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Abstract

Audio perception is a key to solving a variety
of problems ranging from acoustic scene analy-
sis, music meta-data extraction, recommendation,
synthesis and analysis. It can potentially also aug-
ment computers in doing tasks that humans do
effortlessly in day-to-day activities. This paper
builds upon key ideas to build perception of touch
sounds without access to any ground-truth data.
We show how we can leverage ideas from clas-
sical signal processing to get large amounts of
data of any sound of interest with a high preci-
sion. These sounds are then used, along with the
images to map the sounds to a clustered space
of the latent representation of these images using
neural architectures. The model trained to map
sounds to this clustered representation, gives rea-
sonable performance in mapping to the respective
image associated with the sound, as opposed to
expensive methods collecting a lot of human anno-
tated data. Such approaches can be used to build
a state of art perceptual model for any sound of
interest described using a few signal processing
features. This would not been achieved by di-
rectly mapping to the sound to latent space of the
images (like SoundNet) due to data imbalancing
issues, and relative short duration of such sounds.
Daisy chaining high precision sound event detec-
tors using signal processing combined with neural
architectures and high dimensional clustering of
unlabelled data is a vastly powerful idea, and can
be explored in a variety of ways in the future.”
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1. Introduction

Audio scene understanding has been a subject that has been
studied in depth for the past couple of decades (Bregman,
1994). In addition to making computers understand human
speech, giving them the capabilities to hear and understand
everyday sound has enormous applications. Giving comput-
ers ability to hear, see and speak on par with humans has
been a long standing vision of early works in artificial in-
telligence (Papert, 1966). With the advent of convolutional
models early success in vision-based CNN architectures has
been translated to audio based research with proportionate
gains in performance (Hershey et al., 2017). Various ar-
chitectures from vision and natural processing have been
successfully deployed to solve various problems in audio
transformations (Haque et al., 2018), style transfer (Verma
& Smith, 2018), speech recognition (Chan et al., 2015),
learning latent representations (Haque et al., 2019), speech
to speech translation (Guo et al., 2019), synthesis (Wang
et al., 2017), perception (Verma & Berger, 2019). One ap-
plication of learning good perception model has been in
robotics in problems such as insertion and grasping. The
work by (Lee et al., 2019) used shared latent representation
across modalities such as vision, touch to solve the prob-
lem of interest. In the future, one can imagine that these
latent-based representations will be universal irrespective
of the domain to solve a particular task. For robotics, these
have already been shown to advance the state of the art in
problems with supervised/unsupervised approaches. Our
work explores how we can augment similar auditory based
representations. Additionally, we also propose to have these
models learn from actual vast amounts of unlabelled data
e.g. YouTube to solve a particular perception task in our
case. The addition of sound in robotics application has been
relatively untapped and may likely augment existing vision
and touch based sensors in the future given similarities in
learning algorithms and architectures in these domains (Lee
et al., 2019). This work builds one such sub-block, namely
can we build a perceptual model for any sound of interest for
robotic application. Such models have similar architecture
as existing one proposed in (Lee et al., 2019) and will help
in learning latent representations for a particular scenario of
interest e.g. scratching, rubbing, tapping. There have been
works which build perceptual models for sound of interest



Unsupervised Learning of Audio Perception: Learning to Project Data to UMAP space

Figure 1. Diagram from (Owens et al., 2016) indicating creation of
a dataset to record sounds while recording video of impact sound
caused by beating a stick to different objects. This approach is
not scalable to collect a lot of diverse types of data, and is time
consuming.

by collecting vast amounts of data (Hershey et al., 2017).
The work done by (Owens et al., 2016) tapped a variety of
objects to predict the sound and material properties using
touch sound as shown in Figure 1. However, such data col-
lection is expensive as it uses a lot of resources, and cannot
be scaled for a wider context and interactions. In this work,
we propose a method of unsupervised learning a perceptual
model for signals of interest, viz. touch sounds by daisy
chaining signal processing to get sounds of interest with a
high precision. We then use convolutional architectures to
learn how to project sounds to a uniform manifold approxi-
mation space (Mclnnes et al., 2018) of the corresponding
images. This bypasses the need of any labelled data.

2. Data-set

We took as input 5000 YouTube videos from a variety of
real world scenarios. A subset of AudioSet (Gemmeke et al.,
2017) corpus was chosen, which consisted of sounds like
chop, tap, rub, slap, hammer etc. Due to building a high
precision detector, we had a total of 3000 training examples,
with some chosen for validation and testing. Given the avail-
ability of such datasets like YouTube-8M (Abu-El-Haija
et al., 2016) and AudioSet, in the future, this can be scaled
across a large variety of scenarios. We do not work with
the availability of pretrained embeddings, as they are only
trained for a particular application, and are not trained to
infer fine-grained distinctions, i.e. in our case various types
of sounds of touch.

