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Abstract

Recent progress in scaling up large language models has shown impressive capa-
bilities in performing few-shot learning across a wide range of natural language
tasks. However, a key limitation is that these language models fundamentally lack
grounding to visual perception - a crucial attribute needed to extend to real world
tasks such as in visual-question answering and robotics. While prior works have
largely connected image to text through pretraining or fine-tuning, learning such
alignments are generally costly due to a combination of curating massive datasets
and large computational burdens. In order to resolve these limitations, we propose
a simple yet effective approach called Language-Quantized AutoEncoder (LQAE),
a modification of VQ-VAE that learns to align text-image data in an unsupervised
manner by leveraging pretrained language model denoisers (e.g.BERT). Our main
idea is to encode images as sequences of text tokens by directly quantizing image
embeddings using a pretrained language codebook. We then feed a masked version
of the quantized embeddings into a BERT to reconstruct the original input. By do-
ing so, LQAE learns to represent similar images with similar clusters of text tokens,
thereby aligning these two modalities without the use of aligned text-image pairs.
We show LQAE learns text-aligned image tokens that enable few-shot multi-modal
learning with large language models, outperforming baseline methods in tasks such
as image classification and VQA while requiring as few as 1-10 image-text pairsﬂ

1 Introduction

Large language models powered by transformers [25] have shown impressive capabilities in modeling
natural language [see e.g. 2} [17, 16l 30], demonstrated through their abilities to quickly learn novel
tasks such as question answering, chatbots, and machine translation from just a few examples without
finetuning. This so called few-shot learning turns out to be competitive with conventional task
specific methods in various NLP tasks and is being rapidly adapted to more new tasks and styles of
generations.

Despite these impressive capabilities, a key limitation of such large language models is that they
cannot ‘see’ the visual world. Being able to ‘see’ the world is crucial for many real world applications
where processing abundant complex sensory data is a must, such as robotics, visual question an-
swering, and grounding. Such a limitation severely hinders further applicability of large transformer
models to a variety of downstream tasks.

Driven by these impressive results for large language models, much of recent work has started
to bring text and image together, and leverage these aligned modalities to perform a variety of
applications, such as text to image generation [29, 3], open ended classification [23| (18 [1], and image
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editing [9} 15, 119]. Frozen [23]] trains a visual encoder to adapt images to pretrained language model
for predicting aligned text, and demonstrates few-shot learning in classification and VQA.

However, these works generally require large amounts of aligned data - Frozen is pretrained on
Conceptual Captions [22] (3M text-image pairs), and many prior methods use CLIP [18]] trained on
300M text-image pairs. Collecting and curating such as large amount aligned data can be expensive
and costly, and substantially difficult in arbitrary pairs of modalities. On the other hand, it is
comparably easier to aggregate data within single modalities, such as scraping text and video data
independently rather than curating aligned pairs. In this case, the primary difficulty in leveraging these
cross-modal applications requires us to learn some implicit alignment between these two modalities.

To resolve this issue in text-image learning, we propose Language Quantized AutoEncoder (LQAE) to
encode unaligned images to language space without relying on paired text-image data. In order to do
so, we adopt the vector-quantization approach introduced in VQ-VAE [24] and use a frozen language
model codebook to replace the standard learned codebook. Specifically, we propose to incorporate
a pretrained language denoiser (e.g. BERT) into the VQVAE pipeline by randomly masking the
encoded codes (quantized to correspond to natural language tokens) to feed into BERT, and then
reconstructing the original image from the output BERT features. Intuitively, the reconstruction
objective from BERT features encourages the encoder to encode images that are more easily denoised
by BERT, which generally align with more natural language semantics. Since we train the encoder
and decoder to minimize image reconstruction error while keeping BERT-like model fixed, similar
images must be mapped to similar text tokens in order to minimize reconstruction loss, though with
no guarantee for the learned alignment to correspond with human interpretation (e.g. the word "dog"
matching with pictures of dogs).

