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ABSTRACT

Graph Neural Networks (GNNs) have achieved remarkable success in learning
node representations and have demonstrated strong performance on node classi-
fication. However, their effectiveness can be substantially compromised by noise
in real-world graph data. To address this challenge, we propose Kernel Complex-
ity Reduced Graph Contrastive Learning (KCR-GCL), a principled framework
for noisy node classification with a provable transductive generalization guar-
antee. KCR-GCL introduces a novel KCR-GCL encoder, which incorporates a
new KCR self-attention layer that adaptively balances different frequency com-
ponents of the graph inspired by generalized graph convolution and reduces the
kernel complexity for provably improved generalization for transductive learning.
The KCR-GCL encoder is optimized with a low-rank regularization term through
the truncated nuclear norm (TNN) on the gram matrix of the learned features.
The learned low-rank representations are then used to train a linear classifier for
transductive node classification in noisy graph data. The design of KCR-GCL is
inspired by the Low Frequency Property (LFP) widely studied in general deep
learning and node-level graph learning, and is further supported by a sharp gen-
eralization bound for transductive learning. To the best of our knowledge, KCR-
GCL is among the first to theoretically reveal the benefits of low-rank regular-
ization in transductive settings for noisy graph data. Experiments on standard
benchmarks highlight the effectiveness and robustness of KCR-GCL in learning
node representations under noisy conditions. The code of KCR-GCL is available
athttps://anonymous.4open.science/status/KCR-GCL.

1 INTRODUCTION

Graph Neural Networks (GNNs) are widely recognized as effective tools for node representation
learning (Kipf & Welling, 2017; Bruna et al., 2014; Hamilton et al., 2017; Xu et al., 2019b). How-
ever, the majority of existing GNN methods do not adequately address the presence of noise in the
graph data (Zhu et al., 2024; Zhong et al., 2019). Such noise can arise either in the attributes or labels
of nodes, introducing attribute noise and label noise, respectively. Prior studies (Patrini et al., 2017)
have demonstrated that noise in the input data can significantly impair the generalization ability of
neural networks. This issue is further amplified since noise associated with a few nodes can spread
through the graph structure and affect other nodes (Dai et al., 2021; Wang et al., 2023; 2024c¢) in
graph-structured data. As a result, corrupted nodes not only degrade their own representations but
also influence those of their neighbors. Such a challenge highlights the need for GNN models that
can learn effectively even in the presence of noisy inputs.

To this end, we introduce Kernel Complexity Reduced Graph Contrastive Learning, or KCR-GCL,
which introduces a novel KCR-GCL encoder improving both robustness and generalization for node
representation learning. The node representations learned by the KCR-GCL encoder are used by a
linear transductive classifier for transductive node classification. Traditional strategies for robust
learning either modify the loss function to accommodate corrupted data (Patrini et al., 2017; Gold-
berger & Ben-Reuven, 2017) or remove samples suspected to be noisy (Malach & Shalev-Shwartz,
2017; Jiang et al., 2018; Yu et al., 2019; Li et al., 2020; Han et al., 2018). Although such ideas have
been adapted for graph settings (Dai et al., 2021; Qian et al., 2023; Zhuang & Al Hasan, 2022), they
often depend on heuristics and lack theoretical backing in the transductive setting. In contrast, our
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KCR-GCL encoder is empirically inspired by the low-frequency nature of graph signals, and the-
oretically supported by a new and sharp generalization bound developed for transductive learning.
Our generalization bound features three components capturing the training loss of the classifier when
using clean labels, the impact of label noise on the classification loss, and the kernel complexity of
the gram matrix of the learned features. To the best of our knowledge, this paper is among the first
to provide a principled theoretical justification for the advantage of low-rank representation learning
with GCL and graph convolution under noisy graph data. Experimental evaluations conducted on
widely used benchmarks demonstrate that KCR-GCL consistently achieves strong robustness and
outperforms the current state-of-the-art. Although GNNs are known to function as low-pass filters,
they do not explicitly target low-frequency signals. Consequently, their ability to exploit the Low-
Frequency Property (LFP) widely studied in deep learning (Rahaman et al., 2019; Arora et al., 2019;
Cao et al., 2021; Choraria et al., 2022; Wang et al., 2024b; 2025) in the presence of noisy graph data
remains limited. As illustrated in Figure 1, deferred to Section 4.1, the LFP reveals that clean la-
bel information tends to concentrate within the low-rank part of the feature gram matrix. Unlike
conventional GNNs, the KCR-GCL encoder explicitly captures LFP by learning low-rank node rep-
resentations. Prior works such as (Cheng et al., 2021) have illustrated the benefit of such low-rank
learning in mitigating attribute noise by introducing learnable filtering mechanisms. In compari-
son, the KCR-GCL encoder explicitly promotes low-frequency information through the low-rank
regularization by the Truncated Nuclear Norm (TNN), which aligns with the LFP.

