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Figure 1: Overview of the EBind approach and results.

Abstract

We simplify space binding by focusing on two core components, a single
encoder per modality and high-quality data; enabling training state-of-the-
art models on a single GPU in a few hours as opposed to multiple days.
We present EBind, an Easy, data-centric, and parameter-efficient method
to Bind the embedding spaces of multiple contrastive models. We demon-
strate that a simple 1.8B-parameter image-text-video-audio-3D model can
outperform models 4 to 17× the size. The key to achieving this is a
carefully curated dataset of three complementary data sources: i) 6.7M
fully-automated multimodal quintuples sourced via SOTA retrieval mod-
els, ii) 1M diverse, semi-automated triples annotated by humans as nega-
tive, partial, or positive matches, and iii) 3.4M pre-existing captioned data
items. We use 13 different evaluations to demonstrate the value of each
data source. Due to limitations with existing benchmarks, we further in-
troduce the first high-quality, consensus-annotated zero-shot classification
benchmark between audio and PCs. In contrast to related work, we will
open-source our code, model weights, and the datasets.

1 Introduction

Multimodal contrastive models have emerged as foundational components of modern AI sys-
tems. From CLIP’s revolutionary image-text alignment (Radford et al., 2021) to CLAP’s
audio-text embeddings (Elizalde et al., 2023) and Uni3D’s 3D-text representations (Zhou
et al., 2024), these models power advanced machine learning applications like retrieval sys-
tems (Abootorabi et al., 2025) and automatic labeling (Gao et al., 2024; Zhang et al.,
2024a) to conditional generation (Li et al., 2023; Ramesh et al., 2022; Steiner et al., 2024;
Guo et al., 2023). Due to the enablement of processing many modalities, like text, images,
audio, video, and 3D point clouds (PC), multimodal learning is increasingly recognized as
a critical enabler of progress toward artificial general intelligence (Song et al., 2025).
The natural progression toward truly unified multimodal understanding has led researchers
to explore binding these separate bi- or trimodal embedding spaces into joint representation
spaces, as demonstrated by pioneering work such as ImageBind (Girdhar et al., 2023), Lan-
guageBind (Zhu et al., 2024), and OmniBind (Kong et al., 2025). Binding multiple modal-
ities together demonstrates emergent properties like the ability to do similarity searches
between any two modalities.

1
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In this work, we pay extra attention to models that embed not only vision and language but
also audio and PCs, e.g., Zhang et al. (2024b) and Wang et al. (2025). Such multimodal
models not only have the potential to power next-generation LLMs, retrieval systems, and
generative models spanning more modalities, but also to help advance fields like autonomous
driving (Shao et al., 2022), 3D scene understanding (Vu et al., 2022), and robotics (Huang
et al., 2023). However, despite their theoretical appeal and demonstrated feasibility, the
field faces several limitations that hinder widespread adoption and rapid development.

Current Limitations are associated with data, compute, and evaluations. First, there
is a lack of easy-access data for doing contrastive learning across the five modalities audio,
image, video, text, and PC in combination. The scarcity causes research to focus on method-
ologies that treat modalities separately (Guo et al., 2023) or build artificially paired data via
retrieval models (Zhang et al., 2024b; Wang et al., 2025). The latter methodology is critical
as, to the best of our knowledge, there exist no such paired datasets in the open-source
community. In turn, progress slows down and reproducibility becomes impossible.
Second, from a computational perspective, current approaches either suffer from excessive
resource requirements or lack performance. Some models range from 7-30B parameters
(Kong et al., 2025; Wang et al., 2025), creating a barriers to entry for research groups with
fewer resources and limits the democratization of multimodal AI research. Other smaller
sub-1B parameter models sometimes perform 3− 4× worse (Guo et al., 2023; Wang et al.,
2023; Zhang et al., 2024b).
Finally, the evaluation landscape presents additional challenges. Particularly pronounced
are issues with PCs. Benchmarks predominantly remain limited to synthetic benchmarks
rather than real-world scenarios (Deitke et al., 2023; Wu et al., 2015) and, audio-PC does
not yet have a benchmark. Furthermore, multiple publications have argued that testing on
data that the underlying model was trained on is okay (Wang et al., 2025; 2021) which, to
us and many others, is wrong.

Our Contributions: EBind. In response to these challenges, we present EBind, a simple
yet effective model and methodology that achieves state-of-the-art (SOTA) performance
for its compact 1.8B-parameter size, often outperforming models 4-17 times larger. Our
key insight centers on prioritizing two core components: i) employing a simple, well-chosen
model architecture and ii) leveraging carefully curated, high-quality training data.
EBind democratizes multimodal model training by making it possible to obtain SOTA results
on a single GPU within hours rather than days of distributed training. This efficiency stems
from a simple choice of model and training scheme that has a low memory footprint, coupled
with a data-centric approach, which we validate through comprehensive empirical analysis.
We introduce a systematic three-tier data curation strategy. Inspired by a mix of related
work (Zhang et al., 2024b; Wang et al., 2025; Kong et al., 2025; Girdhar et al., 2023), we con-
struct our training corpus from: (1) 6.7M fully-automated multimodal quintuples generated
using state-of-the-art retrieval models, (2) 3.4M high-quality pre-existing captioned data
items, and (3) 1M human-annotated samples with explicit positive, negative, and partial
match labels. This principled approach to data construction enables us to systematically
study the contribution of each data source to the final model performance.
To address evaluation limitations, we further develop a first-of-its-kind, high-quality,
consensus-annotated evaluation benchmark that combines PCs and audio in a zero-shot
task. Unlike previous work, we commit to full transparency by open-sourcing our complete
codebase, trained model weights, and curated datasets, enabling true reproducibility and
fostering further research.
Through comprehensive evaluations across 14 datasets spanning all five modalities, we
demonstrate the individual value of each component of our data curation strategy. Our
experiments validate the central hypothesis that data quality and careful curation strate-
gies can achieve superior performance compared to architectural complexity and scale. We
show that our simpler approach can often match or exceed the performance of much larger,
more complex models. This holds across diverse multimodal understanding tasks.
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2 Related Work

