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Abstract

RNA foundation models have recently emerged as powerful tools for learning
from large sequence databases, yet their embeddings often fall short in simple
probing setups, necessitating additional finetuning. Most existing models are
pretrained solely on sequences, assuming that structural information will emerge
implicitly. We introduce RABONA, a multimodal RNA language model jointly
pretrained on sequence-structure pairs using modality-specific masking, designed
for both generative and understanding tasks. It produces embeddings that form
clearer family-specific clusters and shows stronger attention alignment with RNA
base pairs compared to other RNA language models. In this paper, we focus on
RABONA’s predictive capabilities and show that it consistently outperforms larger
baselines across diverse downstream tasks in both finetuning and linear probing
setups, demonstrating that incorporating structure during pretraining yields richer
RNA embeddings and enables more efficient foundation models.

1 Introduction

RNA is a versatile biomolecule whose structure encodes the key to its diverse regulatory functions in
biological systems and cellular processes [Doudna and Cechl 2002, Morris and Mattick,|2014]]. Due
to the scarcity of RNA structural data [Schneider et al., 2023]] and an enormous amount of unlabeled
RNA sequence databases, RNA foundation models emerged in an attempt to crack the code of RNA.
However, to take full advantage of them, RNA foundation models often need to be finetuned on small
curated datasets specialized in scope.

The existing general-purpose RNA foundation models, such as RNA-FM [Chen et al., 2022]], Uni-
RNA [Wang et al.| 2023]], RiINALMo [Penic et al.l 2025], and AIDO.RNA [Zou et al.,[2024], are all
encoder-only Transformers [[Vaswani et al.,2017] pretrained on non-coding RNA (ncRNA) sequences
only, using vanilla BERT-style masked language modeling [Devlin et al. 2019]. These models
differ slightly in architectural choices and mostly in size, ranging from 100M to 1.6B parameters.
Most often, they were pretrained using different versions of the RNAcentral database [RNAcentral
Consortium, 202 1]] and sometimes augmented with additional smaller databases. When finetuned,
RNA foundation models often achieve state-of-the-art results on various downstream tasks, from
secondary structure to splice-site prediction. However, when employed in a linear probing setup,
which denotes training only a lightweight prediction head for the downstream task while keeping
the encoder parameters frozen, they often underperform. This questions the quality of existing RNA
foundation models’ embeddings and whether there is a way to obtain more versatile and richer
sequence representations.
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Figure 1: We pretrained RABONA on a collected dataset of RNA sequence and secondary structure
pairs. After masking, the input sequence and structure pass through separate tokenizer and embedding
layers before being element-wise added. The combined embeddings are processed by the Transformer
encoder and passed through separate sequence and structure prediction heads.
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We propose RABONA, a multimodal RNA language model, pretrained on more than 1M ncRNA
sequence and secondary structure pairs obtained from expert databases and using R2DT [McCann
et al.| 2025]]. RABONA’s architecture and pretraining were designed to support both generative and
understanding tasks, and in this paper, we focus on leveraging its representations to predict RNA
function and behavior. RABONA, pretrained on a fraction of the data compared to the aforementioned
RNA foundation models, yields richer representations, outperforming even 5x larger models on most
of the downstream tasks, both finetuned or employed in a linear probing setup.

2 Multimodal RNA Language Model

RABONA is a multimodal RNA language model pretrained on ncRNA sequences and their cor-
responding secondary structures. The sequence-structure pairs were partially collected from the
bpRNA-1m [Danaee et al.| [2018]], Archivell [Mathews, |[2019], and RNAStrAlign [Tan et al.,[2017]
databases, and partially by predicting secondary structures for the sequences from the Rfam 14.7
database [Kalvari et al.,2021]] using R2DT [McCann et al., [2025]]. That gave us around 1M sequence-
structure pairs that were preprocessed by removing sequences outside the [8, 1022] nucleotide range,
removing sequence-structure duplicates, and clustering. Data preprocessing is explained in detail in

Appendix [A]