The node representations by our KCR-GCL encoder are generated through a novel KCR self-
attention layer that explicitly balances low-frequency and high-frequency components of the graph.
Inspired by polynomial graph filters commonly used in graph signal processing (Choi et al., 2024;
Zhang et al., 2024a; Marques et al., 2020), the KCR self-attention layer learns to combine multiple
powers of the attention weight matrix, enabling the model to adaptively emphasize structural patterns
across different spectral ranges while improving the generalization capability of the KCR-GCL en-
coder. Recent studies involving graph attention and transformer-based architectures emphasize the
need to balance both low- and high-frequency components for improved node representations (Choi
et al., 2024; Zhang et al., 2024a). Although GFSA (Choi et al., 2024) and HONGAT (Zhang et al.,
2024a) also learn to combine different powers of the attention matrix based on the generalized graph
convolution (Marques et al., 2020), their learning objective is solely the cross-entropy loss on the
training labels alone. In contrast, the KCR self-attention layer in our KCR-GCL encoder roots in
our novel theoretical result about the generalization bound for transductive learning, and it offers
a principled balance between low-frequency and high-frequency by reducing the principled and
well-defined kernel complexity, aiming for the provable performance improvement for transductive
learning through the TNN regularizer. Reduction of the TNN leads to the reduction of the kernel
complexity, leading to lower generalization error bound for transductive learning thus better perfor-
mance of node classification. Performance comparisons in Table 1 of Section 5.2 demonstrate that
the KCR-GCL encoder outperforms the current state-of-the-art based on attention and transformers,
GFSA (Choi et al., 2024) and HONGAT (Zhang et al., 2024a), when evaluated under label and at-
tribute noise. As shown in Table 3 of Section 5.4, the KCR-GCL encoder achieves a lower kernel
complexity, resulting in a lower upper bound for the test loss of transductive node classification,
compared to competing graph contrastive and attention-based methods.

1.1 CONTRIBUTIONS
Our contributions are as follows.

First, we introduce Kernel Complexity Reduced Graph Contrastive Learning, or KCR-GCL, that
learns robust node representations by a novel KCR-GCL encoder. The learned node representations
are subsequently used by a linear classifier for transductive node classification. The KCR-GCL en-
coder features a novel KCR self-attention layer, which explicitly learns to balance low-frequency
and high-frequency components in the graph, inspired by the generalized graph convolution (Mar-
ques et al., 2020). The optimization of the KCR-GCL encoder incorporates the TNN on the gram
matrix of the learned features as a low-rank regularization term into the standard prototypical GCL
objective. The design of the KCR-GCL encoder is motivated by the LFP, which shows that a low-
rank projection of the clean label matrix captures most of its informative content. In contrast, label
noise tends to spread uniformly across all eigenvectors of the classification kernel matrix.

Second, we provide a rigorous theoretical analysis that establishes generalization guarantee for the
linear transductive classifier trained on the low-rank node representations produced by the KCR-



Under review as a conference paper at ICLR 2026

GCL encoder. In particular, we derive a novel and sharp upper bound on the test loss of unlabeled
nodes. To the best of our knowledge, this is among the first results to theoretically demonstrate
the advantage of learning low-rank node representations for robust transductive classification under
noisy conditions. Moreover, our theoretical result establishes the connection between the generaliza-
tion guarantee and the TNN regularizer, that is, reduced TNN indicates reduced kernel complexity
and lower generalization error bound for transductive learning. Furthermore, the KCR self-attention
balances different frequency components of the graph and sharpens the derived upper bound through
even lower kernel complexity than that without KCR self-attention. As demonstrated in Table 3 of
Section 5.4, the KCR-GCL encoder renders a lower kernel complexity and generalization upper
bound than existing methods. Comprehensive experiments conducted on widely used graph bench-
marks in Section 5.2 demonstrate the superiority of the KCR-GCL encoder over existing methods
in node classification tasks involving noisy graph data.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORK AND ITS TRAINING ON NOISY DATA

