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ABSTRACT

We consider the domain adaptation problem in the context of label shift, where
the label distributions between source and target domain differ, but the conditional
distributions of features given the label are the same. To solve the label shift adap-
tation problem, we develop a novel matching framework named class probability
matching (CPM). It is inspired by a new understanding of the source domain’s
class probability, as well as a specific relationship between class probability ra-
tios and feature probability ratios between the source and target domains. CPM is
able to maintain the same theoretical guarantees as the existing feature probability
matching framework, while significantly improving the computational efficiency
due to directly matching the probabilities of the label variable. Within the CPM
framework, we propose an algorithm named class probability matching with cal-
ibrated networks (CPMCN) for target domain classification. From the theoretical
perspective, we establish a generalization bound of the CPMCN method in order
to explain the benefits of introducing calibrated networks. From the experimen-
tal perspective, real data comparisons show that CPMCN outperforms existing
matching-based and EM-based algorithms.

1 INTRODUCTION

In classification problems, domain adaptation refers to the ability of an algorithm trained on a source
domain with distribution P to successfully fulfill its task in a different, but related, target domain
with distribution Q. As one of the most commonly used domain shift assumptions, label shift
(Saerens et al., 2002; Storkey, 2009) assumes that the class probability varies, i.e. p(y) ̸= q(y),
while the class-conditional probability remains unchanged, i.e. p(x|y) = q(x|y). Domain adapta-
tion under the label shift assumption has been utilized in a wide range of real-world applications,
including disease diagnoses (Zhang et al., 2013; Tasche, 2017), visual recognition (Martinez et al.,
2017; Yang et al., 2018) and relation extraction (Hong et al., 2022).

One paradigm to solve the label shift adaptation problem are matching methods. An example is
Zhang et al. (2013). This article extends the kernel mean matching method from Gretton et al. (2009)
to label shift settings for estimating the class probability q(y), assigns weights for samples according
to the class probability ratio q(y)/p(y), and retrains a weighted classifier in the source domain that
can be used in the target domain. More recently, network-based methods (Guo et al., 2020) achieves
high performance via training generative adversarial networks (GANs). These methods are based on
feature probability matching on X . They come with strong theoretical guarantees for the solution,
but suffer from huge computational costs. To reduce the computational complexity, researchers
have sought to match the probabilities of the prediction Ŷ instead of matching the probabilities of
the feature X . To this end, Lipton et al. (2018); Azizzadenesheli et al. (2019) train a classifier ĥ
on the source domain to obtain predicted labels ŷ = ĥ(x) in the target domain, and then match
the estimated target class probability q(ŷ). Recently, motivated by semiparametric models, Tian
et al. (2023) match the moment of a variable related to the prediction ŷ. However, the cost of
these methods is that the variable ŷ, on which the probability matching is conducted, suffers from
prediction errors of the fitted classifier ĥ.
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Another paradigm to address the label shift adaptation problem are EM-based algorithms. For in-
stance, Chan & Ng (2005) propose an EM-based algorithm inspired by Saerens et al. (2002) to
estimate q(y). A corresponding classifier then selects the class label with the maximal estimated
probability q(y|x). Furthermore, Storkey (2009) assumes a prior over p(y) and estimates q(y) using
Bayes’ Rule, while Gretton et al. (2012) combine anti-causal learning with the label shift assump-
tion to compute q(y). However, for most of these methods, the use of intermediate variables like
p(x|y) or p(x), which themselves are difficult to estimate, hinders the estimation performance of the
predictor q(y|x). Their further development has been limited until Alexandari et al. (2020), which
combines the calibrated neural networks (Platt, 1999; Guo et al., 2017) and EM methods to estimate
q(y) and q(y|x). As modern neural networks are no longer well-calibrated, calibration techniques
are introduced to enable estimated conditional probabilities to accurately reflect the true likelihood
of correctness (Guo et al., 2017). Experimentally, Alexandari et al. (2020) demonstrate that without
calibration, EM-based algorithms perform worse than matching methods, while after calibration,
EM-based algorithms can outperform matching methods, validating the effectiveness of calibrated
networks in label shift adaptation problems.

In this paper, we propose a novel matching framework named class probability matching, which
is based on matching the distributions of the label Y . Specifically, we provide new theoretical
understanding on the source domain’s class probability p(y), as well as a specific relation between
the class probability ratio q(y)/p(y) and the feature probability ratio p(x)/q(x) under the label shift
assumption. This results in a new matching framework of two probabilities on the label variable Y to
get the class probability ratio. Accordingly, we propose a novel algorithm named class probability
matching with calibrated networks (CPMCN) for label shift adaptation. Our approach consists
of estimating the class probability ratio with the use of calibrated neural networks and obtaining
the classifier for the target domain. We provide rigorous theoretical guarantees for the solution of
our novel class matching framework on Y , as well as the generalization bound of our proposed
CPMCN to demonstrate the benefit of introducing a calibrated network. The proposed algorithm is
not only computationally more efficient than the matching methods on the feature vector X , but also
avoids introducing an additional prediction error in contrast to matching methods predicting Ŷ . The
contributions of this paper are summarized as follows.

(i) To solve the label shift adaptation problem, we develop a novel matching framework named class
probability matching that directly matches on the probabilities of label Y . Based on this framework
we propose a new algorithm called CPMCN for label shift adaptation, which applies the calibrated
neural network. CPMCN has low computational complexity and high theoretical guarantees.

(ii) Theoretically, we provide rigorous theoretical guarantees for our proposed matching framework.
Moreover, we establish a generalization bound for the CPMCN algorithm, which illustrates the
benefit of incorporating a calibrated network in the algorithm.

(iii) Experimentally, we validate that CPMCN outperforms existing matching methods and EM-
based methods, in class probability ratio estimation and target domain classification.

2 PRELIMINARIES

2.1 DOMAIN ADAPTATION

In domain adaptation for classification, the input space X ⊂ Rd and output space Y = [K] :=
{1, 2, . . . ,K} of both, source and target domain, are the same, but the distributions of source and
target data, i.e. the corresponding probability distribution P and Q on X × Y , differ. In domain
adaptation, we observe labeled source domain data Dp := {(X1, Y1), . . . , (Xnp

, Ynp
)} and unla-

beled target domain data Du
q := {Xnp+1, . . . , Xnp+nq

}. Based on these samples D := (Dp, D
u
q ),

our goal is to find a classifier ĥq : X → Y for the target domain. It is well-known that the classifi-
cation error of a classifier h : X → Y , i.e. the risk Q (h(X) ̸= Y ), is minimzed by the naive Bayes
classifier hq(x) := argmaxy∈[K] q(y|x). For this reason, we aim at finding an estimator q̂(y|x) of
q(y|x) to get the plug-in classifier given by ĥq(x) := argmaxy∈[K] q̂(y|x). In order to evaluate the
quality of an estimator q̂(y|x), we employ the cross-entropy loss ℓ(y, q̂(·|x)) := − log q̂(y|x). Then,
the corresponding risk is given by Rq(q̂(y|x)) :=

∫
X×Y ℓ(y, q̂(·|x)) dq(x, y) and the minimal risk

is defined as R∗
q := minq̂(y|x) Rq(q̂(y|x)). The conditional probability q(y|x) is the optimal (or

true) predictor which achieves the minimal risk with respect to ℓ and Q, i.e. R∗
q = Rq(q(y|x)) =
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−Ex∼q

∑
k∈[K] q(k|x) log q(k|x). Moreover, we use the notation an ≲ bn to denote that there

exists a constant c > 0 such that an ≤ c bn, for all n ∈ N.

2.2 LABEL SHIFT

In this paper, we consider the label shift setting (Saerens et al., 2002; Storkey, 2009).
Assumption 2.1 (Label shift). Let P and Q be two joint probability distributions defined on X ×Y .
Suppose that P has non-trivial class probabilities, i.e. p(y), q(y) ∈ (0, 1), ∀y ∈ [K]. We say that
P and Q satisfy the label shift assumption if the class-conditional probabilities of P and Q are the
same, whereas their class probabilities differ, i.e.

p(x|y) = q(x|y) and p(y) ̸= q(y). (1)

To better illustrate label shift, we provide a real-world example. Imagine that x ∈ X represents
symptoms of a disease and that the label y ∈ Y indicates whether a person has been infected with the
disease. Moreover, assume that the distributions P and Q defined on X × Y correspond to the joint
distribution of symptoms and infections in different hospitals, e.g. in different locations, that adopt
distinct prevention and control measures so that the disease prevalence differs, i.e. p(y) ̸= q(y).
At the same time, it is reasonable to assume that the symptoms of the disease and the mechanism
that symptoms caused by diseases are the same in both places, i.e. p(x|y) = q(x|y). To make
a diagnostic model based on data from one of the hospitals work in the other hospital it becomes
therefore crucial to study label shift adaptation.

The goal of label shift adaptation is to estimate q(y|x) in the target domain. Estimating q(y|x) can
be converted into estimating the class probability ratio w∗ := (w∗

y)y∈[K] between q(y) and p(y), i.e.

w∗
y := q(y)/p(y), y ∈ [K]. (2)

To be specific, given the label-shift assumption 2.1, q(y|x) can be expressed in terms of the true
predictor p(y|x) in the source domain and the class probability ratio w∗:

q(y|x) =
w∗

y p(y|x)∑K
k=1 w

∗
k p(k|x)

, y ∈ [K]. (3)

For a detailed proof of Eq. (3) see Saerens et al. (2002); Alexandari et al. (2020) or Appendix A.
Note that the predictor p(y|x) can be learned by fitting a calibrated ReLU network with a softmax
output layer on the labeled samples in the source domain. Thus, in order to estimate the optimal
predictor q(y|x) in the target domain, it suffices to estimate the probability ratio w∗.

In addition to label shift adaptation, the label shift assumption also exists in long-tailed learning (Zhu
et al., 2023) and imbalanced semi-supervised learning (Kim et al., 2020; Wei et al., 2021). While
these two problems often assume a balanced class probability for test data, certain methods still
require the estimation of the class probabilities for pre-trained data (Zhu et al., 2023) or unlabeled
training data (Kim et al., 2020) to enhance the quality of pseudo-labels of data. Consequently,
studying label shift adaptation can contribute to address the challenges in these two problems.

3 CLASS PROBABILITY MATCHING FRAMEWORK

In this section, in order to estimate w∗, we introduce a novel matching framework named class
probability matching that motivates the proposed algorithm for label shift adaptation in Section 4.
Before we proceed, we first revisit the existing feature probability matching framework.

Revisit of feature probability matching methods. Many existing methods that aim at estimating
the ratio w∗ are based on matching two probability distributions of the feature variable X . To be
specific, under the label shift assumption, it is shown in Zhang et al. (2013); Garg et al. (2020) that
the marginal probability q(x) has the following representation

q(x) =

K∑
y=1

q(y)q(x|y) =
K∑

y=1

w∗
yp(y)q(x|y) =

K∑
y=1

w∗
yp(y)p(x|y). (4)
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In order to determine w∗, feature probability matching methods (Zhang et al., 2013; Guo et al.,
2020) aim to find a weight vector w := (wk)k∈[K] such that

q(x) =

K∑
y=1

wyp(y)p(x|y) (5)

holds. In other words, they get w∗ by matching q(x) with a weighted combination of p(x|y). Theo-
retically, Garg et al. (2020) prove that w = w∗ is the unique solution of Eq. (5) under the assumption
of linear independence of the set of distributions {p(x|y) : y ∈ [K]}.

Unfortunately, existing methods that match probability distributions on X suffer from computational
inefficiency. For example, the method proposed in Zhang et al. (2013) suffers from the computa-
tional complexity of O(n3

p). Moreover, training GANs to implicitly learn the distribution of X in
Guo et al. (2020) is computationally extremely costly. Thus, in order to avoid the above problem, we
develop a method that matches probability distributions of the label variable Y to get w∗. It is easy
to see that the class probability p(y) is the only probability distribution of Y that can be estimated
from the available data. Consequently, we investigate the method of matching p(y) to get w∗.

A new class probability matching framework. By the law of total probability, we get a represen-
tation of the class probability p(y) as

p(y) =

∫
X
p(x)p(y|x) dx =

∫
X

p(x)

q(x)
q(x)p(y|x) dx, y ∈ [K], (6)

i.e. the class probability p(y) can be written as a weighted integration with the marginal probability
ratios p(x)/q(x) of X as the weight. Moreover, we find that the marginal probability ratio p(x)/q(x)
and the class probability ratios w∗

y = q(y)/p(y), y ∈ [K], are related. More precisely, under the
label shift assumption, the representation of q(x) in Eq. (4) together with Bayes formula yields

p(x)

q(x)
=

p(x)∑K
y=1 w

∗
yp(y)p(x|y)

=
1∑K

y=1 w
∗
yp(y|x)

. (7)

From Eq. (7), we can see that under the label shift assumption, the marginal probability ratios
p(x)/q(x) of X can be parameterized by a simple K-dimensional vector w∗ = (w∗

y)y∈[K]. By
incorporating Eq. (7) into Eq. (6), we get

p(y) =

∫
X

p(y|x)∑K
k=1 w

∗
kp(k|x)

q(x) dx = Ex∼q

(
p(y|x)∑

k∈[K] w
∗
kp(k|x)

)
, y ∈ [K].

Therefore, a new strategy to obtain w∗ is to find a weight vector w := (wk)k∈[K] satisfying

p(y) = Ex∼q

(
p(y|x)∑

k∈[K] wkp(k|x)

)
, y ∈ [K]. (8)

Note that in Eq. (8) we match two class probability distributions: the class probability p(y) and a
weighted expectation of p(y|x) with respect to the target distribution q(x). We therefore call the
aforementioned strategy class probability matching (CPM).

Equivalence of class and feature probability matching frameworks. In contrast to matching
two distributions of the d-dimensional feature vector X in Eq. (5), we match two distributions of
the one-dimensional label Y variable in Eq. (8). Since the label Y only takes K discrete values,
class probability matching only needs to match K equations, thereby allowing for a reduction of the
computational cost of CPM.

The following equivalence theorem provides the theoretical guarantee that the class probability
matching framework on Y and the feature probability matching framework on X in Eq. (5) share
the same weight solution under the label shift assumption.
Theorem 3.1 (Equivalence of Matching on X and Matching on Y ). Let Assumption 2.1 hold.
Then the weight vector w := (wk)k∈[K] satisfies the feature probability matching on X in Eq. (5) if
and only if it satisfies the class probability matching on Y in Eq. (8).

