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READY-TO-REACT: ONLINE REACTION POLICY FOR
TWO-CHARACTER INTERACTION GENERATION

Anonymous authors
Paper under double-blind review

Time 1800 + Frames (1 Minute)

per-frame FID: 1.394
per-trans FID:  2.105
per-clip FID:   25.283

Get stuckWrong orientation Out of  stage

Error Accumulation

Ours
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method

per-frame FID: 8.249
per-trans FID:  3.347
per-clip FID: 122.463

200 Frames

Figure 1: Demonstration of Ready-to-React, an online reaction policy for two-character interac-
tion generation on the challenging task of boxing. Ready-to-React predicts the next pose of an agent
by considering its own and the counterpart’s historical motions. Our method can successfully gen-
erate 1800 frames of motion, whereas the GPT-based approach struggles after about 200 frames,
displaying issues such as incorrect orientation, leaving the ring boundary, or freezing in place due to
the accumulation of errors over time.

ABSTRACT

This paper addresses the task of generating two-character online interactions. Pre-
viously, two main settings existed for two-character interaction generation: (1)
generating one’s motions based on the counterpart’s complete motion sequence,
and (2) jointly generating two-character motions based on specific conditions. We
argue that these settings fail to model the process of real-life two-character in-
teractions, where humans will react to their counterparts in real time and act as
independent individuals. In contrast, we propose an online reaction policy, called
Ready-to-React, to generate the next character pose based on past observed mo-
tions. Each character has its own reaction policy as its “brain”, enabling them to
interact like real humans in a streaming manner. Our policy is implemented by
incorporating a diffusion head into an auto-regressive model, which can dynam-
ically respond to the counterpart’s motions while effectively mitigating the error
accumulation throughout the generation process. We conduct comprehensive ex-
periments using the challenging boxing task. Experimental results demonstrate
that our method outperforms existing baselines and can generate extended motion
sequences. Additionally, we show that our approach can be controlled by sparse
signals, making it well-suited for VR and other online interactive environments.
Code and data will be made publicly available.

1 INTRODUCTION

This paper aims to learn a reaction policy from data that can generate two-character interactions
in a streaming manner. Such a policy is essential for applications in robotics, gaming, and virtual
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reality, where the character needs to interact with other entities in real-time. Generating reasonable
online reactions is quite challenging, considering two key perspectives. Firstly, the policy should
dynamically adjust its own actions based on the counterpart’s responses at each time step, which
is essential for enabling online applications. Secondly, downstream applications require the policy
to generate natural and physically plausible motions while maintaining consistency and diversity
throughout these sequences.

Previously, there were two main settings to generate two-character interaction: (1) generating one’s
motions based on a complete sequence of the counterpart’s motion (Siyao et al., 2024; Ghosh et al.,
2024; Xu et al., 2024b), and (2) jointly generating two-character motion sequences based on specific
conditions, such as textual input (Tanaka & Fujiwara, 2023; Gu et al., 2024; Ruiz-Ponce et al., 2024).
However, we argue that both settings do not model the process of real-life two-person interactions.
As humans, we dynamically produce the reaction based on the counterpart’s actions at each time
step, engaging in independent mind rather than sharing a collective consciousness. To achieve two-
character online interaction, it is crucial to develop a reaction policy that can be separately applied
to two characters, allowing them to react to each other like real humans.

In this paper, we propose a novel reaction policy, called Ready-to-React, for generating two-
character interactions, as illustrated in Figure 2. Our core innovation lies in incorporating a diffusion
head into an auto-regressive model, which can respond to the counterpart’s motions in a streaming
manner while ensuring the naturalness and diversity of the motions. Specifically, we first encode
the observed motions into latent vectors using a motion encoder. Given the history motion latent of
the character and the counterpart’s motion, our reaction policy uses an auto-regressive model to pre-
dict a conditioning feature vector. This vector guides a diffusion model to generate the next motion
latent, which is then decoded into the next character pose. As illustrated in Figure 1, the proposed
reaction policy can generate long and natural boxing sequences compared to the baseline method.

We chose boxing as the task for online two-character interaction generation considering its fast
pace and frequent shifts between offense and defense. These dynamic interactions make it an ideal
scenario for testing and validating our approach. We conducted experiments to validate the effec-
tiveness of our approach on our self-collected boxing dataset DuoBox. Our method was evaluated
under three settings: (1) reactive motion generation, (2) two-character interaction generation, and (3)
long-term two-character interaction generation, where it outperforms the baselines. We show that
our method can generate very long motion sequences (∼ 1 minute), just relying on the initial poses
of the two characters. Additionally, we carried out experiments on sparse control motion generation,
demonstrating that our method is well-suited for VR online interactive settings.

2 RELATED WORK

Single-character motion generation. In recent years, deep learning methods for motion synthe-
sis have gained increasing attention (Fragkiadaki et al., 2015; Holden et al., 2016; Martinez et al.,
2017; Dou et al., 2023; Xie et al., 2023; Pi et al., 2023; Cen et al., 2024). Various techniques, in-
cluding multi-layer perceptron (MLP) (Holden et al., 2017), mixture of experts (MoE) (Zhang et al.,
2018), and recurrent neural networks (RNN) (Harvey et al., 2020) are employed to tackle this task.
Additionally, to generate diverse and natural results, generative models such as conditional varia-
tional auto-encoders (cVAE) (Ling et al., 2020), generative adversarial networks (GAN) (Li et al.,
2022), and normalizing flows (Henter et al., 2020) have shown promise in addressing this challenge.
Moreover, the success of generative pre-trained transformers (GPT) (Zhang et al., 2023) and dif-
fusion models (Tevet et al., 2023) further underscores their potential in this area. Recently, Chen
et al. (2024); Shi et al. (2024) adopt auto-regressive diffusion models to generate single-character
motions. Although our reaction policy generates one character’s motion based on the other’s, tech-
nically making it single-character motion generation, our work focuses on decision independence in
two-character interactions.

