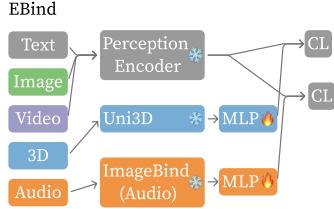

000 EBIND: A PRACTICAL APPROACH TO SPACE BINDING

001

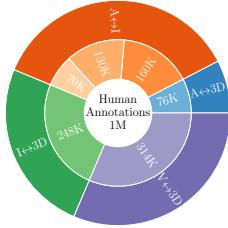
002

003 **Anonymous authors**

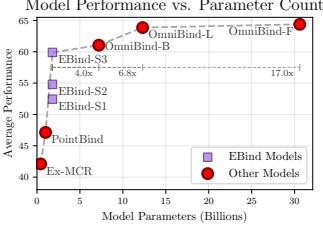
004 Paper under double-blind review



016 (a) Model Overview.
017 CL means Contrastive Loss.



022 (b) New Human Annotations.



037 (c) Avg. over 13 benchmarks.

038 Figure 1: Overview of the EBind approach and results.

ABSTRACT

039 We simplify space binding by focusing on two core components, a single encoder per modality and high-quality data; enabling training state-of-the-art models on a single GPU in a few hours as opposed to multiple days. We present **EBind**, an Easy, data-centric, and parameter-efficient method to **Bind** the embedding spaces of multiple contrastive models. We demonstrate that a simple 1.8B-parameter image-text-video-audio-3D model can outperform models 4 to 17 \times the size. The key to achieving this is a carefully curated dataset of three complementary data sources: i) 6.7M fully-automated multimodal quintuples sourced via SOTA retrieval models, ii) 1M diverse, semi-automated triples annotated by humans as negative, partial, or positive matches, and iii) 3.4M pre-existing captioned data items. We use 13 different evaluations to demonstrate the value of each data source. Due to limitations with existing benchmarks, we further introduce the first high-quality, consensus-annotated zero-shot classification benchmark between audio and PCs. In contrast to related work, we will open-source our code, model weights, and the datasets.

1 INTRODUCTION

040 Multimodal contrastive models have emerged as foundational components of modern AI systems. From CLIP’s revolutionary image-text alignment (Radford et al., 2021) to CLAP’s 041 audio-text embeddings (Elizalde et al., 2023) and Uni3D’s 3D-text representations 042 (Zhou et al., 2024), these models power advanced machine learning applications like retrieval 043 systems (Abootorabi et al., 2025) and automatic labeling (Gao et al., 2024; Zhang et al., 044 2024a) to conditional generation (Li et al., 2023; Ramesh et al., 2022; Steiner et al., 2024; 045 Guo et al., 2023). Due to the enablement of processing many modalities, like text, images, 046 audio, video, and 3D point clouds (PC), multimodal learning is increasingly recognized as 047 a critical enabler of progress toward artificial general intelligence (Song et al., 2025). 048

049 The natural progression toward truly unified multimodal understanding has led researchers 050 to explore binding these separate bi- or trimodal embedding spaces into joint representation 051 spaces, as demonstrated by pioneering work such as ImageBind (Girdhar et al., 2023), Lan- 052 guageBind (Zhu et al., 2024), and OmniBind (Kong et al., 2025). Binding multiple modalities 053 together demonstrates emergent properties like the ability to do similarity searches between any two modalities.

054 In this work, we pay extra attention to models that embed not only vision and language but
055 also audio and PCs, e.g., Zhang et al. (2024b) and Wang et al. (2025). Such multimodal
056 models not only have the potential to power next-generation LLMs, retrieval systems, and
057 generative models spanning more modalities, but also to help advance fields like autonomous
058 driving (Shao et al., 2022), 3D scene understanding (Vu et al., 2022), and robotics (Huang
059 et al., 2023). However, despite their theoretical appeal and demonstrated feasibility, the
060 field faces several limitations that hinder widespread adoption and rapid development.
061

062 **Current Limitations** are associated with data, compute, and evaluations. First, there
063 is a lack of easy-access *data* for doing contrastive learning across the five modalities audio,
064 image, video, text, and PC in combination. The scarcity causes research to focus on method-
065 logies that treat modalities separately (Guo et al., 2023) or build artificially paired data via
066 retrieval models (Zhang et al., 2024b; Wang et al., 2025). The latter methodology is critical
067 as, to the best of our knowledge, there exist no such paired datasets in the open-source
068 community. In turn, progress slows down and reproducibility becomes impossible.
069

070 Second, from a *computational* perspective, current approaches either suffer from excessive
071 resource requirements or lack performance. Some models range from 7-30B parameters
072 (Kong et al., 2025; Wang et al., 2025), creating a barriers to entry for research groups with
073 fewer resources and limits the democratization of multimodal AI research. Other smaller
074 sub-1B parameter models sometimes perform $3 - 4 \times$ worse (Guo et al., 2023; Wang et al.,
075 2023; Zhang et al., 2024b).

076 Finally, the *evaluation* landscape presents additional challenges. Particularly pronounced
077 are issues with PCs. Benchmarks predominantly remain limited to synthetic benchmarks
078 rather than real-world scenarios (Deitke et al., 2023; Wu et al., 2015) and, audio-PC does
079 not yet have a benchmark. Furthermore, multiple publications have argued that testing on
080 data that the underlying model was trained on is okay (Wang et al., 2025; 2021) which, to
081 us and many others, is wrong.
082

Our Contributions: EBind. In response to these challenges, we present EBind, a simple
083 yet effective model and methodology that achieves state-of-the-art (SOTA) performance
084 for its compact 1.8B-parameter size, often outperforming models 4-17 times larger. Our
085 key insight centers on prioritizing two core components: i) employing a simple, well-chosen
086 model architecture and ii) leveraging carefully curated, high-quality training data.
087

EBind democratizes multimodal model training by making it possible to obtain SOTA results
088 on a single GPU within hours rather than days of distributed training. This efficiency stems
089 from a simple choice of model and training scheme that has a low memory footprint, coupled
090 with a data-centric approach, which we validate through comprehensive empirical analysis.
091

We introduce a systematic three-tier data curation strategy. Inspired by a mix of related
092 work (Zhang et al., 2024b; Wang et al., 2025; Kong et al., 2025; Girdhar et al., 2023), we con-
093 struct our training corpus from: (1) 6.7M fully-automated multimodal quintuples generated
094 using state-of-the-art retrieval models, (2) 3.4M high-quality pre-existing captioned data
095 items, and (3) 1M human-annotated samples with explicit positive, negative, and partial
096 match labels. This principled approach to data construction enables us to systematically
097 study the contribution of each data source to the final model performance.
098

To address evaluation limitations, we further develop a first-of-its-kind, high-quality,
099 consensus-annotated evaluation benchmark that combines PCs and audio in a zero-shot
100 task. Unlike previous work, we commit to full transparency by open-sourcing our complete
101 codebase, trained model weights, *and* curated datasets, enabling true reproducibility and
102 fostering further research.
103

Through comprehensive evaluations across 14 datasets spanning all five modalities, we
104 demonstrate the individual value of each component of our data curation strategy. Our
105 experiments validate the central hypothesis that data quality and careful curation strate-
106 gies can achieve superior performance compared to architectural complexity and scale. We
107 show that our simpler approach can often match or exceed the performance of much larger,
108 more complex models. This holds across diverse multimodal understanding tasks.
109

108 2 RELATED WORK
109

110 Contrastive representation learning, pioneered by the CLIP model (Radford et al., 2021),
111 establishes a shared embedding space between modalities. While the shared embedding
112 space of CLIP, and later advancements like SigLIP (Zhai et al., 2023) and Perception En-
113 coder (Bolya et al., 2025), cover vision and text, a natural expansion of the field has been
114 to adapt the contrastive learning approach to, match text and audio (Elizalde et al., 2023;
115 Mei et al., 2024) or text and PCs (Xue et al., 2023; Zhou et al., 2024).