Through the equivalence between the two matching frameworks, it becomes evident that the class
probability ratio w = w∗ is also the unique solution to Eq. (8) under mild assumptions. The class
probability matching framework motivates an algorithm which will be introduced in Section 4.
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4 CLASS PROBABILITY MATCHING ALGORITHM

In this section, based on our proposed framework named class probability matching in Eq. (8) from
Section 3, we present the empirical version of CPM and integrate calibrated networks to obtain an
algorithm named Class Probability Matching with Calibrated Networks (CPMCN) for label shift
adaptation. The proposed algorithm consists of two parts: the initial phase is to estimate the class
probability ratio, while the second step is to obtain the corresponding classifier for the target domain.
Estimation of the Probability Ratio w∗. On the one hand, based on the source domain data, the
left-hand side of Eq. (8) can be estimated by

p̂(y) :=
1

np

np∑
i=1

1{Yi = y}, y ∈ [K], (9)

where 1{Yi = y} denotes the indicator function which takes the value 1 if Yi = y and the value 0
otherwise.
On the other hand, with the aid of target domain samples Du

q , the right-hand side of Eq. (8) can
be approximated by n−1

q

∑
Xi∈Du

q

(
p(y|Xi)/(

∑
k∈[K] wkp(k|Xi))

)
. In order to estimate the class

membership probabilities p(k|Xi) of target domain data Xi ∈ Du
q in the source domain, we first fit

a calibrated network p̂(y|x) with source data Dp as an estimator of the predictor p(y|x). Note
that we employ calibrated networks here because ordinary neural networks struggle to provide
accurate estimates of class membership probabilities, even though they are good classifiers. We
construct calibrated networks via bias-corrected temperature scaling (BCTS) (Alexandari et al.,
2020). Specifically, let z(x) be the vector of the original softmax logits of the sample x. BCTS
introduces a temperature scale T and a bias vector b := (bk)k∈[K] to get the calibrated predictor
p̂(y|x) := exp(z(x)/T + by)/(

∑
k∈[K] exp(z(x)/T + bk)) for y ∈ [K], where T and b are both

optimized with respect to the negative log-likelihood on the validation data. Then by using the cal-
ibrated network p̂(y|x) to predict the class membership probabilities p̂(y|Xi) for all target domain
samples Xi ∈ Du

q , the right-hand side of Eq. (8) can be estimated by

p̂wq (y) :=
1

nq

∑
Xi∈Du

q

p̂(y|Xi)∑K
k=1 wkp̂(k|Xi)

, y ∈ [K]. (10)

Since the probability ratio w∗ is a solution of matching on Y in Eq. (8), w∗ can be estimated by
matching the estimates p̂(y) in Eq. (9) and p̂wq (y) in Eq. (10). In order to match p̂(y) and p̂wq (y), we
have to find the solution ŵ to the following minimization problem

ŵ := argmin
w∈RK

K∑
y=1

∣∣p̂(y)− p̂wq (y)
∣∣2, (11)

which can be solved by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970),
with a computational complexity of O(nqK

2) in each iteration. By definition of p̂wq in Eq. (10),
there holds

∑
y∈[K] ŵyp̂

ŵ
q (y) = 1. Therefore, the weight ŵ that matches p̂(y) and p̂ŵq (y) is required

to satisfy
∑

y∈[K] ŵyp̂(y) = 1. Thus, for the solution ŵ in Eq. (11), we take the normalized weight
ŵk/(

∑
y∈[K] ŵyp̂(y)) as the final estimation ŵk, for all k ∈ [K].

Obtaining a classifier for the target domain. Using the weighted predictor representation in
Eq. (3), the calibrated network predictor p̂(y|x), and the estimate ŵ of the ratio w∗ in Eq. (11),
we are able to estimate q(y|x) in the target domain by

q̂(y|x) = ŵyp̂(y|x)∑K
j=1 ŵj p̂(j|x)

. (12)

Based on the estimator q̂(y|x) in Eq. (12), we obtain the plug-in classifier

ĥq(x) := argmax
y∈[K]

q̂(y|x). (13)

The above procedures for label shift adaptation are summarized in Algorithm 1.
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Comparison with feature probability matching methods. CPMCN keeps the same theoretical
guarantee for the weight solution as methods matching on X , but the computational complexity of
CPMCN is much smaller: the computational complexity of Eq. (10) is O(nqK

2) per iteration, but
methods matching on X either require inversion of the Gram matrix which has a high computational
complexity of O(n3

p) or is computationally very intensive due to implicitly learning the distribution
of X by a GAN model.

Algorithm 1 Class Probability Matching with Calibrated Networks (CPMCN)

Input: Source domain samples Dp := (Xi, Yi)
np

i=1;
Target domain samples Du

q := (Xi)
np+nq

i=np+1;
Compute the class probability p̂(y) from the source domain by Eq. (9);
Fit the calibrated networks p̂(y|x) with the source domain samples Dp, and make predictions
p̂(y|Xi) on target domain samples Xi ∈ Du

q ;
Compute the weighted combination of p̂(y|Xi) to get p̂wq (y) as in Eq. (10);
Solve the minimization problem in Eq. (11) to match p̂(y) and p̂wq (y) and obtain ŵ;
Compute the predictor q̂(y|x) by Eq. (12) and the induced classifier ĥq by Eq. (13).

Output: Predicted labels {ĥq(Xi)}
np+nq

i=np+1 of samples from the target domain.

Comparison with prediction probability matching methods. Matching methods on the prediction
ŷ first learn a predictor ĥ in the source domain and then match the probability q(ŷ) of the prediction
ŷ = ĥ(x). However, there exists an avoidable prediction error between the learned predictor ĥ
and the true predictor h such that matching q(ŷ) is not an accurate approximation of matching
the probability q(h(x)) of true prediction h(x). By contrast, p(y) can be easily estimated using the
labels of source domain data, which do not involve such prediction error of ĥ and therefore matching
p(y) yields a more accurate estimate of w∗.

5 THEORETICAL RESULTS

In this section, we present the theoretical results of the proposed class probability matching frame-
work in Section 3 and the CPMCN algorithm for label shift adaptation in Section 4. Firstly, we
prove that the true ratio w∗ is the unique solution of the CPM framework formulated in Eq. (8),
which justifies the use of the solution ŵ in the CPMCN algorithm to estimate w∗. Secondly, we
establish an upper bound for the estimation error of ŵ and the generalization error bound for the
classification performance of CPMCN, which aims to demonstrate the benefits of using calibrated
networks in CPMCN.
Our theoretical results build upon the following assumption which is taken from Zhang et al. (2013);
Garg et al. (2020).
Assumption 5.1 (Linear Independence). Assume that the class conditional probabilities
{p(x|y)}y∈[K] are linearly independent.
Remark 5.2. Assumption 5.1 is a weaker than Assumption A.3 in Lipton et al. (2018) which assumes
that the confusion matrix whose (i, j)-th entry is p(ŷ = i, y = j) is invertible.
The following theorem demonstrates existence and uniqueness of a solution to the equation system
Eq. (8). In particular, it shows that the solution corresponds to the probability ratio w∗.
Theorem 5.3 (Identifiability). Let Assumptions 2.1 and 5.1 hold. Moreover, let the probability
ratio w∗ be as in Eq. (2). Then the equation system Eq. (8) holds if and only if w = w∗.
Theorem 5.3 justifies the use of the solution ŵ to the minimization problem in Eq. (11) to estimate
w∗, since Eq. (11) is the empirical version of the system of equations Eq. (8). The next theorem
provides an upper bound on the estimation error of ŵ for estimating w∗.
Theorem 5.4 (Weight Estimation Error Bound). Let Assumptions 2.1 and 5.1 hold. Moreover,
denote the function set of calibrated networks as F . Then, with probability at least 1−2/np−2/nq ,
there holds

∥ŵ − w∗∥22 ≲
(
inf
f∈F

Rp(f)−R∗
p

)
+
√

VC(F) log np/np + 2
√
log np/np + 2 log nq/nq.

The upper bound of the estimation error of ŵ on the right-hand side of the above inequality consists
of the upper bound of the bias term (first summand) and the variance term (last three summands).
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The following discussion indicates that the utilization of calibrated neural networks in CPMCN
significantly reduces the bias term while keeping the variance term almost unchanged, thus reducing
the class probability ratio estimation error ∥ŵ − w∗∥2.
Reduction of the Bias Error. The bias error term measures the approximation ability of the neural
network function to the true p(y|x). As stated in Alexandari et al. (2020), calibrated neural networks
have significantly lower systematic bias and stronger approximation ability to p(y|x). Specifically,
Alexandari et al. (2020) proposed a calibrated method called BCTS, which learns bias and scaling
parameters by optimizing the negative log-likelihood on a held-out training set to correct the proba-
bility output of neural networks p̂(y|x). Therefore, the utilization of calibrated networks in CPMCN
significantly reduces the bias error term of the estimation error of ŵ.
Negligible Increase in the Variance Error. The variance error term is dominated by the term that
includes the VC dimension of the function set F of calibrated neural networks. Bartlett et al. (2019)
proved that the VC dimension of a neural network set depends on the number of weights W and
layers L. Compared with the commonly used networks, the calibrated networks used in the CPMCN
algorithm have added only one more layer consisting of K biases and K scaling parameters. As
W and L are usually much larger than 2K and 1, respectively, the increase of the VC dimension
calibrated networks compared to the original networks can be considered negligible. As a result, the
increase in the variance error term is negligible, as well.
Finally, we present the generalization bound of our algorithm in the target domain.
Theorem 5.5 (Generalization Bound). Let Assumptions 2.1 and 5.1 hold. Moreover, let VC(F) be
the VC dimension of the function set of calibrated neural networks F and let q̂(y|x) be the estimator
in Eq. (12). Then, with probability at least 1− 2/np − 2/nq , there holds

Rq(q̂(y|x))−R∗
q ≲ 3

(
inf
f∈F

Rp(f)−R∗
p

)
+ 3
√

VC(F) log np/np + 6
√
log np/np + 6 log nq/nq.

Compared to the error bound of the class probability ratio estimation in Theorem 5.4, the only slight
differences in the generalization error bound in Theorem 5.5 lie in the different constant coefficients
in front of each term. As a result, similar discussions as above yield that the utilization of calibrated
neural networks can improve the generalization performance of the CPMCN algorithm. All the
proofs of the results presented in this section can be found in Appendix B.

6 EXPERIMENTS

In this section, we present experimental results on three benchmark datasets (MNIST LeCun et al.
(2010), CIFAR10 Krizhevsky et al. (2009), and CIFAR100 Krizhevsky et al. (2009)) to validate the
effectiveness of the proposed CPMCN algorithm in comparison to existing matching and EM-based
methods on label shift adaptation tasks.
Experimental Setups. Based on the original benchmark datasets, the data for the label shift setting
are constructed as follows. We take the training set of the benchmark datasets as the data for the
source domain Dp and reserve 10000 samples out of Dp as a hold-out validation set, which is used
to tune the hyper-parameters of the calibrated BCTS model (Alexandari et al., 2020). In order to
generate the data for the target domain, Dq , we resample the original test set according to the label
distribution q(y). By removing the labels, we obtain the unlabeled target domain data Du

q . For
repeating experiments of each method, we use the code from Geifman & El-Yaniv (2017) to train
ten different network models with different random seeds. For each model, we perform 10 trials,
where each trial consists of a different sampling of the validation set and a different sampling of the
label-shifted target domain data. The total number of repetitions is 100.
Types of Label Shifts. We consider the following two label shift cases. For Dirichlet shift, we
generate the class probability q(y) by a Dirichlet distribution with parameters (αj)

K
j=1 satisfying

αj = α for the first ten classes, i.e. for j ∈ [10]. The class probabilities of the remaining classes
are set to 0. The label shift is more severe with a smaller α. For tweak-one shift, we set the class
probability of the fourth class as a parameter ρ and the probabilities q(y) of the remaining nine
classes among the first ten classes are set to (1 − ρ)/9. Meanwhile, the class probabilities of all
remaining classes are set to 0. We explore the Dirichlet shift with α ∈ {0.1, 0.2, 0.5, 0.8, 1.0, 10}
and the tweak-one shift with ρ ∈ {0.01, 0.02, 0.05, 0.6, 0.8, 0.9}.
Comparison Methods. We compare the CPMCN method with the following algorithms for label
shift adaptation: the matching methods LTF (Guo et al., 2020), (Zhang et al., 2013), BBSL (Lip-
ton et al., 2018), RLLS (Azizzadenesheli et al., 2019), ELSA (Tian et al., 2023) and the maximum
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likelihood method EM (Alexandari et al., 2020). The LTF method is a feature probability match-
ing method on X , rendering the calibrated networks inapplicable. For the remaining comparison
algorithms, we employ the BCTS method for calibration. For all methods, the calibrated predictor
p̂(y|x) is reweighted using the ratio estimation ŵ to determine the predictor q̂(y|x) in the target do-
main via Eq. (12) and plug-in classifier by Eq. (13). Details on the implementation of all algorithms,
including CPMCN, can be found in Appendix C.2.
Evaluation Metrics. We assess the efficacy of the algorithms by addressing the label shift adapta-
tion problem from two perspectives. On the one hand, to measure the estimation error of the class
probability ratio w∗, we employ two different metrics, MSE EVEN and MSE PROP, which means
the original and weighted mean squared error between w∗ and its estimate ŵ, respectively. On the
other hand, the classification accuracy (ACC) in the target domain is used to directly assess the algo-
rithms’ performances. Note that better performance is indicated by smaller MSE PROP, MSE EVEN,
and larger ACC. Detailed information regarding the three metrics can be found in Appendix C.1.