Inspired by the ESM3 multimodal pretraining approach [Hayes et al.,|2025]], we separately masked
each modality. Sequence tokens are masked independently and identically, with the masking proba-
bility sampled from a (3, 7) distribution. For structure tokens, masking is performed in two modes:
in 20% of cases the entire structure is masked, while in 80% of cases a single contiguous span is
masked such that the masked fraction of tokens follows PDFs(z) = 2z for z € [0,1]. RABONA
pretraining is illustrated in Figure [[l RABONA is a 33.5M parameter language model with 12
Transformer blocks. Its 2-layer multi-layer perception (MLP) prediction heads are used to separately
reconstruct the masked sequence and structure tokens from 480-dimensional output embeddings.
More details on pretraining and its parameters are given in Appendix

We compared classification token embeddings from RiNALMo-33M, RNA-FM, and our RABONA
on 21 ncRNA families from the Rfam database, visualized with t-SNE in Figure 2] RABONA’s
embeddings form clearer clusters than RINALMo-33M and RNA-FM, reflecting its ability to capture
family-specific structural and functional properties beyond sequence, yielding informative represen-
tations. In the same figure, we show an example where RABONA'’s attention weights align most
strongly with RNA base-pairs. By contrast, RINALMo-33M does not capture rRNA structure, while
the 3x larger RNA-FM shows partial base-pair awareness. Additional analyses in Appendix
demonstrate that the 5x larger RINALMo-150M begins to recover rRNA structure signals. These
results support our approach of explicitly providing secondary structures during pretraining, which
leads to more effective training and parameter utilization and yields more informative embeddings.

3 Results

RABONA’s embeddings amplify predictive performance while fine-tuning or linear probing for
several essential downstream tasks. We evaluated two modes of operation: when we provide the
model with both sequence and secondary structure, and when we provide the model with only the
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Figure 2: t-SNEs of Rfam sequence embeddings from RiNALMo (a), RNA-FM (b), and RABONA (c).
Common base-pair matrix (d) of 50 unique rRNAs and their average attentions from RiNALMo (e),
RNA-FM (f), and RABONA (g), computed over the heads most aligned with base-pairs.
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sequence. We compare its performance with state-of-the-art language models such as RINALMo-33M
and RINALMo-150M [[Penic¢ et al., [2025]], as well as RNA-FM [|Chen et al., [2022]]. More detailed
explanations for data preparation, model training, and evaluation can be found in Appendices [CHH

Fine-tuning RABONA for classification tasks. RABONA can be fine-tuned to predict RNA
function through Rfam family classification. This can be modeled as a multi-class classification task.
We experimented with 0% boundary noise, that is, the original sequence, as well as 200% boundary
noise, which added the original sequence length of random nucleotides to either side. Secondary
structures for RABONA were predicted from the input sequence using RNAFold [Lorenz et al., 2011]].
We report models’ accuracy for both 0% (ACC_0) and 200% (ACC_200) boundary noise.

When fine-tuned, RABONA performs comparably to other state-of-the-art foundational models
(see Table[I). However, RABONA representations excel when only a simple two-layer MLP is
trained, seen in Table [2] resulting in a significant increase in accuracy. This stems from RABONA’s
enhanced understanding of RNA functions and structures, resulting in richer embeddings. What we
find interesting is the increase in accuracy when replacing predicted RNAFold structures with [MASK]

tokens (RABONA_MASK). RABONA performs remarkably even without input secondary structures.
The decrease in performance when using predicted secondary structures highlights the necessity of
accurate secondary structures, as incorrect structures pose the risk of misleading RABONA. Accuracy
for RABONA with 200% noise is similar to RINALMo-33M and ahead of RNA-FM when finetuned.
Linear probing with noise leads to decreased accuracy, which may stem from the random nucleotides
prompting RNAFold to predict ill-formed secondary structures.