3. Methodology

This section explain the ideas and methods that we have
discussed so far to build a perceptual model of interest that
can extract latent represetation of the sound of interest, and
can successfully map the contents of the audio signal to a
semantically meaningful space.

3.1. Signal Processing to Understand Sounds

A rich literature of hand crafted features was developed to
capture various time and frequency domain characteristics

Figure 2. Spectral onsets computed for each of the time points in
the spectogram. They have a strong correlation with impact and
touch sounds

before the advent of deep learning (Peters, 2003 (accessed
February 8, 2020). We explain a few of these, in order to
better motivate and emphasize their use. Some of the fea-
tures that have been used both at a micro and macro level
are zero crossings, spectral centroid, spectral flatness, onset
strength, energy contour. Figure 2 explains a method of com-
puting onset strength at each of the points in log-magnitude
spectogram with the height of the red curve depicting the
strength of the onset. We will explore a few of these features
as described in the next section.

3.2. Detecting Sounds with High Precision

From the rich variety of features available to us, we explore
how to characterize touch/impact sounds for the current
work. Consider a time domain signal z[k] and its corre-
sponding spectogram denoted as X [k, m] where k denotes
the k" frequency bin computed at time instance m typically
every 10ms. We denote the following features as follows:
Energy contour, E[n] is defined as,

Eln] =Y |X[k,n]| (1)

Spectral centroid, as the name suggests is the center of mass
of each of the spectral slices X[, n] and computed as the
weighted average of the spectral weights over the spectral
bin indices. Figure 3 describes the spectral centroid and the
energy onsets of a setting where some utensils were moved
and dropped. Spectral flatness SF'[n], is defined as,

i) = Vi XD

= 0 | X[k, )|

(@)

Spectral flatness is a measure of the impulsiveness of the
sound or how the spectral spread of the spectral slice is
across the frequency bins. Additionally, we also describe
the spectral attributes or changes in terms of onsets.

A onset function O[n], computed every 10ms is,
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Figure 3. Example of a spectogram (top), energy onsets (middle)
and spectral centroid of the spectogram slice (bottom)

N

Oln] =Y {H(X[kn]| — |X[k,n =1} 3

k=1

where the half wave rectification function is defined as
H(z)= le% Another attribute, the number of zero cross-
ings is defined as the number of times signal crosses the
mean value in the waveform domain, quite often 0. Pe-
riodic signals will have a small average zero crossings in
a frame whereas noisy/impulsive signals will have larger
values. The touch sounds can be characterized using the
following observations i) they consist of relative peaks in
the energy envelope irrespective of the background noise
present if any, ii) they usually are a wide-band event hav-
ing a wide spectral spread as they are often associated with
impulsive events iii) they exhibit peaks in spectral onsets.
A smoothed energy contour is computed, and in addition
to peaks, we also compare the depth of the peaks to corre-
late it with the impact/touch sound. In addition, we search
for peaks in spectral flatness above a threshold and relative
onset strength. We choose to build the models with a high
precision and relatively poor recall. The Figure 4 describes
a energy contour with the choice of the points chosen in red,
in building a high precision detector.

3.3. Building Deep Learning Models

There has been a rich variety of work which uses convo-
lutional and recurrent models to build audio understand-
ing systems (Hershey et al., 2017) (Verma et al., 2019).
Sound-Net (Aytar et al., 2016) leveraged a state of the art
image understanding system to understand the contents of
the audio signal, with a mean squared error loss to train
a convolutional net to map wave-forms to latent space of
images. However, such approaches do not work for the
current problem of interest in building perceptual models
for touch/impact sounds. These sounds are often too small,
roughly around 40-100ms. Trying to map these sounds to
the latent spaces, often ends up learning other sounds than
the touch sounds due to data imbalancing problems. Given
a spectra of say 10sec, such sounds will only account for
less than 1% of the frames and the minimization criteria
will only optimize the errors present in other 99% of the

Figure 4. Original Spectogram (top) along with the energy contour
and peaks chosen in red for training our system.