116 Successively, multiple such bi-modal models have been joined into compositions that unify
117 the individual modalities. These efforts, often referred to as “space binding methods,” face
118 the challenges of acquiring sufficient paired data and managing architectural complexity. In
119 contrast to recent trends, which prioritize model scale and intricate training procedures, our
120 approach, **EBind**, aims to keep model size and complexity low.
121

122 2.1 MODEL COMPOSITION AND TRAINING ALGORITHMS
123

124 Recent research in achieving unified multimodal representations has trended toward inte-
125 grating multiple specialized (and often frozen) encoders. Here, we split approaches into
126 two. On one side, most methodologies are based on a composition of one encoder per
127 modality (Wang et al., 2023; Zhang et al., 2024b; Girdhar et al., 2023; Zhu et al., 2024;
128 Guo et al., 2023). These are all sub-1B parameter models and perform significantly worse
129 than the other approaches. On the other side are the OmniBind models from (Wang et al.,
130 2025). The authors present three model compositions ranging from 7 to 30B parameters
131 where more than one model per modality is employed. Among models that can embed all
132 text, image, audio, video, and PCs, the largest of the OmniBind models constitutes the
133 SOTA. In this work, we demonstrate that it is possible to get most of the performance from
134 the bigger models with one frozen encoder and an MLP projector per modality and 4× fewer
135 parameters.

136 When considering training complexity, ImageBind and LanguageBind are amongst the sim-
137 pler (Girdhar et al., 2023; Zhu et al., 2024). They train full, unfrozen models with the
138 InfoNCE loss (van den Oord et al., 2018) against their base modality (image and text, re-
139 spectively) (Girdhar et al., 2023; Zhu et al., 2024). In the other end of the spectra, the
140 large-scale OmniBind models require intricate mechanisms to combine multiple embedding
141 spaces effectively (Wang et al., 2025). The models employ a routing strategy (inspired by
142 Mixture-of-Experts (Mu & Lin, 2025)) to dynamically weight contributions from different
143 models. They require complex objectives, including a cross-modal overall alignment loss and
144 a language representation decoupling loss to mitigate conflicts between different text em-
145 beddings. C-MCR Wang et al. (2023) combines Gaussian noise injection with an InfoNCE
146 contrastive loss (van den Oord et al., 2018) complemented by a semantic-enhanced inter-
147 and intra-model connection method. Ex-MCR Zhang et al. (2024b) extends upon that and
148 utilizes a dense InfoNCE loss across all modality pairs, alongside an additional L_2 loss.
149

150 Albeit not a binding method in exactly the same spirit as the above, we further found
151 some inspiration from the UNITE method Kong et al. (2025). The method introduces the a
152 variant of the InfoNCE loss where separate modalities are separated in the loss computations.
153 Similarly, we notice that splitting entire batches into isolated modality pairs, and even
154 isolated tasks, works well. In contrast to most related work, our method requires neither
155 complex masking schemes or loss compositions.

156 2.2 DATA FOR MULTIMODAL ALIGNMENT
157

158 While the underlying encoders of the “binding approaches,” e.g., CLIP, CLAP, and
159 Uni3D (Zhou et al., 2024), require large-scale datasets, typically sourced from the Inter-
160 net, we focus on data requirements for binding models. Most multimodal binding models
161 match a few modalities and observe models associate unmatched modalities as an emergent
162 property. ImageBind (Girdhar et al., 2023) learns a joint embedding across six modalities
163 (Image, Text, Audio, Depth, Thermal, and IMU) by individually pairing each to images.
164 LanguageBind (Zhu et al., 2024) and UNITE (Kong et al., 2025) both use language as the

semantic anchor to bind modalities. Other methods like EX-MCR and OmniBind use various forms of retrieval to synthetically compose “pseudo pairs” (Zhang et al., 2024b; Wang et al., 2025). We further notice that most high-performing models employ video in their training datasets which is, surprisingly, not the case for the OmniBind models.

We combine learnings from related work by leveraging both pseudo pairs and video data. **EBind** achieves SOTA results by relying on a systematic three-tier data curation strategy: 1) fully-automated multimodal “pseudo quintuples” (5-tuples) generated by SOTA retrieval models, 2) semi-automated, human-verified data, and 3) pre-existing open-source captioned data. Our focus on high-quality, curated training data and a simple model composition allows us to maintain a simple training scheme where batches only require the projected modality and one or more of the frozen modalities.

3 OPEN DATASET

3.1 TRAINING DATASETS

We now give a high-level description of our procedure to build the dataset. Further details are deferred to Appendix A. Our full dataset is a composition of three splits. Section 3.1.1 describes the fully-automated first split, which attempts to follow the approach from Wang et al. (2025) to construct 6.7M quintuples of all five modalities (audio, image, PCs, videos, and captions). Section 3.1.2 details the second split; a semi-automated, human-verified split of 1M triples spanning captions and two other modalities. Section 3.1.3 describes our third split; a collection of open-source datasets comprising 3.4M already captioned data items. It should be noted that the underlying data from the three splits overlap.

3.1.1 SPLIT 1: AUTOMATICALLY PAIRED 5-TUPLES (6.7M)

For the first phase of training, we follow Wang et al. (2025) to build an automatic retrieval-based dataset. We do this by sourcing captions from 12 different datasets, as detailed in Table 6. We ignore the pairings between the various modalities of our source data and treat each as a separate unimodal dataset. After deduplication, we source 6.7M text captions. We similarly merge audio, image, video, and PC data, from the datasets listed in Table 7. We then pair each text caption with the best matches in the other four modalities via SOTA bi-modal embedding models listed in Table 10. In turn, we retrieve the nearest neighbor for each modality, and construct 6.7M 5-tuples of the form (text, image, video, audio, PC) for each text caption.¹ We employ graph-based HNSW32 indices from FAISS Douze et al. (2024) to perform retrieval. The number of unique items sourced from each underlying dataset to build Split 1 is detailed in Table 8.

To elevate the quality of Split 1, we go through multiple filtering steps to avoid train-val leakage as well as inaccessible or duplicate data. We ensure that all captions sourced from datasets with a test-train split are sourced from their train sets only. Furthermore, we ensure that no occurrences of VGG-SS (Chen et al., 2021), Audioset eval (Gemmeke et al., 2017), AudioCaps (Kim et al., 2019), or Objaverse-LVIS (Deitke et al., 2023) points appear in our retrieval databases.²

3.1.2 SPLIT 2: HUMAN VERIFIED TRIPLES (1M)

While examining captions from Split 1, we notice that some modalities have more natural captions than others. For example, looking at PC captions from OpenShape (Liu et al., 2023), we find examples like “a fish is shown on a black background” and “a 3d model of a rock with a hole in it.” Arguably, such captions are less relevant for real-world use-cases. As a consequence, we devise a methodology for efficiently collecting more human-verified pairs.

¹A tempting idea is to retrieve $k > 1$ neighbors per caption to increase the dataset size. We tried that but found no particular benefit from it.

²In the reviews of the OmniBind paper (<https://openreview.net/forum?id=12izo0z7gu>) concerns were raised that, e.g., AudioCaps may cause leakage issues.

216 We run several human annotation projects to verify captions from one dataset are appro-
217 priately automatically paired with data items from other datasets. We start by selecting a
218 subset of captions of the datasets listed in *italic* in Table 4 in the appendix and retrieve up
219 to eight neighbors of the modality to be added from the other dataset. We filter the matches
220 to ensure diversity, selecting three candidates per text caption. We ask human annotators
221 to label each candidate as a positive, partial, or negative match to the text caption shown
222 (for details, see Appendix A.3.) We retain all annotations, including partial and negative
223 matches, and use them in training as described in Section 4. We find the partial and neg-
224 ative annotations to be helpful as hard negatives. The annotators label a total of 332K
225 captions (1M annotations). The exact numbers are reported in Table 5 in the Appendix.
226 Figure 1b on the front page displays the data composition. The details of pre-processing,
227 data pairing, and human verification can be found in Appendix A.
228

229 3.1.3 SPLIT 3: OPEN-SOURCE CAPTIONED DATASETS (3.4M)

230 For some modality pairs, we identify that there is a benefit to using data with original
231 captions. The two most pronounced use-cases are video datasets that have a natural cor-
232 respondence to audio and PCs that come naturally with their 3D renders as images. We
233 source the data listed in Table 9 and use the modalities listed. For example, the table shows
234 that we use the PCs from OpenShape (Liu et al., 2023) together with their renders and we
235 use both the vision and the audio part from videos datasets like VGGSound (Chen et al.,
236 2020) against the same caption. We are careful to remove any leakage to evaluation sets.
237