Table 1: ncRNA Classification - Finetuning Table 2: ncRNA Classification - Linear Probing

MODEL ACC_01 ACC_2001 MODEL ACC_01 ACC_2001
RABONA 0.976 0.979 RABONA 0.909 0.488
RABONA_MASK 0.975 0.974 RABONA_MASK 0.921 0.537
RiNALMo-33M 0.980 0.977 RiNALMo-33M 0.861 0.541
RiNALMo-150M 0.982 0.985 RiNALMo-150M 0.896 0.541
RNA-FM 0.919 0.951 RNA-FM 0.791 0.462

Fine-tuning RABONA for predicting nucleotide reactivity. Chemical reactivity of RNA nu-
cleotides is closely associated with the secondary and tertiary structures into which the molecule



folds. To achieve optimal predictive performance, model representations must capture a robust
understanding of RNA structure. RABONA leverages a subset of the Ribonanza dataset [[He et al.|
2024] derived from Rfam to predict per-nucleotide reactivity values. Reactivity values per nucleotide
were predicted for two chemical probing reagents: 2A3 and DMS. A simple MLP with one hidden
layer was used as the prediction head to shift importance to the large language model representations.
Reactivity prediction results are given in Table[3]

RABONA outperforms other foundational models in both the respective frozen and unfrozen cases.
Highlighting RABONA embeddings further, we notice RABONA, even with masked out secondary
structures, still outperforms RiNALMo-33M and RNA-FM. A comparison of foundational models
for linear probing can be found in Appendix [D]

Table 3: Reactivity - Finetuning Table 4: OpenVaccine - Finetuning
MODEL RMSE| MAE|] MODEL RMSE | MAE|]
RABONA 0.413 0.255 RABONA 0.306 0.169
RABONA_MASK  0.427 0.262 RABONA_MASK 0.376 0.215
RiNALMo-33M 0.438 0.271 RABONA_FROZEN  0.365 0.198
RiNALMo-150M 0.427 0.264 RiNALMo-33M 0.395 0.230
RNA-FM 0.471 0.287 RiNALMo-150M 0.375 0.215

RNA-FM 0.408 0.231

Fine-tuning RABONA for degradation prediction. RABONA can be fine-tuned to predict
nucleotide degradation and reactivity values using the OpenVaccine dataset [Wayment-Steele et al.,
2022]. The three prediction targets comprised reactivity values for structure inference, as well as for
predicting the likelihood of degradation after Magnesium incubation under either high temperature
(50 degrees Celsius) or alkaline conditions (pH 10). Again, we opted to use a simple one-hidden-layer
MLP as the prediction head to emphasize LLM embeddings.

RABONA’s representations excel, significantly outperforming other foundational models as shown in
Table Compared to RINALMo-150M, a model 5 times larger, RABONA achieves an 18% decrease
in RMSE and a 21% decrease in MAE. RABONA during linear probing surpasses not only the other
foundational models under the same setting, but even their fine-tuned counterparts. These results
again illustrate the immense potential of RABONA'’s representations, enriched through multimodal
language modeling.

Fine-tuning RABONA for MRL prediction. Mean Ri-
bosome Load (MRL) is a regression task associated with ) ) ) )
translational efficiency. Similar to the ncRNA classifica- Table 5: Ribosome Loading - Finetuning

tion task, we used RNAFold to predict secondary struc- MODEL R?21 MAE]
tures from the primary nucleotide sequence. For the pre-
diction head, we used a 1D ResNet, as in RiNALMo. RABONA 0.769  0.409

RABONA_MASK 0.772  0.406
As shown in Table@ RABONA underperforms RiNALMo RiNALMo-33M 0.811 0.377
but outperforms RNA-FM. Its pretraining was limited to RiNALMo-150M 0.844  0.342
1M ncRNA sequences without mRNA untranslated regions RNA-FM 0.719 0.455

(UTRs) and their structures. Additionally, UTR folds
were approximated using RNAFold, as the ground-truth
structures were not provided in the dataset, whose reliability is limited. This task highlights that
accurate secondary structures, whether during pretraining, fine-tuning, or inference, are crucial for
RABONA’s optimal performance.

4 Conclusion and Future Work

We introduced RABONA, a structure-aware multimodal RNA language model whose rich represen-
tations prove useful across multiple downstream tasks, outperforming larger baselines. RABONA
shows particular strength in linear probing tasks where other models struggle to perform well.