Figure 5. Example of the sounds and the corresponding images.
The representation is a log magnitude linear spectogram with 129
bins and the duration of 200ms. Notice how we achieve rich variety
along with the images as opposed to (Owens et al., 2016)

data points most of the times. The data imbalance problem
in machine learning is still an active area of research, and
people often mitigate such issues with sub-sampling, loss
functions. However, trying to build such models in unsu-
pervised setting is difficult to do as we are not aware of
the position of sampling. The pretrained latent space (e.g.
ImageNet Embeddings) characterizes the salient contents
of the image, and not necessarily the subtle characteristics
present for distinguishing the sounds. For all the three
of the cases in Figure 5, the image embeddings will give a
salient weightage of humans/person but the corresponding
sound describe three distinct events namely slapping, skate-
boarding and placing a glass on a table. We can argue that
we can have additional constraints like incorporation of a
multi-category loss (Aytar et al., 2016), but it would not help
us in understanding the contents and its correspondence to
the other images present in the dataset. Instead of focus-
ing on having diverse embeddings as target and addition of
metadata information, we focus purely on a approach based
on clustering. This will also mitigate the need to predict the
non-salient parts of the images, e.g. person, drinks in the
background etc present in the latent code. (Arandjelovic &
Zisserman, 2017) produced meaningful results in learning
latent representations for both images and sounds . This
paper explores yet another way to learn unsupervised latent
representations for the problem of interest, in this case audio
perception of touch sounds.

3.4. Uniform Manifold Approximation

Uniform manifold approximation and projection (McInnes
et al., 2018) is currently a state of the art clustering and
dimension reduction algorithm that uses graph theory, fuzzy
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Figure 6. The basic architecture of the system. All of the images are clustered using unsupervised algorithm to map them to their UMAP
space. A CNN architecture then learns to map the corresponding audio snippet, to their 2-D point in the UMAP space, which acts as a
supervision to train the model. For mapping of a set of audio samples to their corresponding points in UMAP space, from a test set, the
average error was depicted as the red square. Sampling from the red square show that the images form a semantically meaningful cluster

often depicting the same category of sounds.

sets and topology. Across several datasets, it has been shown
to retain the overall global structure present in the input sig-
nal of interest which is hard to capture with techniques
such as PCA or TSNE (Maaten & Hinton, 2008). By ad-
justing two parameters namely number of neighbours as
well as minimum distance, we can see we achieve much
better separation and clustering of 3000 training images.
UMAP embeddings also remove all the portions of the la-
tent space (or embedding coordinates) that are not relevant
to the problem of interest, and cluster images based upon
its close similarity with other possible images present in the
data-set. (Maaten & Hinton, 2008) on imagenet, showed
how this clustering encodes the images into a space that is
semantically meaningful. We compute UMAP representa-
tions for the latent codes learned from pretrained imagenet
embeddings. In order to assess the quality of clustering,
we sample images from UMAP space and its vicinity. We
find that the images are clustered according to the type of
impact seen in the images in addition to the overall scene.
We see from Figure 6 that we can get drill sound, chiseling
of wood, lab equipment based sound and dropping of a log
of wood, within the margin of error of mapping test sounds
as described in the next section.

3.5. Mapping sounds to UMAP space

In order to learn the latent representations of sounds, we
use the position in the UMAP as a supervision. A 5 layer
CNN model similar to (Arandjelovic & Zisserman, 2017)
with 3x3 filters and 2x2 pooling was used, with Euclidean
loss as the error criterion from the prediction points to the
actual position in the UMAP space. The resolution of the
spectogram was as follows: 10ms hop, 16kHz sampling
rate, with 30ms window size and 512 pt FFT, with a total of
200ms of input in duration. This gives us a spectogram of
the size 257x20. The points in UMAP space will help guide
us to the right cluster. Given a lot of data, it can help us
perhaps in learning even finer grained distinctions present
in the data. However, for most of the coarse settings such as
“whether this was a wooden impact or not”, we can already
build state of the art models from access to a small number
of such sounds. In order to evaluate the performance of our
system, we hold out a portion of the test sounds, while not
keeping the corresponding images out of the training set.
The performance of the system is depicted in Fig 6, where
the red square gives the average error in the x-y coordinates
in projecting a test set of sounds into UMAP coordinates.
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4. Conclusion

Mapping to UMAP space rather than labels or embeddings
is a vastly untapped idea and can be used in several setups.
We show how one can learn representations for the problem
of interest with supervision from the position in clustered
space. Additionally, combining signal processing with deep
learning has been done to some extent in the past (Verma
& Berger, 2019), but this work utilizes signal processing to
collect cheap, high precision data from unlabelled sources.
Such ideas can be used in the future to get any sound of
interest and get corresponding modalities e.g. vision. This
work also motivates, as to how when the signal of interest
is small enough, how the traditional mappings to a latent
representation would fail due to imbalance issues (between
the number of points of signal of interest) while minimizing
the euclidean distances between the latent representation
and the embeddings learned by a convolutional architecture.
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