The increasing adoption of contrastive learning has significantly advanced unsupervised represen-
tation learning on graphs (Suresh et al., 2021; Thakoor et al., 2021; Li et al., 2024a; Lee et al.,
2022; Feng et al., 2022a; Zhang et al., 2023; Lin et al., 2023). In the graph domain, a large number
of graph contrastive learning (GCL) methods (Velickovic et al., 2019; Sun et al., 2020; Hu et al.,
2020b; Jiao et al., 2020; Peng et al., 2020; You et al., 2021; Jin et al., 2021; Mo et al., 2022) work by
maximizing agreement between corresponding node embeddings across augmented views. Several
recent works have incorporated semantic prototypes (Snell et al., 2017; Arik & Pfister, 2020; Allen
etal., 2019; Xu et al., 2020) into the contrastive objective (Xu et al., 2021; Guo et al., 2022; Li et al.,
2021). Meanwhile, GNNs remain central to node representation learning (Bruna et al., 2014; Kipf
& Welling, 2017; Hamilton et al., 2017; Velickovi¢ et al., 2018; Xu et al., 2019b). However, it has
been well established that GNNs are inherently vulnerable to noisy inputs, such as corrupted labels
or features (Zhang et al., 2021). To improve robustness, prior work has explored loss correction,
which modifies the training objective to account for label noise (Patrini et al., 2017; Goldberger &
Ben-Reuven, 2017), and sample selection, which focuses training on selected clean samples (Malach
& Shalev-Shwartz, 2017; Jiang et al., 2018; Yu et al., 2019; Li et al., 2020; Han et al., 2018). Within
graph-based learning, robustness has also been addressed through label denoising, structural regular-
ization, and auxiliary self-supervised tasks (Dai et al., 2021; Qian et al., 2023; Zhuang & Al Hasan,
2022; Li et al., 2024b; Yuan et al., 2023). While these methods build on external objectives or
correction heuristics, our approach introduces a new perspective of enhancing GNN robustness by
directly integrating low-rank regularization into the encoder training process of GCL.

2.2 BALANCING THE FREQUENCY COMPONENTS WITH GRAPH ATTENTION

The low-frequency bias of GNNs emphasizes the importance of leveraging smooth, low-frequency
components embedded in both graph topology and node features (NT & Maehara, 2019; Xu et al.,
2019a; Wu et al., 2019; Yu & Qin, 2020). However, relying solely on these low-frequency sig-
nals can lead to over-smoothing, where node representations become indistinguishable (Bo et al.,
2021; Zhang et al., 2024b; Dong et al., 2025; Sun et al., 2022). To mitigate over-smoothing, re-
cent efforts have proposed to dynamically balance low- and high-frequency components of the
graph (Dong et al., 2021; Tang et al., 2025; Bo et al., 2021; Ju et al., 2022; Chang et al., 2021;
Sun et al., 2024; Wang et al., 2024a). In parallel, approaches that emphasize low-rank modeling
of graph signals and structures have demonstrated greater resilience under noisy conditions (Tang
et al., 2024; Yang et al., 2023). Moreover, the attention-based GNN, GFSA (Choi et al., 2024),
learns to balance the original attention matrix and its high-order approximation, thereby enriching
frequency information and alleviating over-smoothing. HONGAT (Zhang et al., 2024a) explicitly
addresses over-smoothing by integrating high-order dependencies and introducing sparsity within
the attention mechanism. Whereas GFSA (Choi et al., 2024) and HONGAT (Zhang et al., 2024a)
learn the combination weights for different powers of the attention matrix solely by fitting to the
training labels, our approach explicitly optimizes the combination weights to minimize the kernel
complexity, leading to tighter theoretical generalization bounds and improved robustness.
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3 PROBLEM SETUP

Notations. Let G = (V, £, X) denote an attributed graph with N nodes. The node set is given by
V = {v1,v9,...,vn} and the edge set satisfies £ C V x V. The matrix X € R¥*P contains
the attribute information of all nodes, where D corresponds to the dimensionality of each node’s
attributes. The adjacency matrix associated with G is denoted by A € {0,1}V*N A = A +1,

and the corresponding diagonal degree matrix is defined as D. [N] refers to the set of integers from
1 to N inclusive. A subset £ C [N] contains m labeled nodes, and its complement A = [N]\ £
has cardinality w. The sets V. and V), represent the collections of labeled and unlabeled nodes,
respectively, with |Vz| = m and [Vy| = u. For any vector u € R, the notation [u] , refers to the
subvector composed of entries indexed by A C [N]. In the case where u is a matrix, [u] , denotes
the submatrix consisting of the rows indexed by .4. The Frobenius norm of a matrix is denoted by
(||l and the p-norm of a vector is expressed as [|-|| ..