In our experiments, we first show that it is possible to train an auto-encoder that uses a language
embedding space. Then, we carefully investigate the quality of the textual representations of images
through three evaluations: (i) few-shot classification (Open-Ended minilmageNet) (see Section @]);
(i) visual-question answering (Fast VQA) (see Section[4.3)); (iii) linear classification experiments
(see Sectiond.4). Our findings indicate that the textual semantics are effectively retained, allowing
for strong performance on these tasks. Finally, our ablation study shows that using large language
models (e.g., GPT-3 Davinci) improves results and masking a high mask ratio is crucial for learning
textual representations of images for text-image understanding.

Our contributions are:

* We propose LQAE, a method for learning aligned textual representations of images by
leveraging pretrained language models.

* We show that LQAE interface allows using large language models for few-shot image
classification through standard prompting without any need for finetuning. We demonstrate
that LQAE outperforms existing SOTA methods on few-shot learning while requiring orders
of magnitudes fewer text-image pairs and computational resources.

* We show that LQAE allows using BERT for image linear classification. We also conduct an
ablation study showing that masking a high mask ratio in training language quantization is
crucial for learning textual representations of image for text-image understanding.

2 Method

In this work, we introduce the Language-Quantized AutoEncoder (LQAE), a modification of VQ-
VAE that learns to align text-image data in a data efficient manner by leveraging off-the-shelf language
denoisers such as RoBERTa [14]. The overall architecture of our framework is shown in Figure

2.1 VQ-VAE

VQ-VAE is an autoencoder that learns to compress image data into a set of discrete latents. The model
consists of an encoder F, decoder D, and codebook C. Encoder E encodes image = € RHEXWx3
to produce E(z) = h € H' x W’ x D, which is quantized by codebook z = C(h) through nearest
neighbors lookup. The quantized codes are then fed to the decoder (& = D(z)) to reconstruct the
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Figure 1: Model architecture of Language Quantization AutoEncoder (LQAE). Images are encoded
to a sequence of embeddings, then vector quantized using ROBERTa codebook, followed by a high
ratio masking and a frozen RoBERTa prediction, and finally decoded to reconstruct the original
image. All parameters are frozen except the LQAE encoder and decoder

original image x, and optimizes the following loss:

L=z—a|5+|sgh)—z|3+B]h—sg)]; (1)

consisting of an /5 reconstruction loss, codebook loss, and commitment loss. A straight-through
estimator is used in order for gradient to flow through the quantization step. We use ViT-base [8] as
image encoder and decoder.

2.2 Learning Text-Image Alignment

In order to learn text-aligned image representations, we propose several key modifications on the
original VQ-VAE architecture to learn connected text-image discrete representations by incorporating
a pretrained language denoiser (e.g. any BERT-like model).

Pretrained codebook: First, we replace the learned codebook C with a fixed codebook
from our pretrained language model. The codebook remains frozen throughout training, so there is

no need for the standard VQ codebook loss || sg(h) — 2z ||§ This way, the encoder learns to directly
map images into a latent space defined by text token ids, where resulting discrete encodings can be
directly rendered into text.

Incorporating pretrained language denoisers: Although replacing the VQ codebook with a
pretrained language model codebook allows for our method to directly encode images into texual
representations, there is less guarantee that the resulting encoded text will align well with natural
language semantics. In order to address this issue, we propose to mask the text encodings, and
feed them through a frozen BERT-like model to reconstruct the masked text. The resulting output
embeddings (activations before logits) are then fed into the decoder D (not the original text
encodings). This way, encoder E is encouraged to learn text encodings that align better with standard
text so that the BERT model can more easily reconstruct the original full encoding to feed into the
decoder. In addition, we found that adding a low-weighted standard BERT loss helped in downstream
performance. The final loss is written as

L=|z—2|3+Bh—sgz)]|;+alogp(z]|zn),

where « and [ are hyperparameter and sg refers to the stop gradient. « = 0.001 and 5 = 0.005 are
are determined through a hyperparameter sweep and used as default unless otherwise mentioned. z,,
is the masked version of input z fed into the BERT model.