While this is still a work in progress, our results establish a strong foundation for future work. We
plan to expand training with additional sequence-structure datasets and scale up the model to better
exploit this data. This will lead to better generalization capabilities in downstream tasks such as MRL
prediction. Beyond discriminative tasks, we will explore RABONA’s generative capabilities, such as
secondary structure prediction and inverse folding, which are naturally supported by its design.
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A Multimodal RNA Language Modeling

Data Preprocessing We collected around 145K ncRNA sequence-structure pairs from publicly
available datasets Archivell [Mathews,[2019], bpRNA-1m [Danaee et al.,2018]], and RNAStrAlign
[Tan et al.,2017]]. We augmented the data with around 1.4M ncRNA sequence-structure pairs obtained
from the Rfam 14.7 dataset and using the R2DT secondary structure prediction tool [McCann et al.|
2025].

We implemented a multistep preparation pipeline. First, we removed sequences outside the [8, 1022]
nucleotide range. Furthermore, we removed examples that have identical both sequence and structure
using seqkit rmdup. This resulted in 1, 006, 320 unique sequence-structure pairs. We then clustered
the sequences from the sequence-structure pairs with MMSeqs2 [Steinegger and Soding} 2017]]
using mmseqs easy-cluster and the following options --min-seq-id 0.95 and -c 0.8. This
resulted in 623, 778 clusters. We divided the clusters into training and validation clusters with a
99 — 1 train-validation split. Our sampling strategy was controlled such that at least one high-quality
sequence-structure pair from either Archivell, bpRNA-1m, or RNAStrAlign had to exist in each
cluster ending in the validation set. This way, we ensured that the validation set is quality-controlled
and sequentially different from the training set, allowing us to evaluate the model properly during
pretraining. Furthermore, we merged the training set and again performed MMSeqs?2 clustering
of only the training data, this time with a minimum sequence identity of 0.99 and coverage 0.9.
In the end, we were left with 996, 857 training samples clustered into 943, 522 clusters and 9, 463
validation samples clustered into 6, 237 clusters. During training epochs, we randomly sampled a
single sequence-structure pair from each training cluster to ensure sequence diversity in each batch
and balance the data. Our validation set was sampled such that it consisted of only high-quality
sequence-structure pairs from either Archivell, bpRNA-1m, or RNAStrAlign.

Tokenization We used separate tokenizers for RNA sequence and structure. During sequence
tokenization, each nucleotide was treated as a single token. We replaced all “U"s in the sequences
with “T"s, and our sequence vocabulary consisted of the following standard nucleotide codes: “A",
“T", “G", “C", and “N", where “N" stands for “any nucleotide" token. The sequence vocabulary
additionally comprised the following special tokens: [CLS], [E0S], [PAD], and [MASK].

All RNA secondary structures were denoted in a dot-bracket format, perfectly suited for structure
tokenization. Each character in the structure string corresponds to a nucleotide in the sequence and
was treated as a single token. Dots “." indicate unpaired bases, while an opening parenthesis “("
indicates a paired base, and its corresponding closing parenthesis ““)" shows the base it is paired with.
The structure vocabulary consisted of the following codes: “.", “(", “)", “[", “1", “{", and “}", where
the last two matched bracket types were extensions of the original notation to allow representation of
pseudoknots. Similar to the sequence vocabulary, structure vocabulary additionally comprised the

following special tokens: [CLS], [E0S], [PAD], and [MASK].

During the masking procedure, we changed standard nucleotides from both vocabularies with the
modality-specific [MASK] tokens. Tokens [CLS] and [EOS], from the sequence and structure
vocabulary, were added at the beginning and end of the sequence and structure, respectively. The
[PAD] tokens were appended at the end of shorter sequences and the corresponding structures to
have all the sequence-structure pairs in a batch of the same length.

