IF, from the table since once the detail
of the methods are made public, the adversary could easily figure
out the position of watermarks and remove them with nearly 100%
probability. AWT suffers greatly from the adaptive attack, with bit
accuracy as low as 0.6, which is close to random guess (0.5) at all
BPTs, meaning that the adaptive attacker beats the watermarking
party in removing the watermarks. By contrast, the robust capacity
of our method remains over 0.7 when BPT is low. Although the
message bit accuracy decreases as BPT gets larger, the transparency
loss correspondingly increases, indicating that the text semantics
have been severely distorted.

Besides, we summarize the statistics of watermark patterns in
Table 2. Compared to AWT, our framework significantly increases

the total number of patterns with an acceptable transparency com-
promise. Among all components, the knowledge distillation (KD)
plays an important role in preserving text naturalness by improving
the diversity of patterns while lowering the average occurrence of
each pattern below 3, which set barriers for an attacker to learn the
mapping from 𝑋 to 𝑆 by pattern detection.

Table 2: Statistics of watermark patterns. Occ. means occur-
rences.

No. of Patterns No. of Occ. Avg Occ./Pattern
Ours 9671 28295 2.926

Ours (w/o KD) 1546 24531 15.87
AWT 675 9701 14.37

In sum, our method has achieved the optimal performance with
high capacity, strong robustness and acceptable transparency com-
promises.

5.3 Effect of Payoff Function
We investigate whether the theoretical payoff function Eq. (4) truly
works as expected in our system by removing the payoff from the
training loss of Eq. (12). In that case, the watermarking party merely
pits against the attacker by optimizing its message reconstruction
losses under distortion constraints. It turns out, as shown in Fig. 5,
although our method is slightly inferior to that without the payoff
in terms of capacity, our method exceeds by a large margin (around
0.05 bit accuracy) in robust capacity. It clearly indicates that the
payoff function plays a vital role in ensuring a robust watermarking
scheme. As to the transparency, ours mostly enjoys a higher trans-
parency under attack or not, suggesting that the payoff function not
only enhances robustness but also seeks a better tradeoff in capacity
and transparency. The results again highlight the importance of
principled design.
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Figure 5: The capacity, transparency and robustness perfor-
mance of our framework with & without the payoff function.
(Setup: 𝐷1 = 1, K=None)

5.4 Effect of Side Information
To investigate how side information affects the performance of
watermarks, we set 𝐷1 = 1, which provides greater flexibility in
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watermark generation, allowing for a better observation of the
influence. Moreover, we opted for a simpler MINE network to en-
hance training efficiency. Details are provided in Appendix A. We
consider the following types of side information as 𝐾 .
• Original text 𝑆 . The decoder relies on the presence of the orig-

inal text for decoding. In implementation, embeddings of 𝑆 are
concatenated with embeddings of 𝑋 and 𝑇 before being fed into
the decoder.
• Half of 𝑆 . The implementation is similar to 𝐾 = 𝑆 except that

we use the first half of the embeddings of 𝑆 as the side information.
• Token-wise difference between 𝑆 and 𝑋 (Diff). The scene can be

considered as a storage-optimization of 𝐾 = 𝑆 . The decoder first
tries to recover 𝑆 from the token-wise difference and then decodes
as case 1 does.
• Locations of watermarks (Loc) are used by the decoder to recover

the original text 𝑆 with the help of a pre-trained masked language
model [7]. Masking 𝑋 or 𝑌 on the locations of watermarks, the
pre-trained model predicts the tokens on these locations.
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Figure 6: The capacity, transparency, and robustness of our
watermarking system with different forms of side informa-
tion 𝐾 . (Setup: 𝐷1 = 1, robustness is evaluated under adaptive
attack.)

The results are shown in Fig. 6. We find that all forms of side in-
formation improve the robust capacity of the watermarking system
compared to the case without, i.e., 𝐾 = None. The reason is that the
side information provides additional information for the decoder
to recover the original text, which allows messages to embed with
less distorted and stealthier patterns.

5.5 Ownership Verification
We show how our systemworks in the actual ownership verification
case. Given a text, we first split it into several sequences with fixed
length, and embed bits into each sequence. Following AWT [1],
we apply hypothesis test to aggregated sequences where 20 bits
of watermark are extracted from 5 consecutive sequences. We test
the difference between ground-truth messages and the decoded
ones. Detailed steps for ownership embedding and verification are
introduced in Appendix E.

We set the significance level 𝛼 = 0.05. If the 𝑝-value is lower
than 𝛼 , we can reject the null hypothesis and claim that the text
has been watermarked. The success rate of ownership verification
is defined as the rate of rejecting the null hypothesis when the text
is watermarked. The results are provided in Table 3 with number
of sequences 𝑛 = 5 and watermark length 𝐿 = 4. As discussed,

the success rates of rule-based methods achieve 100% under no
attack, but drop to 0 under an adaptive attack. Hence the vulnerable
cases are omitted. At BPT= 0.05, our method achieves a success
rate of 100% and 97.8% in ownership verification, in face of DAE
attacks and adaptive attacks, respectively. Across different BPTs,
our method maintains a success rate over 94% against DAE attacks,
61% against adaptive attacks, well surpassing the performance of
baselines. We also observe that confronted with the strong adaptive
attacks, leveraging side information 𝐾 = 𝑆 helps retain a high
robustness level.

Table 3: Success rates of ownership verification under differ-
ent attacks. (Setup: 𝐷1 = 1, 𝐾 = None, 𝑛 = 5, 𝐿 = 4.)

BPT 0.05 0.1 0.2

No
Attack

AWT 0.965 0.949 0.798
Ours 1.000 0.994 0.967

DAE
Attack

AWT 0.887 0.817 0.660
CALS 0.930 (BPT = 0.076)

IF 0.942 (BPT = 0.109)
Ours 1.000 0.985 0.948

Adaptive
Attack

AWT 0.195 0.218 0.243
Ours 0.463 0.264 0.140

Ours K=S 0.978 0.881 0.611

6 CONCLUSION
In this paper, we propose the first principled design for text wa-
termarking founded on the theoretical basis of information-hiding
framework. The watermarking party, including an encoder and a
decoder, learns the watermarking strategy against a removal at-
tacker channel in a rate-distortion-constrained capacity game, to
achieve the maximum rate of reliable transmission, i.e., watermark
capacity. Our design is a principled approach against an omniscient
attacker who is aware of the watermarking model and strategy, a
realistic attack model that most of the current watermarking meth-
ods fail to defend. By extensive experiments, we verify that our
method is superior to the state-of-the-art in terms of watermarking
requirement, i.e., capacity, transparency, and robustness.
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