238 3.2 ZERO-SHOT PC–AUDIO EVALUATION DATASET

239 At present, the field of multimodal retrieval models is lacking in benchmarks for new modal-
240 ity pairs. Even for the relatively popular point–audio modality pair, where models such as
241 OmniBind and Ex-MCR can perform cross-modal retrieval, no evaluation dataset currently
242 exists. In addition, most public evaluation sets for retrieval between PCs and other modal-
243 ities are synthetic, limited in scope, and hardly reflective of real-world performance.
244

245 We make progress on this front by creating a realistic zero-shot points–audio evaluation
246 dataset **EShot**. This is the first of its kind, to the best of our knowledge.
247

248 We sample both modalities from evaluation splits of public datasets; audio from AudioSet,
249 and PCs from Objaverse-LVIS. As with the creation of our training sets, we automatically
250 pair the two modalities through text captions, using SOTA retrieval models. We then run
251 every pair, through a human consensus check forcing three individual annotators to agree on
252 each pair. This results in 1775 and 1763 unique audio and PC items, respectively, which we
253 use for zero-shot classification. We do so by deriving 112 classes from the PC’s Objaverse-
254 LVIS categories (this is detailed in Appendix A), and define a zero-shot classification task as
255 follows: We group the audio items by class, and take the mean embedding of each class as the
256 class representative. Each PC is then classified based on its embedding’s similarity to that
257 of the class representative. Swapping the roles of the modalities results in a classification
258 task for audio. Note that this classification task is similar to the common practice of using
259 multiple text prompt templates for zero-shot modality-to-text classification tasks.
260

261 4 MODEL AND TRAINING

262 Our model is simple; see Figure 1a. It consists of a frozen, pre-trained encoder for each
263 modality and projectors for just audio and PCs. Keeping the encoders frozen keeps the
264 computational complexity and memory requirements low, since we can extract and store
265 embeddings ahead of training. Freezing the vision and text encoders is particularly advan-
266 tageous, as it enables the incremental addition of other modalities to the model, independently
267 of one another. The text (353M parameters) and vision (317M) encoders in our model are
268 from the Perception Encoder’s PE_{core}L variant (Bolya et al., 2025). The vision encoder
269 handles both images and videos, uniformly sampling 8 images from videos and averaging
270 their output embeddings. The audio encoder (90M) is from ImageBind (Girdhar et al.,
271 2023), and the PC encoder (1.02B) is the Uni3D Zhou et al. (2024) variant trained without
272

270 the Objaverse-LVIS dataset. We restrict the training to projectors at the output of the
271 audio and points encoders. Both projectors are two-layer multilayer perceptrons with 1024
272 dimensions at the input and the output, and 2048 dimensions at the hidden layer, adding
273 4.2M parameters each and bringing the total parameter count to 1.79B.

274 In order to simplify the addition of new modalities to the model, we train each projector
275 separately and make no effort to further align the trained projectors with each other. We
276 only require each batch of data to contain the projected modality and one or more of the
277 frozen modalities, which adds flexibility and simplifies sourcing more training data. As a
278 consequence, we take less than full advantage of our retrieval-based 5-tuple training data,
279 as only one of the two projected modalities enters training each projector.

280 We train the model contrastively, using a loss function that exploits the positive, partial,
281 negative match labels in our human-annotated data. We do so by assigning target proba-
282 bility $p = 1$ to positive matches, $p = 0.5$ to partial matches, and $p = 0$ to negative matches,
283 and minimizing the cross entropy loss between the target probability and the model’s pre-
284 diction. That is, given a batch of output embeddings a_1^B for a projected modality and the
285 paired output embeddings b_1^B for a frozen modality, we define the loss as

$$288 \quad L(a_1^B, b_1^B) = -\frac{1}{B} \sum_{i=1}^B p_i \log q_i + (1 - p_i) \log(1 - q_i)$$

291 where the predicted probability q_i for the i th pair is defined in the usual way, as

$$293 \quad q_i = \frac{e^{a_i^T b_i / \tau}}{\sum_{j=1}^B e^{a_i^T b_j / \tau}}$$

296 Here τ is a trainable and modality-pair-dependent temperature parameter. The total loss
297 for the batch is then defined as

$$299 \quad L(\text{batch}) = \sum_{j=1}^m L(a_1^B, b_{j1}^B) + L(b_{j1}^B, a_1^B)$$

301 where m denotes the number of frozen modalities in the batch, and b_{j1}^B denotes the embed-
302 dings of the j th frozen modality.

304 We stage the training data in order of increasing pairing quality and decreasing model-
305 richness. That is, we first train on Split 1, our 6.7M automatically-paired 5-tuples; followed
306 by Split 2, the 1M human-verified triples; and finally on Split 3, the 3.4M captioned triples.
307 Each stage consist of 2 epochs of training. **EBind**’s structure allows us to extract and store
308 the output embeddings from the underlying encoders and only load the embeddings and the
309 projectors at training time. This, in turn, allows us to fit a batch size of 2048 on a single
310 A100 GPU with 40GB of memory, and train to complete in less than 4 hours. We use the
311 AdamW optimizer with an initial learning rate of 0.001 and cosine annealing scheduler. We
312 initialize all temperatures to $\tau = 0.07$.

313 5 EVALUATION

315 Similar to related work, we evaluate **EBind** on 13 different public benchmarks (See Table 11
316 in Appendix C for an enumeration). We report scores for three versions or our model;
317 **EBind-S1**, trained on our Split 1; **EBind-S2**, trained on Split 1 and 2; and **EBind-S3**, trained
318 on all three splits. On single NVIDIA A100 GPU with a 30-core 216GB RAM CPU, it
319 takes 15, 30, and 15 minutes, respectively, to train a model for epochs on each split. Further
320 details on non-trivial evaluations are provided in Appendix C. We compare **EBind** against
321 other text-image-audio-PC models; EX-MCR (Zhang et al., 2024b), PointBind (Guo et al.,
322 2023), and OmniBind (Wang et al., 2025). We note that as OmniBind-L and OmniBind-F
323 use a variant of Uni3D that was trained on Objaverse-LVIS (Deitke et al., 2023), those may
324 contain train-test leakage. We further report the performance of **EBind** on **EShot** to establish

Table 1: Cross-modal retrieval results ordered by model size. Model performance for models other than **EBind** are sourced from Wang et al. (2025). Best and second best result in **bold** and underlined, respectively. * may contain train-test data leakage.

Models	Size (B)	Audio-Text				Audio-Image				Image-Text				Points-Image		
		AudioCaps		Clotho		VGG-SS		FlickrNet		COCO		Flickr30K		Objaverse		
		R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@5
Ex-MCR	0.43	19.07	47.05	7.01	22.04	2.13	8.13	1.57	5.94	40.24	64.78	71.89	90.55	2.54	8.25	
PointBind	1	9.24	27.47	6.64	17.28	14.82	35.67	7.68	20.79	57.28	79.54	86.04	96.97	5.86	14.59	
EBind-S1		13.38	39.60	9.35	24.65	3.97	14.50	2.53	9.21					17.63	37.57	
EBind-S2	1.8	17.14	45.25	7.91	22.05	11.04	30.10	5.10	16.34	65.05 84.91 90.72 98.4				16.64	36.03	
EBind-S3		23.35	53.81	11.31	28.54	25.92 54.37 9.14 23.97								46.34	70.17	
OmniB-B	7.2	43.61	76.02	20.94	46.77	14.11	35.74	7.67	21.65	56.94	80.11	85.99	97.02	34.34*	58.40*	
OmniB-L	12.3	47.89	79.75	23.07	49.67	14.14	36.07	7.86	21.72	60.08	82.35	87.20	97.40	46.09*	69.11*	
OmniB-F	30.6	46.72	79.69	23.27	49.46	15.64	38.19	8.32	23.49	62.64	83.79	89.13	97.82	46.55*	69.92*	

a baseline for future work. To avoid reporting more results with leakage, we refrain from evaluating other models on **E**shot. Since **EBind** inherits its Text-Image performance from Perception Encoder Bolya et al. (2025) we report those only once as they do not change. We also avoid reporting video benchmarks as they will be identical to those in Bolya et al. (2025) and are not comparable to other models in this section. In Section 5.1 and 5.2 below, we focus on our best performing model **EBind-S3** and keep the analysis of our dataset splits to Section 5.3.