Contrastive representation learning, pioneered by the CLIP model (Radford et al., 2021),
establishes a shared embedding space between modalities. While the shared embedding
space of CLIP, and later advancements like SigLIP (Zhai et al., 2023) and Perception En-
coder (Bolya et al., 2025), cover vision and text, a natural expansion of the field has been
to adapt the contrastive learning approach to, match text and audio (Elizalde et al., 2023;
Mei et al., 2024) or text and PCs (Xue et al., 2023; Zhou et al., 2024).
Successively, multiple such bi-modal models have been joined into compositions that unify
the individual modalities. These efforts, often referred to as “space binding methods,” face
the challenges of acquiring sufficient paired data and managing architectural complexity. In
contrast to recent trends, which prioritize model scale and intricate training procedures, our
approach, EBind, aims to keep model size and complexity low.

2.1 Model Composition and Training Algorithms

Recent research in achieving unified multimodal representations has trended toward inte-
grating multiple specialized (and often frozen) encoders. Here, we split approaches into
two. On one side, most methodologies are based on a composition of one encoder per
modality (Wang et al., 2023; Zhang et al., 2024b; Girdhar et al., 2023; Zhu et al., 2024;
Guo et al., 2023). These are all sub-1B parameter models and perform significantly worse
than the other approaches. On the other side are the OmniBind models from (Wang et al.,
2025). The authors present three model compositions ranging from 7 to 30B parameters
where more than one model per modality is employed. Among models that can embed all
text, image, audio, video, and PCs, the largest of the OmniBind models constitutes the
SOTA. In this work, we demonstrate that it is possible to get most of the performance from
the bigger models with one frozen encoder and an MLP projector per modality and 4× fewer
parameters.
When considering training complexity, ImageBind and LanguageBind are amongst the sim-
pler (Girdhar et al., 2023; Zhu et al., 2024). They train full, unfrozen models with the
InfoNCE loss (van den Oord et al., 2018) against their base modality (image and text, re-
spectively) (Girdhar et al., 2023; Zhu et al., 2024). In the other end of the spectra, the
large-scale OmniBind models require intricate mechanisms to combine multiple embedding
spaces effectively (Wang et al., 2025). The models employ a routing strategy (inspired by
Mixture-of-Experts (Mu & Lin, 2025)) to dynamically weight contributions from different
models. They require complex objectives, including a cross-modal overall alignment loss and
a language representation decoupling loss to mitigate conflicts between different text em-
beddings. C-MCR Wang et al. (2023) combines Gaussian noise injection with an InfoNCE
contrastive loss (van den Oord et al., 2018) complemented by a semantic-enhanced inter-
and intra-model connection method. Ex-MCR Zhang et al. (2024b) extends upon that and
utilizes a dense InfoNCE loss across all modality pairs, alongside an additional L2 loss.
Albeit not a binding method in exactly the same spirit as the above, we further found
some inspiration from the UNITE method Kong et al. (2025). The method introduces the a
variant of the InfoNCE loss where separate modalities are separated in the loss computations.
Similarly, we notice that splitting entire batches into isolated modality pairs, and even
isolated tasks, works well. In contrast to most related work, our method requires neither
complex masking schemes or loss compositions.

2.2 Data for Multimodal Alignment

While the underlying encoders of the “binding approaches,” e.g., CLIP, CLAP, and
Uni3D (Zhou et al., 2024), require large-scale datasets, typically sourced from the Inter-
net, we focus on data requirements for binding models. Most multimodal binding models
match a few modalities and observe models associate unmatched modalities as an emergent
property. ImageBind (Girdhar et al., 2023) learns a joint embedding across six modalities
(Image, Text, Audio, Depth, Thermal, and IMU) by individually pairing each to images.
LanguageBind (Zhu et al., 2024) and UNITE (Kong et al., 2025) both use language as the
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semantic anchor to bind modalities. Other methods like EX-MCR and OmniBind use vari-
ous forms of retrieval to synthetically compose “pseudo pairs” (Zhang et al., 2024b; Wang
et al., 2025). We further notice that most high-performing models employ video in their
training datasets which is, surprisingly, not the case for the OmniBind models.
We combine learnings from related work by leveraging both pseudo pairs and video data.
EBind achieves SOTA results by relying on a systematic three-tier data curation strategy:
1) fully-automated multimodal “pseudo quintuples” (5-tuples) generated by SOTA retrieval
models, 2) semi-automated, human-verified data, and 3) pre-existing open-source captioned
data. Our focus on high-quality, curated training data and a simple model composition
allows us to maintain a simple training scheme where batches only require the projected
modality and one or more of the frozen modalities.

3 Open Dataset

3.1 Training Datasets

We now give a high-level description of our procedure to build the dataset. Further details
are deferred to Appendix A. Our full dataset is a composition of three splits. Section 3.1.1
describes the fully-automated first split, which attempts to follow the approach from Wang
et al. (2025) to construct 6.7M quintuples of all five modalities (audio, image, PCs, videos,
and captions). Section 3.1.2 details the second split; a semi-automated, human-verified split
of 1M triples spanning captions and two other modalities. Section 3.1.3 describes our third
split; a collection of open-source datasets comprising 3.4M already captioned data items. It
should be noted that the underlying data from the three splits overlap.