Reactive motion generation. Reactive motion generation is a subfield of human motion gener-
ation that focuses on generating human motion in response to external agents. Men et al. (2022)
introduces a semi-supervised GAN system with a part-based LSTM module to model temporal sig-
nificance. Chopin et al. (2023) employs a transformer network, enhanced by an interaction distance
module using graphs. Siyao et al. (2024) proposes a GPT-based model to predict discrete motion
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Figure 2: Pipeline overview. Given a boxing scene at the leftmost figure, where the blue agent is
thinking about its next move. The reaction policy (Section 3.2) follows these steps: first, based on
the observations, the history encoder encodes the current state and observations; then, the next latent
predictor predicts the upcoming motion latent; and finally, an online motion decoder decodes this
motion latent into the actual next pose. The same reaction policy can be applied to the pink agent.
Through a streaming process for both agents, our reaction policy enables the continuous generation
of two-character motion sequences without length limit (Section 3.3).

tokens, enhanced by an off-policy reinforcement learning strategy. Xu et al. (2024b) utilizes a
diffusion-based model with an explicit distance-based interaction loss. Ghosh et al. (2024) employs
a diffusion-based model with a combined spatio-temporal cross-attention mechanism. However, Xu
et al. (2024b) and Ghosh et al. (2024) require the complete motion sequence of the other agent,
and cannot generate reactive motions online. In contrast, our method enables online interaction
generation by leveraging auto-regressive diffusion models, as inspired by Li et al. (2024).

Two-character motion generation. While multi-character motion generation focuses on producing
motion for groups with social relationships (Zhu et al., 2023b; Peng et al., 2023; Le et al., 2023; Lim
et al., 2023; Jeong et al., 2024), two-character motion generation focuses on generating closer in-
teraction between two characters. Starke et al. (2020) proposes the local motion phase for complex,
contact-rich interactions. Starke et al. (2021) combines a motion generator with task-dependent
control modules. Both Starke et al. (2020) and Starke et al. (2021) require user control signals.
Physically-based methods (Won et al., 2021; Zhu et al., 2023a; Younes et al., 2023) ensure the phys-
ical plausibility of character interactions but still struggle to generate natural and diverse motions.
Liu et al. (2019); Fieraru et al. (2020); Yin et al. (2023); Liang et al. (2024); Xu et al. (2024a) pro-
vide datasets with rich annotations that enable advancements in interaction modeling two-character
scenarios. Recent advances in text-driven two-character motion generation have introduced diffu-
sion models (Tevet et al., 2023) to enhance realism and control (Tanaka & Fujiwara, 2023; Gu et al.,
2024; Ruiz-Ponce et al., 2024; Cai et al., 2024). Despite these advancements, these methods jointly
generate whole sequences for both characters and ignore the dynamic feedback inherent in real-life
two-person interactions.

3 METHOD

Our aim is to develop an intelligent reaction policy capable of generating online motions that dynam-
ically respond to a counterpart’s movements. We begin by outlining the formulation of the one-step
reaction in Section 3.1. Then, we introduce the design of the reaction policy in Section 3.2. We ex-
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plain how this policy drives the generation of two-character motions in Section 3.3. In Section 3.4,
we explain the training loss and implementation details.

3.1 PROBLEM FORMULATION

We first introduce the problem formulation. There are two characters, the agent A and the oppo-
nent O. The goal is to generate the future agent’s motion Af based on the opponent’s movements
Oi∈[f−W,f) and the agent’s previous motion Ai∈[f−W,f):

Af = P(Oi∈[f−W,f), Ai∈[f−W,f)), (1)
where P is the generative reaction policy, and W is the visible past window size. We use the same
root coordinate definition in Starke et al. (2020; 2021), as shown in Figure 2. Each agent’s motion
Ai is defined as:

Ai = {rAoff ∈ R2, rAdir ∈ R2, ΘA
pos ∈ RJ×3, ΘA

rot ∈ RJ×6, ΘA
vel ∈ RJ×3}, (2)

where rAoff and rAdir are the horizontal trajectory (excluding the y-axis) positions and directions relative
to the (i−1)-th frame agent’s root coordinate, respectively. The ΘA

pos, Θ
A
rot and ΘA

vel are the positions,
6D rotations and velocities relative to the i-th frame agent’s root coordinate, respectively. J is the
number of body joints. Each opponent’s motion Oi is defined as:

Oi = {Θ̈A
pos ∈ RJ×3, Θ̈A

rot ∈ RJ×6, Θ̈A
vel ∈ RJ×3}, (3)

which includes the positions, 6D rotations and velocities relative to the i-th frame agent’s (A’s) root
coordinate, respectively.

3.2 REACTION POLICY

In this section, we present our reaction policy, which predicts motion in the latent space. As illus-
trated in Figure 2, the history encoder module is responsible for encoding the observations of the
current state. Based on this historical information and the opponent’s motion, the next latent predic-
tor module predicts the future motion latent codes. Finally, the online motion decoder generates the
future motions using the predicted latent and the current agent’s state.

Latent motion representation. Converting raw data to latent space has become a popular approach
in generation pipelines (Rombach et al., 2022), and VQ-VAE has been proven to be effective in
learning disentangled representations of human motion data (Zhang et al., 2023; Jiang et al., 2024;
Lee et al., 2024; Starke et al., 2024). In this paper, we adopt a similar architecture as in Zhang et al.
(2023) to encode the raw motion data into latent sequences. Given a sequence of agent motion A =
{Ai | i ∈ [0, f), i ∈ Z}, the VQ-VAE motion encoder encodes it to Z = {Zi | i ∈ [0, ⌊ fd ⌋), i ∈ Z}
with a downsampling factor d = 4, and each latent code Zi is quantized through the codebook C to
find the most similar element:

Ẑi = arg min
Ck∈C

∥Zi − Ck∥2 . (4)

History encoder. First, we need to encode the past information of both the agent and the opponent.
To represent the agent’s past motion A, we could directly utilize the VQ-VAE motion encoder to
compress them into latent variables Ẑ. The opponent’s historical motion O is also downsampled by
a factor of d = 4 and then passed through a single-layer MLP, which encodes it into a feature vector
with the dimension of Ẑ, ensuring consistency for subsequent processing.

Next latent predictor. We then predict the next motion latent in an auto-regressive manner based
on the historical information. Our approach employs a transformer-based condition encoder to ef-
fectively capture all visible information. This encoded data is then passed to the diffusion-based
motion latent predictor, which generates the next motion latent based on the encoded conditions.