Language Model Architecture We adapted the encoder-only Transformer architecture from Penic
et al.[[2025] for their RINALMo-33M model. First, sequence and structure are tokenized using
separate sequence and structure tokenizers and turned into 480-dimensional vector using separate
input embedding layers. Sequence and structure input embeddings are element-wise summed before
being passed to the Transformer encoder. The Transformer comprises 12 Transformer blocks, each
consisting of a multi-head attention with 20 heads and a feed-forward network (FFN). Similar to
RiNALMo-33M, we employed RoPE [Su et al., 2024], SwiGLU activation function [Shazeer, [2020],
and FlashAttention-2 [Dao} 2023|]. The hidden size of the FFN layers was set to 1, 280. The residual
connections and layer normalizations are integrated as illustrated in Figure[l| RABONA employs
two prediction heads, one for sequence and one for structure, allowing their independent prediction
from the output embeddings.



Pretraining Our pretraining strategy was inspired by the ESM3 pretraining approach [Hayes et al.|
2025|]. We separately masked sequence and structure modalities and pretrained RABONA using
masked language modeling. As explained in Section[2} we employed different masking strategies for
sequence and structure. For each sequence and structure in a batch, we independently chose their
masking probabilities.

The maximum context of RABONA was set to 1, 024 tokens, reserved for the classification [CLS]

token, 1, 022 sequence and structure tokens, and the end-of-sequence [E0S] token. During pretrain-
ing, we randomly sampled each sequence-structure pair in a batch from a different training cluster.
Thus, in each epoch, RABONA saw 943, 522 sequence-structure pairs.

We pretrained RABONA using a single H100 GPU of 80 GB for 55 hours. The batch size was set
to 512, and the total number of steps to 100, 000. In contrast, RINALMo was pretrained for 77, 000
steps with a batch size of 1, 344. We adopted the cosine annealing learning rate schedule with a linear
warm-up. During the warm-up period, the learning rate increases from 0 to 10~ for 2, 000 steps.
For the cosine annealing schedule, the minimum learning rate was set to 1075,

B Additional Attention Weights Analyses

In Section 2] we showed that RABONA’s attention heads are the best aligned with base-pairs
when compared to the same size RINALMo-33M and the 3x larger RNA-FM. We noticed that the
5x larger RINALMo-150M exhibits base-pair awareness, as shown in Figure 3] As we can see,
RiNALMo-150M is able to understand the secondary structure implicitly; however, it requires 5x
more parameters to achieve this.
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Figure 3: Common base-pair matrix (a) of 50 unique rRNAs and their average attentions from
RiNALMo-33M (b), RINALMo-150M (c), and RABONA (d), computed over the heads most aligned
with base-pairs.

By explicitly providing secondary structure and leveraging it during self-supervised pretraining,
RABONA is forced to learn the correct base pairing. This way, we get a structure-aware RNA
language model for one-fifth of the parameters of the large RINALMo-150M model.

We provide additional attention-weight visualizations for 50 unique RNAs with the same secondary
structure from the tRNA family in Figure
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Figure 4: Common base-pair matrix (a) of 50 unique tRNAs and their average attentions from
RiNALMo-33M (b), RINALMo-150M (c), RNA-FM (d), and RABONA (e) computed over the heads
most aligned with base-pairs.

We see that for tRNAs, which are shorter and usually most prevalent in ncRNA databases, even
RiNALMo-33M captures base-pairing signals. We conclude that smaller RNA language models are



good enough to capture local information between a few tens of neighboring nucleotides; however,
they struggle with longer dependencies. We support this with additional visualizations of attention
weights for tmRNA family examples in Figure 3]
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Figure 5: Common base-pair matrix (a) of 25 unique tmRNAs and their average attentions from
RiNALMo-33M (b), RINALMo-150M (c), RNA-FM (d), and RABONA (e) computed over the heads
most aligned with base-pairs. The red rectangles below the subfigures are zoomed-in regions of
interest in the attention maps.

From the top-right zoomed-in region, we observe that smaller models, particularly RINALMo-33M,
struggle to capture long-range dependencies, such as those in tmRNA, where the 5° end pairs with the
3’ end nearly 300 nucleotides apart. In contrast, RINALMo-150M and RNA-FM successfully model
these distant interactions. The bottom-right zoomed-in region further shows that sequence-only RNA
language models tend to focus on shorter, fragmented nucleotide relations that misalign with the true
base-pairing pattern. RABONA, by explicitly incorporating secondary structure, aligns its attention
with base pairs, producing richer, structure-aware RNA representations.