α 0.1 0.2 0.5

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 5.91e+1 3.84e+3 65.30 7.73e+1 2.07e+3 80.15 2.71e+1 9.67e+2 80.35
(1.05e+1) (1.29e+3) (7.94) (1.20e+1) (1.03e+3) (1.63) (8.01e+0) (3.82e+2) (2.86)

BBSL 1.70e+0 5.02e+1 93.03 1.26e+0 2.64e+1 91.53 8.38e-1 1.11e+1 89.98
(7.25e-1) (3.91e+1) (0.41) (8.54e+0) (2.94e+1) (0.40) (1.02e+1) (1.54e+1) (0.36)

RLLS 1.12e+0 4.94e+1 93.30 9.17e-1 2.37e+1 92.15 6.35e-1 1.08e+1 90.50
(1.75e+0) (1.47e+2) (0.66) (1.40e+0) (1.17e+2) (0.55) (9.06e-1) (6.36e+1) (0.42)

ELSA 5.43e+0 6.60e+1 93.88 4.24e+0 4.33e+1 92.58 2.76e+0 1.62e+1 90.88
(1.08e+1) (1.14e+2) (0.53) (9.90e+0) (8.28e+1) (0.56) (7.25e+0) (3.87e+1) (0.50)

EM 2.31e-1 7.95e+0 94.58 1.82e-1 4.15e+0 93.18 1.32e-1 2.11e+0 91.30
(8.31e-2) (4.87e+0) (0.33) (5.31e-2) (2.49e+0) (0.29) (2.46e-2) (9.80e-1) (0.25)

CPMCN 1.09e-1 3.61e+0 95.48 1.31e-1 2.30e+0 94.08 1.02e-1 1.53e+0 92.00
(7.91e-2) (4.74e+0) (0.33) (5.07e-2) (2.19e+0) (0.28) (2.37e-2) (9.55e-1) (0.25)

α 0.8 1.0 10

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 1.13e+1 2.18e+2 84.80 1.20e+1 4.64e+2 86.45 5.95e+0 7.42e+1 83.02
(3.30e+0) (2.13e+2) (1.14) (4.76e+0) (1.61e+2) (1.55) (3.29e+0) (3.21e+1) (5.86)

BBSL 8.48e-1 1.07e+1 89.13 9.39e-1 1.11e+1 88.72 6.19e-1 4.37e+0 87.45
(9.67e+0) (1.49e+1) (0.35) (8.20e+1) (7.10e+0) (0.36) (1.42e+2) (7.05e+0) (0.31)

RLLS 5.40e-1 9.43e+0 89.70 5.72e-1 8.31e+0 89.52 4.99e-1 4.41e+0 87.50
(5.73e-1) (3.28e+1) (0.35) (8.52e-1) (3.25e+1) (0.38) (6.69e-2) (8.97e-1) (0.14)

ELSA 2.87e+0 1.88e+1 89.43 2.77e+0 1.32e+1 89.85 1.97e+0 7.55e+0 87.98
(4.61e+0) (2.49e+1) (0.37) (2.84e+0) (1.15e+1) (0.41) (2.34e+1) (2.13e+0) (0.43)

EM 1.42e-1 1.55e+0 90.73 1.51e-1 1.55e+0 90.40 1.53e-1 1.35e+0 88.85
(2.06e-2) (7.21e-1) (0.22) (3.06e-2) (9.69e-1) (0.26) (9.63e-3) (1.15e-1) (0.13)

CPMCN 1.27e-1 1.43e+0 91.28 1.32e-1 1.35e+0 90.80 1.44e-1 1.32e+0 89.15
(1.86e-2) (6.67e-1) (0.22) (3.15e-2) (1.03e+0) (0.26) (9.42e-3) (1.13e-1) (0.13)

Table 1: Performance on CIFAR100 under Dirichlet shift. For each method, the first line corresponds to the
median of the considered metrics among 100 repeating experiments. The second line is the standard
deviation of these 100 values. The best results are marked in bold.

Experimental Results. Table 1 and Table 2 in Appendix C.3 provide the results of label shift
adaptation tasks on the CIFAR100 dataset of the above methods for two types of label shift scenarios
and different label shift parameters α and ρ. Experimental results on the MNIST and CIFAR10
datasets are presented in Tables 3, 4, 5, and 6 in Appendix C.3. For all datasets, especially for the
CIFAR100 dataset, Table 1, shows that the proposed CPMCN method has the lowest estimation
error with respect to the class probability ratio and the highest classification accuracy for different
values of α, which shows that matching on Y outperforms the compared methods.
Training Curve. Figure 1 presents the training curve of our CPMCN algorithm and the correspond-
ing curve of MSE of class probability ratio estimation on CIFAR100 under the tweak-one shift with
ρ = 0.01. Both curves exhibit the same trend: as the number of iterations increases, the objective
function and the ratio estimation error decrease to almost zero. This empirical result validates the ef-
fectiveness of the matching method on Y for estimating the ratio w∗. Furthermore, beyond a certain
number of iterations, both criteria maintain their near-zero status.
The effect of the source domain predictor p̂(y|x) on the performance. We investigate the impact
of the quality of the network predictor p̂(y|x) trained in the source domain on the performance of
q̂(y|x) in the target domain. For this, we vary the number of training epochs for the network in the
source domain and based on p̂(y|x) trained with different epochs, we compute the corresponding
predictors q̂(y|x) in the target domain. Figure 2 presents the classification accuracy and cross-
entropy loss of p̂(y|x) in the source domain and that of q̂(y|x) in the target domain at different
training epochs under tweak-one shift with ρ = 0.01 on CIFAR100. As can be seen from Figures 2,
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Figure 1: Training curve of CPMCN and ratio
estimation error curve.
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Figure 2: Effect of the source domain’s network predictor
on the performance in the target domain.

the better the network is trained in the source domain, the better the performance of CPMCN in the
target domain. This validates the generalization bound of Theorem 5.5.
Importance of Calibration in CPMCN. To illustrate the role of calibration in CPMCN, we com-
pare CPMCN without the calibrated model component (referred to as ‘None’) and CPMCN inte-
grated with common calibration methods, including vector scaling (VS) (Guo et al., 2017), No Bias
Vector Scaling (NBVS) (Alexandari et al., 2020), and BCTS. The comparison is conducted on the
CIFAR100 dataset under the Dirichlet shift with parameter α = 10. As shown in Figure 3, com-
pared to the non-calibrated version, CPMCN combined with different calibration methods shows
significant improvement both in ratio estimation and accuracy in the target domain, demonstrating
the importance of calibration in CPMCN. This aligns with the theoretical explanation of the benefits
from calibration in Section 5. Furthermore, besides the BCTS used in this paper, VS and NBVS also
perform well.
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Figure 3: Boxplots for CPMCN using no calibration and various
calibration techniques w.r.t. three different criteria. It is

conducted under Dirichlet shift with α = 10 on CIFAR100.
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Figure 4: Running time on
CIFAR100 under the
Dirichlet shift with

α = 0.1.

Less Running Time than Feature Probability Matching Methods. Given that all compared meth-
ods use pre-trained network predictors, the time spent on pre-training is not included. We also in-
clude the running time of the KMM method from Zhang et al. (2013) in Figure 4, although it does not
produce any results even after running for over 10,000 seconds. Figure 4 shows that compared with
the feature probability matching methods, KMM and LTF, the class probability matching method
CPMCN solved by L-BFGS-B (Zhu et al., 1997) has a significant computational advantage, which
aligns with our complexity analysis. In addition, CPMCN’s running time is comparable to and even
faster than that of prediction matching methods including BBSL, RLLS, and EM-based methods by
using the same optimizer.

7 CONCLUSION

To address the label shift adaptation problem, we propose a novel matching framework called class
probability matching. CPM keeps the same theoretical guarantee as existing methods matching the
distributions of the feature variable X , but is computationally more efficient due to directly match-
ing the probability distribution of the label variable Y . Motivated by the CPM framework, we
develop the CPMCN algorithm by utilizing calibrated neural networks for target domain classifi-
cation. Theoretically, we establish CPMCN’s generalization bound, highlighting the importance of
incorporating calibrated networks. Experimentally, the CPMCN method performs better than other
matching methods and EM-based algorithms. For future research, one research question would be
to extend the method to the relaxed label shift setting in Garg et al. (2023); Tachet des Combes et al.
(2020), where there is a concurrent shift in the class-conditional probability and the class probability.
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This supplementary material consists of supplementary for both theoretical analysis and experi-
ments. In Section A, we provide the proofs related to Section 2 and 3. In Section B, the correspond-
ing proofs of Remark 5.2, Theorem 5.3, 5.4 and 5.5 are shown in Section B.1, B.2, B.3 and B.4,
respectively. In Section C, we provide the supplementary for experiments, including a description
of evaluation metrics and additional experimental results on MNIST and CIFAR10 datasets.

A PROOFS RELATED TO SECTION 2 AND 3

For the sake of completeness, we provide the proof of Eq. (3).

Proof of Eq. (3). Using Bayes’ Formula, the label shift Assumption 2.1, and the law of total proba-
bility, we get

q(y|x) = q(x|y)q(y)∑K
k=1 q(x|k)q(k)

=
p(x|y)q(y)∑K
k=1 p(x|k)q(k)

=
p(x|y)p(y)q(y)/p(y)∑K

k=1 p(x|k)p(k)q(k)/p(k)
=

p(x, y)w∗
y∑K

k=1 p(x, k)w
∗
k

=
(p(x, y)/p(x))w∗

y∑K
k=1(p(x, k)/p(x))w

∗
k

=
p(y|x)w∗

y∑K
k=1 p(k|x)w∗

k

.

Here, the third equality holds since the nominator is first multiplied and then divided by p(y) and
and the terms in the denominator are first multiplied and then divided by p(k). And the fifth equality
holds since the nominator and denominator are divided by the same p(x). This finishes the proof.

Proof of Theorem 3.1. “Eq. (8) ⇒ Eq. (5)”. Equation Eq. (8) together with Bayes’ formula yields

p(y) = Ex∼q
p(y|x)∑K

j=1 wjp(j|x)
= Ex∼q

p(x|y)p(y)/p(x)∑K
j=1 wjp(x|j)p(j)/p(x)

= Ex∼q
p(y)p(x|y)∑K

j=1 wjp(j)p(x|j)
.

By Assumption 2.1, we have p(y) > 0. Dividing both sides of the above equation by p(y), we get

Ex∼q
p(x|y)∑K

j=1 wjp(x|j)p(j)
= 1 ⇐⇒

∫
X

p(x|y)∑K
j=1 wjp(j)p(x|j)

· q(x) dx =

∫
X
p(x|y) dx.

(14)

Using the law of total probability and p(x|k) = q(x|k) for all k ∈ [K] by Assumption 2.1, we get

q(x) =

K∑
k=1

q(k)q(x|k) =
K∑

k=1

q(k)p(x|k). (15)

Plugging Eq. (15) into Eq. (14), we obtain∫
X
p(x|y) ·

∑K
k=1 q(k)p(x|k)∑K

j=1 wjp(j)p(x|j)
dx =

∫
X
p(x|y) dx,

which is equivalent to ∫
X
p(x|y) ·

∑K
k=1(q(k)− wkp(k))p(x|k)∑K

j=1 wjp(j)p(x|j)
dx = 0. (16)

Multiplying both sides of Eq. (16) by (q(y)−wyp(y)) and taking the summation from y = 1 to K,
we obtain ∫

X

(∑K
k=1(q(k)− wkp(k))p(x|k)

)2∑K
j=1 wjp(j)p(x|j)

dx = 0.
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By Assumption 2.1, we have p(x|k) = q(x|k) and thus∫
X

(∑K
k=1(q(k)− wkp(k))q(x|k)

)2∑K
j=1 wjp(j)q(x|j)

dx = 0.

Since
∑K

j=1 wjp(j)q(x|j) > 0, there must hold
∑K

k=1(q(k) − wkp(k))q(x|k) = 0 and therefore,

we obtain
∑K

k=1 q(k)q(x|k) =
∑K

k=1 wkp(k)q(x|k). Again, using the law of total probability and
Assumption 2.1, we get

q(x) =

K∑
k=1

q(k)q(x|k) =
K∑

k=1

wkp(k)q(x|k) =
K∑

k=1

wkp(k)p(x|k), x ∈ X .

“Eq. (5) ⇒ Eq. (8)”. Using Bayes’ formula and Eq. (5), we obtain

Ex∼q
p(y|x)∑K

j=1 wjp(j|x)
= Ex∼q

p(x|y)p(y)/p(x)∑K
j=1 wjp(x|j)p(j)/p(x)

= Ex∼q
p(y)p(x|y)∑K

j=1 wjp(j)p(x|j)

=

∫
X

p(y)p(x|y)∑K
j=1 wjp(j)p(x|j)

· q(x) dx =

∫
X

p(y)p(x|y)∑K
j=1 wjp(j)p(x|j)

·
( K∑

k=1

wkp(k)p(x|k)
)
dx

=

∫
X
p(y)p(x|y) dx = p(y), y ∈ [K],

which yields Eq. (8) and thus completes the proof.

B PROOFS RELATED TO SECTION 5

B.1 PROOF OF REMARK 5.2

Proof of Remark 5.2. Suppose that Assumption A.3 in Lipton et al. (2018) holds, i.e., the expected
confusion matrix Cp(ĥ) := p(ĥ(x), y) is assumed to be invertible. By Assumption 2.1, we have
p(x|y) = q(x|y). Therefore, we only need to prove the linear independence of {p(x|y)}y∈[K]. To
this end, we assume that there exist some weights (wy)y∈[K] such that

∑K
y=1 wyp(x|y) = 0. Then

for any i ∈ [K], we have

K∑
y=1

wyp(ĥ(X) = i|y) =
K∑

y=1

wy

∫
{ĥ(x)=i}

p(x|y) dx =

∫
{ĥ(x)=i}

K∑
y=1

wyp(x|y) dx = 0.

By definition, we have p(ĥ(X) = i|y) = p(ĥ(X) = i, y)/p(y). Therefore,

K∑
y=1

wy ·
p(ĥ(X) = i, y)

p(y)
= 0, i ∈ [K].

With the notation p(ĥ(x), y) := (p(ĥ(X) = i, y))Ki=1 the above K equations can be reformulated as

K∑
y=1

wy

p(y)
· p(ĥ(x), y) = 0.