Specifically, we begin by constructing a transformer-based encoder to encode the information acces-
sible to the reaction policy. As illustrated in Figure 2, the transformer’s input consists of the motion
latent code Ẑ and the opponent’s feature obtained from the history encoder. As a result, each output
of the transformer-based encoder Pf encapsulates the information preceding the f -th frame.
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Next, we introduce the diffusion process, which predicts the future motion latent codes Z̃f based on
Pf at the f -th frame. We use conditional diffusion models (Tevet et al., 2023; Ramesh et al., 2022)
and Pf serves as the conditioning input, as shown in Figure 2. We employ a single-layer MLP as the
generative model G, ensuring that our model can operate in real-time. The predicted motion latent
code Z̃f is then used to generate the future motion through the online motion decoder.

Compared to previous methods that rely on predicting motion tokens’ probabilities and supervising
GPT models with cross-entropy loss, our approach of predicting motion latent using a diffusion-
based model preserves the smooth and continuous nature of motion. This results in fewer cumulative
errors and less deviation from the intended motion over time, offering greater stability and accuracy
than predicting token probabilities with GPT models.

Online motion decoder. A remaining problem is to decode the predicted motion latent code Z̃f

into the future agent motion Ãi∈[f,f+d) online. We propose an online motion decoder that takes a
few previous frames and two consecutive motion latent codes to generate the next motion frames.
As shown in Figure 2, we use a transformer as the online motion decoder. The inputs to the online
motion decoder are the past agent motions Ai∈[f−d,f), root information Ri∈[f−d,f), the last motion
latent code Z̃f−1 and current motion latent code Z̃f from the next latent predictor. Here, each root
information Ri is defined as:

Ri = {rOoff ∈ R2, rOdir ∈ R2, rdis ∈ R1}, (5)
which includes the agent’s horizontal trajectory (excluding the y-axis) positions and directions rel-
ative to the opponent’s root coordinate, and the distance between the agent’s root and the center of
the boxing ring. The output of the online motion decoder are the future agent motions Ãi∈[f,f+d)

and the future root information R̃i∈[f,f+d). In contrast to VQ-VAE decoder (Zhang et al., 2023),
which requires the entire sequence of tokens before decoding, our method decodes motion latent
into explicit motion sequences in real-time using only a few tokens and historical data, enabling
online generation.

3.3 ONLINE TWO-CHARACTER MOTION GENERATION

Our reaction policy, as described in Section 3.2, enables the generation of the next motion frame by
leveraging both the opponent’s past motion and the agent’s own past motion. To implement online
two-character interaction generation, we use the same reaction policy P for the two characters.

Starting with an initial input of s = 4 frames of poses, both characters use the policy P to gen-
erate the next d frames by considering their own initial motion and the opponent’s motion. These
generated motions are then added to a history buffer H with a maximum size of W . After this
initial phase, both characters continuously update their predictions by incorporating the newly gen-
erated frames and the accumulated motion history. The interaction generation process operates in
a streaming fashion. Motion that exceeds the buffer size W is discarded as outdated information.
Through this approach, both characters dynamically respond to the other, ensuring coherent and
natural interactions while enabling two-character motion generation without a length limit.

3.4 TRAINING LOSS AND IMPLEMENTATION DETAILS

The training process is divided into two stages: (1) pre-training the VQ-VAE model and (2) jointly
training the next latent predictor model and the online motion decoder. Details about the network
architecture are provided in Appendix C.

Stage 1. We pre-train the VQ-VAE model following the approach in Zhang et al. (2023); Razavi
et al. (2019) for 40k iterations, using motion sequences cropped to 64 frames. The batch size is set
to 128, with a codebook size = 512, codebook feature dimension = 512, and a downsampling rate
of d = 4. The codebook is updated with the exponential moving average (EMA) method (Razavi
et al., 2019), as a replacement for the codebook loss. Finally, the loss is defined as:

Lvqvae = Lrec + α∥sg[Ẑ]− Z∥22, (6)

where Lrec is the L2 reconstruction loss, ∥sg[Ẑ] − Z∥22 is the commitment loss, the operator sg
refers to a stop-gradient operation, and α = 0.1.
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Stage 2. Next, we train the next latent predictor and online motion decoder jointly for 40k itera-
tions while keeping the VQ-VAE motion encoder fixed. During training, we applied causal masks
(Figure 2) to ensure that the model can only access the current and previous inputs, preventing in-
formation from leaking into future time steps. We use ground truth Ẑf−1 instead of the predicted
Z̃f−1 in Figure 2 during training. For this phase, motion sequences are cropped to W = 60 frames
(2 seconds) for training. The batch size is set to 32, with time step T = 1000, and we employ DDIM
(Song et al., 2020) to sample only 50 steps during inference. The loss is defined as:

L = Ldiffusion + β∥A− Ã∥22 + γ∥R− R̃∥22, (7)
where β = 1.0, γ = 1.0. Ldiffusion is defined as:

Ldiffusion = Et∈[1,T ],x0∼q(x0) [∥x0 − G(xt, t, c)∥2] , (8)

where x0 = Ẑ is the ground truth next latent, G is the generative model, c = Pf is the condition,
and G(xt, t, c) = Z̃ is the predicted next latent. All models are trained using the AdamW optimizer
(Kingma & Ba, 2014) with a learning rate of 0.0001 on a single Nvidia RTX 4090 GPU.

4 EXPERIMENTS

4.1 DATASET, EXPERIMENTAL SETTING, AND EVALUATION METRICS

Dataset. To evaluate our method, we collect a high-quality dataset, DuoBox, using the OptiTrack
Mocap system1 equipped with 12 cameras. We invited three boxing enthusiasts to perform various
boxing movements, recording multiple sequences of their actions. Please refer to Appendix A for
the details of the data collection. In total, DuoBox consists of 63.4 minutes of motion data (approx-
imately 457k frames) captured at 120 FPS. For our experiments, we split the dataset into training
(80%) and testing (20%) subsets, and downsample the original data to 30 FPS for training purposes.
To further enrich the dataset, we apply the augmentation by swapping the roles of the agent and the
opponent during training.