We remark that since LQAE learns to encode image to text and text to image without using aligned
image-text supervision, LQAE does not need to generate human interpretable text representations,
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Figure 2: Language Quantization AutoEncoder (LQAE) can be used for few-shot image classification
and visual question answering by leveraging the in-context learning ability of large language models

LQAE encoder

H

LQAE encoder

7~

w’y school bus

e.g., GPT-3
Support Query
inner-shot 1 inner-shot1 inner-shot2 inner-shot 2 Question
O-repeats
2-way 2
2-inner-shots \
0O-repeats A
Task induction: . . L L
Answer with This is This is This is This is Q: What is
golden. retriever or golden_re libizan_ho golden_re libizan_ho this?
iibizan_hound triever und triever und A: This is a
Support Query
repeat 0 repeat O repeat 1 repeat 1 Question
O-repeats
2-way -
1-inner-shots N\
1-repeats A
Tf:g:'/g:‘;;‘;"’ This is This is This is This is Q: What is
d - golden_re libizan_ho golden_re libizan_ho this?
go“ gn_re rieveror triever und triever und . This i
iibizan_hound A: Thisis a

Figure 3: Visual examples of the terminologies used in our few-shot image classification and visual
question answering experiments.

i.e., an image of dog can have text representation describing something totally unrelated such as
rivers. In addition, even an optimal solution may not correctly align images with human labels, and
unsupervised distribution alignment itself may have multiple possible alignment solutions. However
in our experiments, we show that the resulting learned textual representations of images provide
meaningful visual features that are interpretable when few-shot prompted with a large language
model.

Inference. At test time, LQAE provides a simple interface for both supervised learning and open
ended few-shot learning. As shown in Figure [2| we can use LQAE to encode each image into a
sequence of text tokens, and similar to Frozen, interleave image and text representations to form a
few-shot prompt for a large language model such as GPT-3 or InstructGPT to classify a given
test-time image. In our experiments, we show that by leveraging LQAE representations for few-shot
prompting in LLMs, our method only requires a few paired examples for strong task performance.

3 Experimental Setup

Few-shot Classification. We condition LQAE on a sequence of interleaved images and text to
evaluate the model’s ability at ‘inducing’ the task to the model in order to improve its performance.



Following prior work, we define the following terminology used in our settings across all tasks.
Figure[3| gives a visual illustration of these concepts.

* Task induction: An introductory text that provides information about the task to the model
using natural language. This text appears before the sequence of images and encoded text and
is used to explain what the model is expected to do, for instance, "Please answer the question”

* Number of ways: This refers to the total number of categories involved in the task, for example,
the distinction between dogs and cats.

* Number of inner-shots: This refers to the number of unique examples of each category that are
presented to the model, such as the number of different images of dogs. In prior studies using
Mini-Imagenet, the unique examples of each category were also referred to as shots.

* Number of repeats: The "number of repeats” specifies the number of times each unique example
of a category is repeated in the context presented to the model. This setting is used to study the
model’s ability to integrate visual information about a category through an evaluation technique
known as ablation following prior work [23]].

Linear Classification. For LQAE, we use features from intermediate ROBERTa layers for image
representations. When comparing against VQ-VAE features, we replicate the feature dimensions by
the number of RoOBERTa layers to match the number of linear classification parameters used in our
method.

4 Main Results

4.1 Training Details

We train our LQAE on the ImageNet dataset, and use RoBERTa-baseE] as our pretrained language
denoising model.

We operate on 256 x 256 images at both train and test-time; images that are not square are first
resized to 256 x 256. ViT encoder and decoder patch size is 16 x 16. Adam [L1] optimizer is used
for training with peak learning rate 1.5 x 10~* and weight decay 0.0005. Training takes 100 epochs
with 5 warmup epochs. Batch size is 512 and training is distributed between 128 TPU-v3 on Google
Cloud.