3.1.1 Split 1: Automatically Paired 5-tuples (6.7M)

For the first phase of training, we follow Wang et al. (2025) to build an automatic retrieval-
based dataset. We do this by sourcing captions from 12 different datasets, as detailed in
Table 6. We ignore the pairings between the various modalities of our source data and treat
each as a separate unimodal dataset. After deduplication, we source 6.7M text captions.
We similarly merge audio, image, video, and PC data, from the datasets listed in Table 7.
We then pair each text caption with the best matches in the other four modalities via SOTA
bi-modal embedding models listed in Table 10. In turn, we retrieve the nearest neighbor for
each modality, and construct 6.7M 5-tuples of the form (text, image, video, audio, PC) for
each text caption.1 We employ graph-based HNSW32 indices from FAISS Douze et al. (2024)
to perform retrieval. The number of unique items sourced from each underlying dataset to
build Split 1 is detailed in Table 8.
To elevate the quality of Split 1, we go through multiple filtering steps to avoid train-val
leakage as well as inaccessible or duplicate data. We ensure that all captions sourced from
datasets with a test-train split are sourced from their train sets only. Furthermore, we
ensure that no occurences of VGG-SS (Chen et al., 2021), Audioset eval (Gemmeke et al.,
2017), AudioCaps (Kim et al., 2019), or Objaverse-LVIS (Deitke et al., 2023) points appear
in our retrieval databases. 2

3.1.2 Split 2: Human verified triples (1M)

While examining captions from Split 1, we notice that some modalities have more natural
captions than other. For example, looking at PC captions from OpenShape (Liu et al.,
2023), we find examples like “a fish is shown on a black background” and “a 3d model of a
rock with a hole in it.” Arguably, such captions are less relevant for real-world use-cases. As
a consequence, we devise a methodology for efficiently collecting more human-verified pairs.

1A tempting idea is to retrieve k > 1 neighbors per caption to increase the dataset size. We
tried that but found no particular benefit from it.

2In the reviews of the OmniBind paper (https://openreview.net/forum?id=l2izo0z7gu) con-
cerns were raised that, e.g., AudioCaps may cause leakage issues.
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We run several human annotation projects to verify captions from one dataset are appro-
priately automatically paired with data items from other datasets. We start by selecting a
subset of captions of the datasets listed in italic in Table 4 in the appendix and retrieve up
to eight neighbors of the modality to be added from the other dataset. We filter the matches
to ensure diversity, selecting three candidates per text caption. We ask human annotators
to label each candidate as a positive, partial, or negative match to the text caption shown
(for details, see Appendix A.3.) We retain all annotations, including partial and negative
matches, and use them in training as described in Section 4. We find the partial and neg-
ative annotations to be helpful as hard negatives. The annotators label a total of 332K
captions (1M annotations). The exact numbers are reported in Table 5 in the Appendix.
Figure 1b on the front page displays the data composition. The details of pre-processing,
data pairing, and human verification can be found in Appendix A.

3.1.3 Split 3: Open-source captioned datasets (3.4M)

For some modality pairs, we identify that there is a benefit to using data with original
captions. The two most pronounced use-cases are video datasets that have a natural cor-
respondence to audio and PCs that come naturally with their 3D renders as images. We
source the data listed in Table 9 and use the modalities listed. For example, the table shows
that we use the PCs from OpenShape (Liu et al., 2023) together with their renders and we
use both the vision and the audio part from videos datasets like VGGSound (Chen et al.,
2020) against the same caption. We are careful to remove any leakage to evaluation sets.

3.2 Zero-Shot PC–Audio Evaluation Dataset

At present, the field of multimodal retrieval models is lacking in benchmarks for new modal-
ity pairs. Even for the relatively popular point–audio modality pair, where models such as
OmniBind and Ex-MCR can perform cross-modal retrieval, no evaluation dataset currently
exists. In addition, most public evaluation sets for retrieval between PCs and other modal-
ities are synthetic, limited in scope, and hardly reflective of real-world performance.
We make progress on this front by creating a realistic zero-shot points–audio evaluation
dataset EShot. This is the first of its kind, to the best of our knowledge.
We sample both modalities from evaluation splits of public datasets; audio from AudioSet,
and PCs from Objaverse-LVIS. As with the creation of our training sets, we automatically
pair the two modalities through text captions, using SOTA retrieval models. We then run
every pair, through a human consensus check forcing three individual annotators to agree on
each pair. This results in 1775 and 1763 unique audio and PC items, respectively, which we
use for zero-shot classification. We do so by deriving 112 classes from the PC’s Objaverse-
LVIS categories (this is detailed in Appendix A), and define a zero-shot classification task as
follows: We group the audio items by class, and take the mean embedding of each class as the
class representative. Each PC is then classified based on its embedding’s similarity to that
of the class representative. Swapping the roles of the modalities results in a classification
task for audio. Note that this classification task is similar to the common practice of using
multiple text prompt templates for zero-shot modality-to-text classification tasks.