Experimental setting. We evaluate our method in three scenarios: reactive motion generation, two-
character interaction generation, and long-term two-character interaction generation. In the reactive
motion generation, we use the ground truth for the opponent’s motion as input. For the two-character
interaction generation, we provide only the initial 4 frames of poses for both characters. In both test
scenarios, the motion of individual characters follows the procedure outlined in Section 3.2, while
the generation of two-character motions adheres to the process described in Section 3.3.

Evaluation metrics. We evaluate the generated motion sequences using the following metrics:
(1) Frechet Inception Distance (FID). We follow Dou et al. (2023) calculating per-frame, per-
transition and per-clip FIDs. A lower FID indicates the generated motion is more similar to the real
data. (2) Jitter. We evaluate motion jittery following Shen et al. (2024). A closer value to the ground
truth indicates better motion quality. (3) Root Orient (RO). To assess the long-term consistency of
the generated motion, we propose a new metric RO. It calculates the percentage of frames where
the facing direction between the two agents exceeds 45 degrees. This is motivated by the nature of
boxing, where the athletes typically face to each other throughout the match. Lower deviation from
the ground truth means the generated motion aligns better with the expected interactive behavior.
(4) Foot Sliding (FS). Foot sliding (Ling et al., 2020) measures the average sliding distance when
the foot is close to the ground (< 5cm). A value closer to the ground truth indicates better motion
quality. Minimal foot slide may suggest that the generated motion remains stationary. In addition,
we provide the inference speed in Appendix E and motion diversity analysis in Appendix F.

4.2 COMPARISON WITH BASELINES

We compare our method against several baselines, including InterFormer (Chopin et al., 2023),
CVAE-AR, CAMDM (Chen et al., 2024), T2MGPT-online (Zhang et al., 2023), and Duolando-
offline (Siyao et al., 2024). Among these, InterFormer is a deterministic model and lacks the ability
to generate diverse results. CVAE-AR is a CVAE-based approach that we construct specifically for

1https://optitrack.com/
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Table 1: Comparison with baselines. We compare our method with five baselines (Section 4.2) in
the two scenarios: reactive motion generation and two-character motion generation. Among them,
bold indicates the best results. ↓ means lower is better. → means closer to the real data is better.

Methods
Reactive Two-character

FID↓ Jitter→ RO→ FS→ FID↓ Jitter→ RO→ FS→
Per-frame Per-trans. Per-clip Per-frame Per-trans. Per-clip

Real - - - 21.332 24.7% 0.97 - - - 21.332 24.7% 0.97

InterFormer 0.724 1.993 15.061 6.712 40.3% 1.08 2.498 4.590 47.194 6.117 31.5% 1.05
CVAE-AR 1.285 4.233 26.010 28.519 46.2% 1.13 5.405 9.006 92.978 28.037 38.4% 1.09
CAMDM 1.606 4.037 28.503 53.622 40.1% 1.96 4.162 7.488 70.416 53.994 22.6% 2.01
T2MGPT-online 1.721 1.567 30.159 78.292 50.4% 2.65 8.249 3.347 122.463 78.334 46.2% 2.63
Duolando-offline 1.025 5.862 13.606 22.544 30.8% 3.19 - - - - - -

Ours 0.535 0.995 9.599 17.825 34.7% 1.02 1.394 2.105 25.283 16.844 24.1% 0.97

Table 2: Quantitative results of long-term two-character motion generation. We compare our
method with four baselines (Section 4.2). The generated motion lengths are set to 1800 frames.

Methods FID ↓ Jitter→ RO→ FS→
Per-frame Per-transition Per-clip

Real - - - 21.332 24.7% 0.97

InterFormer 5.628 5.936 87.697 4.784 44.6% 0.90
CVAE-AR 7.325 11.717 110.458 18.107 36.7% 0.75
CAMDM 7.557 13.465 109.654 25.237 13.7% 0.86
T2MGPT-online 21.27 4.457 273.086 72.481 70.4% 2.34

Ours 2.388 2.375 36.755 19.204 31.3% 0.83

comparison. For CAMDM, we modify its input to make it function as a reaction policy. T2MGPT-
online refers to decoding each newly generated token immediately into raw motion using a VQ-VAE
decoder as soon as the token is produced. Duolando-offline (Siyao et al., 2024) decodes the tokens
after the entire sequence has been generated. We retrain all these methods on the DuoBox using
similar training configurations for a fair comparison. Details can be found in Appendix D.

Reactive motion generation. We begin by evaluating our method in the context of generating
reactive motion, where the opponent’s motion is provided as ground truth. The results, presented in
Table 1 (left: reactive), show that our method significantly outperforms the baseline across multiple
metrics, including per-frame, per-transition, and per-clip FID scores, as well as reducing foot slid-
ing. Additionally, the RO of our method closely matches the performance of the offline Duolando
generation. Notably, the root prediction in Duolando is relative to the opponent, preventing drift
over time. Among the online prediction methods, InterFormer may generate motions with implau-
sible root position and orientation. T2MGPT, which decodes GPT-predicted tokens online, exhibits
jitter and discontinuity. Both CVAE-AR and CAMDM produce motion that is easy to get stuck over
time. We also provide qualitative results in Figure 5 and the supplementary materials.

Two-character interaction generation. Our method enables the simultaneous generation of mo-
tion for both agents. Starting with the first four frames, each agent’s subsequent motion is generated
by leveraging the interaction between their own and their opponent’s past motions. In contrast,
Duolando-offline cannot generate both agents’ motions simultaneously, as it predicts the root posi-
tion relative to the opponent’s at the same frame and requires future information through a looking-
ahead mechanism. Moreover, it relies on having all tokens available before decoding, preventing
online generation. As shown in Table 1 (right: two-character), our method significantly outperforms
the baseline across all metrics in this more complex scenario. We also provide qualitative results in
Figure 6 and the supplementary materials.