4.2 Evaluation on Fewshot Classification

To quantify few-shot performance, we evaluate our method on the Real-Name Open-Ended minilma-
geNet defined in Tsimpoukelli et al. [23]], where a model is few-shot prompted with a few examples
of images per class, and asked to classify a new image. We compare our method against several
baselines, which can be divided into several distinct categories:

* No image pretraining: Our ASCII baseline constructs text representations for each image
by converting them to 64 x 64 ASCII images. We do not use 256 x 256 resolution for
this baseline is because the resulting few-shot ASCII codes are tens of thousands long that
GPT-3 does not support.

» Text-image pretraining: Frozen requires pretraining a joint image-language on aligned
text-image data, and uses embeddings from the pretrained visual encoder.

* Image-only pretraining: MAE + Linear uses a pretrained MAE on ImageNet and fits a
linear classifier on each set of few shot examples to predict the given test image. Both MAE
+ Linear and LQAE do not require any text-image aligned data during pretraining, and rely
solely on models trained in individual domains. At most 5 aligned pairs are provided in each
test-time example to measure few-shot learning.

For all methods except MAE + Linear, we follow the same evaluation structure as Frozen by
constructing the few-shot prompt through alternating text class label and visual representation tokens
- embeddings in the case of Frozen, and visual text encodings for LQAE and ASCII. For LQAE and
ASCII, we prompt OpenAT’s text-davinci-003 model for few-shot prediction.

Zavailable at https://huggingface.co/roberta-base
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Table 1: Performance of LQAE and baselines on Open-Ended minilmageNet 2-Way benchmark.
Randomly picking between the two class labels (then emitting the EOS token) would yield 50%
accuracy.

Task Induction X v v v v v v
Few-shot Setting InnerShots 1 1 3 5 1 1 1| As
Repeats 0 0 0 0 1 3 5
No image or text ASCII (64x64 img) 0 52 5.9 6.5 4.5 4.8 52 4.59
Im?%e plretmin + Image- MAE + Linear 0 8.9 114 135 128 156 19.8 | 11.71
text finetune
Image-text pretrain Frozen 1.7 33.7 66 66 63 65 63.7 51.3
mage Pretrain untrained LQAE 0 82 13.8 145 104 127 156 | 10.74
LQAE (ours) 1.5 352 68.2 698 68.5 68.7 659 | 53.97

Table 2: Performance of LQAE and baselines on Open-Ended minilmageNet 5-Way benchmark.
Randomly picking between the two class labels (then emitting the EOS token) would yield 20%
accuracy.

Task Induction X v v v v v v
Few-shot Setting InmerShots 1 1 3 5 1 1 1| A8
Repeats 0 0 0 0 1 3 5
No image or text ASCII (64x64 img) 0 0 0 0 0 0 0 0
ilrlrllggz_tezrteér;l;?un ‘: MAE + Linear 0.3 2 2.5 3.2 3.1 3.5 3.6 2.6
Image-text pretrain Frozen 09 145 347 338 33.8 333 328 | 26.26
Image Pretrain untrained LQAE 0 1.2 1.6 23 21 1.9 23 1.63
LQAE 1 157 359 365 319 364 459 | 29.04

Tables [I]and 2] show results on 2-way and 5-way few-shot classification respectively. LQAE performs
better than baselines across all evaluation settings, substantially outperforming all baselines that do
not have access to text-image pairs. In addition, Frozen is able to benefit from text-image pretraining
on Conceptual Captions, yet still performs worse than LQAE. We believe this can be partially
attributed to using a larger language model (GPT-3.5) compared to Frozen. However, our method
does not require any model fine-tuning, which would be prohibitively expensive to run a method such
as Frozen on a GPT-3.5 model.

Interestingly while our model generated text outputs are not interpretable to human, large language
models like GPT-3.5 can successfully do few-shot learning from them. This suggests LQAE and
BERT-like model generated text tokens contain patterns that can be successfully captured and
leveraged by powerful large language models. This finding is related to prior works that found
few-shot learning more rely on formats similarity and patterns rather than the exact semantic meaning
of prompts [16} 12} 27].