Since the expected confusion matrix Cp(ĥ) := p(ĥ(x), y) is assumed to be invertible, the vectors
{p(ĥ(x), y)}y∈[K] are linear independent. Therefore, the coefficients wy/p(y) must be equal to
zero, which implies wy’s are all equal to zero. Thus, {p(x|y)}y∈[K] are linear independent and
{q(x|y)}y∈[K] as well. This finishes the proof.
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B.2 PROOF OF THEOREM 5.3

Proof of Theorem 5.3. “⇒” Suppose that the equation system Eq. (8) holds for some weight w :=
(wy)y∈[K]. The equivalence of Eq. (8) and Eq. (5) in Theorem 3.1 together with Assumption 2.1
yields

q(x) =

K∑
y=1

wyp(y)p(x|y) =
K∑

y=1

wyp(y)q(x|y).

By Assumption 5.1, we get wyp(y) = q(y) and thus wy = q(y)/p(y) = w∗
y , y ∈ [K], i.e., w = w∗.

“⇐” Plugging w = w∗ into the right-hand side of Eq. (8), we obtain

Ex∼q
p(y|x)∑K

j=1 w
∗
kp(j|x)

= Ex∼q
p(x|y)p(y)/p(x)∑K

j=1 w
∗
j p(x|j)p(j)/p(x)

= Ex∼q
p(y)p(x|y)∑K

j=1 w
∗
j p(j)p(x|j)

=

∫
X

p(y)p(x|y)∑K
j=1 q(j)q(x|j)

· q(x) dx =

∫
X

p(y)p(x|y)
q(x)

· q(x) dx

=

∫
X
p(y)p(x|y) dx = p(y),

which proves the conclusion.

B.3 PROOF OF THEOREM 5.4

Before we proceed, we provide some basic notations. For 1 ≤ p < ∞, the Lp-norm of x =

(x1, . . . , xd) is defined as ∥x∥p := (|x1|p+. . .+|xd|p)1/p, and the L∞-norm is defined as ∥x∥∞ :=
maxi=1,...,d |xi|. For any a, b ∈ R, we denote a ∧ b := min{a, b} and a ∨ b := max{a, b} as the
smaller and larger value of a and b, respectively. In addition, we define the network predictor p̂(y|x)
trained in the source domain as follows. Within the neural network space F , the empirical risk
minimizer on source domain data Dp with respect to the cross-entropy loss is given by

p̂(y|x) := argmin
f∈F

R̂p(f) := argmin
f∈F

− 1

np

np∑
i=1

log(fYi
(Xi)), (17)

where f := (fj)
K
j=1 are the mappings from X to the (K − 1)-dimensional simplex ∆K−1 with

fj : X → [0, 1], and fj(x) denoting the estimated probability of the label j given the input x.

With these preparations, we provide the proof sketch of Theorem 5.4 as follows.

Step 1: Prove the identifiablity of w∗. In other words, w∗ is the unique solution of population CPM
(Theorem 5.3).

Step 2: Note that ŵ is the solution of empirical CPM Eq. (11). Prove how the difference between ŵ
and w∗ is affected by the excess risk of the predictor p̂(y|x) in the source domain (Proposition B.1).

Step 3: Analyze the excess risk of the predictor p̂(y|x) by considering its approximation error
inff∈F Rp(f) − R∗

p and sample error related to VC dimension of the network space F (Propo-
sition B.6).

In Step 1 and 2, we use the label shift Assumption 2.1 and linear independence Assumption 5.1,
which establishes linear independene of the class conditional probabilities {p(x|y)}y∈[K]. We pro-
vide the following example to illustrate Assumption 5.1. If, e.g. x encodes the symptoms of a
disease and y whether a person is infected with that same disease (0 indicating a healthy person and
1 an infected person), dependence of {p(x|y)}y∈{0,1} means that, for all x, p(x|0) = λp(x|1). From
this it easily follows that p(x|0) = p(x|1) and due to the label shift assumption q(x|0) = q(x|1),
i.e. it is impossible in source and target domain to distinguish healthy from infected persons through
consideration of the alleged symptoms encoded in x.

To prove Theorem 5.4, we need the following Propositions B.1 and B.6. Proposition B.1 shows
that the weight estimation error bound can be upper bounded with the aid of the excess risk of the
predictor p̂(y|x) in the source domain.
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Proposition B.1. Let Assumptions 2.1 and 5.1 hold. Moreover, let the predictor p̂(y|x) be as in
Eq. (17). Then with probability at least 1− 1/np − 1/nq , there holds

∥ŵ − w∗∥22 ≲ Rp(p̂(y|x))−R∗
p +

log nq

nq
+

log np

np
.

To prove Proposition B.1, we need the following Lemmas B.2, B.3, B.4, and B.5. Lemma B.2 was
introduced in Bernstein (1946) and can be found in many statistical learning textbooks, see e.g.,
Massart (2007); Cucker & Zhou (2007); Steinwart & Christmann (2008).
Lemma B.2 (Bernstein’s inequality). Let B > 0 and σ > 0 be real numbers, and n ≥ 1 be
an integer. Furthermore, let ξ1, . . . , ξn be independent random variables satisfying EPξi = 0,
∥ξi∥∞ ≤ B, and EPξ

2
i ≤ σ2 for all i = 1, . . . , n. Then for all τ > 0, we have

P

(
1

n

n∑
i=1

ξi ≥
√

2σ2τ

n
+

2Bτ

3n

)
≤ e−τ .

Lemma B.3. Let p̂(y) be the estimate of the class probability in Eq. (9). Then with probability at
least 1− 1/np, there holds

K∑
y=1

|p̂(y)− p(y)|2 ≲
log np

np
.

Proof of Lemma B.3. For i ∈ [n] and k ∈ [K], let the random variables ξi,k := 1{Yi = k} − p(k).
Then we have Eξi,k = 0, ∥ξi,k∥∞ ≤ 1 and Eξ2i,k = p(k)(1 − p(k)) ≤ p(k). Applying Bernstein’s
inequality in Lemma B.2, we get∣∣∣∣ 1np

np∑
i=1

ξi,k

∣∣∣∣ = |p̂(k)− p(k)| ≤

√
2p(k)τ

np
+

2τ

3np

with probability at least 1− 2e−τ . Using the union bound and (a+ b)2 ≤ 2(a2 + b2), we obtain
K∑

k=1

|p̂(k)− p(k)|2 ≤
K∑

k=1

(√
2p(k)τ

np
+

2τ

3np

)2

≤
K∑

k=1

(
4p(k)τ

np
+

4τ2

9n2
p

)
with probability at least 1− 2Ke−τ . Taking τ := log(2Knp), we get

K∑
k=1

|p̂(k)− p(k)|2 ≤ 4 log(2Knp)

np
+

4 log2(2Knp)

9n2
p

≲
log np

np

with probability at least 1− 1/np. This proves the assertion.

The following lemma shows that the L2-distance between p̂(y|x) and p(y|x) can be upper bounded
by the excess risk of p̂(y|x) in the source domain.
Lemma B.4. Let p̂(y|x) be the estimator of p(y|x). Then for any y = 1, . . . ,K, we have∫

X
(p̂(y|x)− p(y|x))2p(x) dx ≤ Rp(p̂(y|x))−R∗

p.

Proof of Lemma B.4. For any k ∈ [K], there holds

Rp(p̂(y|x))−R∗
p − Ex∼p|p̂(y|x)− p(y|x)|2

= Ex∼p

K∑
j=1

−p(j|x) log p̂(j|x)
p(j|x)

− |p̂(k|x)− p(k|x)|2. (18)

For any vector u := (u1, . . . , uK) ∈ (0, 1)K , we define

hk(u) := −
K∑
j=1

p(j|x) log uj

p(j|x)
− |uk − p(k|x)|2, k ∈ [K].
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To find the minimum of hk(u) under the constraints
∑K

k=1 uk = 1, we consider the Lagrange
function

Jk(u) := hk(u) + α

( K∑
j=1

uj − 1

)
with the multiplier α > 0. Taking the derivative w.r.t uj , j = 1, . . . ,K, and setting them to be zero,
i.e.

∂Jk(u)

∂uk
= −p(k|x)

uk
− 2(uk − p(k|x)) + α = 0, k ∈ [K], (19)

∂Jk(u)

∂uj
= −p(j|x)

uj
+ α = 0, j ̸= k. (20)

Since
∑K

j=1 p(j|x) = 1 and
∑K

j=1 uj = 1, Eq. (20) yields

1− p(k|x) =
∑
j ̸=k

p(j|x) =
∑
j ̸=k

αuj = α(1− uk), k ∈ [K].

Therefore, we have α = (1− p(k|x))/(1− uk). Plugging this into Eq. (19), we get

−p(k|x)
uk

− 2(uk − p(k|x)) + 1− p(k|x)
1− uk

= 0,

which is equivalent to

(uk − p(k|x))(1− 2uk(1− uk))

uk(1− uk)
= 0

and thus (uk − p(k|x))(1 − 2uk(1 − uk)) = 0. Since uk ∈ (0, 1), we have uk(1 − uk) ≤ 1/4,
which implies 2uk(1− uk) ≤ 1/2 < 1 and thus 1− 2uk(1− uk) > 0. Therefore, there must hold
uk − p(k|x) = 0 for any k ∈ [K]. In other words, ηP is the minimizer of hk for any k ∈ [K]. As a
result, we have hk(u) ≥ hk(p(y|x)) = 0 for any u ∈ (0, 1)K satisfying

∑K
j=1 uj = 1. By taking

u := p̂(y|x), we get

hk(p̂(y|x))− hk(p(y|x)) =
K∑
j=1

−p(j|x) log p̂(j|x)
p(j|x)

− |p̂(k|x)− p(k|x)|2 ≥ 0.

This together with Eq. (18) yields the assertion.

Lemma B.5. Let Assumption 2.1 hold. Then with probability at least 1− 1/nq , we have

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 ŵj p̂(j|Xi)

− Ex∼q
p(k|x)∑K

j=1 ŵjp(j|x)

∣∣∣∣2 ≲
log nq

nq
+Rp(p̂(y|x))−R∗

p,

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

P̂ (k|Xi)∑K
j=1 w

∗
j p̂(j|Xi)

− Ex∼q
p(k|x)∑K

j=1 w
∗
j p(j|x)

∣∣∣∣2 ≲
log nq

nq
+Rp(p̂(y|x))−R∗

p.

Proof of Lemma B.5. First, we have∣∣∣∣ p̂(k|x)∑K
j=1 wj p̂(j|x)

− p(k|x)∑K
j=1 wjp(j|x)

∣∣∣∣
=

|p̂(k|x)
∑

j ̸=k wjp(j|x)− p(k|x)
∑

j ̸=k wj p̂(j|x)|(∑K
j=1 wj p̂(j|x)

)(∑K
j=1 wjp(j|x)

) ≤
∑

j ̸=k wj

∣∣p(j|x)p̂(k|x)− p(k|x)p̂(j|x)
∣∣(∑K

j=1 wj p̂(j|x)
)(∑K

j=1 wjp(j|x)
)

≤
∑

j ̸=k wj

(∣∣p(j|x)p̂(k|x)− p(j|x)p(k|x) + p(k|x)p(j|x)− p(k|x)p̂(j|x)
∣∣)(∑K

j=1 wj p̂(j|x)
)(∑K

j=1 wjp(j|x)
)
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=
|p̂(k|x)− p(k|x)|∑K

j=1 wj p̂(j|x)
+

p(k|x)
∑

j ̸=k wj |p(j|x)− p̂(j|x)|(∑K
j=1 wj p̂(j|x)

)(∑K
j=1 wjp(j|x)

) . (21)

Since for any k ∈ [K], there exists a constant δ ∈ (0, 1/K) such that p(k) ≥ δ and q(k) ≥ δ, we
get q(k) = 1−

∑
j ̸=k q(j) ≥ 1− (K − 1)δ and p(k) = 1−

∑
j ̸=k p(j) ≥ 1− (K − 1)δ. Therefore

we have
δ

1− (K − 1)δ
≤ w∗

k =
q(k)

p(k)
≤ 1− (K − 1)δ

δ
.

Therefore, we can set wk ∈ [c, 1/c] with a constant c ∈ (0, δ/(1 − (K − 1)δ)]. Then for any x,
we have

∑K
j=1 wj p̂(j|x) ≥ c and

∑K
j=1 wj p̂(j|x) ≥ c. This together with the triangle inequality,

Eq. (21), a21 + a22 ≤ (a1 + a2)
2 and

∑
a2k ≤ (

∑
ak)

2 for ak ≥ 0 yields

K∑
j=1

∣∣∣∣∫
X

(
p̂(k|x)∑K

j=1 wj p̂(j|x)
− p(k|x)∑K

j=1 wjp(j|x)

)
q(x) dx

∣∣∣∣2

≤
∫
X

K∑
j=1

∣∣∣∣ p̂(k|x)∑K
j=1 wj p̂(j|x)

− p(k|x)∑K
j=1 wjp(j|x)

∣∣∣∣2q(x) dx
≤
∫
X

K∑
k=1

(
|p̂(k|x)− p(k|x)|∑K

j=1 wj p̂(j|x)
+

p(k|x)
∑

j ̸=k wj |p(j|x)− p̂(j|x)|(∑K
j=1 wj p̂(j|x)

)(∑K
j=1 wjp(j|x)

))2

q(x) dx

≤ 2

∫
X

K∑
k=1

((
|p̂(k|x)− p(k|x)|∑K

j=1 wj p̂(j|x)

)2

+

(
p(k|x)

∑
j ̸=k wj |p(j|x)− p̂(j|x)|(∑K

j=1 wj p̂(j|x)
)(∑K

j=1 wjp(j|x)
))2)

q(x) dx

≤ 2

c2

K∑
k=1

∫
X
|p̂(k|x)− p(k|x)|2q(x) dx+

2

c4

∫
X

K∑
k=1

(p(k|x)
∑
j ̸=k

wj |p(j|x)− p̂(j|x)|)2q(x) dx

≤ 2

c2

K∑
k=1

∫
X
|p̂(k|x)− p(k|x)|2q(x) dx+

2

c4

∫
X

( K∑
j=1

wj |p(j|x)− p̂(j|x)|
)2

q(x) dx

≤ 2

c2

K∑
k=1

∫
X
|p̂(k|x)− p(k|x)|2q(x) dx+

2

c6

∫
X

( K∑
j=1

|p(j|x)− p̂(j|x)|
)2

q(x) dx

≤ 2

c2

K∑
k=1

∫
X
|p̂(k|x)− p(k|x)|2q(x) dx+

2K

c6

∫
X

( K∑
j=1

|p(j|x)− p̂(j|x)|2
)
q(x) dx

≲
K∑

k=1

∫
X
|p̂(k|x)− p(k|x)|2q(x) dx. (22)

Using the law of total probability, we get

q(x)

p(x)
=

∑K
j=1 q(x|j)q(j)∑K
j=1 p(x|j)p(j)

=

∑K
j=1 q(x|j)q(j)∑K
j=1 q(x|j)p(j)

≤
K∨
j=1

q(j)

p(j)
≤ 1− (K − 1)δ

δ
≤ 1

c
.