Long-term two-character interaction generation. We demonstrate our method’s ability to gen-
erate extended sequences of two-character motion, highlighting its reduced error accumulation and
superior motion quality over long durations. Our method is capable of generating two-character
motion for 1800 frames. The results are shown in Table 2. The FID of ours is much better than all
the baselines. To show the effect of error accumulation, we plot the face direction relative to time in
Figure 3. T2MGPT-online and InterFormer will quickly generate motions that face away from each

7
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Reactive Motion Generation Two-character Motion GenerationGT Ours Baselines

Figure 3: Visualization of the face direction relative to time. We compare our method with
baselines in two scenarios described in Section 4.2. The x-axis represents the frame number f, while
the y-axis shows the angle between the facing directions of the two characters (in degrees). An angle
of 0◦ indicates that the two agents are facing each other, whereas±180◦ means they are facing away
from each other. The green lines represent the ground truth, the blue lines represent our method, and
the red lines represent the baselines.

Table 3: Ablation study. We compare our method with five variants to validate our main design
choices (please refer to Section 4.3 for details). Among them, bold indicates the best results. ↓
means lower is better. → means closer to the real data is better.

Methods
Reactive Two-character

FID↓ RO→ FS→ FID↓ RO→ FS→
Per-frame Per-trans. Per-clip Per-frame Per-trans. Per-clip

Real - - - 24.7% 0.97 - - - 24.7% 0.97

use VAE as encoder 0.525 1.290 10.423 36.5% 1.00 1.446 3.002 28.268 22.2% 1.01
w/o motion encoder 0.693 1.339 24.860 54.0% 1.48 7.203 3.012 126.991 52.3% 1.47
use GPT 0.892 1.781 16.212 37.4% 0.99 2.418 3.536 41.144 20.9% 0.97
w/o online decoder 5.215 11.020 78.933 44.9% 1.06 11.279 23.189 157.253 16.0% 0.91
w/o R in decoder 0.496 1.074 10.315 43.3% 0.93 3.370 2.275 54.503 38.2% 0.92

Ours 0.535 0.995 9.5998 34.7% 1.02 1.394 2.105 25.283 24.1% 0.97

other after some time, and CAMDM generates motions that are over-smoothed. Please refer to the
supplementary material for more visualizations.

4.3 ABLATION STUDY

As shown in Table 3, we compare our method with five main ablated versions: (1) use VAE as
encoder. To demonstrate the stability of our method with different motion latent encodings, we
replace the VQ-VAE with a VAE as the motion encoder. As shown in the table, using VAE as the
motion encoder does not significantly affect the results. (2) w/o motion encoder. To highlight
the importance of predicting motion latent codes rather than raw motions, we remove the VQ-VAE
motion encoder and directly predicted the pose sequence. The results show that directly predicting
the raw pose sequence significantly degrades the motion quality. (3) use GPT. We replace the
diffusion model with GPT to predict the next token probabilities. The results show a decline in
motion quality, with noticeably worse FID scores. (4) w/o online decoder. To validate the necessity
of training a new online motion decoder, we directly apply the VQ-VAE decoder to decode the
motion latent codes into motion sequences. Using the VQ-VAE decoder at each step results in
discontinuous motion, which in turn leads to a worse FID score. (5) w/o R in decoder. We remove
the root sequence R in Equation 5 as the input to the online motion decoder. Without R, the model
can easily predict motions with the wrong root facing direction.

In summary, we demonstrate the importance of different components in our model. More ablation
studies and visual results can be found in Appendix G and the supplementary materials.

5 APPLICATION: GENERATING REACTIVE MOTION WITH SPARSE SIGNALS

Introducing sparse control is essential for making our method practical in real-world applications,
particularly in VR online interactive environments. In these settings, capturing detailed and dense
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Table 4: Quantitative results of generating reactive motion from sparse signals. We compare
our method with CAMDM. Among them, bold indicates the best results. ↓means lower is better.→
means closer to the real data is better. Our method outperforms the baseline in terms of all metrics.

Methods FID ↓ Jitter→ FS→ Pos. Err. ↓ Rot. Err. ↓
Per-frame Per-transition Per-clip

Real - - - 21.332 0.97 - -

CAMDM 0.697 1.506 15.169 47.229 2.25 14.52 22.40
Ours 0.249 0.263 4.086 21.163 1.06 2.72 4.39

f=16 f=32 f=48 f=60 f=80 f=96

f=16 f=32 f=48 f=60 f=80 f=96

O
U

R
S

C
A

M
D

M

Figure 4: Qualitative results of generating reactive motions from sparse signals. We compare
our method with CAMDM. Our approach successfully generates realistic motion while effectively
adhering to the sparse signals (annotated by red dots in the figures). In contrast, CAMDM struggles
to achieve the same level of responsiveness and accuracy, as shown in the red circles.

input data can be challenging due to hardware limitations, computational costs, or user comfort.
Sparse control addresses this by allowing the system to generate high-quality motion based on min-
imal input signals.

To demonstrate that our method is well-suited for VR online interactive environments, we also con-
ducted experiments showing that it can be controlled by sparse signals. The sparse signals are the
head and two-hand positions and rotations relative to the previous frame’s agent root coordinate.
To enable the controlling feature, we retrain the reaction policy by adding the sparse signals as
conditions to the two transformer models in Figure 2. The loss and other training settings remain
unchanged. We evaluate the quality of the generated motion using FID scores, motion jitter, foot
sliding, and position and rotation errors to highlight the controllability of our approach. We compare
our method with CAMDM (Chen et al., 2024), an auto-regressive method that generates diverse mo-
tions based on control signals. The results, presented in Table 4, show that our method consistently
outperforms the baseline across all evaluated metrics. We also provide qualitative results in Figure 4
and in the supplementary materials.

6 DISCUSSION AND CONCLUSION

In this work, we have introduced a novel reaction policy that can be applied to two-character boxing
interaction generation. The reaction policy includes a diffusion-based predictor for forecasting the
next motion latent, paired with an online motion decoder optimized for the online generation. Our
method effectively reduces error accumulation, enables real-time online generation, and can produce
extended motion sequences. Additionally, it offers controllability through sparse signals, making it
well-suited for online interactive environments.