C ncRNA C(Classification

Dataset preparation for non-coding RNA classification followed the setup used in RiINALMo, specified
by Noviello et al.| [2020]]. The dataset, obtained from Rfam, contained a total of 306, 016 sequences
across 88 target classes after processing. An 84 — 8 — 8 train-validation-test split was applied for
each family, and the train and validation sets were resampled to address class imbalance. The final
dataset contained 105, 864 training, 17, 324 validation and 25, 342 test sequences. We fine-tuned the
model on two versions of the dataset: one with 0% noise, that is, the original sequences, and one with
200% noise. For the 200% noise dataset, random nucleotides equal in length to the original sequence
were appended to both sides of each sequence.

The prediction head was a multi-layer perceptron (MLP) with a hidden layer dimension of 128 and a
GELU activation. The model was fine-tuned for 25 epochs with a batch size of 64, using a constant
learning rate of 10~5. For linear probing, the learning rate was linearly decreased from 5 x 104
to 10~ over 7500 steps and stayed constant for the rest of the training. Optimization employed
AdamW, applying a weight decay of 0.01. Cross-entropy loss was used as the prediction loss. This
configuration was kept consistent across the other foundational models. Model weights were selected
based on the best validation performance.

D Reactivity

For reactivity prediction, nucleotide reactivity values were predicted under two probing reagents:
2A3 and DMS. An Rfam subset of the Ribonanza dataset [Das et al., |2023|] was utilized for reactivity
prediction. Both sequence and structure were provided in the dataset. Only entries having a signal-to-
noise ratio greater than or equal to 1, and with reads greater than or equal to 100 for both probing
reagents, were kept. After filtering, we had a total of 18,876 RNA sequences of length 177. The
reactivity values less than 0 in the ground truth or outside the region of interest were masked out and
considered invalid. Predicted values were not clipped to be between 0 and 1. We performed a random
80 — 10 — 10 train-validation-test split for fine-tuning.



The prediction head consists of a two-layer MLP with a hidden layer dimension of 128, and the ReLU
activation function. The model was fine-tuned for 15, 000 training steps with only the prediction head
being trained for the first 5 epochs. An AdamW optimizer was utilized with a weight decay of 0.01.
The learning rate was linearly decayed from 1073 to 2 x 10~° over 1200 training steps and then kept
constant. Huber Loss was used as the prediction loss with a delta value of 0.1. Batch sizes were set
to 64. Other foundational language models were fine-tuned similarly, keeping identical prediction
heads.

Among the results for linear probing, we observe a similar trend as when fine-tuned. RABONA
outperforms RNA-FM and RiNALMo-150M, foundational models that are three times and five times
larger, respectively. We also note the necessity of foundational models for this task, with one-hot
encoded baselines having significantly larger errors.

Table 6: Reactivity - Finetuning Table 7: Reactivity - Linear Probing
MODEL RMSE| MAE] MODEL RMSE| MAE|]
RABONA 0.413 0.255 RABONA 0.478 0.290
RABONA_MASK 0.427 0.262 RABONA_MASK  0.500 0.306
RiNALMo-33M 0.438 0.271 RiNALMo-33M 0.502 0.306
RiNALMo-150M 0.427 0.264 RiNALMo-150M 0.495 0.301
RNA-FM 0.471 0.287 RNA-FM 0.511 0.312
One-Hot Sequence 0.551 0.336

One-Hot Sequence + SS 0.538 0.324

E OpenVaccine

The three targets were reactivity values for structure inference and for predicting the degradation
likelihood after Magnesium incubation at either high temperature (50 degrees Celsius) or high pH
(pH 10).