Problem Description In real-world graph datasets, noise commonly arises either in the node at-
tributes or in the labels. This noise can severely undermine the quality of node embeddings learned
by standard GCL encoders, thereby degrading the performance of classifiers built on top of them.
Our goal is to train a GCL encoder whose node representations remain robust under two trans-
ductive node classification settings, one where the labels of V. are corrupted, and another where
the input attributes X contain noise. The node representations learned by a GCL encoder are
given by H(0) = gg¢(X, A), where gg(-) denotes the GCL encoder parameterized by 6. In this
study, ge is instantiated as a two-layer GCN (Kipf & Welling, 2017). The resulting representations,
H(0) = {H,(0),H2(0),...,Hyx(0)} € RVX4 serve as input for the transductive node classifi-
cation task, for which a linear classifier is first trained on V., and then evaluated for predicting the
labels of V,,. We abbreviate H(0) as H for simplicity of the notations in this paper.

Preliminary: Prototypical GCL (PGCL). We adopt a contrastive learning framework to optimize
the GCL encoder g(-), a two-layer GCN (Kipf & Welling, 2017). Two augmented graph views,
denoted as G* = (X!, Al) and G? = (X2, A?), are created. The resulting node representations
are given by H! = g(X!, A') and H? = (X2, A?). We enhance mutual information between
H' and H? using the InfoNCE loss (Li et al., 2021), and incorporate prototypical contrastive learn-
ing (Li et al., 2021; Snell et al., 2017) by aligning node embeddings with K -means-derived cluster
prototypes, computed as ¢, = \Silkl > m,cs, Hi for every k in [K]. The training loss combines
node-level and prototype-level objectives, Lnode and Lprow, Which are computed as Lnoge(0) =
% X 108 S s 04 Looo(8) =~ DL log PG o where
s(H}, H?) is the cosine similarity between H} and H?. The overall loss function of the PGCL
is Loer(0) = Lnode(0) + Lprow (@), and the training algorithm for the PGCL is summarized in
Algorithm 1 in Section D of the appendix.

4 METHODS

4.1 KERNEL COMPLEXITY REDUCED GCL (KCR-GCL) ENCODER

In order to perform node classification with provable generalization guarantee, we propose a new
Kernel Complexity Reduced GCL (KCR-GCL) encoder, which applies a novel KCR self-attention
to the node representations H generated by the PGCL encoder, gg. The output of the KCR self-
attention layer on top of the node features H is F = BH, where F denotes the attention-transformed
features, and B € RV*¥ is the attention weight matrix. The gram matrix of the node features is

givenby K = HH'. Let By = K/, where )\; is the largest eigenvalue of K. In our KCR self-

attention, the attention matrix is defined as B = Zﬁle kmB{', where M > 1 is the maximum

exp(otm)
>27L, exp(oy)
learnable parameters and o, is the m-th element of ce. The design of the attention matrix B =
Z%:l kmBg' in KCR-GCL is inspired by polynomial graph filters widely used in graph signal
processing (GSP) for both undirected and directed graphs (Choi et al., 2024; Zhang et al., 2024a;
Marques et al., 2020). Each term B{}* captures m-hop feature propagation over the graph defined by
the kernel matrix B, and the learnable coefficients k,, determine the relative influence of different
neighborhood scales, similar to spectral mixing in generalized graph convolutions (Marques et al.,
2020). In addition, the design of the attention matrix B can also reduce the eigenvalues of the

degree. The coefficients {Hm}%:l are computed by k,, = , where a € RM are
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gram matrix of the attention-transformed features, thus leading to lower kernel complexity. In the
KCR-GCL encoder, F(a,0) = B(a)H(0). We abbreviate F(«, 0) and B(«) as F and B for
simplicity of the notations. The resulting gram matrix of the transformed features F is K¢ (6, &) =
FF™ = BKB, and K (6, a) is the learned feature kernel matrix of the KCR-GCL encoder. We
also abbreviate Kr (0, a) as K for simplicity of the notations in the sequel.