However, several limitations to our approach should be addressed in future work. First, the current
method is primarily designed for interactions between two individuals, and extending it to handle
multi-person scenarios remains a challenge. Second, our method does not account for interactions
with the environment or objects, which are essential for many real-world applications. Overcoming
these limitations will be crucial for making the method more versatile and applicable to a wider
range of scenarios.
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the two characters are too close, leading to penetration

wrong orientation

the blue character is inactive and getting stuck

Figure 5: Qualitative results of generating reactive motions. Given the same ground truth op-
ponent motion, InterFormer can produce reactive motion that is too close to the opponent, leading
to penetration. CAMDM tends to get stuck, while Duolando may result in human motion with
incorrect orientation after a certain period.
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Figure 6: Qualitative results of generating two-character motions. Given the same initial four
frames for both characters, InterFormer tends to produce human motion with incorrect orientation.
CAMDM often results in the characters getting stuck, while T2MGPT can cause the two characters
to drift apart due to accumulated errors.
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APPENDIX

A DATASET DETAILS

A.1 DATA COLLECTION DETAILS

Figure 7 illustrates our MoCap system. We use 12 high-resolution cameras with 120 FPS around the
persons during our capture process. Figure 7 (a) and (b) shows the bird-view and the side-view of
the camera positions. We apply 50 markers on one person as shown in Figure 7 (c) and (d). Figure 8
illustrates the motion capture setup and environment. The two actors wear motion capture suits with
markers.

Figure 7: Cameras and markers. We have 12 cameras around the persons: (a) cameras from bird-
view and (b) cameras from side-view. We put 50 markers on one person as in (c) front-view and (d)
rear-view of markers.

Figure 8: Data collection. During data collection, the actors wear motion capture suits with markers
and perform boxing in the center of the area.

A.2 DATASET STATISTICS

Table 5: Dataset statics. Types of movements in the DuoBox.

# Sequences Types of Movements

25 Simple punches. Jab, cross, (lead, rear) uppercut, (lead, rear) hook,
defense, dodge, evade, counter, counterattack, parry.

19 Combinations punches. Jab-jab; jab-cross-rear uppercut; jab-lead
uppercut; jab-cross-cross; jab-cross-lead uppercut; jab-cross-jab-rear
uppercut; jab-cross-step-lead hook; jab-rear uppercut-lead upper cut-
cross; jab-rear uppercut-jab-rear uppercut; jab face-cross body-jab face;
jab-lead hook-cross; etc.

72 Free sparring.
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We recorded 116 sequences in total. The detailed statistics are presented in Table 5. In 25 sequences,
the participants were instructed to perform simple punching actions. In 19 sequences, they were
asked to execute specific boxing punch combinations 2. In the remaining 72 sequences, they engaged
in free-style boxing, simulating an actual match.

A.3 ETHICAL CONSIDERATIONS

The participant group consisted of three male individuals aged 18-22, who were boxing enthusiasts
recruited from a boxing club. All participants provided informed consent prior to participation and
were fully informed of the research purpose. Since we used optical motion capture equipment, no
photographic images of the participants were collected. To ensure privacy and confidentiality, all
data was anonymized during processing, and any identifying information was removed.

B ONLINE TWO-CHARACTER MOTION GENERATION ALGORITHM

We present a pseudo-algorithm in Algorithm 1 outlining the process of generating two-character
motions using our reaction policy, as described in Section 3.3.

Algorithm 1: Online Two-Character Motion Generation with Reaction Policy

Input: Initial poses: {piA}di=1 for Agent, {piO}di=1 for Opponent; Reaction policy: P(O,A);
History buffer size: W ; Frames per round: d = 4;

Output: Generated motions: {piA}Ti=d+1 for Agent, {piO}Ti=d+1 for Opponent;

Initialize history buffers: BA ← {piA}di=1, BO ← {piO}di=1;
Initialize time index: t← d;
for each round until T frames are generated do
{pt+i

A }di=1 ← P(BO,BA);
{pt+i

O }di=1 ← P(BA,BO);
Append BA with {pt+i

A }di=1;
Append BO with {pt+i

O }di=1;
if |BA| > W then

Remove the oldest element from BA and keep length of W ;
end
if |BO| > W then

Remove the oldest element from BO and keep length of W ;
end
Update time index t← t+ d;

end

C DETAILS OF NETWORK ARCHITECTURE

The VQ-VAE network architecture follows Zhang et al. (2023). Both the encoder and decoder con-
sist of 1D convolution and residual blocks. Temporal downsampling is achieved using convolutions
with stride 2, while upsampling is performed via nearest interpolation. The downsampling and
upsampling are applied twice, resulting in a total downsampling rate of d = 22 = 4.

The two transformer models in Figure 2 use 8 transformer layers with 4 heads. The diffusion model
consists of a single-layer MLP. We also tried various types and numbers of layers of the MLP in the
diffusion process, but we found that single-layer MLP is sufficient and effective to produce lower
FIDs. An additional ablation towards the diffusion network design can be found at Appendix G.3.
During training, the next latent predictor and the online motion decoder are trained together. The
output next latent shaped with (B, L, C) are reshaped to (B×L, C) and passed to the online motion
decoder.

2https://www.youtube.com/watch?v=V59fcX1YC7E
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D IMPLEMENTATION OF THE BASELINES

Here, we provide the details of the baseline implementations used for comparison with our method,
which is evaluated against several state-of-the-art motion generation baselines. (1) InterFormer.
InterFormer is an online deterministic reactive motion prediction method. We retrain this model
on our dataset. (2) CVAE-AR. We designed a CVAE-based method specifically for comparison,
utilizing the standard CVAE pipeline with KL and reconstruction loss. The encoder and decoder
architectures follow those from TEMOS (Petrovich et al., 2022). (3) CAMDM. CAMDM is an
auto-regressive diffusion model that generates motion sequences with root control. We adapt the
model by using the opponent’s motion in place of root control and retrain it on our dataset. (4)
T2MGPT-online. T2MGPT is originally a text-to-motion model. To make it an online method,
we modify it to immediately decode each newly generated token into raw motion using a VQ-VAE
decoder. The opponent’s motion was used as input instead of text. (5) Duolando-offline. Duolando
is designed for the duet dance generation. We adapt its network architecture but exclude its RL
finetuning for the comparison.

E INFERENCE SPEED ANALYSIS

We also test the inference speed and the results are shown in Table 6. Although our model is the
slowest, it can achieve real-time inference and the lowest FID scores.