This together with Eq. (22) and Cauchy-Schwarz Inequality yields

K∑
j=1

∣∣∣∣∫
X

(
p̂(k|x)∑K

j=1 wj p̂(j|x)
− p(k|x)∑K

j=1 wjp(j|x)

)
q(x) dx

∣∣∣∣2

≤ 2

c

K∑
k=1

∫
X
|p̂(k|x)− p(k|x)|2p(x) dx =

2

c

K∑
k=1

∥p̂(k|·)− p(k|·)∥2L2(p(x))

≲
K∑
j=1

∥p(k|x)− p̂(k|x)∥2L2(p(x))
. (23)
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In addition, let

ξi,k :=
p̂(k|Xi)∑K

j=1 wj p̂(j|Xi)
− Ex∼q

p̂(k|x)∑K
j=1 wj p̂(j|x)

.

Then we have Ex∼qξi,k = 0,

∥ξi,k∥∞ ≤ 1∑K
j=1 wj p̂(j|Xi)

+ Ex∼q
1∑K

j=1 wj p̂(j|x)

≤
( K∧

j=1

wj

K∑
j=1

p̂(j|Xi)

)−1

+

(
Ex∼q

K∧
j=1

wj

K∑
j=1

p̂(j|x)
)−1

≤ 2

c

and

EDu
q
ξ2i,k =

(
Ex∼q

p̂(k|x)∑K
j=1 wj p̂(j|x)

)(
1− Ex∼q

p̂(k|x)∑K
j=1 wj p̂(j|x)

)

≤ Ex∼q
p̂(k|x)∑K

j=1 wj p̂(j|x)
≤ Ex∼q

1∑K
j=1 wj p̂(j|x)

= Ex∼q

( K∧
j=1

wj

K∑
j=1

p̂(j|x)
)−1

≤ 1

c
.

Applying Bernstein’s inequality in Lemma B.2 to ξi,k, i ∈ [nq], we get∣∣∣∣ 1nq

nq∑
i=1

ξi,k

∣∣∣∣ = ∣∣∣∣ 1nq

nq∑
i=1

p̂(k|Xi)∑K
j=1 wj p̂(j|Xi)

− Ex∼q
p̂(k|x)∑K

j=1 wj p̂(j|x)

∣∣∣∣ ≤
√

2τc−1

nq
+

4c−1τ

3nq
. (24)

with probability at least 1− 2e−τ . Taking τ := 2 log nq , we obtain

1

nq

nq∑
i=1

p̂(k|Xi)∑K
j=1 wj p̂(j|Xi)

− Ex∼q
p̂(k|x)∑K

j=1 wj p̂(j|x)
≤

√
4c−1 log nq

nq
+

8c−1 log nq

3nq

with probability at least 1− 1/nq . Using (a+ b)2 ≤ 2(a2 + b2), Eq. (24) and Eq. (23), we obtain

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 wj p̂(j|Xi)

− Ex∼q
p(k|x)∑K

j=1 wjp(j|x)

∣∣∣∣2

≤ 2

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 wj p̂(j|Xi)

− Ex∼q
p̂(k|x)∑K

j=1 wj p̂(j|x)

∣∣∣∣2

+ 2

K∑
k=1

∣∣∣∣Ex∼q
p̂(k|x)∑K

j=1 wj p̂(j|x)
− Ex∼q

p(k|x)∑K
j=1 wjp(j|x)

∣∣∣∣2

≲ 2

K∑
k=1

(√
4c−1 log nq

nq
+

8c−1 log nq

3nq

)2

+ 2

K∑
k=1

∥p(k|x)− p̂(k|x)∥2L2(p(x))

≲
log nq

nq
+Rp(p̂(y|x))−R∗

p,

where the last inequality is due to Lemma B.4. Applying this result to w := ŵ and w := w∗, we
obtain the assertion.

With the above lemmas, we are able to prove Proposition B.1.

Proof of Proposition B.1. Using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), Lemma B.5 and B.3, we get

K∑
k=1

∣∣∣∣Ex∼q
p(k|x)∑K

j=1 ŵjp(j|x)
− p(k)

∣∣∣∣2
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≤ 3

K∑
k=1

∣∣∣∣Ex∼q
p(k|x)∑K

j=1 ŵjp(j|x)
− 1

nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 ŵj p̂(j|Xi)

∣∣∣∣2

+ 3

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 ŵj p̂(j|Xi)

− p̂(k)

∣∣∣∣2 + 3

K∑
k=1

∣∣∣∣p̂(k)− p(k)

∣∣∣∣2

≲
log nq

nq
+Rp(p̂(y|x))−R∗

p +

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 ŵj p̂(j|Xi)

− p̂(k)

∣∣∣∣2 + log np

np
(25)

with probability at least 1− 1/np − 1/nq . By Eq. (11), we get the optimality of ŵ and thus

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 ŵj p̂(j|Xi)

− p̂(k)

∣∣∣∣2 ≤
K∑

k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 w

∗
j p̂(j|Xi)

− p̂(k)

∣∣∣∣2.
This together with (a+ b+ c)2 ≤ 3(a2 + b2 + c2) yields

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 ŵj p̂(j|Xi)

− p̂(k)

∣∣∣∣2 ≤
K∑

k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 w

∗
j p̂(j|Xi)

− p̂(k)

∣∣∣∣2

≤ 3

K∑
k=1

∣∣∣∣ 1nq

np+nq∑
i=np+1

p̂(k|Xi)∑K
j=1 w

∗
j p̂(j|Xi)

− Ex∼q
p(k|x)∑K

j=1 w
∗
j p(j|x)

∣∣∣∣2

+ 3

K∑
k=1

∣∣∣∣Ex∼q
p(k|x)∑K

j=1 w
∗
j p(j|x)

− p(k)

∣∣∣∣2 + 3

K∑
k=1

∣∣p(k)− p̂(k)
∣∣2

≲
log nq

nq
+Rp(p̂(y|x))−R∗

p +
log np

np
, (26)

where the last inequality is due to Lemma B.5 and Theorem 5.3. Combining Eq. (25) and Eq. (26),
we obtain

K∑
k=1

∣∣∣∣Ex∼q
p(k|x)∑K

j=1 ŵjp(j|x)
− p(k)

∣∣∣∣2 ≲
log nq

nq
+Rp(p̂(y|x))−R∗

p +
log np

np
(27)

with probability at least 1 − 1/np − 1/nq . Using Bayes’ Formula, the law of total probability and
Assumption 2.1, we get

Ex∼q
p(y|x)∑K

j=1 ŵjp(j|x)
= Ex∼q

p(x|y)p(y)/p(x)∑K
j=1 ŵjp(x|j)p(j)/p(x)

= Ex∼q
p(y)p(x|y)∑K

j=1 ŵjp(j)p(x|j)

= p(y)

∫
X

p(x|y)∑K
j=1 ŵjp(j)p(x|j)

q(x) dx = p(y)

∫
X
p(x|y)

∑K
j=1 q(j)q(x|j)∑K

j=1 ŵjp(j)p(x|j)
dx

= p(y)

∫
X
q(x|y)

∑K
j=1 q(j)q(x|j)∑K

j=1 ŵjp(j)q(x|j)
dx = p(y) + p(y)

∫
X
q(x|y)

∑K
j=1(q(j)− ŵjp(j))q(x|j)∑K

j=1 ŵjp(j)q(x|j)
dx

= p(y) + p(y)

K∑
j=1

(q(j)− ŵjp(j))

∫
X

q(x|y)q(x|j)∑K
j=1 ŵjp(j)q(x|j)

dx

= p(y) +

K∑
j=1

(w∗
j − ŵj)

∫
X

p(j)p(y)q(x|j)q(x|y)∑K
j=1 ŵjp(j)q(x|j)

dx.

Denote the matrix C := (cyj)y,j∈[K] with

cyj :=

∫
X

p(j)p(y)q(x|j)q(x|y)∑K
k=1 ŵkp(k)q(x|k)

dx j = 1, . . . ,K.
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Then we have

Ex∼q
p(y|x)∑K

k=1 ŵkp(k|x)
− p(y) =

K∑
j=1

cyj(w
∗
j − ŵj). (28)

Now we prove that C is invertible by showing that the rows of C are linear independent. Assume that
there exist α1, . . . , αK ∈ R such that

∑K
y=1 αycyj = 0, j ∈ [K], which implies

0 =

K∑
y=1

αycyj =

K∑
y=1

αy

∫
X

p(j)p(y)q(x|j)q(x|y)∑K
j=1 wjp(j)q(x|j)

dx =

∫
X

∑K
y=1 αyp(y)q(x|y)∑K
k=1 wkp(k)q(x|k)

· p(j)q(x|j) dx.

Multiplying the above equation by αj and taking summation from j = 1 to K, we get

0 =

K∑
j=1

αj

∫
X

∑K
y=1 αyp(y)q(x|y)∑K
k=1 wkp(k)q(x|k)

· p(j)q(x|j) dx =

∫
X

(∑K
y=1 αyp(y)q(x|y)

)2∑K
k=1 wkp(k)q(x|k)

dx.

This implies that
∑K

y=1 αyp(y)q(x|y) = 0. By Assumption 5.1, we get αyp(y) = 0 and therefore
αy = 0. This proves that C is invertible. Denote the inverse matrix of C as M = (mij)K×K . Then
Eq. (28) implies

|w∗
k − ŵk| =

∣∣∣∣ K∑
y=1

mky

(
Ex∼q

p(y|x)∑K
j=1 ŵjp(j|x)

− p(y)

)∣∣∣∣ ≲ K∑
y=1

∣∣∣∣Ex∼q
p(y|x)∑K

j=1 ŵjp(j|x)
− p(y)

∣∣∣∣.
This together with (

∑K
k=1 ak)

2 ≤ K
∑K

k=1 a
2
k and Eq. (27) yields

K∑
k=1

|w∗
k − ŵk|2 ≲

K∑
k=1

( K∑
y=1

∣∣∣∣Ex∼q
p(y|x)∑K

j=1 ŵjp(j|x)
− p(y)

∣∣∣∣)2

= K

( K∑
y=1

∣∣∣∣Ex∼q
p(y|x)∑K

j=1 ŵjp(j|x)
− p(y)

∣∣∣∣)2

≲

( K∑
y=1

∣∣∣∣Ex∼q
p(y|x)∑K

j=1 ŵjp(j|x)
− p(y)

∣∣∣∣)2

≲ K

K∑
y=1

∣∣∣∣Ex∼q
p(y|x)∑K

j=1 ŵjp(j|x)
− p(y)

∣∣∣∣2 ≲
K∑

y=1

∣∣∣∣Ex∼q
p(y|x)∑K

j=1 ŵjp(j|x)
− p(y)

∣∣∣∣2
≲ Rp(p̂(y|x))−R∗

p +
log nq

nq
+

log np

np

with probability at least 1− 1/np − 1/nq . This finishes the proof.

Proposition B.6. Let p̂(y|x) be as in Eq. (17) and VC(F) be the VC dimension of the function set
F . Then with probability at least 1− 1/np, there holds

Rp(p̂(y|x))−R∗
p ≲ inf

f∈F
Rp(f)−R∗

p +

√
VC(F) log np

np
+

√
log np

np
+

log nq

nq
.

Proof of Proposition B.6. By the triangle inequality and the optimality of p̂(y|x), i.e. R̂p(p̂(y|x)) ≤
R̂p(f0) where f0 ∈ F satisfy Rp(f0) := inff∈F Rp(f), we obtain

Rp(p̂(y|x))−R∗
p =

(
Rp(p̂(y|x))− R̂p(p̂(y|x))

)
+
(
R̂p(p̂(y|x))− R̂p(f0)

)
+
(
R̂p(f0)−Rp(f0)

)
+ (Rp(f0)−R∗

p)

≤ 2 sup
f∈F

(Rp(f)− R̂p(f)) + (Rp(f0)−R∗
p)

= 2 sup
f∈F

(Rp(f)− R̂p(f)) + inf
f∈F

Rp(f)−R∗
p.
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Let the calibrated neural networks f ∈ F satisfy fk(x) ≥ δ with the constant δ ∈ (0, 1/K) for
any x and y ∈ [K] such that ℓ(y, f(x)) = − log fy(x) is bounded. If we replace one sample
(Xi, Yi) with another sample (X ′

i, Y
′
i ), the change in supf∈F (Rp(f) − R̂p(f)) is not larger than

− log δ−(− log(1−δ)) = log((1−δ)/δ). By applying McDiarmid’s inequality McDiarmid (1989),
we get with probability at least 1− 1/np,

sup
f∈F

Rp(f)− R̂p(f) ≤ Epn sup
f∈F

Rp(f)− R̂p(f) + log
1− δ

δ

√
log np

2np
. (29)

Define the function set G := {gf (x, y) = − log(fy(x)) : f ∈ F} and its expected Rademacher
complexity

Rad(G, n) := E(xi,yi)∼pEξi sup
f∈F

1

n

n∑
i=1

ξigf (xi, yi).

By applying the symmetrization in Proposition 7.10 of Steinwart & Christmann (2008), we get

Epn sup
f∈F

Rp(f)− R̂p(f) ≤ 2Rad(G, np). (30)

Since fk(x) ≥ δ and |ℓ(y, f(x)) − ℓ(y′, f(x′))| ≤ 1/δ|f(x) − f(x′)|, by using Theorem 12 in
Bartlett & Mendelson (2002), we get

Rad(G, np) ≤ 1/δ · Rad(F , np) (31)

Moreover, by applying the techniques in Mohri et al. (2018), we get

Rad(F , np) ≤

√
2VC(F) log np

np

This together with Eq. (31), Eq. (30), and Eq. (29) yields

Rp(p̂(y|x))−R∗
p ≲ inf

f∈F
Rp(f)−R∗

p +

√
VC(F) log np

np
+

√
log np

np
+

log nq

nq

with probability at least 1− 1/np. This finishes the proof.