~\ N ~ —~
We propose to reduce the TNN of the gram matrix Kg. Let {/\z} with Ay > Ag... >
i=1

Xmin{ Nd} = Xmm{ N,d}+1 = ..., = 0 be the eigenvalues of Kg. In order to encourage the fea-

tures F or the gram matrix K to be low-rank, we explicitly add the TNN [|Kg||,, = Zf\im 41 Xi
to the loss function of the KCR-GCL encoder. The starting rank ro < min(V, d) is the rank of the
gram matrix of the features we aim to obtain with the KCR-GCL encoder, that is, if || Kr||,, = 0,
then rank(Kg) = 7. The training of the KCR-GCL encoder performs the following optimization,

'C’KCR—GCL(Ga a) = £node(0) + Eproto(e) + THKF(ga a)llroa (1)

where 7 is a weighting parameter chosen by cross-validation described in Section B.2 of the ap-
pendix. In our experiments, we select the TNN rank r( via standard cross-validation across all
graph datasets. As reported in Table 6 in Section B.2 of the appendix, the optimal rank o con-
sistently falls within the range of 0.1 min {V, d} to 0.3 min { N, d}. The reduction of the TNN is
also inspired by the reduction of the kernel complexity, which is to be defined later in Section 4.2,
leading to provable and sharp generalization error of the linear transductive node classifier using the
node representations of the KCR-GCL encoder. Our KCR-GCL encoder also outperforms an abla-
tion study model, Low-Rank GCL without the self-attention matrix B, to be detailed in Section 5.3.
Algorithm 2 in Section D of the appendix outlines the training procedure for the KCR-GCL encoder.

Motivation of Learning Low-Rank Fea-

0.5

tures by the KCR-GCL Encoder. We Z comitnn | Ze| et 24| oot
investigate how the information from the 202 foz
ground-truth clean labels and the label 2% | usemmdoio | =, Moottt < .. bommm———
noise is distributed across different eigen- 0 S0 IR e O e O 00 o 0 e
vectors of the feature gram matrix Ky £ Zuo I
through an eigen-projection analysis. Let i:z Eoe
Y € RVXC denote the clean label ma- 7 Noise fos Noise gos Noise
trix without noise. We begin by com- — GroundTruh izf, — GroundTruth izf, — GroundTruth
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puting the eigenvectors U of the gram Rank ” Rank 2 Rank

matrix Kg. The eigen-projection score (@) Cora (®) Citeseer (©) Pubmed
for the r-th eigenvector is then given by Figure 1: Eigen-projection (first row) and signal con-
b = L ZC HU(T)T?(C) 2 /HY(C) centration ratio (second row) on Cora, Citeseer, and
" ¢ see=l 2 Pubmed, as the illustration of the Low Frequency Prop-
for r € [N] ,~where C' is the number of erty (LFP). The study in this figure is performed for
classes, and Y € {0, 1}NXC consists of asymmetric label noise with a noise level of 60%. By
one-hot encoded clean labels. Here Y(¢) the rank r = 0.2 min {N, d}, the signal concentration
refers to the c-th column of Y. We define ratio of Y for Cora, Citeseer, and Pubmed are 0.844,
P = [p1,-.-,pn] € RY as the vector of 0.809, and 0.784 respectively. Figure 2 in Section C.6
projection values. In the presence of label of the appendix further illustrates the eigen-projection
noise N € RV*C the observed label ma- and signal concentration ratio on more datasets.
trix becomes Y = Y + N. The projection
value p, quantifies the proportion of the signal aligned with the r-th eigenvector of Ky, while the
signal concentration ratio at rank 7 of the ground truth class label is defined as ||p(1”) | |» represent-
ing the cumulative contribution of the top 7 eigenvectors. Similarly, the signal concentration ratio at

2
rank 7 of the noise is defined as % Zle HU(T)TN(C) /HN(C) H; € RY. Empirical results, shown
’ 2

as red curves in Figure 1, indicate that the clean label signals are primarily concentrated on the
leading eigenvectors of Kg. In contrast, the projection of the label noise appears more uniformly
distributed across all eigenvectors, as demonstrated by the blue curves in the same figure. The above
observation motivates using low-rank features F, or equivalently the low-rank gram matrix Kg, for
node classification with label noise. This is because the low-rank part of the feature matrix F or
the gram matrix Kg covers the dominant information in the ground truth label Y while learning
only a small portion of the label noise. We refer to such property as the Low Frequency Property