4 Model and Training

Our model is simple; see Figure 1a. It consists of a frozen, pre-trained encoder for each
modality and projectors for just audio and PCs. Keeping the encoders frozen keeps the
computational complexity and memory requirements low, since we can extract and store
embeddings ahead of training. Freezing the vision and text encoders is particularly advanta-
geous, as it enables the incremental addition of other modalities to the model, independently
of one another. The text (353M parameters) and vision (317M) encoders in our model are
from the Perception Encoder’s PEcoreL variant (Bolya et al., 2025). The vision encoder
handles both images and videos, uniformly sampling 8 images from videos and averaging
their output embeddings. The audio encoder (90M) is from ImageBind (Girdhar et al.,
2023), and the PC encoder (1.02B) is the Uni3D Zhou et al. (2024) variant trained without
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the Objaverse-LVIS dataset. We restrict the training to projectors at the output of the
audio and points encoders. Both projectors are two-layer multilayer perceptrons with 1024
dimensions at the input and the output, and 2048 dimensions at the hidden layer, adding
4.2M parameters each and bringing the total parameter count to 1.79B.
In order to simplify the addition of new modalities to the model, we train each projector
separately and make no effort to further align the trained projectors with each other. We
only require each batch of data to contain the projected modality and one or more of the
frozen modalities, which adds flexibility and simplifies sourcing more training data. As a
consequence, we take less than full advantage of our retrieval-based 5-tuple training data,
as only one of the two projected modalities enters training each projector.
We train the model contrastively, using a loss function that exploits the positive, partial,
negative match labels in our human-annotated data. We do so by assigning target proba-
bility p = 1 to positive matches, p = 0.5 to partial matches, and p = 0 to negative matches,
and minimizing the cross entropy loss between the target probability and the model’s pre-
diction. That is, given a batch of output embeddings aB

1 for a projected modality and the
paired output embedings bB

1 for a frozen modality, we define the loss as

L(aB
1 , bB

1 ) = − 1
B

B∑
i=1

pi log qi + (1− pi) log(1− qi)

where the predicted probability qi for the ith pair is defined in the usual way, as

qi = eaT
i bi/τ∑B

j=1 eaT
i

bj/τ

Here τ is a trainable and modality-pair-dependent temperature parameter. The total loss
for the batch is then defined as

L(batch) =
m∑

j=1
L(aB

1 , bB
j1) + L(bB

j1, aB
1 )

where m denotes the number of frozen modalities in the batch, and bB
j1 denotes the embed-

dings of the jth frozen modality.
We stage the training data in order of increasing pairing quality and decreasing model-
richness. That is, we first train on Split 1, our 6.7M automatically-paired 5-tuples; followed
by Split 2, the 1M human-verified triples; and finally on Split 3, the 3.4M captioned triples.
Each stage consist of 2 epochs of training. EBind’s structure allows us to extract and store
the output embeddings from the underlying encoders and only load the embeddings and the
projectors at training time. This, in turn, allows us to fit a batch size of 2048 on a single
A100 GPU with 40GB of memory, and train to complete in less than 4 hours. We use the
AdamW optimizer with an initial learning rate of 0.001 and cosine annealing scheduler. We
initialize all temperatures to τ = 0.07.

5 Evaluation

Similar to related work, we evaluate EBind on 13 different public benchmarks (See Table 11
in Appendix C for an enumeration). We report scores for three versions or our model;
EBind-S1, trained on our Split 1; EBind-S2, trained on Split 1 and 2; and EBind-S3, trained
on all three splits. On single NVIDIA A100 GPU with a 30-core 216GB RAM CPU, it
takes 15, 30, and 15 minutes, respectively, to train a model for epochs on each split. Further
details on non-trivial evaluations are provided in Appendix C. We compare EBind against
other text-image-audio-PC models; EX-MCR (Zhang et al., 2024b), PointBind (Guo et al.,
2023), and OmniBind (Wang et al., 2025). We note that as Omnibind-L and OmniBind-F
use a variant of Uni3D that was trained on Objaverse-LVIS (Deitke et al., 2023), those may
contain train-test leakage. We further report the performance of EBind on EShot to establish
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Table 1: Cross-modal retrieval results ordered by model size. Model performance for models
other than EBind are sourced from Wang et al. (2025). Best and second best result in bold
and underlined, respectively. * may contain train-test data leakage.

Models Size
Audio-Text Audio-Image Image-Text Points-Image

AudioCaps Clotho VGG-SS FlickrNet COCO Flickr30K Objaverse
(B) R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Ex-MCR 0.43 19.07 47.05 7.01 22.04 2.13 8.13 1.57 5.94 40.24 64.78 71.89 90.55 2.54 8.25
PointBind 1 9.24 27.47 6.64 17.28 14.82 35.67 7.68 20.79 57.28 79.54 86.04 96.97 5.86 14.59
EBind-S1

1.8
13.38 39.60 9.35 24.65 3.97 14.50 2.53 9.21

65.05 84.91 90.72 98.4
17.63 37.57

EBind-S2 17.14 45.25 7.91 22.05 11.04 30.10 5.10 16.34 16.64 36.03
EBind-S3 23.35 53.81 11.31 28.54 25.92 54.37 9.14 23.97 46.34 70.17
OmniB-B 7.2 43.61 76.02 20.94 46.77 14.11 35.74 7.67 21.65 56.94 80.11 85.99 97.02 34.34* 58.40*
OmniB-L 12.3 47.89 79.75 23.07 49.67 14.14 36.07 7.86 21.72 60.08 82.35 87.20 97.40 46.09* 69.11*
OmniB-F 30.6 46.72 79.69 23.27 49.46 15.64 38.19 8.32 23.49 62.64 83.79 89.13 97.82 46.55* 69.92*

a baseline for future work. To avoid reporting more results with leakage, we refrain from
evaluating other models on EShot. Since EBind inherits its Text-Image performance from
Perception Encoder Bolya et al. (2025) we report those only once as they do not change.
We also avoid reporting video benchmarks as they will be identical to those in Bolya et al.
(2025) and are not comparable to other models in this section. In Section 5.1 and 5.2 below,
we focus on our best performing model EBind-S3 and keep the analysis of our dataset splits
to Section 5.3.