5.1 RETRIEVAL

Table 1 shows our performance on zero-shot retrieval tasks. Perhaps not surprisingly, we find that EBind-S3 is consistently outperforming models of smaller size (rows above). When comparing the model to those that are larger, we find that except for Audio-Text retrieval tasks, EBind-S3 is consistently amongst the two best models. On Image-Text and Audio-Text tasks, it even outperforms a model $17\times$ larger. While the Image-Text results are not surprising, as it is merely “reproductions” of results reported in Bolya et al. (2025), Audio-Image and Points-Image demonstrate how having a strong, frozen backbone can suffice. A particularly notable observation is that Uni3D quotes 45.8 on Objaverse-LVIS for their model *not* trained on the Objaverse-LVIS data and 55.3 for the one *with* that subset. We use the encoder without leakage and surpass the reported performance, indicating that our methodology is not fundamentally upper-bounded by the underlying encoders. Notably, all of the OmniBind model’s use a version of Uni3D that *has leakage* and fail to match the underlying performance.

While we have no concrete evidence as to why **EBind** cannot compete with the larger models on Text-Audio retrieval tasks, we do have two compelling hypotheses and an observation that may justify it. We chose to use the audio encoder from ImageBind Girdhar et al. (2023). It was not originally trained with a contrastive loss against text and was optimized against image rather. In turn, the embedding space may not be as easy to project onto that of Perception Encoder. This hypothesis is backed by Girdhar et al. (2023) reporting R@1 at 9.3 on AudioCaps and 6.0 on Clotho. The audio encoder further has less parameters than, the vision encoder (90M vs. 353M). We also observe that while all other modalities are supported by one encoder in OmniBind-B (the smallest version), audio has three underlying encoders, perhaps because one model alone did not work well. Finally, PointBind uses the same audio encoder as us but has lower scores, indicating that our data and training approach may still be relevant for Audio-Text.

5.2 ZERO-SHOT CLASSIFICATION

Table 2 displays our zero-shot retrieval results. **EBind** outperforms models of smaller sizes across all benchmarks. When looking at the OmniBind-B model, which is $4\times$ larger than ours, **EBind** performs best in a few cases but generally scores a bit lower. Two points worth noting are that i) six out of the 11 reported numbers are on PC benchmarks where we believe there may be train-test leakage for the OmniBind models and ii) on ImageNet, Bolya et al. (2025) report numbers that exceed those of OmniBind which we could not reproduce.

378 Table 2: Zero-shot classification results ordered by model size. Model performance for
 379 models other than **EBind** are sourced from Wang et al. (2025). Best and second best result
 380 in **bold** and underlined, respectively. * may contain train-test data leakage.

Model	Size (B)	Audio			Image		Points					
		AudioSet mAP	ESC-50 Top1	ESC-50 Top5	ImageNet Top1	ImageNet Top5	Objaverse Top1	Objaverse Top5	ScanObjectNN Top1	ScanObjectNN Top5	ModelNet40 Top1	ModelNet40 Top5
Ex-MCR	0.43	6.67	71.20	96.80	60.79	86.98	17.94	43.37	40.31	77.20	66.53	93.60
PointBind	1	13.96	67.25	87.50	76.13	94.22	13.83	30.34	55.05	86.89	76.18	97.04
EBind-S1		19.6	76.40	95.50			43.40	71.91	57.75	88.48	86.46	97.38
EBind-S2	1.8	14.34	75.80	92.40	<u>79.16</u>	94.92	42.08	70.95	56.92	87.27	86.12	96.80
EBind-S3		21.28	78.45	96.00			46.56	75.52	57.65	89.20	86.56	97.48
OBind-B	7.2	21.19	92.90	99.75	76.18	94.02	53.30*	<u>81.85*</u>	57.79	89.76	82.82	97.12
OBind-L	12.3	25.57	93.25	<u>99.80</u>	78.87	95.32	<u>53.97*</u>	82.90*	<u>64.67*</u>	<u>94.15*</u>	<u>86.55*</u>	<u>99.03*</u>
OBind-F	30.6	<u>25.14</u>	93.45	<u>99.85</u>	79.93	95.86	53.56*	81.82*	<u>64.67*</u>	<u>94.36*</u>	87.12*	<u>99.03*</u>

391 By inspecting the individual modalities, similar obser-
 392 vations can be made to the previous section. Namely,
 393 classifying audio is the weakest point, potentially for the
 394 same reason as above, and the inherited image classi-
 395 fication capabilities are strong. One difference lies in the
 396 reported scores from Uni3D on the Point benchmarks. On
 397 Objaverse-LVIS and ModelNet40, **EBind-S3** achieves sim-
 398 ilar scores to Uni3D (reported R@1 47.2 and 86.6, respec-
 399 tively). For ScanObjectNN, however, **EBind-S3** scores
 400 57.7 while Uni3D scores 66.5. We have no clear answer
 401 as to why this is the case.

402 **Eshot** To understand the abilities of **EBind** on Audio-Points tasks, we use **Eshot**. We
 403 report our numbers in Table 3 in the hope that the field will find it useful as to further the
 404 understanding of performance of multimodal retrieval models. Below, we further use the
 405 benchmark to analyze our dataset splits.

408 5.3 ANALYSIS OF DATASET SPLITS

410 In this section, we use Figure 1c on the front page, Table 1, and Table 2 to further ana-
 411 lyze the effect of the three dataset splits we employ. In Figure 1c, we have averaged all
 412 scores from the two tables (not including **Eshot**) and plotted them against model sizes.
 413 Orthogonal to the findings from OmniBind showing that scaling model parameters leads to
 414 better performance, we show that carefully curating the right data can similarly improve
 415 performance. Furthermore, the plot indicates that following that fully automated approach
 416 of matching data with retrieval models cannot stand alone. Both employing humans to
 417 segregate good from bad pairs (Split 2) and using already captioned / naturally paired data
 418 (Split 3) improves performance.

419 From considering the Audio related columns in Table 1 and 2, it is apparent that including
 420 Split 2 improves many benchmark, arguably by removing noise from the automatic pairs.
 421 However, the Point related benchmarks do generally not see the same effects. We attribute
 422 the reason to most existing point-evaluation benchmarks being tied to synthetic renders of
 423 PCs, either explicitly or implicitly via the way the benchmarks are constructed. Neither
 424 Split 1 nor Split 2 contain any PC renders, likely answering why performance remains low.

425 As indicated by Table 9 in the Appendix, we add captioned 3D PCs and their renders and see
 426 improvements on point-related benchmarks, especially on point-image retrieval. Similarly,
 427 we add both audio and visuals from many captioned video datasets which further increase
 428 both audio-image and audio-text performance. Based on these findings, we hypothesize that
 429 adding even more such “naturally paired” data further improve performance.

430 Finally, we observe that the R@1 performance on **Eshot** is negatively affected by Split 3.
 431 We attribute this to the fact that Split 1 and 2 have data that pairs audio and PCs while
 432 Split 3 does not. It remains an open question how to avoid such a problem of “forgetting.”

390
 391 Table 3: Zero-shot classification
 392 results on **Eshot**.

Models	R@1	R@5
EBind-S1	56.60	79.88
EBind-S2	64.27	85.79
EBind-S3	57.26	86.22

6 APPLICATIONS

Models like **EBind** have multiple applications. In this section, we briefly demonstrate two of them. In Figure 2, we show an example of querying a database of images, point clouds, videos, audio, and captions based on an image. **EBind-S3** is used to embed the query image of the cat to the left and an entire dataset of the five modalities: text, image, video, audio, and PC. Retrieval is done by the most similar item from the database based on the cosine similarity between the query and every embedding. As shown, the model identifies items from each modality that semantically relate to the query image.

In Figure 3, we used **EBind-S3** to embed pre-segmented objects from a point cloud scene and computed similarities to the word “Sofa.” As indicated by the colors (red indicating more similar), we can use the model to identify the object that is most likely to be a sofa. Arguably, such applications could find use in the physical artificial intelligence space.