4.3 Evaluation on Visual Question Answering

To further evaluate LQAE, we use the Real-Fast-VQA dataset from Frozen [23]], a challenging
semantic task that aims to answer questions in a free-form manner based on an image, such as "what
object is the person holding?" or "what color is the car?" Following the Frozen paper, we consider
2-way setting and assess model’s performance using different numbers of inner-shots.

Table 3] shows the results. Trivial baselines such as ASCII achieves zero success rate. LQAE achieves
better performance than all baselines, and outperforms methods that leverage task-specific finetuning
including Frozen.



Table 3: Few-shot evaluation results on Fast VQA benchmark.
Few-shot Setting Inner Shots 0 1 3 5 Avg

No image or text ASCII (64x64 img) || 0.0 00 0.0 00 0.0
%mage pretrain  + MAE + Linear 0.0 0.0 05 1.4 05
mage-text finetune
Image-text pretrain Frozen || 3.7 7.8 10.1 105 8.0
untrained LQAE || 0.0 0.0 0.0 00 0.0
LQAE || 0.0 85 119 128 8.8

Image pretrain

4.4 Evaluation on Linear Classification with BERT.

We study whether LQAE can leverage learned text representations in BERT for image classification
on ImageNet [21]], and train a linear classification head on top of intermediate BERT embeddings.
The results in Figure @] show the comparison between VQ-VAE and LQAE. We observe that using
RoBERTa representations extracted from conditioning on LQAE tokens performs significantly better
than using VQ-VAE encoder representations, suggesting that while LQAE does not generate human
readable form of texts, its learned groupings are sufficiently powerful for training a linear classifier
on top of RoBERTa representations.

40

Linear CLS

VQAE encoder LQAE BERT LQAE encoder LQAE encoder + BERT random encoder

Figure 4: Linear classification on ImageNet. LQAE BERT denotes concatenating BERT intermediate
embeddings based on LQAE input; LQAE encoder denotes concatenating LQAE encoder intermediate
embeddings; LQAE encoder + BERT denotes combining LQAE BERT and LQAE encoder together.

4.5 Model Variations and Ablations

In the following section, we evaluate different variations of our default model. We present these
results in Table [l

In Table ] row (A), we experiment removing L2 normalization when finding nearest neighbor code in
vector quantization step. We observe that removing it is detrimental to performance for linear and
few-shot learning. This observation aligns well with similar experiments in Yu et al. [28]], which may
be helpful for learning by providing better coverage over language codebook usage.

In Table ] row (B), we observe that using a pretrained RoOBERTa model leads to significantly better
results than using a randomly initialized language model, suggesting the important of incorporating
the language prior in LQAE.

In Table @] row (D), we observe that, contrary to standard VQ-VAE:s, introducing an entropy regu-
larization on quantized codes does not help. We hypothesize that this may be due to the fact that
the entropy regularization provides more beneficial gradient signal over the codebook rather than
encoding embeddings, however, the codebook is frozen for LQAE.

In Table @] rows (E), we vary the weight of BERT loss .. We observe that using larger BERT loss
weight improves linear classification but hurts few-shot classification. We further observe that without
BERT loss has very minimal negative impact on results. This suggests that image reconstruction
alone is sufficient for models to learn to map images to texts, further regularization through BERT
loss may not help.

In Table A rows (F), we experiment with using vector quantization before decoder input, such that
decoder’s input are codes from RoBERTa codebook. We observe that doing so has no significant
benefit. Therefore for simplicity we opted to not use it in our default model.



Table 4: Comparison of variations of LQAE. The metrics are linear classification with BERT-like
models on ImageNet, and few-shot classification using GPT-3 on mini-ImageNet.