5.1 Retrieval

Table 1 shows our performance on zero-shot retrieval tasks. Perhaps not surprisingly, we
find that EBind-S3 is consistently outperforming models of smaller size (rows above). When
comparing the model to those that are larger, we find that except for Audio-Text retrieval
tasks, EBind-S3 is consistently amongst the two best models. On Image-Text and Audio-
Text tasks, it even outperforms a model 17× larger. While the Image-Text results are not
surprising, as it is merely “reproductions” of results reported in Bolya et al. (2025), Audio-
Image and Points-Image demonstrate how having a strong, frozen backbone can suffice.
A particularly notable observation is that Uni3D quotes 45.8 on Objaverse-LVIS for their
model not trained on the Objaverse-LVIS data and 55.3 for the one with that subset. We
use the encoder without leakage and surpass the reported performance, indicating that our
methodology is not fundamentally upper-bounded by the underlying encoders. Notably, all
of the OmniBind model’s use a version of Uni3D that has leakage and fail to match the
underlying performance.
While we have no concrete evidence as to why EBind cannot compete with the larger models
on Text-Audio retrieval tasks, we do have two compelling hypotheses and an observation
that may justify it. We chose to use the audio encoder from ImageBind Girdhar et al.
(2023). It was not originally trained with a contrastive loss against text and was optimized
against image rather. In turn, the embedding space may not be as easy to project onto
that of Perception Encoder. This hypothesis is backed by Girdhar et al. (2023) reporting
R@1 at 9.3 on AudioCaps and 6.0 on Clotho. The audio encoder further has less parameters
than, the vision encoder (90M vs. 353M). We also observe that while all other modalities are
supported by one encoder in OmniBind-B (the smallest version), audio has three underlying
encoders, perhaps because one model alone did not work well. Finally, PointBind uses
the same audio encoder as us but has lower scores, indicating that our data and training
approach may still be relevant for Audio-Text.

5.2 Zero-shot Classification

Table 2 displays out zero-shot retrieval results. EBind outperforms models of smaller sizes
across all benchmarks. When looking at the OmniBind-B model, which is 4× larger than
ours, EBind performs best in a few cases but generally scores a bit lower. Two points worth
noting are that i) six out of the 11 reported numbers are on PC benchmarks where we believe
there may be train-test leakage for the OmniBind models and ii) on ImageNet, Bolya et al.
(2025) report numbers that exceed those of OmniBind which we could not reproduce.
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Table 2: Zero-shot classification results ordered by model size. Model performance for
models other than EBind are sourced from Wang et al. (2025). Best and second best result
in bold and underlined, respectively. * may contain train-test data leakage.

Model Size
Audio Image Points

AudioSet ESC-50 ImageNet Objaverse ScanObjectNN ModelNet40
(B) mAP Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Ex-MCR 0.43 6.67 71.20 96.80 60.79 86.98 17.94 43.37 40.31 77.20 66.53 93.60
PointBind 1 13.96 67.25 87.50 76.13 94.22 13.83 30.34 55.05 86.89 76.18 97.04
EBind-S1

1.8
19.6 76.40 95.50

79.16 94.92
43.40 71.91 57.75 88.48 86.46 97.38

EBind-S2 14.34 75.80 92.40 42.08 70.95 56.92 87.27 86.12 96.80
EBind-S3 21.28 78.45 96.00 46.56 75.52 57.65 89.20 86.56 97.48
OBind-B 7.2 21.19 92.90 99.75 76.18 94.02 53.30* 81.85* 57.79 89.76 82.82 97.12
OBind-L 12.3 25.57 93.25 99.80 78.87 95.32 53.97* 82.90* 64.67* 94.15* 86.55* 99.03*
OBind-F 30.6 25.14 93.45 99.85 79.93 95.86 53.56* 81.82* 64.67* 94.36* 87.12* 99.03*

Table 3: Zero-shot classification
results on EShot.

Models R@1 R@5

EBind-S1 56.60 79.88
EBind-S2 64.27 85.79
EBind-S3 57.26 86.22

By inspecting the individual modalities, similar obser-
vations can be made to the previous section. Namely,
classifying audio is the weakest point, potentially for the
same reason as above, and the inherited image classifi-
cation capabilities are strong. One difference lies in the
reported scores from Uni3D on the Point benchmarks. On
Objaverse-LVIS and ModelNet40, EBind-S3 achieves sim-
ilar scores to Uni3D (reported R@1 47.2 and 86.6, respec-
tively). For ScanObjectNN, however, EBind-S3 scores
57.7 while Uni3D scores 66.5. We have no clear answer
as to why this is the case.

EShot To understand the abilities of EBind on Audio-Points tasks, we use EShot. We
report our numbers in Table 3 in the hope that the field will find it useful as to further the
understanding of performance of multimodal retrieval models. Below, we further use the
benchmark to analyze our dataset splits.