These examples show how retrieval models, like ours, can have many applications. For more examples, please see Guo et al. (2023) that, builds a multimodal large language model on top of their retrieval model to enable it to “see PCs” and Girdhar et al. (2023) that demonstrates arithmetics on embeddings to fuse an embedding of a traffic sign image with a sound clip of rain into a query to identify images from city streets in rainy weather.

7 CONCLUSION

We present **EBind**; an Easy, data-centric, and parameter efficient model that **Binds** five different modalities into one coherent embedding space. Our core contributions includes achieving SOTA results while avoiding model and training complexity, and a carefully curated dataset that includes both fully automated; semi-automated, human-verified; and pre-existing captioned data. Finally, we introduce a new high-quality, consensus-verified zero-shot classification benchmark **EShot** to help guide future developments within the field.

8 FUTURE WORK

We see many potential improvements and applications of this work. Here, we name but a few. First, the human-verified data that we introduce may have even better use. For example, we do not propagate information about dataset statistics or similarity thresholds from Split 2 backward into the data that we assemble with Split 1 to elevate quality. Second, as we see the field of physical artificial intelligence and world-modeling gaining momentum, having truly multimodal models that can understand many sensors becomes increasingly valuable. As a consequence, our work shows that identifying more naturally paired modalities, similar to that of vision and audio in videos and PCs scanned with handheld cameras in Uy et al. (2019), could further improve performance. Finally, continuing to develop new and relevant evaluation datasets if of high importance for guiding the field.

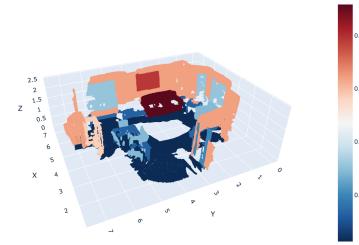


Figure 3: Zero-shot PC classification post segmentation.

486 9 REPRODUCIBILITY STATEMENT 487

488 As demonstrated in this paper, we have been careful to conduct our work with high data
489 standards. In continuation here of, we intend to make models, datasets, and code publicly
490 available to foster development in the field and enable reproducibility. Similarly, we will
491 publish all data IDs and their dataset origins used throughout the project.
492

493 REFERENCES 494

495 Mohammad Mahdi Abootorabi, Amirhosein Zobeiri, Mahdi Dehghani, Mohammadali Mo-
496 hammadkhani, Bardia Mohammadi, Omid Ghahroodi, Mahdieh Soleymani Baghshah,
497 and Ehsaneddin Asgari. Ask in any modality: A comprehensive survey on multimodal
498 retrieval-augmented generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
499 and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational
500 Linguistics, ACL 2025*, Vienna, Austria, July 27 - August 1, 2025, pp. 16776–16809.
501 Association for Computational Linguistics, 2025.

502 Jisheng Bai, Haohe Liu, Mou Wang, Dongyuan Shi, Wenwu Wang, Mark D Plumbley, Woon-
503 Seng Gan, and Jianfeng Chen. Audiosetcaps: An enriched audio-caption dataset using
504 automated generation pipeline with large audio and language models. *IEEE Transactions
505 on Audio, Speech and Language Processing*, 2025.
506

507 Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei,
508 Tengyu Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco
509 Monteiro, Hu Xu, Shiyu Dong, Nikhila Ravi, Daniel Li, Piotr Dollár, and Christoph
510 Feichtenhofer. Perception encoder: The best visual embeddings are not at the output of
511 the network. *CoRR*, abs/2504.13181, 2025. doi: 10.48550/ARXIV.2504.13181.

512 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-
513 scale audio-visual dataset. In *International Conference on Acoustics, Speech, and Signal
514 Processing (ICASSP)*, 2020.
515

516 Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Nagrani, Andrea Vedaldi, and An-
517 drew Zisserman. Localizing visual sounds the hard way. In *Proceedings of the IEEE/CVF
518 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16867–16876, June
519 2021.

520 Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, Weining Wang, Jinhui Tang, and
521 Jing Liu. VALOR: vision-audio-language omni-perception pretraining model and dataset.
522 *CoRR*, abs/2304.08345, 2023. doi: 10.48550/ARXIV.2304.08345. URL <https://doi.org/10.48550/arXiv.2304.08345>.
523

525 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
526 Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A
527 universe of annotated 3d objects. In *IEEE/CVF Conference on Computer Vision and
528 Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 13142–
529 13153. IEEE, 2023.

530 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
531 scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and
532 Pattern Recognition*, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.
533

534 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-
535 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library.
536 2024.

538 Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: An audio captioning
539 dataset. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP)*, pp. 736–740. IEEE, 2020.

540 Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. CLAP
541 learning audio concepts from natural language supervision. In IEEE International
542 Conference on Acoustics, Speech and Signal Processing ICASSP 2023, Rhodes Island,
543 Greece, June 4-10, 2023, pp. 1–5. IEEE, 2023.

544 Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng
545 Li, and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. Int.
546 J. Comput. Vis., 132(2):581–595, 2024.

548 Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
549 R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and
550 human-labeled dataset for audio events. In Proc. IEEE ICASSP 2017, New Orleans, LA,
551 2017.

552 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala,
553 Armand Joulin, and Ishan Misra. Imagebind one embedding space to bind them all.
554 In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023,
555 Vancouver, BC, Canada, June 17-24, 2023, pp. 15180–15190. IEEE, 2023.

556 Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin
557 Chen, Peng Gao, Xianzhi Li, Hongsheng Li, and Pheng-Ann Heng. Point-bind & point-
558 llm: Aligning point cloud with multi-modality for 3d understanding, generation, and
559 instruction following. CoRR, abs/2309.00615, 2023. doi: 10.48550/ARXIV.2309.00615.

560 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Vox-
561 poser: Composable 3d value maps for robotic manipulation with language models. In Jie
562 Tan, Marc Toussaint, and Kourosh Darvish (eds.), Conference on Robot Learning, CoRL
563 2023, 6-9 November 2023, Atlanta, GA, USA, volume 229 of Proceedings of Machine
564 Learning Research, pp. 540–562. PMLR, 2023.

566 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Gen-
567 erating captions for audios in the wild. In NAACL-HLT, 2019.

568 Fanheng Kong, Jingyuan Zhang, Yahui Liu, Hongzhi Zhang, Shi Feng, Xiaocui Yang, Daling
569 Wang, Yu Tian, Victoria W., Fuzheng Zhang, and Guorui Zhou. Modality curation:
570 Building universal embeddings for advanced multimodal information retrieval. CoRR,
571 abs/2505.19650, 2025. doi: 10.48550/ARXIV.2505.19650.

573 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping
574 language-image pre-training with frozen image encoders and large language models. In
575 Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
576 and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
577 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
578 Research, pp. 19730–19742. PMLR, 2023.

579 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
580 Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
581 European conference on computer vision, pp. 740–755. Springer, 2014.

582 Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han,
583 Hong Cai, Fatih Porikli, and Hao Su. Openshape: Scaling up 3d shape repre-
584 sentation towards open-world understanding. In Alice Oh, Tristan Naumann, Amir
585 Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
586 Neural Information Processing Systems 36: Annual Conference on Neural Information
587 Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
588 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/8c7304e77c832ddc70075dfee081ca6c-Abstract-Conference.html.

591 Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong, Tom Ko, Chengqi Zhao, Mark D.
592 Plumbley, Yuexian Zou, and Wenwu Wang. Wavcaps: A chatgpt-assisted weakly-labelled
593 audio captioning dataset for audio-language multimodal research. IEEE ACM Trans.
Audio Speech Lang. Process., 32:3339–3354, 2024.

594 Siyuan Mu and Sen Lin. A comprehensive survey of mixture-of-experts: Algorithms, theory,
595 and applications. [CoRR](#), abs/2503.07137, 2025. doi: 10.48550/ARXIV.2503.07137.
596

597 Karol J. Piczak. ESC: dataset for environmental sound classification. In Xiaofang Zhou,
598 Alan F. Smeaton, Qi Tian, Dick C. A. Bulterman, Heng Tao Shen, Ketan Mayer-
599 Patel, and Shuicheng Yan (eds.), [Proceedings of the 23rd Annual ACM Conference on](#)
600 [Multimedia Conference, MM '15, Brisbane, Australia, October 26 - 30, 2015](#), pp. 1015-
601 1018. ACM, 2015.