Variation || Entropy Trained BERT L2 BERTIloss Decoder STE % Code GPT-3size | Linear 2-way 5-way
Default 0.0 true  true 0.001 false 100  Davinci (175B) 35.60 5397 29.04
(A) false 3030 5245 2742
(B) false 11.80 1.03 0.51
D) 0.5 30.70 5045 2654
() 0.00 3480 5245 2851
1.00 36.90 4045 2093

(F) true 3480 5453  30.01
25 N/A 1545 1.45

(G) 50 N/A  21.00 5.56
75 N/A  50.56 20.85

(H) Curie(6.7B) N/A 4655 22.80
Babbage(1.3B) N/A 2385 14.70

@D VQ to RoBERTa w/ Davinci 175B N/A 3.24 0.00

In Table @] rows (G), we vary the percentage of LQAE codes used in GPT-3 based few-shot image
classification. We do so by always keeping the first certain percentage tokens. While partially remove
tokens reduce the amount of information representing images, it is observed that keeping 75% of
LQAE tokens still perform quite well, suggesting that LQAE tokens may have redundant information.
We further observe that keeping 50% or fewer leads to significant drop in performance.

In Table @] rows (H), we vary GPT-3 model size from default largest 175B model (Davinci) to smaller
models (Curie and Baggage). The results show that larger model consistently perform better. We note
that LQAE with 6.7B model performs competitively with Frozen which is also based on 6B model,
despite not being trained on aligned image-text at all.

In Table @] rows (I), we experiment using assigning VQ-VAE tokens to RoBERTa codebook codes.
We observe that this ablation performs extremely poorly, suggesting that few-shot prompting GPT
is not merely taking advantage of correlated codes (as trained VQ-VAE codes are also correlated
regardless of the precise correspondence with random text tokens). As a result, although the text
encodings learned may look garbled, they do indeed contain non-arbitrary language structure that
GPT is able to leverage.

Figure [5|demonstrates the crucial role of a higher masking ratio for achieving optimal downstream
performance. While standard language denoisers like BERT typically employ a masking ratio of
15%, our findings indicate that the LQAE performance peaks at approximately 50% masking ratio,
highlighting the need for an increased level of masking.

2-way = 5-way

20.0

Linear Accuracy
Few-shot Accuracy

0.0 -+ 0.0
0% 25% 50% 75% 0% 25% 50% 75%

Figure 5: High mask ratio is crucial for LQAE results. (left): Linear classification result on ImageNet.
(right): 5-way and 2-way few-shot image classification results on Mini-ImageNet.

5 Related Work

Large language models (LLM) have achieved remarkable success for many natural language under-
standing tasks [12,[7]. Following this success, a large body of work aims to adapt language models to



multi-modal tasks. This stands in contrast to traditional multimodal models [10, 29, inter alia] that
are trained using extensive amounts of paired image-text data.

Finetuned Language Models. One direction of research to adapt language models to multi-modal
tasks is to directly finetune the pretrained model weights. Tsimpoukelli et al. [23] directly finetune
language models on visual tasks such as reasoning across discrete sequences and few-shot image
classification, demonstrating that knowledge acquired from text can transfer to non-linguistic settings.
Similarly, Ziegler et al. [32] and Chen et al. [4] show that using a large pre-trained language model
as a decoder can improve a captioning performance under regimes with more limited training data.
Cho et al. [5] proposes using open-ended text generation as an objective for task-general multi-modal
models. Generally, these methods require undergoing pretraining on a large corpus of aligned text-
image data, after which finetuning is performed for each specific downstream task. While these
approaches have shown to produce excellent results on a variety of visual tasks, the resulting models
are highly specialized and cannot learn new concepts, or adapt to new tasks with just a few examples,
unlike our proposed method, which does so through few-shot prompting and in-context learning with
large language models. We accomplish this by first leveraging pretraining on single modal (unaligned)
data and then only in-context learn text-image alignment only given a few aligned examples.