Table 6: Inference speed. We compare the inference time per frame with other methods. All
methods are tested on a single Nvidia RTX 4090 GPU.

Methods InterFormer CVAE-AR CAMDM T2MGPT-online Duolando-offline Ours

Inference time per frame (ms) ↓ 12 2 5 17 5 22
Reactive per-clip FID ↓ 15.061 26.010 28.503 30.159 13.606 9.599
Two-character per-clip FID ↓ 47.194 92.978 70.416 122.463 - 25.283

F MOTION DIVERSITY ANALYSIS

For each sequence input in the test set, we generate 10 samples and calculate Average Pairwise
Distance (APD) scores to evaluate the motion diversity Yuan & Kitani (2020). The results are shown
in Table 12. A greater value means the generated motions are more diverse. Among the methods,
InterFormer is deterministic and therefore lacks diversity. We observed that other baselines show
greater diversity, primarily due to their higher levels of error accumulation.

Table 7: Motion diversity. We compare the generated motion diversity with baselines.

Methods InterFormer CVAE-AR CAMDM T2MGPT-online Duolando-offline Ours

Reactive APD 0.000 2.375 3.385 3.728 1.726 2.154
Reactive per-clip FID ↓ 15.061 26.010 28.503 30.159 13.606 9.599
Two-character APD 0.000 4.431 6.300 7.143 - 3.709
Two-character per-clip FID ↓ 47.194 92.978 70.416 122.463 - 25.283

G MORE ABLATION STUDY

G.1 ABLATION STUDY OF THE TRAINING PROCESS

We also conduct a more specific ablation study on the training process. We compare our method
with two variants: (1) split training: we split the training of the next latent predictor and the online
motion decoder. The predicted next latent is not fed into the online motion decoder while training.
(2) stop gradient: we stop the gradient flow from the online motion decoder to the next latent
predictor (the diffusion model). The results are shown in Table 8. From the table, we observe that
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split training outperforms our method in reactive per-frame metrics, RO, and FS, but performs poorly
in the two-character scenarios. We can conclude that supervising the online motion decoder with
the ground truth pose allows for joint optimization of both the next latent predictor and the online
motion decoder, leading to better overall performance compared to the two ablation methods.

Table 8: Ablation study of the training process. We conduct an ablation study towards the training
process. Among them, bold indicates the best results. ↓ means lower is better. → means closer to
the real data is better.

Methods
Reactive Two-character

FID↓ RO→ FS→ FID↓ RO→ FS→
Per-frame Per-trans. Per-clip Per-frame Per-trans. Per-clip

Real - - - 24.7% 0.97 - - - 24.7% 0.97

split training 0.522 1.203 10.004 33.4% 0.96 1.618 2.679 29.574 19.8% 0.94
stop gradient 0.536 1.190 11.064 36.3% 1.01 1.822 3.589 34.797 26.1% 0.98

Ours 0.535 0.995 9.5998 34.7% 1.02 1.394 2.105 25.283 24.1% 0.97

G.2 ABLATION STUDY OF THE VISIBLE WINDOW SIZE

We conduct an ablation study on the visible past window size W stated in Section 3.1. We compare
our setting W = 60 with W = 40 and W = 80. The results are shown in Table 9. Finally, we select
W = 60 for its better performance on FID scores.

Table 9: Ablation study of the visible window size. We conduct an ablation study towards the
visible window size W. Among them, bold indicates the best results. ↓ means lower is better. →
means closer to the real data is better.

Methods
Reactive Two-character

FID↓ RO→ FS→ FID↓ RO→ FS→
Per-frame Per-trans. Per-clip Per-frame Per-trans. Per-clip

Real - - - 24.7% 0.97 - - - 24.7% 0.97

W = 40 0.610 1.416 11.631 33.7% 0.99 1.982 3.483 34.530 19.0% 0.94
W = 80 0.583 1.038 10.994 35.1% 1.02 1.625 2.680 30.319 21.2% 0.97
W = 60 (Ours) 0.535 0.995 9.5998 34.7% 1.02 1.394 2.105 25.283 24.1% 0.97

G.3 ABLATION STUDY OF THE DIFFUSION NETWORK DESIGN

As stated in Appendix C, we explored various network architectures during the design phase. How-
ever, we ultimately found that a single-layer MLP not only offers faster inference but also achieves a
lower FID. To support our statement, we conduct an ablation study on the diffusion network design.
We compare our single-layer MLP with five variants: (1) 2-MLP: using 2 layers of MLP. (2) 4-
MLP: using 4 layers of MLP. (3) 1-ResNet: using 1 layer of ResNet. (4) 2-ResNet: using 2 layers of
ResNet. (5) 4-ResNet: using 4 layers of ResNet. The ResNet is adopted from Stable Diffsuion3, and
we make some modifications: (1) we use linear norm, (2) we use linear layer instead of convolution.
The results are shown in Table 10.

From the table, we can conclude that the 1-MLP design can achieve better performance generally.
We considered several possible reasons to explain this phenomenon. First, more complex networks
may overfit the training dataset faster, potentially leading to poorer performance on the test dataset.
Second, since the diffusion denoising process involves 1000 steps, simpler transformations at each
step might already suffice to achieve the desired results.

3https://github.com/Stability-AI/generative-models
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Table 10: Ablation study of the diffusion network design. N-MLP means using N layers of MLPs.
N-ResNet means using N layers of ResNet. Our method use the 1-MLP design.

Methods
Reactive Two-character

FID↓ RO→ FS→ FID↓ RO→ FS→
Per-frame Per-trans. Per-clip Per-frame Per-trans. Per-clip

Real - - - 24.7% 0.97 - - - 24.7% 0.97

2-MLP 0.812 1.682 14.525 35.2% 0.90 2.111 3.594 35.970 20.5% 0.87
4-MLP 0.763 1.472 14.258 35.3% 0.92 2.030 3.474 36.831 21.2% 0.86
1-ResNet 0.656 1.324 12.653 34.5% 0.94 1.727 3.000 32.142 21.5% 0.92
2-ResNet 0.624 1.235 11.650 33.4% 0.95 1.750 2.750 31.887 20.9% 0.93
4-ResNet 0.703 1.518 13.610 31.4% 0.93 1.925 3.256 34.499 18.5% 0.89

1-MLP (Ours) 0.535 0.995 9.5998 34.7% 1.02 1.394 2.105 25.283 24.1% 0.97

H APPLYING OUR METHOD TO THE INTER-X DATASET

We selected three actions from the Inter-X with varying contact frequencies—chat, kick, and
dance—in increasing order of contact frequency. We use the first 22 joints from the SMPLX skele-
ton. The network and the training protocols remain unchanged. For the two-character FID score, we
calculate the per-frame, per-transition, and per-clip features for each individual, alternating between
the “agent” and the “opponent”. We removed the RO metric, because in actions unlike boxing, the
two characters do not necessarily need to always face each other.