602 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
603 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
604 Ilya Sutskever. Learning transferable visual models from natural language supervision. In
605 Marina Meila and Tong Zhang (eds.), [Proceedings of the 38th International Conference on](#)
606 [Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event](#), volume 139 of [Proceedings](#)
607 [of Machine Learning Research](#), pp. 8748-8763. PMLR, 2021.

608 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
609 text-conditional image generation with CLIP latents. [CoRR](#), abs/2204.06125, 2022. doi:
610 10.48550/ARXIV.2204.06125.

611 Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon. Learning
612 to localize sound source in visual scenes. In [Proceedings of the IEEE Conference on](#)
613 [Computer Vision and Pattern Recognition \(CVPR\)](#), June 2018.

614 Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. Safety-enhanced au-
615 tonomous driving using interpretable sensor fusion transformer. In Karen Liu, Dana Kulic,
616 and Jeffrey Ichniowski (eds.), [Conference on Robot Learning, CoRL 2022, 14-18 December](#)
617 [2022, Auckland, New Zealand](#), volume 205 of [Proceedings of Machine Learning Research](#),
618 pp. 726-737. PMLR, 2022.

619 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions:
620 A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Iryna
621 Gurevych and Yusuke Miyao (eds.), [Proceedings of the 56th Annual Meeting of the](#)
622 [Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,](#)
623 [2018, Volume 1: Long Papers](#), pp. 2556-2565. Association for Computational Linguistics,
624 2018. doi: 10.18653/V1/P18-1238. URL <https://aclanthology.org/P18-1238/>.

625 Shezheng Song, Xiaopeng Li, Shasha Li, Shan Zhao, Jie Yu, Jun Ma, Xiaoguang Mao,
626 Weimin Zhang, and Meng Wang. How to bridge the gap between modalities: Survey
627 on multimodal large language model. [IEEE Trans. Knowl. Data Eng.](#), 37(9):5311-5329,
628 2025.

629 Andreas Steiner, André Susano Pinto, Michael Tschannen, Daniel Keysers, Xiao Wang,
630 Yonatan Bitton, Alexey A. Gritsenko, Matthias Minderer, Anthony Sherbondy, Shang-
631 bang Long, Siyang Qin, R. Reeve Ingle, Emanuele Bugliarello, Sahar Kazemzadeh,
632 Thomas Mesnard, Ibrahim Alabdulmohsin, Lucas Beyer, and Xiaohua Zhai. Paligemma
633 2: A family of versatile vlms for transfer. [CoRR](#), abs/2412.03555, 2024. doi: 10.48550/
634 ARXIV.2412.03555.

635 Quan Sun, Jinsheng Wang, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, and
636 Xinlong Wang. Eva-clip-18b: Scaling clip to 18 billion parameters. [arXiv preprint](#)
637 [arXiv:2402.04252](https://arxiv.org/abs/2402.04252), 2024.

638 Zhiyu Tan, Xiaomeng Yang, Luozheng Qin, and Hao Li. Vidgen-1m: A large-scale dataset
639 for text-to-video generation. [CoRR](#), abs/2408.02629, 2024. doi: 10.48550/ARXIV.2408.
640 02629. URL <https://doi.org/10.48550/arXiv.2408.02629>.

641 Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit
642 Yeung. Revisiting point cloud classification: A new benchmark dataset and classification
643 model on real-world data. In [2019 IEEE/CVF International Conference on Computer](#)
644 [Vision, ICCV 2019, Seoul, Korea \(South\), October 27 - November 2, 2019](#), pp. 1588-
645 1597. IEEE, 2019.

648 Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
649 predictive coding. *CoRR*, abs/1807.03748, 2018.
650

651 Thang Vu, Kookhoi Kim, Tung Minh Luu, Thanh Xuan Nguyen, and Chang D. Yoo.
652 Softgroup for 3d instance segmentation on point clouds. In *IEEE/CVF Conference on*
653 *Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June*
654 *18-24, 2022, pp. 2698–2707. IEEE*, 2022.

655 Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt J. Kusner. Unsupervised
656 point cloud pre-training via occlusion completion. In *2021 IEEE/CVF International*
657 *Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17,*
658 *2021, pp. 9762–9772. IEEE*, 2021.

659 Zehan Wang, Yang Zhao, Xize Cheng, Haifeng Huang, Jiageng Liu, Aoxiong Yin, Li Tang,
660 Linjun Li, Yongqi Wang, Ziang Zhang, and Zhou Zhao. Connecting multi-modal con-
661 trastive representations. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
662 Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing*
663 *Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS*
664 *2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023.

665 Zehan Wang, Ziang Zhang, Minjie Hong, Hang Zhang, Luping Liu, Rongjie Huang, Xize
666 Cheng, Shengpeng Ji, Tao Jin, Hengshuang Zhao, and Zhou Zhao. OmniBind: Large-
667 scale omni multimodal representation via binding spaces. In *The Thirteenth International*
668 *Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. Open-*
669 *Review.net*, 2025.

670 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo
671 Dubnov. Large-scale contrastive language-audio pretraining with feature fusion and
672 keyword-to-caption augmentation. In *ICASSP 2023-2023 IEEE International Conference*
673 *on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

674 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
675 Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In *IEEE*
676 *Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,*
677 *USA, June 7-12, 2015, pp. 1912–1920. IEEE Computer Society*, 2015.

678 Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming Xiong, Ran
679 Xu, Juan Carlos Niebles, and Silvio Savarese. ULIP: learning a unified representation of
680 language, images, and point clouds for 3d understanding. In *IEEE/CVF Conference on*
681 *Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June*
682 *17-24, 2023, pp. 1179–1189. IEEE*, 2023.

683 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to
684 visual denotations: New similarity metrics for semantic inference over event descriptions.
685 *Transactions of the association for computational linguistics*, 2:67–78, 2014.

686 Yuqian Yuan, Hang Zhang, Wentong Li, Zesen Cheng, Boqiang Zhang, Long Li, Xin Li,
687 Deli Zhao, Wenqiao Zhang, Yuetong Zhuang, Jianke Zhu, and Lidong Bing. Videorefer
688 suite: Advancing spatial-temporal object understanding with video LLM. In *IEEE/CVF*
689 *Conference on Computer Vision and Pattern Recognition, CVPR 2025, Nashville,*
690 *TN, USA, June 11-15, 2025, pp. 18970–18980. Computer Vision Foundation / IEEE,*
691 *2025. doi: 10.1109/CVPR52734.2025.01767. URL [https://openaccess.thecvf.com/](https://openaccess.thecvf.com/content/CVPR2025/html/Yuan_VideoRefer_Suite_Advancing_Spatial-Temporal_Object_Understanding_with_Video_LLM_CVPR_2025_paper.html)*
692 *content/CVPR2025/html/Yuan_VideoRefer_Suite_Advancing_Spatial-Temporal_*
693 *Object_Understanding_with_Video_LLM_CVPR_2025_paper.html*.

694 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for lan-
695 guage image pre-training. In *IEEE/CVF International Conference on Computer Vision,*
696 *ICCV 2023, Paris, France, October 1-6, 2023, pp. 11941–11952. IEEE*, 2023.

697 Bingfeng Zhang, Siyue Yu, Yunchao Wei, Yao Zhao, and Jimin Xiao. Frozen CLIP: A
698 strong backbone for weakly supervised semantic segmentation. In *IEEE/CVF Conference*
699 *on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June*
700 *16-22, 2024, pp. 3796–3806. IEEE*, 2024a.

702 Ziang Zhang, Zehan Wang, Luping Liu, Rongjie Huang, Xize Cheng, Zhenhui Ye, Wang
703 Lin, Huadai Liu, Haifeng Huang, Yang Zhao, Tao Jin, Siqi Zheng, and Zhou Zhao. Ex-
704 tending multi-modal contrastive representations. In Amir Globersons, Lester Mackey,
705 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
706 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on*
707 *Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,*
708 *December 10 - 15, 2024*, 2024b.