Proof of Theorem 5.4. Combining Proposition B.1 and B.6, we get

∥ŵ − w∗∥22 ≲ inf
f∈F

Rp(f)−R∗
p +

√
VC(F) log np

np
+

√
log np

np
+

log np

np
+ 2

log nq

nq

≤ inf
f∈F

Rp(f)−R∗
p +

√
VC(F) log np

np
+ 2

√
log np

np
+ 2

log nq

nq

with probability at least 1− 2/np − 2/nq . This finishes the proof.

B.4 PROOF OF THEOREM 5.5

Firstly, we present the error analysis of Theorem 5.5. To derive the excess risk of q̃(y|x), let us
define

q̃(k|x) = w∗
kp̂(k|x)∑K

j=1 w
∗
j p̂(j|x)

. (32)

Then we are able to make the error decomposition for the excess risk of q̂(y|x) in Eq. (12) as

Rq(q̂(y|x))−R∗
q ≤

∣∣Rq(q̂(y|x))−Rq(q̃(y|x))
∣∣+Rq(q̃(y|x))−R∗

q . (33)

The following Propositions B.7 and B.9 provide the upper bound of these two terms in the right-hand
side of Eq. (33), respectively.
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Proposition B.7. Let Assumptions 2.1 hold. Moreover, let q̂(y|x) and q̃(y|x) be defined as in
Eq. (12) and Eq. (32), respectively. Then we have∣∣Rq(q̂(y|x))−Rq(q̃(y|x))

∣∣ ≲ Rp(p̂(k|x))−R∗
p + ∥w∗ − ŵ∥22.

In order to prove Proposition B.7, we first prove the following Lemma B.8.

Lemma B.8. For any a = (a1, . . . , aK), x = (x1, . . . , xK) ∈ RK with ak, xk ∈ (0, 1), k ∈ [K]

and
∑K

k=1 ak =
∑K

k=1 xk = 1, let f(x) := −
∑K

k=1 ak log xk. Then for any x′ = (x′
1, . . . , x

′
K)

with x′
k ∈ (0, 1), k ∈ [K], and

∑K
k=1 x

′
k = 1, we have

|f(x)− f(x′)| ≤
K∑

k=1

(
|ak − xk| · |x′

k − xk|
xk

+
ak(x

′
k − xk)

2

xk(xk ∧ x′
k)

)
.

Proof of Lemma B.8. For any x = (x1, . . . , xK), x′ = (x′
1, . . . , x

′
K) satisfying xk, x

′
k ∈ (0, 1),

k ∈ [K], and
∑K

k=1 xk =
∑K

k=1 x
′
k = 1, there holds

|f(x′)− f(x)| =
∣∣∣∣ ∫ 1

0

(
∇f(x+ t(x′ − x))

)⊤
(x′ − x)dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

∇f(x)⊤(x′ − x)dt+

∫ 1

0

(
∇f(x+ t(x′ − x))−∇f(x))

)⊤
(x′ − x)dt

∣∣∣∣
≤
∣∣∇f(x)⊤(x′ − x)

∣∣+ ∣∣∣∣ ∫ 1

0

(
∇f(x+ t(x′ − x))−∇f(x))

)⊤
(x′ − x)dt

∣∣∣∣. (34)

For the first term in Eq. (34), there holds

∇f(x) = ∇
(
−

K∑
k=1

ak log xk

)
=

(
−a1
x1

, . . . ,−aK
xK

)
.

Since
∑K

k=1 xk =
∑K

k=1 x
′
k = 1, we then have

∣∣∇f(x)⊤(x′ − x)
∣∣ = ∣∣∣∣− K∑

k=1

ak
xk

(x′
k − xk)

∣∣∣∣ = ∣∣∣∣ K∑
k=1

(
1− ak

xk

)
(x′

k − xk)

∣∣∣∣
≤

K∑
k=1

∣∣∣∣1− ak
xk

∣∣∣∣ · |x′
k − xk| =

K∑
k=1

|ak − xk| · |x′
k − xk|

xk
. (35)

For the second term in Eq. (34), we have∣∣∣∣ ∫ 1

0

(
∇f(x+ t(x′ − x))−∇f(x)

)⊤
(x′ − x)dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

K∑
k=1

(
− ak

xk + t(x′
k − xk)

+
ak
xk

)
(x′

k − xk) dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

K∑
k=1

akt(x
′
k − xk)

2

xk(xk + t(x′
k − xk))

dt

∣∣∣∣ ≤ K∑
k=1

ak(x
′
k − xk)

2

xk(xk ∧ x′
k)

. (36)

Combining Eq. (34), Eq. (35), and Eq. (36), we obtain the assertion.

Proof of Proposition B.7. Using the law of total probability and Assumption 2.1, we obtain that for
any x ∈ supp(PX), there holds

q(x)

p(x)
=

∑K
j=1 q(x|j)q(j)∑K
j=1 p(x|j)p(j)

=

∑K
j=1 q(x|j)q(j)∑K
j=1 q(x|j)p(j)

≤
K∨
j=1

q(j)

p(j)
.
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This together with the definition of Rq implies

∣∣Rq(q̃(y|x))−Rq(q̂(y|x))
∣∣ = ∣∣∣∣Ex∼q

K∑
k=1

−q(k|x) log q̂(k|x)
q̃(k|x)

∣∣∣∣
≤ Ex∼q

∣∣∣∣ K∑
k=1

−q(k|x) log q̂(k|x)
q̃(k|x)

∣∣∣∣
≤

K∨
k=1

q(k)

p(k)
· Ex∼p

∣∣∣∣ K∑
k=1

−q(k|x) log q̂(k|x)
q̃(k|x)

∣∣∣∣. (37)

Lemma B.8 with a := q(y|x), x′ := q̂(y|x) and x := q̃(y|x) yields

Ex∼p

∣∣∣∣− K∑
k=1

q(k|x) log q̂(k|x)
q̃(k|x)

∣∣∣∣
≤ Ex∼p

K∑
k=1

|q(k|x)− q̃(k|x)| · |q̃(k|x)− q̂(k|x)|
q̃(k|x)

+
q(k|x)|q̃(k|x)− q̂(k|x)|2

q̃(k|x)(q̃(k|x) ∧ q̂(k|x))
.

This together with Eq. (37) yields∣∣Rq(q̃(y|x))−Rq(q̂(y|x))
∣∣

≤
K∨

k=1

q(k)

p(k)
· Ex∼p

K∑
k=1

|q(k|x)− q̃(k|x)| · |q̃(k|x)− q̂(k|x)|
q̃(k|x)

+
q(k|x)|q̃(k|x)− q̂(k|x)|2

q̃(k|x)(q̃(k|x) ∧ q̂(k|x))
. (38)

Using the definition of q̂(y|x) and q̃(y|x) as in Eq. (12) and Eq. (32), respectively, we then have∣∣q̂(k|x)− q̃(k|x)
∣∣ = ∣∣∣∣ ŵkp̂(k|x)∑K

j=1 ŵj p̂(j|x)
− w∗

kp̂(k|x)∑K
j=1 w

∗
j p̂(j|x)

∣∣∣∣
=

|
∑K

j=1 p̂(j|x)(w∗
j ŵk − w∗

kŵj)| · p̂(k|x)(∑K
j=1 ŵj p̂(j|x)

)(∑K
j=1 w

∗
j p̂(j|x)

)
≤
∑K

j=1(|w∗
j ŵk − w∗

kw
∗
j |+ |w∗

kw
∗
j − w∗

kŵj |)∧k
j=1(w

∗
j )

2/2
≲

K∑
j=1

|w∗
j − ŵj |. (39)

Since for any k ∈ [K], there exists a constant δ ∈ (0, 1/K) such that p(k) ≥ δ and q(k) ≥ δ, we
have q(k) = 1−

∑
j ̸=k q(j) ≥ 1−(K−1)δ and p(k) = 1−

∑
j ̸=k p(j) ≥ 1−(K−1)δ. Therefore,

we have

δ

1− (K − 1)δ
≤ w∗

k =
q(k)

p(k)
≤ 1− (K − 1)δ

δ
.

Therefore, we can set wk ∈ [c, 1/c] with a constant c ∈ (0, δ/(1− (K − 1)δ)]. Moreover, we have

q̂(k|x) = ŵkp̂(k|x)∑K
j=1 ŵj p̂(j|x)

≥ (c2w∗
k)p̂(k|x)∑K

j=1(w
∗
j /c

2)p̂(j|x)
= c4q̃(k|x) ≳ q̃(k|x) (40)

and

q̃(k|x) = w∗
kp̂(k|x)∑K

j=1 w
∗
j p̂(j|x)

≥ w∗
kp̂(k|x)∨K
j=1 w

∗
j

. (41)

Plugging Eq. (40) and Eq. (41) into Eq. (38), we obtain∣∣Rq(q̃(y|x))−Rq(q̂(y|x))
∣∣

≤
K∨

k=1

q(k)

p(k)
Ex∼p

K∑
k=1

|q(k|x)− q̃(k|x)| · |q̃(k|x)− q̂(k|x)|
q̃(k|x)

+
q(k|x)|q̃(k|x)− q̂(k|x)|2

q̃(k|x)(q̃(k|x) ∧ q̂(k|x))
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≲
K∨

k=1

q(k)

p(k)
Ex∼p

K∑
k=1

|q(k|x)− q̃(k|x)| · |q̃(k|x)− q̂(k|x)|
w∗

kp̂(k|x)/
∨K

j=1 w
∗
j

+
q(k|x) · |q̃(k|x)− q̂(k|x)|2

q̃(k|x)2

≲
K∨

k=1

q(k)

p(k)
Ex∼p

K∑
k=1

|q(k|x)− q̃(k|x)| · |q̃(k|x)− q̂(k|x)|
w∗

kp̂(k|x)/
∨K

j=1 w
∗
j

+
q(k|x) · |q̃(k|x)− q̂(k|x)|2

(w∗
kp̂(k|x)/

∨K
j=1 w

∗
j )

2

≲ Ex∼p

K∑
k=1

|q(k|x)− q̃(k|x)| · |q̃(k|x)− q̂(k|x)|
p̂(k|x)

+
q(k|x) · |q̃(k|x)− q̂(k|x)|2

p̂(k|x)2
. (42)

Using the triangle inequality, we get

|q̃(k|x)− q(k|x)| =
∣∣∣∣ w∗

kp̂(k|x)∑K
j=1 w

∗
j p̂(j|x)

− w∗
kp(k|x)∑K

j=1 w
∗
j p(j|x)

∣∣∣∣
=

w∗
k · |

∑K
j=1 w

∗
j (p(j|x)p̂(k|x)− p(k|x)p̂(j|x))|(∑K

j=1 w
∗
j p̂(j|x)

)(∑K
j=1 w

∗
j p(j|x)

)
≤

w∗
k

∑K
j=1 w

∗
j (p(j|x)|p̂(k|x)− p(k|x)|+ p(k|x)|p(j|x)− p̂(j|x)|)

(
∧K

j=1 w
∗
j )

2

≲
K∑
j=1

|p̂(j|x)− p(j|x)|. (43)

Moreover, we have

q(k|x) = w∗
kp(k|x)∑K

j=1 w
∗
j p(j|x)

≤ w∗
kp(k|x)∧K
j=1 w

∗
j

≲ p(k|x). (44)

Combining Eq. (42), Eq. (39), Eq. (43), and Eq. (44), and using the Cauchy-Schwarz inequality, we
obtain∣∣Rq(q̃(y|x))−Rq(q̂(y|x))

∣∣
≲ Ex∼p

K∑
k=1

(
∑

j |p̂(j|x)− p(j|x)|) · (p̂(k|x)
∑

j |w∗
j − ŵj |)

p̂(k|x)
+

p(k|x)(p̂(k|x)
∑

j |w∗
j − ŵj |)2

p̂(k|x)2

≲ Ex∼p

(( K∑
j=1

|p̂(j|x)− p(j|x)|
)
·
( K∑

j=1

|w∗
j − ŵj |

)
+

( K∑
j=1

|w∗
j − ŵj |

)2)

≤

√√√√Ex∼p

( K∑
j=1

|p̂(j|x)− p(j|x)|
)2

·
( K∑

j=1

|w∗
j − ŵj |

)2

+

( K∑
j=1

|w∗
j − ŵj |

)2

≲ Ex∼p

( K∑
j=1

|p̂(j|x)− p(j|x)|
)2

+

( K∑
j=1

|w∗
j − ŵj |

)2

≲
K∑
j=1

(
Ex∼p|p̂(j|x)− p(j|x)|2 + |w∗

j − ŵj |2
)

= Rp(p̂(k|x))−R∗
p + ∥w∗ − ŵ∥22,

where the last inequality follows from Lemma B.4. This finishes the proof.

Proposition B.9. Let Assumptions 2.1 hold. Moreover, let q̃(y|x) and p̂(y|x) be as in Eq. (32) and
Eq. (17), respectively. Then we have

Rq(q̃(y|x))−R∗
q ≲ Rp(p̂(y|x))−R∗

p.

To prove Proposition B.9, we need the following basic lemma.
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Lemma B.10. For any k ∈ [K], let ak, bk > 0, ck, xk ∈ (0, 1) satisfy
∑K

k=1 ck = 1 and∑K
k=1 xk = 1. Then we have

K∑
k=1

akck∨K
j=1 aj

log
ck/(

∑K
j=1 ajcj)

xk/(
∑K

j=1 ajxj)
≤

K∑
k=1

(
ck log

(
ck
xk

))
.

Proof of Lemma B.10. Let the function h : (0, 1)K → R be defined by

h(x) := h(x1, . . . , xK)

:=

K∑
k=1

(
akck∨K
j=1 aj

log
xk/(

∑K
j=1 ajxj)

ck/(
∑K

j=1 ajcj)
+ ck log

(
ck
xk

))
+ λ

( K∑
k=1

xk − 1

)
,

where λ > 0 is the Lagrange multiplier. Then it suffices to prove that h(x) ≥ h(c) = 0 for any x

satisfying
∑K

j=1 xj = 1 and 0 < xj < 1, j ∈ [K]. Taking the partial derivative of h(x) w.r.t. xk

and setting it to be zero, i.e.