5.3 Analysis of Dataset Splits

In this section, we use Figure 1c on the front page, Table 1, and Table 2 to further ana-
lyze the effect of the three dataset splits we employ. In Figure 1c, we have averaged all
scores from the two tables (not including EShot) and plotted them against model sizes.
Orthogonal to the findings from OmniBind showing that scaling model parameters leads to
better performance, we show that carefully curating the right data can similarly improve
performance. Furthermore, the plot indicates that following that fully automated approach
of matching data with retrieval models cannot stand alone. Both employing humans to
segregate good from bad pairs (Split 2) and using already captioned / naturally paired data
(Split 3) improves performance.
From considering the Audio related columns in Table 1 and 2, it is apparent that including
Split 2 improves many benchmark, arguably by removing noise from the automatic pairs.
However, the Point related benchmarks do generally not see the same effects. We attribute
the reason to most existing point-evaluation benchmarks being tied to synthetic renders of
PCs, either explicitly or implicitly via the way the benchmarks are constructed. Neither
Split 1 not Split 2 contain any PC renders, likely answering why performance remains low.
As indicated by Table 9 in the Appendix, we add captioned 3D PCs and their renders and see
improvements on point-related benchmarks, especially on point-image retrieval. Similarly,
we add both audio and visuals from many captioned video datasets which further increase
both audio-image and audio-text performance. Based on these findings, we hypothesize that
adding even more such “naturally paired” data further improve performance.
Finally, we observe that the R@1 performance on EShot is negatively affected by Split 3.
We attribute this to the fact that Split 1 and 2 have data that pairs audio and PCs while
Split 3 does not. It remains an open question how to avoid such a problem of “forgetting.”
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Figure 2: A top-1 retrieval example from EBind-P3.

6 Applications

Figure 3: Zero-shot PC classification
post segmentation.

Models like EBind have multiple applications. In this
section, we briefly demonstrate two of them. In Fig-
ure 2, we show an example of querying a database
of images, point clouds, videos, audio, and captions
based on an image. EBind-S3 is used to embed the
query image of the cat to the left and an entire
dataset of the five modalities: text, image, video,
audio, and PC. Retrieval is done by the most similar
item from the database based on the cosine similarity
between the query and every embedding. As shown,
the model identifies items from each modality that
semantically relate to the query image.
In Figure 3, we used EBind-S3 to embed pre-
segmented objects from a point cloud scene and com-
puted similarities to the word “Sofa.” As indicated by the colors (red indicating more simi-
lar), we can use the model to identify the object that is most likely to be a sofa. Arguably,
such applications could find use in the physical artificial intelligence space.
These examples show how retrieval models, like ours, can have many applications. For more
examples, please see Guo et al. (2023) that, builds a multimodal large language model
on top of their retrieval model to enable it to “see PCs” and Girdhar et al. (2023) that
demonstrates arithmetics on embeddings to fuse an embedding of a traffic sign image with
a sound clip of rain into a query to identify images from city streets in rainy weather.

7 Conclusion

We present EBind; an Easy, data-centric, and parameter efficient model that Binds five
different modalities into one coherent embedding space. Our core contributions includes
achieving SOTA results while avoiding model and training complexity, and a carefully cu-
rated dataset that includes both fully automated; semi-automated, human-verified; and
pre-existing captioned data. Finally, we introduce a new high-quality, consensus-verified
zero-shot classification benchmark EShot to help guide future developments within the field.

8 Future Work

We see many potential improvements and applications of this work. Here, we name but a few.
First, the human-verified data that we introduce may have even better use. For example, we
do not propagate information about dataset statistics or similarity thresholds from Split 2
backward into the data that we assemble with Split 1 to elevate quality. Second, as we see
the field of physical artificial intelligence and world-modeling gaining momentum, having
truly multimodal models that can understand many sensors becomes increasingly valuable.
As a consequence, our work shows that identifying more naturally paired modalities, similar
to that of vision and audio in videos and PCs scanned with handheld cameras in Uy et al.
(2019), could further improve performance. Finally, continuing to develop new and relevant
evaluation datasets if of high importance for guiding the field.
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9 Reproducibility Statement

As demonstrated in this paper, we have been careful to conduct our work with high data
standards. In continuation here of, we intend to make models, datasets, and code publicly
available to foster development in the field and enable reproducibility. Similarly, we will
publish all data IDs and their dataset origins used throughout the project.
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A Training Dataset Details

A.1 Pre-processing

To ensure high-quality pairing between modalities, we first filter the source datasets. We ex-
clude text captions (Google Conceptual Captions (Sharma et al., 2018)) with poor grammar
or those lacking clear references to visual or auditory concepts.
Similarly, as VidGen Tan et al. (2024) and VidRefer Yuan et al. (2025) video were originally
we created for vision–text retrieval tasks, some of their videos lack a clear correspondence
to the attached videos. We build a filtering pipeline to exclude such videos from our data
pool.

A.2 Pairing Modalities Through Text

We create (mod-1, text, mod-2) triples using a public (mod-1, text) dataset and a pool of
mod-2 data, pairing them through text. In particular, for each unique text, we find the eight
best matches in mod-2 using the models listed in Table 10, and select three of those to show
the annotators for verification. The reason to start with the top eight matches is to increase
diversity. We consider the (text, mod-2) candidate pairings as a bi-partite graph, with an
edge between each text to the eight mod-2 candidates, we then use the greedy algorithm
listed in Algorithm 1 to find a large matching between text and mod-2.

A.3 Human Verification

We run a separate human verification project for each (mod-1, mod-2) pair, working with
18 annotators. In each project, show each annotator three (text, mod-2) candidates and
ask them to label each candidate as a match, partial match, or no match. We randomize
the order in which the three candidates to prevent the better candidates to appear on the
same side of the screen. Even though the annotators are shown the three candidates for
the same text caption all at once. Figures 4 and 5 show examples of pairs shown to the
annotators in the project instructions, along with their correct labels. The label statistics
for each annotation project are shown in Table 5.
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Algorithm 1 Similarity-Prioritized Greedy Matching
1: Input: Text embeddings T , Modality 2 embeddings M, parameters k, n, m
2: Output: Set of paired datapoints P
3: Retrieve top k = 8 neighbors for each text embedding
4: Create candidate pairs C = {(ti, mj , sij)} where sij is similarity score
5: Sort C by similarity score in descending order
6: Initialize text seen← {}, modality2 seen← {}
7: Initialize P ← ∅
8: for each (t, m, s) ∈ C do
9: if text seen[t] ≥ n then

10: continue
11: end if
12: if modality2 seen[m] ≥ m then
13: continue
14: end if
15: text seen[t]← text seen[t] + 1
16: modality2 seen[m]← modality2 seen[m] + 1
17: P ← P ∪ {(t, m, s)}
18: end for
19: return P

Table 4: Counts of unique data items in each annotation project in Split 2. Leftmost column
shows the datasets that contribute to each project, with the italicized datasets contributing
the captions. & delineates the two different modalities whilst + indicates a disjoint union
within the same modality.