Frozen Language Models. Given the computational burden of even finetuning large language
models, another direction of related work focuses on using frozen language models. Frozen [23]
demonstrates that finetuning visual encoder features to align a frozen pretrained language model
achieves non-trivial performance in few-shot image classification and visual question answering.
Recently, there have been notable advancements in the field of using text models for image-related
tasks, demonstrated by LLaVa [13]] and MiniGPT4 [31]. In their respective approaches, these models
finetune a linear projection layer to align image features with text models. In contrast, our method
establishes a unique connection between image and text tokens using VQ, resulting in a fundamentally
distinct approach. This orthogonal nature of our method sets it apart from previous approaches. An
advantage of our approach lies in its superior parameter and computational efficiency, as training the
VQ module does not involve large language models (LLMs) nor large visual backbones (ViT), which
reduces the overall number of parameters required. Additionally, this characteristic of our method
renders it compatible with black API-based LLMs, further extending its versatility and applicability.

6 Conclusion

In this work, we presented Language Quantization AutoEncoder (LQAE), a VQ-VAE style model
based on BERT that learns to map images between image and text modalities by using pretrained
BERT models. We demonstrated that by leveraging pretrained language denoising models, we can
first learn an alignment between text and image data in an unsupervised manner without the use
of any text-image aligned pairs. Then, we can few-shot prompt a pretrained large language model
with as few as 1-5 pairs text-image examples of our learned text encodings of images to perform
classificationand visual question answering, achieving accuracy competitive or exceeding prior works
which pretrain on millions of pairs. Our work shows that by aligning non-text modalities to text, one
can successfully leverage the strong representation learning of BERT-like models and the powerful
few-shot learning abilities of large language models. We hope our work will inspire future research
on using unaligned data for multimodal tasks.

Limitations and Future work.

Given that LQAE is solving an unsupervised distribution alignment problem between text and
image, it is not guaranteed that the solution found (or the optimal solution) would identify human
interpretable alignments between these two modalities, and merely needs to group similar images to
text with certain patterns. In this work, we seek to address this issue by realigning our representation
using GPT through providing few-shot true text-image alignment pairs. Although this alignment
allows us to solve downstream visual tasks such as classification, the text may still not be human
interpretable, which may be of vital important to some domains such as healthcare.

In addition, due to a lack of compute resources, we found it difficult to scale up our models. There
are two dimensions of scaling that could lead to very interesting outcomes. One is using bigger image
encoders and decoders. Another one is using bigger BERT-like model. We hypothesize that both will



improve results significantly because larger BERT-like model’s has more text knowledge and larger
image decoder means more model capacity to decode images.

Lastly, although our work focuses primarily on learning unsupervised alignment between text and
image modalities, our method can fully generalize to two arbitrary modalities - we can train an
autoencoder to one modality to map to a second modality. Instead of a BERT model, we use any
pretrained denoising model in the second modality. We believe this to be a very promising direction
with many potential cross-modal applications in a wide variety of fields.
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A Few-shot MinilmageNet

The dataset construction is based on MinilmageNet [26], following the method of Tsimpoukelli et al.
[23]. A 256 x 256 image size is used so that the ViT encoder generates 256 tokens.

We use the same subset of ImageNet classes, referred to as .S, that was utilized in previous research
on meta-learning with Minilmagenet [20} 23]]. All of the images used come from the validation set of
ImageNet. We follow the process used in Tsimpoukelli et al. [23]] to generate a 2-way question with
n inner-shots, as follows:

1. Select two classes, ¢; and ca, from a set S.

2. Choose n images, v°'1...v°n + 1, from class ¢; and n images, v°*1 ... v°n, from class
Ca.

3. Combine the two sets of images into a sequence of 2n support images, [v7", v{? ... vS, vE2].
4. Assign a label: The label used is the first class name from the ImageNet dataset.

B Examples of Encoded Image

Figure 6: Examples of image-to-text generation using our method. The images are sampled from the
ImageNet dataset. Left. Randomly sampled image from ImageNet. Right. Model-generated text
based on the image.
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Figure 7: Examples of image-to-text generation using our method. The images are sampled from the
ImageNet dataset. Left. Randomly sampled image from ImageNet. Right. Model-generated text
based on the image.
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