∂h(x)

∂xk
=

akck∨K
j=1 aj

· 1

xk
−

K∑
ℓ=1

aℓcℓ∨K
j=1 aj

· ak∑K
j=1 ajxj

− ck
xk

+ λ = 0, k = 1, . . . ,K, (45)

which is equivalent to(
ak∨K
j=1 aj

− 1

)
ck − akxk∨K

j=1 aj
·
∑K

j=1 ajcj∑K
j=1 ajxj

+ λxk = 0, k = 1, . . . ,K.

Taking the summation from k = 1 to K and using
∑K

k=1 xk =
∑K

k=1 ck = 1, we get

K∑
k=1

akck∨K
j=1 aj

− 1−
∑K

j=1 ajcj∨K
j=1 aj

+ λ = 0,

which implies λ = 1. This together with Eq. (45) yields(
1− ak∨K

j=1 aj

)(
1− ck

xk

)
+

ak∨K
j=1 aj

(
1−

∑K
j=1 ajcj∑K
j=1 ajxj

)
= 0, k = 1, . . . ,K. (46)

If
∑K

j=1 ajcj ̸=
∑K

j=1 ajxj , then there must exist some ℓ ∈ [K] such that cℓ ̸= xℓ. Since∑K
j=1 xj =

∑K
j=1 cj = 1, there exist some i, j ∈ [K] such that ci > xi and cj < xj . Without loss

of generality, we assume that
∑K

j=1 ajcj >
∑K

j=1 ajxj . Therefore, we have both 1 − ci/xi < 0

and 1−
∑K

j=1 ajcj/
∑K

j=1 ajxj < 0. Thus we have(
1− ai∨K

j=1 aj

)(
1− ci

xi

)
+

ai∨K
j=1 aj

(
1−

∑K
j=1 ajcj∑K
j=1 ajxj

)
< 0

which contradicts with Eq. (46) for k = i. Therefore, we have
∑K

j=1 ajcj =
∑K

j=1 ajxj , which
together with Eq. (46) implies ck = ak for any k ∈ [K]. Thus h(x) attains its minimum at the point
x = (c1, . . . , ck) under the constraint

∑K
k=1 xk = 1, i.e., h(x) ≥ h(c) = 0 holds for any x with∑K

j=1 xj = 1 and xj ∈ (0, 1) for any j ∈ [K], which finishes the proof.

Proof of Proposition B.9. Using the law of total probability and Assumption 2.1, we obtain that for
any x ∈ supp(PX), there holds

q(x)

p(x)
=

∑K
j=1 q(x|j)q(j)∑K
j=1 p(x|j)p(j)

=

∑K
j=1 q(x|j)q(j)∑K
j=1 q(x|j)p(j)

≤
K∨
j=1

q(j)

p(j)
. (47)
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Therefore, we have

Rq(q̃(y|x))−R∗
q = EX∼q

K∑
k=1

q(k|X) log
q(k|X)

q̃(k|X)

≤
K∨

k=1

q(k)

p(k)
· EX∼p

K∑
k=1

q(k|X) log
q(k|X)

q̃(k|X)
. (48)

Using the definitions of q̃(y|x) in Eq. (32), respectively, and Lemma B.10 with ak := q(k)/p(k),
bk := (1− q(k))/(1− p(k)), ck := p(k|x), and xk := p̃(k|x), we obtain

K∑
k=1

q(k|X) log
q(k|X)

q̃(k|X)

=

K∑
k=1

(q(k)/p(k))p(k|x)∑K
j=1(q(j)/p(j))p(j|x)

· log
(q(k)/p(k))p(k|x)/(

∑K
j=1(q(j)/p(j))p(j|x))

((q(k)/p(k))p̂(k|x)/
∑K

j=1(q(j)/p(j))p̂(j|x))

≤
∨K

k=1 q(k)/p(k)∧K
k=1 q(k)/p(k)

·
K∑

k=1

(q(k)/p(k))p(k|x)∨K
k=1 q(k)/p(k)

· log
(q(k)/p(k))p(k|x)/(

∑K
j=1(q(j)/p(j))p(j|x))

((q(k)/p(k))p̂(k|x)/
∑K

j=1(q(j)/p(j))p̂(j|x))

≤
∨K

k=1 q(k)/p(k)∧K
k=1 q(k)/p(k)

·
K∑

k=1

p(k|x) log p(k|x)
p̂(k|x)

.

This together with Eq. (48) yields

Rq(q̃(y|x))−R∗
q ≤

(∨K
k=1 q(k)/p(k)

)2∧K
k=1 q(k)/p(k)

(
Rp(p̂(y|x))−R∗

p

)
≲ Rp(p̂(y|x))−R∗

p,

which proves the assertion.

With these preparation, we give the proof of Theorem 5.5.

Proof of Theorem 5.5. Combining Eq. (33), Propositions B.7, B.9 and B.6, we obtain

Rq(q̂(y|x))−R∗
q ≤ 2(Rp(p̂(k|x))−R∗

p) + ∥w∗ − ŵ∥22

≲ 3(Rp(p̂(k|x))−R∗
p) +

log nq

nq
+

log np

np

≤ 3

(
inf
f∈F

Rp(f)−R∗
p +

√
VC(F) log np

np
+

√
log np

np
+

log nq

nq

)
+

log nq

nq
+

log np

np

≤ 3

(
inf
f∈F

Rp(f)−R∗
p +

√
VC(F) log np

np
+ 2

√
log np

np
+

2 log nq

nq

)
with probability at least 1− 2/np − 2/nq . This finishes the proof.

C SUPPLEMENTARIES FOR EXPERIMENTS

C.1 EVALUATION METRICS

We consider the following three metrics for the evaluations of label shift adaptation problems. To be
specific, the first one ACC is the classification accuracy in the target domain. The other two metrics,
MSE PROP and MSE EVEN, are used to measure the estimation error of ŵ for estimating the class
probability ratio w∗.

(i) ACC is the accuracy of domain-adapted model predictions in the target domain. Mathematically
speaking, ACC equals 1

nq

∑np+nq

i=np+1 1{ĥq(Xi) = Yi}, where {Yi}
np+nq

np+1 are the true labels of Du
q .
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(ii) MSE PROP is the mean squared error weighted by the test set proportion q(k) and calculated by
taking the weighted average of the squared differences between the estimated weight ŵk and true
weights w∗

k, i.e.
∑

k q(k)(ŵk − w∗
k)

2.

(iii) MSE EVEN is the mean squared error with equal weight and calculated by taking the uniform
average of the squared differences between the estimated and true weights, i.e., 1

K

∑
k(ŵk − wk)

2,
where the number of classes is denoted by K.

Note that larger ACC and smaller MSE PROP and MSE EVEN indicate better performance.

C.2 IMPLEMENTATION DETAILS OF ALL ALGORITHMS

The implementation of the CPMCN algorithm is divided into three parts:

• Training the network on the first 50,000 training points of the source domain data. The
training code and parameters can be found in the obtaining predictions folder
at https://github.com/kundajelab/labelshiftexperiments/tree/
master/notebooks/obtaining_predictions. The MNIST, CIFAR10, and
CIFAR100 folders correspond to the networks for the respective datasets. We use the
codes and hyperparameter values from the above github repository to train the network.

• We utilize to correct the output of the network, resulting in the calibrated neu-
ral network. The calibrated method Bias-Corrected Temperature Scaling (BCTS)
is implemented based on the code in https://github.com/kundajelab/
abstention/blob/master/abstention/calibration.py. It is invoked us-
ing the TempScaling(bias positions=’all’) method. The last 10,000 data
points in the training set are used as a validation set to train the calibration parameters
of BCTS.

• Based on the calibrated neural network, we follow Algorithm 1 to obtain the target domain’s
classifier. For some target samples Xi, the denominator

∑K
k=1 wkp̂(k|Xi) in Eq. (10) may

be close to zero, leading to the computational issue in calculating p̂wq (y). Conversely, we
observe that wyp̂

w
q (y) = n−1

q

∑np+nq

i=np+1 wyp̂(y|Xi)/(
∑

k∈[K] wkp̂(k|Xi)) falls within the
range of 0 to 1. Fortunately, it is easy to see that w∗ is also the solution of wyp(y) =
wyp

w
q (y). Therefore, to address the computational issue, we introduce

∑
y∈[K] |wyp̂(y)−

wyp̂
w
q (y)|2 as the objective function with respect to w. We optimize the function by using

a variant of sequential minimal optimization (Platt, 1998) combined with Nelder-Mead
method (Nelder & Mead, 1965).

To implement the compared methods BBSL, RLLS and EM, we use the code in https:
//github.com/kundajelab/labelshiftexperiments provided by Alexandari et al.
(2020). For the compared method ELSA, we implement it in Python and use L-BFGS-B (Zhu
et al., 1997) as the optimization method with the solution of BBSL as its initial value.

C.3 ADDITIONAL RESULTS ON THE CIFAR100, MNIST AND CIFAR10 DATASETS
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ρ 0.01 0.02 0.05

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 8.41e+0 8.40e+1 84.45 4.93e+0 5.21e+1 85.20 5.11e+0 5.26e+1 85.25
(9.12e+0) (8.51e+1) (3.38) (6.23e+0) (6.81e+1) (3.04) (3.43e+0) (3.64e+1) (1.06)

BBSL 5.61e-1 3.93e+0 89.15 5.56e-1 3.79e+0 88.75 5.56e-1 3.65e+0 88.25
(1.95e+2) (9.12e+0) (0.33) (2.07e+2) (9.04e+0) (0.33) (2.18e+2) (8.77e+0) (0.32)

RLLS 4.26e-1 3.56e+0 89.45 4.17e-1 3.30e+0 89.15 4.21e-1 3.15e+0 88.35
(4.75e-2) (4.91e-1) (0.14) (4.60e-2) (4.74e-1) (0.14) (4.27e-2) (4.24e-1) (0.14)

ELSA 1.90e+0 6.85e+0 89.85 1.82e+0 7.11e+0 89.40 1.82e+0 6.74e+0 88.65
(7.51e+0) (1.50e+0) (0.28) (6.32e+0) (1.42e+0) (0.27) (5.52e+0) (1.32e+0) (0.27)

EM 1.17e-1 9.32e-1 90.60 1.23e-1 9.30e-1 90.23 1.26e-1 9.76e-1 89.65
(9.63e-3) (9.08e-2) (0.12) (9.39e-3) (8.81e-2) (0.12) (8.74e-3) (7.92e-2) (0.12)

CPMCN 1.06e-1 8.06e-1 90.85 1.07e-1 8.69e-1 90.50 1.09e-1 8.65e-1 90.00
(9.77e-3) (9.19e-2) (0.12) (9.35e-3) (8.76e-2) (0.11) (8.53e-3) (7.57e-2) (0.12)

ρ 0.6 0.8 0.9

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 4.41e+1 1.44e+3 72.32 5.07e+1 3.53e+3 69.50 5.78e+1 4.86e+3 66.30
(8.97e+0) (2.06e+2) (2.21) (6.27e+0) (3.38e+2) (0.80) (4.77e+0) (3.80e+2) (1.57)

BBSL 2.26e+0 3.56e+1 85.15 3.62e+0 8.48e+1 85.20 4.44e+0 1.25e+2 85.93
(4.31e+1) (1.56e+1) (0.35) (2.86e+1) (3.62e+1) (0.46) (1.56e+1) (5.21e+1) (0.49)

RLLS 5.09e+0 2.44e+2 83.40 9.71e+0 6.45e+2 83.05 1.22e+1 9.32e+2 83.40
(1.40e+0) (8.32e+1) (0.49) (2.68e+0) (2.14e+2) (0.67) (3.42e+0) (3.06e+2) (0.75)

ELSA 6.23e+0 5.58e+1 85.18 1.01e+1 1.19e+2 84.68 1.25e+1 1.80e+2 85.20
(9.05e+0) (3.69e+1) (0.65) (1.40e+1) (8.89e+1) (0.93) (1.72e+1) (1.28e+2) (0.99)

EM 6.86e-1 2.99e+1 87.75 1.07e+0 5.53e+1 89.90 1.27e+0 7.69e+1 91.20
(7.70e-2) (3.37e+0) (0.25) (1.20e-1) (6.96e+0) (0.29) (1.38e-1) (9.09e+0) (0.32)

CPMCN 6.95e-1 2.82e+1 87.98 1.07e+0 5.70e+1 90.30 1.04e+0 6.02e+1 92.18
(7.83e-2) (3.45e+0) (0.25) (1.22e-1) (6.97e+0) (0.31) (1.50e-1) (9.63e+1) (0.32)

Table 2: Performance on CIFAR100 under the Tweak-one shift. For each method, the first line is the median
of the corresponding metrics among 100 repeating experiments and the second line is the standard
deviation of these 100 metrics. The best results are marked in bold.