Dataset Audio Images PCs Captions Video

Valor (Chen et al., 2023) & OpenShape 104,832 - 159,810 104,832 104,832
GCC & VGGSound + AudioSet 91,553 53,478 - 53,478 -
Flickr & AudioSet + VGGSound 46,843 21,241 - 43,664 -
Audiocaps & OpenShape 25,434 - 27,994 24,584 -
Audiocaps & ImageNet + GCC 23,377 37,645 - 22,878 -
COCO + Flickr & OpenShape - 48,487 107,379 82,989 -
Total 292,039 160,851 295,183 332,425 104,832

(a) The sound of cooking food
in oil or another fat - Match.

(b) The sound of cooking food
in oil or another fat - Partial
Match.

(c) Creaky squeaking occurs
as a machine runs - No Match.

Figure 4: Examples used in annotator instructions in an audio-caption-to-image pairing
project
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Table 5: Label statistics in each annotation project.

Dataset Good Partial No Match Total

Valor & OpenShape 266,686 (81.7%) 19,244 (5.9%) 40,464 (12.4%) 326,394
GCC & VGGSound + AudioSet 68,277 (58.5%) 22,730 (22.2%) 22,730 (13.9%) 163,987
Flickr & VGGSound + AudioSet 69,481 (48.5%) 46,585 (32.5%) 27,137 (27.1%) 143,203
AudioCaps & ImageNet + GCC 58,536 (48.5%) 22,246 (32.5%) 3,129 (20.0%) 83,911
AudioCaps & OpenShape 66,197 (75.5%) – 21,446 (24.5%) 87,643
COCO + Flickr & OpenShape 232,096 (87.3%) – 33,769 (12.7%) 265,865

(a) A Ticktock repeats rhyth-
mically - Match.

(b) A man clatters objects
outside, making monkeys
practice acrobatics with the
sound - Partial Match.

(c) A man speaking with a
distant boom of a jet engine
- No Match.

Figure 5: Examples used in annotator instructions in an Audio-caption-to-object pairing
project

(a) ’Gunshots present in Audio Clip’ - Match. (b) ’Can hear objects being placed on table,
but we would not be able to identify these spe-
cific objects from the audio file alone’ - Partial
Match.

Figure 6: Examples used in annotator instructions in the audio–PC pairing project

B EShot: Zero-shot PC–audio evaluation dataset

To prevent leakage into training sets of our models as well as others, we construct our eval-
uation set from existing public evaluation sets. Specifically, we use the AudioSet evaluation
set as our audio corpus and Objaverse LVIS as our video corpus. As these are both classi-
fication datasets, respectively containing 527 and 1,156 classes, they contain several items
per class that are effectively impossible to distinguish, e.g., most sounds of a car engine can
be reasonably matched with most PCs of a car. This leads us to instead develop a zero-shot
PC–audio evaluation dataset.
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Table 6: Text captions sourced from respective datasets.

Dataset Number of captions

AudioCaps 67,335
AudioSetCaps (Bai et al., 2025) (VGGSound subset) 179,677
AudiosetCaps (AudioSet subset) 1,869,906
COCO 566,146
Flickr 147,303
Google Conceptual Captions (GCC) 524,108
OpenShape (BLIP subset) 435,507
OpenShape (MSFT subset) 335,039
Valor 1,140,010
VidRefer 360,594
Vidgen 1,004,156
WavCaps 80,779
Total 6,710,560

Table 7: Non-text items sourced from public datasets.

Dataset Audio Images Object Video

InternVid 1,999,975 - - 1,999,960
AudioSet 1,755,876 - - 1,802,084
VidGen 1M 880,733 - - 896,308
VidReferer 528,493 - - 518,399
VGGSound 126,465 - - 167,772
GCC - 2,229,110 - -
ImageNet - 1,279,867 - -
OpenShape - - 827,783 -
Total 5,291,542 3,508,977 827,783 5,386,523

As with our training sets, we first automatically pair the two modalities through text cap-
tions, using SOTA retrieval models. We then run every pair through a human consensus
check and admit only those pairs where three annotators label as positive matches. Fig-
ure 6 shows examples of audio–PC pairs shown to annotators in the instructions, along
with their correct annotations. The consensus project yields 1,775 unique audio items,
and 1,763 unique items, covering 381 LVIS classes. However, as some of the classes are
indistinguishable with audio signals, we manually refine them by first correcting misclassi-
fied items, and merging indistinguishable classes. We then split broader classes into finer
ones when possible—e.g., we split ‘boat’ into ‘motor boat’ and ‘sail boat’ classes, which are
distinguishable by audio. This results in 112 classes.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 8: Counts of unique data (non-text) contributions of each source dataset to Split 1.