709
710 Junsheng Zhou, Jinsheng Wang, Baorui Ma, Yu-Shen Liu, Tiejun Huang, and Xinlong
711 Wang. Uni3d: Exploring unified 3d representation at scale. In *The Twelfth International*
712 *Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*.
713 OpenReview.net, 2024.

714
715 Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Hongfa Wang, Yatian Pang, Wen-
716 hao Jiang, Junwu Zhang, Zongwei Li, Caiwan Zhang, Zhifeng Li, Wei Liu, and Li Yuan.
717 Languagebind: Extending video-language pretraining to n-modality by language-based se-
718 mantic alignment. In *The Twelfth International Conference on Learning Representations,*
719 *ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.

724 A TRAINING DATASET DETAILS

726 A.1 PRE-PROCESSING

728 To ensure high-quality pairing between modalities, we first filter the source datasets. We ex-
729 clude text captions (Google Conceptual Captions (Sharma et al., 2018)) with poor grammar
730 or those lacking clear references to visual or auditory concepts.

731 Similarly, as VidGen Tan et al. (2024) and VidRefer Yuan et al. (2025) video were originally
732 we created for vision–text retrieval tasks, some of their videos lack a clear correspondence
733 to the attached videos. We build a filtering pipeline to exclude such videos from our data
734 pool.

737 A.2 PAIRING MODALITIES THROUGH TEXT

739 We create (mod-1, text, mod-2) triples using a public (mod-1, text) dataset and a pool of
740 mod-2 data, pairing them through text. In particular, for each unique text, we find the eight
741 best matches in mod-2 using the models listed in Table 10, and select three of those to show
742 the annotators for verification. The reason to start with the top eight matches is to increase
743 diversity. We consider the (text, mod-2) candidate pairings as a bi-partite graph, with an
744 edge between each text to the eight mod-2 candidates, we then use the greedy algorithm
745 listed in Algorithm 1 to find a large matching between text and mod-2.

747 A.3 HUMAN VERIFICATION

749 We run a separate human verification project for each (mod-1, mod-2) pair, working with
750 18 annotators. In each project, show each annotator three (text, mod-2) candidates and
751 ask them to label each candidate as a match, partial match, or no match. We randomize
752 the order in which the three candidates to prevent the better candidates to appear on the
753 same side of the screen. Even though the annotators are shown the three candidates for
754 the same text caption all at once. Figures 4 and 5 show examples of pairs shown to the
755 annotators in the project instructions, along with their correct labels. The label statistics
for each annotation project are shown in Table 5.

Algorithm 1 Similarity-Prioritized Greedy Matching

```

756
757 1: Input: Text embeddings  $\mathcal{T}$ , Modality 2 embeddings  $\mathcal{M}$ , parameters  $k, n, m$ 
758 2: Output: Set of paired datapoints  $\mathcal{P}$ 
759 3: Retrieve top  $k = 8$  neighbors for each text embedding
760 4: Create candidate pairs  $\mathcal{C} = \{(t_i, m_j, s_{ij})\}$  where  $s_{ij}$  is similarity score
761 5: Sort  $\mathcal{C}$  by similarity score in descending order
762 6: Initialize text\_seen  $\leftarrow \{\}$ , modality2\_seen  $\leftarrow \{\}$ 
763 7: Initialize  $\mathcal{P} \leftarrow \emptyset$ 
764 8: for each  $(t, m, s) \in \mathcal{C}$  do
765 9:   if text\_seen[ $t$ ]  $\geq n$  then
766 10:    continue
767 11:   end if
768 12:   if modality2\_seen[ $m$ ]  $\geq m$  then
769 13:    continue
770 14:   end if
771 15:   text\_seen[ $t$ ]  $\leftarrow$  text\_seen[ $t$ ] + 1
772 16:   modality2\_seen[ $m$ ]  $\leftarrow$  modality2\_seen[ $m$ ] + 1
773 17:    $\mathcal{P} \leftarrow \mathcal{P} \cup \{(t, m, s)\}$ 
774 18: end for
775 19: return  $\mathcal{P}$ 
776
777

```

778 Table 4: Counts of unique data items in each annotation project in Split 2. Leftmost column
779 shows the datasets that contribute to each project, with the *italicized* datasets contributing
780 the captions. & delineates the two different modalities whilst + indicates a disjoint union
781 within the same modality.

782

783 Dataset	784 Audio	785 Images	786 PCs	787 Captions	788 Video
789 <i>Valor</i> (Chen et al., 2023) & OpenShape	104,832	-	159,810	104,832	104,832
790 <i>GCC</i> & VGGSound + AudioSet	91,553	53,478	-	53,478	-
791 <i>Flickr</i> & AudioSet + VGGSound	46,843	21,241	-	43,664	-
792 <i>audiocaps</i> & OpenShape	25,434	-	27,994	24,584	-
793 <i>audiocaps</i> & ImageNet + GCC	23,377	37,645	-	22,878	-
794 <i>COCO</i> + <i>Flickr</i> & OpenShape	-	48,487	107,379	82,989	-
795 Total	292,039	160,851	295,183	332,425	104,832

805 (a) The sound of cooking food
806 in oil or another fat - Match.
807

808 (b) The sound of cooking food
809 in oil or another fat - Partial
810 Match.

(c) Creaky squeaking occurs
as a machine runs - No Match.

811 Figure 4: Examples used in annotator instructions in an audio-caption-to-image pairing
812 project

810
811
812 Table 5: Label statistics in each annotation project.
813
814
815
816
817
818

Dataset	Good	Partial	No Match	Total
<i>Valor</i> & OpenShape	266,686 (81.7%)	19,244 (5.9%)	40,464 (12.4%)	326,394
<i>GCC</i> & VGGSound + AudioSet	68,277 (58.5%)	22,730 (22.2%)	22,730 (13.9%)	163,987
<i>Flickr</i> & VGGSound + AudioSet	69,481 (48.5%)	46,585 (32.5%)	27,137 (27.1%)	143,203
<i>AudioCaps</i> & ImageNet + GCC	58,536 (48.5%)	22,246 (32.5%)	3,129 (20.0%)	83,911
<i>AudioCaps</i> & OpenShape	66,197 (75.5%)	–	21,446 (24.5%)	87,643
<i>COCO</i> + <i>Flickr</i> & OpenShape	232,096 (87.3%)	–	33,769 (12.7%)	265,865

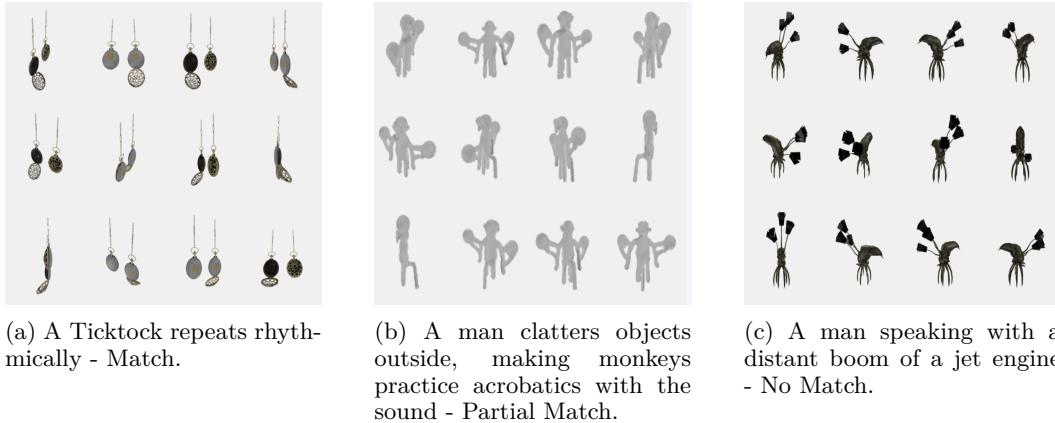


Figure 5: Examples used in annotator instructions in an Audio-caption-to-object pairing project

Figure 6: Examples used in annotator instructions in the audio-PC pairing project

B ESHOT: ZERO-SHOT PC-AUDIO EVALUATION DATASET

858
859
860
861
862
863
To prevent leakage into training sets of our models as well as others, we construct our evaluation set from existing public evaluation sets. Specifically, we use the AudioSet evaluation set as our audio corpus and Objaverse LVIS as our video corpus. As these are both classification datasets, respectively containing 527 and 1,156 classes, they contain several items per class that are effectively impossible to distinguish, e.g., most sounds of a car engine can be reasonably matched with most PCs of a car. This leads us to instead develop a zero-shot PC-audio evaluation dataset.