α 0.1 0.2 0.5

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 3.27e-2 9.47e-2 97.70 3.72e-2 1.43e-1 96.30 1.94e-2 3.38e-2 93.63
(1.25e-2) (8.20e-2) (0.46) (7.29e-3) (3.97e-2) (0.39) (4.98e-3) (1.33e-2) (0.39)

BBSL 4.13e-3 8.96e-3 97.50 3.54e-3 7.60e-3 95.75 2.83e-3 4.43e-3 94.03
(6.34e-4) (3.99e-3) (0.15) (5.34e-4) (3.10e-3) (0.16) (2.20e-4) (6.52e-4) (0.15)

RLLS 3.99e-3 9.33e-3 97.50 3.61e-3 7.92e-3 95.75 2.83e-3 4.43e-3 93.97
(6.35e-4) (4.01e-3) (0.15) (5.36e-4) (3.11e-3) (0.16) (2.19e-4) (6.47e-4) (0.15)

ELSA 8.81e-2 1.04e-1 96.05 2.01e-1 1.43e-1 93.85 2.22e-1 1.86e-1 91.78
(4.40e+2) (4.08e+3) (2.29) (5.77e+3) (6.45e+3) (1.32) (1.98e+1) (5.23e+0) (0.74)

EM 8.49e-4 2.14e-3 97.55 1.03e-3 2.09e-3 95.88 1.25e-3 2.03e-3 93.98
(1.34e-4) (6.44e-4) (0.15) (2.41e-4) (9.74e-4) (0.17) (1.65e-4) (5.44e-4) (0.16)

CPMCN 8.42e-4 2.14e-3 97.55 1.03e-3 2.11e-3 95.88 1.26e-3 2.04e-3 93.98
(1.34e-4) (6.38e-4) (0.15) (2.41e-4) (9.74e-4) (0.17) (1.64e-4) (5.43e-4) (0.16)

α 0.8 1.0 10

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 1.93e-2 2.96e-2 93.47 2.10e-2 2.91e-2 92.73 9.94e-3 9.62e-3 91.70
(4.29e-3) (1.11e-2) (0.34) (6.38e-3) (2.05e-2) (0.27) (1.37e-3) (1.20e-3) (0.08)

BBSL 1.90e-3 2.75e-3 93.20 2.28e-3 3.03e-3 93.20 1.68e-3 1.69e-3 91.70
(2.02e-4) (6.07e-4) (0.13) (1.65e-4) (4.71e-4) (0.12) (1.03e-4) (1.23e-4) (0.07)

RLLS 1.90e-3 2.76e-3 93.20 2.26e-3 3.0e-3 93.20 1.68e-3 1.69e-3 91.70
(2.02e-4) (6.07e-4) (0.13) (1.65e-4) (4.69e-4) (0.12) (1.03e-4) (1.23e-4) (0.07)

ELSA 6.76e-2 4.90e-2 92.23 1.98e-1 1.63e-1 91.88 2.00e-2 1.88e-2 91.53
(4.02e+1) (1.18e+1) (0.60) (3.84e+0) (5.94e-1) (0.34) (6.91e-3) (7.67e-3) (0.07)

EM 1.46e-3 2.10e-3 93.25 1.65e-3 2.49e-3 93.20 1.57e-3 1.71e-3 91.73
(1.25e-4) (2.68e-4) (0.13) (1.18e-4) (2.62e-4) (0.12) (1.12e-4) (1.33e-4) (0.07)

CPMCN 1.46e-3 2.07e-3 93.25 1.64e-3 2.51e-3 93.20 1.56e-3 1.71e-3 91.73
(1.25e-4) (2.69e-4) (0.13) (1.18e-4) (2.62e-4) (0.12) (1.12e-4) (1.32e-4) (0.07)

Table 3: Performance on MNIST under the Dirichlet shift. For each method, the first line is the median of the
corresponding metrics among 100 repeating experiments and the second line is the standard derivation
of these 100 metrics.The best results are marked as bold.
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ρ 0.01 0.02 0.05

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 8.08e-2 7.68e-2 91.55 5.76e-2 4.81e-2 91.90 3.32e-2 3.43e-2 91.70
(8.83e-3) (9.68e-3) (0.16) (4.97e-3) (5.14e-3) (0.16) (4.88e-3) (5.18e-3) (0.12)

BBSL 1.58e-3 1.66e-3 92.05 1.54e-3 1.58e-3 91.98 1.61e-3 1.65e-3 91.73
(9.36e-5) (1.01e-4) (0.06) (8.96e-5) (9.64e-5) (0.06) (8.38e-5) (8.76e-5) (0.06)

RLLS 1.58e-3 1.66e-3 92.05 1.54e-3 1.58e-3 91.98 1.61e-3 1.65e-3 91.73
(9.36e-5) (1.01e-4) (0.06) (8.96e-5) (9.64e-5) (0.06) (8.38e-5) (8.76e-5) (0.06)

ELSA 2.45e-3 2.69e-3 92.00 2.29e-3 2.48e-3 91.95 2.59e-3 2.69e-3 91.75
(8.93e-3) (2.21e-3) (0.07) (4.66e-4) (5.08e-4) (0.06) (4.40e-4) (4.64e-4) (0.06)

EM 1.53e-3 1.64e-3 92.00 1.50e-3 1.56e-3 91.93 1.54e-3 1.60e-3 91.73
(9.58e-5) (1.05e-4) (0.06) (9.18e-5) (1.0e-4) (0.06) (9.09e-5) (9.53e-5) (0.06)

CPMCN 1.53e-3 1.64e-3 92.00 1.51e-3 1.56e-3 91.93 1.53e-3 1.60e-3 91.73
(9.56e-5) (1.05e-4) (0.06) (9.15e-5) (9.98e-5) (0.06) (9.06e-5) (9.51e-5) (0.06)

ρ 0.6 0.8 0.9

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 2.34e-2 7.97e-2 93.53 3.09e-2 1.97e-1 95.50 3.44e-2 1.84e-1 96.85
(3.70e-3) (1.43e-2) (0.15) (4.09e-3) (2.22e-2) (0.10) (5.28e-3) (3.61e-2) (0.08)

BBSL 3.89e-3 7.45e-3 93.58 6.45e-3 1.29e-2 95.35 6.23e-3 1.81e-2 96.38
(5.56e-4) (2.49e-3) (0.06) (8.25e-4) (5.15e-3) (0.07) (8.69e-4) (7.40e-3) (0.06)

RLLS 3.89e-3 7.45e-3 93.58 6.45e-3 1.29e-2 95.35 6.03e-3 1.78e-2 96.35
(5.56e-4) (2.49e-3) (0.06) (8.14e-4) (5.05e-3) (0.07) (7.82e-4) (6.57e-3) (0.07)

ELSA 1.98e-3 2.65e-3 93.58 1.87e-3 3.74e-3 95.55 7.27e-3 7.00e-3 96.43
(3.26e-4) (1.53e-3) (0.06) (1.66e-3) (8.13e-3) (0.08) (1.70e+2) (1.13e+2) (0.13)

EM 1.11e-3 1.72e-3 93.65 8.64e-4 1.52e-3 95.60 5.97e-4 1.39e-3 97.00
(1.44e-4) (7.49e-4) (0.06) (8.46e-5) (5.68e-4) (0.05) (4.77e-5) (3.54e-4) (0.04)

CPMCN 1.10e-3 1.75e-3 93.65 8.58e-4 1.57e-3 95.60 5.97e-4 1.43e-3 97.00
(1.44e-4) (7.51e-4) (0.06) (8.45e-5) (5.67e-4) (0.05) (4.78e-5) (3.55e-4) (0.04)

Table 4: Performance on MNIST under the tweak-one shift. For each method, the first line is the median of the
corresponding metrics among 100 repeating experiments and the second line is the standard derivation
of these 100 metrics. The best results are marked as bold.

α 0.1 0.2 0.5

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 6.28e-3 9.24e-3 97.65 1.26e-2 1.58e-2 94.75 3.38e-2 4.06e-2 92.55
(2.66e-3) (4.91e-3) (0.57) (1.90e-2) (6.05e-2) (1.49) (9.48e-3) (2.49e-2) (1.04)

BBSL 2.88e-3 8.60e-3 97.60 2.80e-3 6.57e-3 96.12 2.40e-3 3.68e-3 93.75
(1.82e-3) (1.54e-2) (0.20) (5.47e-4) (2.94e-3) (0.20) (8.78e-4) (4.44e-3) (0.17)

RLLS 2.84e-3 8.23e-3 97.58 2.82e-3 6.53e-3 96.17 2.44e-3 3.66e-3 93.75
(1.53e-3) (1.25e-2) (0.20) (5.36e-4) (2.90e-3) (0.20) (8.76e-4) (4.44e-3) (0.17)

ELSA 4.02e-1 5.85e-1 95.60 1.58e-1 1.34e-1 94.52 1.87e-1 1.52e-1 93.08
(2.74e+2) (2.08e+2) (1.68) (9.67e+1) (2.17e+1) (1.09) (1.26e-1) (3.29e-1) (0.42)

EM 3.68e-4 1.36e-3 97.70 9.29e-4 2.15e-3 96.18 1.37e-3 2.11e-3 93.80
(3.35e-4) (1.73e-3) (0.20) (3.02e-4) (1.30e-3) (0.20) (1.77e-4) (5.71e-4) (0.17)

CPMCN 3.69e-4 1.33e-3 97.70 9.28e-4 2.16e-3 96.18 1.37e-3 2.10e-3 93.80
(3.32e-4) (1.71e-3) (0.20) (3.01e-4) (1.30e-3) (0.20) (1.77e-4) (5.69e-4) (0.17)

α 0.8 1.0 10

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 3.59e-2 3.09e-2 92.85 3.40e-2 6.23e-2 91.65 1.58e-2 1.64e-2 90.73
(8.64e-3) (1.69e-2) (1.15) (9.83e-4) (1.36e-2) (0.75) (4.80e-4) (1.56e-3) (0.02)

BBSL 2.35e-3 2.93e-3 92.95 1.71e-3 2.58e-3 92.90 1.76e-3 1.76e-3 90.80
(5.75e-4) (2.76e-3) (0.16) (3.09e-4) (9.77e-4) (0.16) (1.51e-4) (1.74e-4) (0.09)

RLLS 2.35e-3 2.94e-3 93.00 1.69e-3 2.50e-3 92.90 1.76e-3 1.76e-3 90.80
(5.66e-4) (2.74e-3) (0.16) (3.08e-4) (9.69e-4) (0.16) (1.51e-4) (1.74e-4) (0.09)

ELSA 6.87e-2 5.78e-2 92.23 1.71e-1 1.58e-1 92.23 2.37e-2 2.17e-2 90.75
(8.30e-2) (1.90e-1) (0.45) (8.17e-2) (1.81e-1) (0.29) (7.18e-3) (8.04e-3) (0.09)

EM 1.43e-3 2.01e-3 93.18 1.26e-3 1.52e-3 92.98 1.61e-3 1.68e-3 90.85
(2.32e-4) (8.18e-4) (0.16) (1.53e-4) (4.45e-4) (0.16) (1.45e-4) (1.65e-4) (0.09)

CPMCN 1.43e-3 2.01e-3 93.18 1.25e-3 1.51e-3 92.98 1.61e-3 1.68e-3 90.85
(2.32e-4) (8.17e-4) (0.16) (1.53e-4) (4.45e-4) (0.16) (1.45e-4) (1.65e-4) (0.09)

Table 5: Performance on CIFAR10 under the Dirichlet shift. For each method, the first line is the median of the
corresponding metrics among 100 repeating experiments and the second line is the standard derivation
of these 100 metrics.The best results are marked as bold.

30



Published as a conference paper at ICLR 2024

ρ 0.01 0.02 0.05

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 3.83e-2 2.43e-2 91.55 3.05e-2 2.39e-2 91.50 2.40e-2 2.25e-2 90.93
(4.69e-3) (5.04e-3) (0.25) (5.63e-3) (4.92e-3) (0.33) (8.41e-3) (9.36e-3) (0.72)

BBSL 1.52e-3 1.50e-3 92.65 1.55e-3 1.52e-3 92.30 1.47e-3 1.42e-3 91.63
(1.02e-4) (9.74e-5) (0.06) (1.12e-4) (9.63e-5) (0.06) (1.05e-4) (9.44e-5) (0.06)

RLLS 1.52e-3 1.50e-3 92.65 1.55e-3 1.52e-3 92.30 1.47e-3 1.42e-3 91.63
(9.94e-5) (9.57e-5) (0.06) (1.12e-4) (9.63e-5) (0.06) (1.05e-4) (9.44e-5) (0.06)

ELSA 2.96e-3 3.16e-3 92.65 2.69e-3 2.75e-3 92.30 2.86e-3 2.76e-3 91.55
(6.32e-3) (1.42e-3) (0.06) (4.19e-4) (4.56e-4) (0.06) (4.10e-4) (4.29e-4) (0.06)

EM 1.32e-3 1.41e-3 92.70 1.41e-3 1.43e-3 92.30 1.44e-3 1.44e-3 91.63
(8.50e-5) (8.98e-5) (0.06) (8.34e-5) (8.55e-5) (0.06) (7.99e-5) (7.86e-5) (0.06)

CPMCN 1.32e-3 1.41e-3 92.70 1.41e-3 1.43e-3 92.30 1.44e-3 1.43e-3 91.63
(8.49e-5) (8.97e-5) (0.06) (8.33e-5) (8.54e-5) (0.06) (7.99e-5) (7.86e-5) (0.06)

ρ 0.6 0.8 0.9

Metrics MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%) MSE EVEN MSE PROP ACC (%)

LTF 4.13e-3 3.41e-3 91.89 3.18e-3 1.23e-2 94.67 4.71e-3 2.21e-2 96.65
(4.00e-4) (1.36e-3) (0.08) (1.37e-3) (9.57e-3) (0.08) (1.45e-3) (5.73e-3) (0.22)

BBSL 6.33e-3 1.92e-2 91.80 1.12e-2 4.30e-2 94.52 1.19e-2 6.12e-2 96.23
(1.15e-3) (5.79e-3) (0.06) (2.06e-3) (1.41e-2) (0.07) (2.41e-3) (1.82e-2) (0.06)

RLLS 6.33e-3 1.92e-2 91.80 1.12e-2 4.30e-2 94.52 1.18e-2 5.70e-2 96.20
(1.15e-3) (5.79e-3) (0.06) (2.06e-3) (1.40e-2) (0.07) (2.41e-3) (1.82e-2) (0.06)

ELSA 2.24e-3 4.13e-3 91.90 1.29e-3 3.31e-3 94.72 1.29e-3 5.29e-3 96.55
(3.35e-4) (1.59e-3) (0.06) (1.55e-3) (4.06e-3) (0.09) (2.44e-3) (1.17e-2) (0.08)

EM 2.12e-3 5.63e-3 91.90 1.69e-3 6.42e-3 94.75 1.25e-3 4.92e-3 96.65
(3.57e-4) (1.66e-3) (0.06) (2.97e-4) (1.74e-3) (0.06) (2.43e-4) (1.44e-3) (0.05)

CPMCN 2.12e-3 5.62e-3 91.90 1.68e-3 6.36e-3 94.75 1.24e-3 4.97e-3 96.65
(3.57e-4) (1.66e-3) (0.06) (2.97e-4) (1.74e-3) (0.06) (2.44e-4) (1.44e-3) (0.06)

Table 6: Performance on CIFAR10 under the tweak-one shift. For each method, the first line is the median
of the corresponding metrics among 100 repeating experiments and the second line is the standard
derivation of these 100 metrics. The best results are marked as bold.
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