2
2
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(LFP), which has been widely studied in deep learning and node-level graph learning (Rahaman
et al., 2019; Arora et al., 2019; Cao et al., 2021; Choraria et al., 2022; Wang et al., 2024b; 2025).
Moreover, we remark that the regularization term || Kr||,,, in the loss function (1) of KCR-GCL is
also theoretically motivated by our sharp upper bound for the test loss using a linear transductive
classifier, to be detailed in the next subsection.

4.2 TRANSDUCTIVE NODE CLASSIFICATION WITH PROVABLE GENERALIZATION
GUARANTEE

In this section, we present a linear transductive node classification method based on the node repre-
sentations F obtained from the KCR-GCL encoder. For each node v; where i € [N], let y; € R”
denote its observed one-hot class label vector. The classifier’s linear prediction is computed by
FW, where W € R%*Y is the learnable weight matrix. Final predictions are made using the soft-
max transformation softmax(FW) € RV *¢ to estimate class probabilities for the test nodes. We
then train the transductive linear classifier on top of F by minimizing the loss function,

mln L(W,0,a) Z KL (y;, [softmax (FW)],) . (2)

vZ eV

We use a regular gradient descent to optimize (2) with a learning rate 7 € (0, :\i) W is initialized
1

by W = 0, and at the ¢-th iteration of gradient descent for ¢ > 1, W is updated by W(*) =
WED — Vw L(W)|w_wi-1. We define F(W,t) := FW® as the output of the classifier
after the ¢-th iteration of gradient descent for ¢ > 1. We have the following theoretical result,
Theorem 4.1, on the Mean Squared Error (MSE) loss of the unlabeled test nodes V;; measured by

the gap between [F(W,t)],, and [?} y when using the low-rank feature F with ro € [IN], which is

the generalization error bound for the linear transductive classifier using F to predict the labels of
the unlabeled nodes. Similar to existing works such as (Kothapalli et al., 2023) that use the Mean
Squared Error (MSE) to analyze the optimization and the generalization of GNNs, we employ the
MSE loss to provide the generalization error of the node classifier in the following theorem. It
is remarked that the MSE loss is necessary for the generalization analysis of transductive learning
using the transductive local Rademacher complexity (Tolstikhin et al., 2014; Yang, 2023; 2025).

Theorem 4.1. Let m > cN for a constant ¢ € (0,1), and o € [N]. Assume that a set £ with
|£| = m is sampled uniformly without replacement from [N], and the remaining nodes Vy = V\Vy,
are the test nodes. Then for every > 0, with probability at least 1 —exp(—x), after the ¢-th iteration
of gradient descent for all £ > 1, we have

1 - 2¢, CcoT
Ueat) = || [FOW,0) = F] |72 20 (20w, Y1) + La(K, N, 0)) + coKClKR) + 27, 3)
where ¢y is a positive number depending on U, {XZ} ’ , and 7o with 77 =
i=1
2
- tr.
maxic v [Kel,.  Li(Kp, Y,t) = H KFM) [YL . Lo(Kp,N,t) =
F
H Krl, o . 10 (I n[Kr] . ) [N].|| - KC is the kernel complexity of the gram matrix
F

defined by KC(Kg) = min, (v 70 (1 + ) + /IKr|,, (ﬁ + %ﬁ)

This theorem is proved in Section A of the appendix, and the sharpness of the upper bound for the
generalization error, as the RHS of (3), is proved in (Yang, 2025; 2023). Specifically, Ues (t) de-
notes the test loss over unlabeled nodes, quantified by the discrepancy between the classifier output
F(W,t) and the clean label matrix Y. The upper bound on the test loss in (3) consists of three com-
ponents: L1(Kg,Y,t), Lo(Kg,N,t), and KC(Ky), each serving a distinct role. L;(Kg,Y,t)
reflects the training loss of the classifier when using clean labels. Lo (K, N, t) captures the impact
of label noise on the classification loss. KC(Kp) denotes the kernel complexity (KC) of the gram
matrix Kg.