864
865
866 Table 6: Text captions sourced from respective datasets.
867

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Dataset	868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Number of captions
AudioCaps	67,335
AudioSetCaps (Bai et al., 2025) (VGGSound subset)	179,677
AudioSetCaps (AudioSet subset)	1,869,906
COCO	566,146
Flickr	147,303
Google Conceptual Captions (GCC)	524,108
OpenShape (BLIP subset)	435,507
OpenShape (MSFT subset)	335,039
Valor	1,140,010
VidRefer	360,594
Vidgen	1,004,156
WavCaps	80,779
Total	6,710,560

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
Table 7: Non-text items sourced from public datasets.

884 885 886 887 888 889 890 891 892 893 Dataset	884 885 886 887 888 889 890 891 892 893 Audio	884 885 886 887 888 889 890 891 892 893 Images	884 885 886 887 888 889 890 891 892 893 Object	884 885 886 887 888 889 890 891 892 893 Video
InternVid	1,999,975	-	-	1,999,960
AudioSet	1,755,876	-	-	1,802,084
VidGen 1M	880,733	-	-	896,308
VidReferer	528,493	-	-	518,399
VGGSound	126,465	-	-	167,772
GCC	-	2,229,110	-	-
ImageNet	-	1,279,867	-	-
OpenShape	-	-	827,783	-
Total	5,291,542	3,508,977	827,783	5,386,523

896 As with our training sets, we first automatically pair the two modalities through text captions, using SOTA retrieval models. We then run every pair through a human consensus
897 check and admit only those pairs where three annotators label as positive matches. Figure
898 6 shows examples of audio-PC pairs shown to annotators in the instructions, along
899 with their correct annotations. The consensus project yields 1,775 unique audio items,
900 and 1,763 unique items, covering 381 LVIS classes. However, as some of the classes are
901 indistinguishable with audio signals, we manually refine them by first correcting misclassified
902 items, and merging indistinguishable classes. We then split broader classes into finer
903 ones when possible—e.g., we split ‘boat’ into ‘motor boat’ and ‘sail boat’ classes, which are
904 distinguishable by audio. This results in 112 classes.
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919 Table 8: Counts of unique data (non-text) contributions of each source dataset to Split 1.
920

921

Dataset	Audio	Images	Point Clouds	Video
AudioSet	333,901	-	-	393,395
InternVid	174,185	-	-	524,514
VidGen 1M	142,441	-	-	368,589
VidReferer	54,632	-	-	144,044
VGGSound	42,327	-	-	35,995
GCC	-	865,303	-	-
ImageNet	-	223,779	-	-
OpenShape	-	-	209,165	-
Total	747,486	1,089,082	209,165	1,446,537

922
923
924
925
926
927
928
929
930
931
932
933
934
935 Table 9: Unique item counts of each dataset in Split 3.
936

937

Dataset	Audio	Images	Points	Captions	Videos
Valor	998,320	-	-	998,320	998,320
AudioSet \ {Valor}	642,574	-	-	642,574	642,574
Vidgen	408,095	-	-	408,095	408,095
VidRefer	230,883	-	-	230,905	230,883
VGGSound	120,264	-	-	120,264	120,264
WavCaps	91,482	-	-	91,482	-
AudioCaps	85,761	-	-	84,837	-
Clotho	3,838	-	-	19,190	-
OpenShape w. Renders	-	820,692	820,692	325,853	-
Total	2,581,217	820,692	820,692	3,416,359	2,400,136

949
950
951
952 Table 10: Embedding models used in the project. URLs point to model checkpoint. Index
953 indicates when the model was used to build our search databases. Model indicates encoders
954 used in EBind. A: Audio, I: Image, V: Video, P: Point Cloud, and T: Text. S1 and S2
955 indicate Split 1 and 2, respectively.

956

Model	Index (S1)	Index (S2)	Model
PE Core-L14-336 Bolya et al. (2025) https://huggingface.co/facebook/PE-Core-L14-336 Note: we use <code>torch.amp.autocast('cuda', dtype=torch.float16)</code> for PE.	IVT	-	IVT
EVAClip-18B Sun et al. (2024) https://huggingface.co/BAAI/EVA-CLIP-18B	-	IVT	-
WavCaps (HTSAT-BERT-PT) Mei et al. (2024) https://drive.google.com/drive/folders/1MeTBren6LaLWiZI8_phZvHvzz4r9QeCD	AT	-	-
LAION CLAP Wu et al. (2023) https://huggingface.co/laion/larger_clap_general	-	AT	-
ImageBind (Huge) Girdhar et al. (2023) https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth	-	-	A
Uni3D (G-no-LVIS) Zhou et al. (2024) https://huggingface.co/BAAI/Uni3D/tree/main/modelzoo/uni3d-g-no-lvis	PT	PT	P

972 C EVALUATION DETAILS
973

974 Here we list the non-trivial processing steps we followed when evaluating our models.
975

976 **Retrieval:** Clotho, COCO, and Flickr30K, all have multiple text captions for each data
977 item of the other modality. In calculating text recall@k from the other modality, we consid-
978 ered retrieval a success if any of the captions were in the top-k. For the opposite retrieval
979 direction, we considered each caption to be a separate item and averaged their recall results
980 as usual. To the best of our understanding, this is consistent with how all other models we
981 benchmark against have been evaluated.

982 **Zero-shot Classification:** We found , we found prompt templating to help on ImageNet
983 and ModelNet40. That is, instead of using a single prompt to calculate the embedding
984 for each class, we calculated the average embeddings over several prompt templates and
985 took the mean embedding as the class representative. In particular, we used Perception En-
986 coder’s prompt templates (Bolya et al., 2025, Appendix B.1.2) for ImageNet and PointBind’s
987 templates³ for ModelNet40.
988

989 D USAGE OF LARGE LANGUAGE MODELS
990

991 As in most modern workflows, we use large language models (LLMs) to conduct our work.
992 While tap-completions have been enabled in our text editors, we have not included work
993 solely done by LLMs on the behalf of Humans. In other words, LLMs have been used for
994 writing template code and expand some bulleted lists into first drafts of paper sections.
995 However, no sentence is without human involvement and no citations were added by LLMs.
996 In continuation here of, every citation has been verified by humans. We are confident that
997 we have operated well within what is considered appropriate for the conference.
998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

³https://github.com/ZiyuGuo99/Point-Bind_Point-LLM/blob/main/data/templates.json

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045 Table 11: Benchmarks used to evaluate **EBind**. Zero-shot means zero-shot classification and
1046 Retrieval means cross-modal retrieval between two modalities.
1047

1048	Task	Modality	Benchmark	Items	Classes
1049	Zero-shot	Audio	AudioSet Gemmeke et al. (2017) ESC-50 Piczak (2015)	17,141 2,000	527 50
1050		Image	ImageNet1K Deng et al. (2009)	50,000	1000
1051		Points	Objaverse-LVIS Deitke et al. (2023)	46,205	1156
1052			ScanObjNN Uy et al. (2019) ModelNet40 Wu et al. (2015)	2,890 2,467	15 40
1053		Audio-Points	EShot (ours)	3,538	112
1054		Audio-Text	AudioCaps Kim et al. (2019) Clotho Drossos et al. (2020)	957 27,905	- -
1055	Retrieval	Audio-Image	VGG-SS Chen et al. (2021) FlickrNet Senocak et al. (2018)	5,116 5,000	- -
1056		Audio-Text	COCO Lin et al. (2014)	5,000	-
1057		Points-Image	Flickr30K Young et al. (2014)	1,000	-
1058		Objaverse-LVIS Deitke et al. (2023)	46,205	-	
1059					
1060					
1061					
1062					
1063					
1064					
1065					
1066					
1067					
1068					
1069					
1070					
1071					
1072					
1073					
1074					
1075					
1076					
1077					
1078					
1079					