Datasets were prepared by combining the public training and private test suites from Kaggle [Das
et al.|[2020]. Sequences were filtered using the SN_Filter variable, retaining only those with a mean
signal-to-noise ratio greater than one and having a minimum target value greater than —0.5. This
led to a total number of 1, 589 and 2, 493 sequence-structure pairs for the public training and private
test sets, respectively. The sequences in the public training dataset were shorter (107 nucleotides)
than those in the private test dataset (130 nucleotides). Sequences from the private test set had
been clustered at a sequence similarity of less than 50%. From the private test set, RNA sequences
from 400 singleton clusters were sampled to construct the test set. This ensured that the test set
contains diverse sequences to evaluate generalization accurately. For validation, 100 clusters with
two members were sampled from the private test, yielding 200 sequences in total. For training,
both the public Kaggle training set and the private test suite were utilized, excluding sequences
assigned for testing and validation. Each dataset was then clustered separately using MMSeqs2 with
a minimum sequence identity and minimum coverage of 0.8. From each cluster, three sequences
were sampled with replacement, ensuring that a representative cluster member was always selected,
to form the final training set of 3, 825 sequence-structure pairs. This preprocessing approach resulted
in a well-balanced dataset with sequentially distinct training, validation, and test sets to evaluate the
generalization capabilities of the models.

Similar to the Reactivity prediction head, the OpenVaccine consists of a one-hidden-layer MLP with
a hidden layer dimension of 128 and ReLU activation. The model was fine-tuned for 10, 000 training
steps. For the first 5 epochs, RABONA was frozen, and only the prediction head was trained. We
used an AdamW optimizer applying a weight decay of 0.01. The learning rate was linearly decayed
from 1073 to 2 x 1075 over 300 training steps. The Huber Loss was used with a delta value of
0.1. The batch size was fixed at 64. Once again, other foundational models such as RINALMo and
RNA-FM were fine-tuned identically.

RABONA representations excel in the linear probing tests, achieving lower errors than all other
frozen and fine-tuned foundational models. We once again observe one-hot encoded baselines having
much higher errors, with adding secondary structures reducing RMSE by 9% and MAE by 13%.
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Table 8: OpenVaccine - Finetuning Table 9: OpenVaccine - Linear Probing

MODEL RMSE| MAE] MODEL RMSE| MAE|]
RABONA 0.306 0.169 RABONA 0.365 0.198
RABONA_MASK 0.376 0.215 RABONA_MASK  0.428 0.246
RiNALMo-33M 0.395 0.230 RiNALMo-33M 0.423 0.245
RiNALMo-150M 0.375 0.215 RiNALMo-150M 0.420 0.239
RNA-FM 0.408 0.231 RNA-FM 0.434 0.251
One-Hot Sequence 0.518 0.304

One-Hot Sequence + SS 0.468 0.263

Table 10: Mean Ribosome Load - Linear Probing

MODEL R?>1 MAE]

RABONA 0.641  0.512
RABONA_MASK 0.624 0.516
RiNALMo-33M 0.661  0.498
RiNALMo-150M  0.672  0.489
RNA-FM 0.654  0.498

F Mean Ribosome Load

Fine-tuning for 5> UTR Mean Ribosome Load (MRL) prediction followed procedures used in
RiNALMo. Data preparation was carried out using the methodology explained by |Sample et al.
[2019]). The original 83,919 UTR sequences were filtered for sufficient read coverage. We produced
two evaluation datasets: Human7600 and Random7600, each containing 7, 600 sequences for human
and random 5° UTRs, respectively. We used Human7600 as a test set, while Random7600 was used
as a validation dataset. The training set consisted of the remaining UTR sequences. Further, MRL
targets were standardized relative to the mean and standard deviation of those present in the training
dataset.

The prediction head consisted of 6 ResNet blocks, with the head embedding dimension being set to
32. Each block included two 1D convolution layers, along with instance normalization and the ELU
activation function. The model was fine-tuned for 50 epochs with a batch size of 64. The learning
rate was linearly decayed from 10~# to 1072 across the first 5, 000 training steps. During the first 5
epochs, the language model was kept frozen and only the prediction head was trained. Mean Squared
Error was used as the prediction loss. The same procedure was repeated for the other foundational
models.
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