Results are shown in Table 11. From the tables, we can observe that our method generally outper-
forms the selected baselines, demonstrating its ability to generalize to different types of motions
effectively.

Table 11: Comparison with baselines on the Inter-X dataset. We compare our method with
CAMDM and T2MGPTon the Inter-X dataset.

(a) Quantitative results on the Inter-X dataset with action category of “Chat”.

Methods
Reactive Two-character

FID↓ FS→ FID↓ FS→
Per-frame Per-trans. Per-clip Per-frame Per-trans. Per-clip

Real - - - 0.20 - - - 0.20

CAMDM 1.693 0.405 21.024 0.67 1.472 0.357 18.931 0.70
T2MGPT-online 1.241 0.165 17.757 1.32 2.001 0.207 28.007 1.60

Ours 1.163 0.120 15.372 0.30 1.148 0.10 15.215 0.31

(b) Quantitative results on the Inter-X dataset with action category of “Kick”.

Methods
Reactive Two-character

FID↓ FS→ FID↓ FS→
Per-frame Per-trans. Per-clip Per-frame Per-trans. Per-clip

Real - - - 0.76 - - - 0.76

CAMDM 1.127 0.520 18.427 1.96 1.209 0.604 19.484 1.99
T2MGPT-online 1.465 0.883 22.283 1.89 1.770 0.914 26.250 1.93

Ours 0.757 0.593 12.861 0.79 0.750 0.558 12.828 0.83

(c) Quantitative results on the Inter-X dataset with action category of “Dance”.

Methods
Reactive Two-character

FID↓ FS→ FID↓ FS→
Per-frame Per-trans. Per-clip Per-frame Per-trans. Per-clip

Real - - - 0.68 - - - 0.68

CAMDM 2.239 1.251 34.199 1.02 2.128 1.192 34.548 1.21
T2MGPT-online 1.185 0.404 22.380 1.59 2.714 0.275 40.943 1.77

Ours 1.169 0.653 21.300 0.58 1.065 0.435 18.646 0.53
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I PENETRATION ANALYSIS

Our skeleton representation is based on positions and rotations exported from motion capture soft-
ware. In the main paper, we visualize the predicted rotations by mapping them onto an ”Xbot”
model for demonstration purposes. Note that the Xbot skeleton differs from the one we use in our
method, which makes penetration evaluations based on Xbot less reliable. As a result, penetration
cannot be directly evaluated at the mesh level.

To evaluate penetration between skeletons, we approximate the bones using triangular prisms with
a distance from the centroid to a vertex = 5 cm (as shown in Figure 9) and calculate penetration
frame by frame between the two body meshes by using trimesh.Trimesh.intersection function.
Since boxing typically involves instantaneous contact, the proportion of frames with penetration is
expected to be very low. Therefore, we report the total number of frames with penetration across the
entire test set, and the mean penetration volume in cm3.

From the table, we can see that in the reactive setting, our method achieves comparable results to
Duolando-offline, which predicts root positions relative to the opponent’s root. In the two-character
setting, our method achieves a lower mean penetration volume compared to all the baselines, demon-
strating its effectiveness in avoiding penetration.

Figure 9: Skeleton mesh that is used to compute penetration. We create approximated skeleton
meshed using triangular prism with distance from the centroid to a vertex = 5 cm.

Table 12: Penetration analysis. We measure the number of penetration frames and mean penetra-
tion volume (in cm3) in the test set. ↓ means lower is better.

Settings Metrics InterFormer CVAE-AR CAMDM T2MGPT-online Duolando-offline Ours GT

Reactive # Penetration Frames 1969 1571 860 1846 417 1084 141
Mean Penetration Volume ↓ 200.43 237.51 200.16 218.78 118.51 161.35 21.37

Two-character # Penetration Frames 2617 1858 469 962 - 757 141
Mean Penetration Volume ↓ 222.83 218.15 129.14 365.21 - 111.84 21.37

J CONTACT IMPACT ANALYSIS

Table 13: Cotact impact analysis. All contact analysis is conducted under the condition that one’s
hand is close enough to the other. #OF represents the number of frames that the opponent moves
forward. #OF AB represents the number of frames that the agent moves backward when the
opponent moves forward. Ratio = #OF−AB

#OF . → means closer to the real data is better.

Settings Metrics InterFormer CVAE-AR CAMDM T2MGPT-online Duolando-offline Ours GT

Reactive # OF 1163 997 532 1145 402 761 243
# OF-AB 615 505 260 613 272 397 125
Ratio→ 52.80% 50.60% 48.80% 53.50% 23.30% 52.10% 51.40%

Two-character # OF 1179 1484 371 539 - 816 243
# OF-AB 921 716 193 267 - 420 125
Ratio→ 78.10% 48.20% 52.00% 49.50% - 51.40% 51.40%
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To analyze the impact of sparse contact on motion generation, we first detect contact and then
assess whether the agent moves backward or forward in response. Specifically, we identify contact
by calculating the distance between one character’s skeleton mesh and the other’s hand joints. If
the distance is less than 5 cm, we consider that the hand has successfully made contact with the
other. This could include the opponent’s hand hitting any part of the agent or vice versa. For
these identified contact frames, we examine whether the agent’s root moves backward when the
opponent’s root moves forward and compute the proportion of such occurrences. For each frame,
we switch the roles of ”agent” and ”opponent”. Results are shown in Table 13. A higher alignment
with the ground truth indicates better performance.

From the table, we observe that our method achieves performance closer to the ground truth, demon-
strating its ability to produce more realistic reactions.
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