Dataset Audio Images Point Clouds Video

AudioSet 333,901 - - 393,395
InternVid 174,185 - - 524,514
VidGen 1M 142,441 - - 368,589
VidReferer 54,632 - - 144,044
VGGSound 42,327 - - 35,995
GCC - 865,303 - -
ImageNet - 223,779 - -
OpenShape - - 209,165 -
Total 747,486 1,089,082 209,165 1,446,537

Table 9: Unique item counts of each dataset in Split 3.

Dataset Audio Images Points Captions Videos

Valor 998,320 - - 998,320 998,320
AudioSet \ {Valor} 642,574 - - 642,574 642,574
Vidgen 408,095 - - 408,095 408,095
VidRefer 230,883 - - 230,905 230,883
VGGSound 120,264 - - 120,264 120,264
WavCaps 91,482 - - 91,482 -
AudioCaps 85,761 - - 84,837 -
Clotho 3,838 - - 19,190 -
OpenShape w. Renders - 820,692 820,692 325,853 -
Total 2,581,217 820,692 820,692 3,416,359 2,400,136

Table 10: Embedding models used in the project. URLs point to model checkpoint. Index
indicates when the model was used to build our search databases. Model indicates encoders
used in EBind. A: Audio, I: Image, V: Video, P: Point Cloud, and T: Text. S1 and S2
indicate Split 1 and 2, respectively.

Model Index (S1) Index (S2) Model

PE Core-L14-336 Bolya et al. (2025) IVT - IVT
https://huggingface.co/facebook/PE-Core-L14-336

Note: we use torch.amp.autocast(’cuda’, dtype=torch.float16) for PE.

EVAClip-18B Sun et al. (2024) - IVT -
https://huggingface.co/BAAI/EVA-CLIP-18B

WavCaps (HTSAT-BERT-PT) Mei et al. (2024) AT - -
https://drive.google.com/drive/folders/1MeTBren6LaLWiZI8_phZvHvzz4r9QeCD

LAION CLAP Wu et al. (2023) - AT -
https://huggingface.co/laion/larger_clap_general

ImageBind (Huge) Girdhar et al. (2023) - - A
https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth

Uni3D (G-no-LVIS) Zhou et al. (2024) PT PT P
https://huggingface.co/BAAI/Uni3D/tree/main/modelzoo/uni3d-g-no-lvis
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C Evaluation details

Here we list the non-trivial processing steps we followed when evaluating our models.

Retrieval: Clotho, COCO, and Flickr30K, all have multiple text captions for each data
item of the other modality. In calculating text recall@k from the other modality, we consid-
ered retrieval a success if any of the captions were in the top-k. For the opposite retrieval
direction, we considered each caption to be a separate item and averaged their recall results
as usual. To the best of our understanding, this is consistent with how all other models we
benchmark against have been evaluated.

Zero-shot Classification: We found , we found prompt templating to help on ImageNet
and ModelNet40. That is, instead of using a single prompt to calculate the embedding
for each class, we calculated the average embeddings over several prompt templates and
took the mean embedding as the class representative. In particular, we used Perception En-
coder’s prompt templates (Bolya et al., 2025, Appendix B.1.2) for ImageNet and PointBind’s
templates3 for ModelNet40.

D Usage of Large Language Models

As in most modern workflows, we use large language models (LLMs) to conduct our work.
While tap-completions have been enabled in our text editors, we have not included work
solely done by LLMs on the behalf of Humans. In other words, LLMs have been used for
writing template code and expand some bulleted lists into first drafts of paper sections.
However, no sentence is without human involvement and no citations were added by LLMs.
In continuation here of, every citation has been verified by humans. We are confident that
we have operated well within what is considered appropriate for the conference.

3https://github.com/ZiyuGuo99/Point-Bind_Point-LLM/blob/main/data/templates.json

19

https://github.com/ZiyuGuo99/Point-Bind_Point-LLM/blob/main/data/templates.json


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 11: Benchmarks used to evaluate EBind. Zero-shot means zero-shot classification and
Retrieval means cross-modal retrieval between two modalities.

Task Modality Benchmark Items Classes

Zero-shot

Audio AudioSet Gemmeke et al. (2017) 17,141 527
ESC-50 Piczak (2015) 2,000 50

Image ImageNet1K Deng et al. (2009) 50,000 1000

Points
Objaverse-LVIS Deitke et al. (2023) 46,205 1156

ScanObjNN Uy et al. (2019) 2,890 15
ModelNet40 Wu et al. (2015) 2,467 40

Audio-Points EShot (ours) 3,538 112

Retrieval

Audio-Text AudioCaps Kim et al. (2019) 957 -
Clotho Drossos et al. (2020) 27,905 -

Audio-Image VGG-SS Chen et al. (2021) 5,116 -
FlickrNet Senocak et al. (2018) 5,000 -

Audio-Text COCO Lin et al. (2014) 5,000 -
Flickr30K Young et al. (2014) 1,000 -

Points-Image Objaverse-LVIS Deitke et al. (2023) 46,205 -

20


	Introduction
	Related Work
	Model Composition and Training Algorithms
	Data for Multimodal Alignment

	Open Dataset
	Training Datasets
	Split 1: Automatically Paired 5-tuples (6.7M)
	Split 2: Human verified triples (1M)
	Split 3: Open-source captioned datasets (3.4M)

	Zero-Shot PC–Audio Evaluation Dataset

	Model and Training
	Evaluation
	Retrieval
	Zero-shot Classification
	Analysis of Dataset Splits

	Applications
	Conclusion
	Future Work
	Reproducibility Statement
	Training Dataset Details
	Pre-processing
	Pairing Modalities Through Text
	Human Verification

	EShot: Zero-shot PC–audio evaluation dataset
	Evaluation details
	Usage of Large Language Models