The design of the self-attention matrix B is to reduce the eigenvalues of the gram matrix K of the
PGCL. Let {/\i}f\il denote the eigenvalues of K, orderedas Ay > Ay > ... > Ay > 0. Since B has
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the same eigenvectors as K, and the maximum eigenvalue of B falls in (0, 1], it can be verified that

Ai < A;. As aresult, the KCR self-attention layer reduces the kernel complexity of the original gram
matrix K, rendering a sharper upper bound for transductive node classification. This is reflected in
Table 3, where the ablation study model, LR-GCL without the KCR self-attention layer, exhibits
larger kernel complexity and generalization upper bounds than those of our KCR-GCL. Importantly,
the TNN ||Kr ||, appears in the upper bound in (3), thereby providing theoretical justification for
incorporating the TNN regularizer [| K|, to promote low-rank feature learning in our KCR-GCL
encoder. Furthermore, under the LFP, which is consistently supported by the empirical evidence
shown in Figure 1, L1 (Kg, Y, t) diminishes as the number of training iterations ¢ increases. Simul-
taneously, Lo (K, N, t) remains small due to the approximately uniform eigen-projection of label
noise, while Ky remains close to a rank-ry matrix, as the TNN is effectively minimized through
the KCR-GCL training objective (1). We note that while the theoretical guarantee in Theorem 4.1 is
for label noise, the LFP also holds for attribute noise, to be shown in Section C.6, which motivates
KCR-GCL for node classification under either noisy labels or noisy attributes in the next section.

5 EXPERIMENTS

In this section, we present a thorough evaluation of KCR-GCL across multiple standard graph bench-
marks. The experiment settings are detailed in Section 5.1. Performance under semi-supervised
node classification settings with different types of label noise is discussed in Section 5.2. We per-
form an ablation study to verify the effectiveness of the KCR self-attention layer in KCR-GCL in
Section 5.3. The kernel complexity (KC) and the theoretical upper bound on test loss for both
models are analyzed in Section 5.4, with additional results on KC across more datasets provided in
Section C.5. Section 5.5 explores the applicability of our models on heterophilic graphs. Further
experimental results can be found in the appendix. Section C.1 of the appendix expands the node
classification benchmarks and includes comparisons with more baseline models, while Section C.2
compares our method against existing graph contrastive learning approaches with diverse classifier
designs. To evaluate the reliability of the observed gains in Section 5.2 and Section 5.5, we perform
Student’s ¢-test, with full results reported in Section C.3 of the appendix. The sensitivity analysis on
hyperparameters 7, M, ry are conducted in Section C.4. Additional results of eigen-projection visu-
alizations and signal concentration ratios are provided in Section C.6. Lastly, Section C.7 compares
the computational efficiency of KCR-GCL with other baselines.

5.1 EXPERIMENTAL SETTINGS

We evaluate our proposed approaches on eight widely recognized graph benchmark datasets: Cora,
Citeseer, PubMed (Sen et al., 2008), Coauthor CS, ogbn-arxiv (Hu et al., 2020a), Wiki-CS (Mernyei
& Cangea, 2020), and the Amazon-Computers and Amazon-Photos datasets (Shchur et al., 2018).
Detailed statistics of the datasets are presented in Table 5 in Section B.1 of the appendix. As these
datasets do not inherently contain label or feature noise, we synthetically introduce the symmetric
and asymmetric label noise following (Han et al., 2020; Dai et al., 2022; Qian et al., 2023), with
details in B.4. We simulate attribute noise by randomly permuting a fixed fraction of each node’s
attributes following (Ding et al., 2022). All experiments utilize the standard train/validation/test
splits defined in prior studies (Shchur et al., 2018; Mernyei & Cangea, 2020; Hu et al., 2020a).
Noise is only introduced into the training and validation sets to preserve the integrity of the test
data for fair performance evaluation. Details on the training settings of KCR-GCL and the cross-
validation for selecting the rank parameter r(, the regularization weight 7 associated with the TNN
loss, and the value of the maximum power, M, are presented in Section B.2 of the appendix.

5.2 NODE CLASSIFICATION

To rigorously assess the robustness of KCR-GCL, we conduct extensive experiments on graphs
affected by both symmetric and asymmetric label noise, with corruption rates ranging from 40% to
80% in increments of 20%. In parallel, we examine the impact of attribute perturbations under the
same levels of noise. Details of the compared methods are presented in Section B.3 of the appendix.
Table 1 shows the average classification accuracy and standard deviation across 10 runs on the Cora,
Citeseer, PubMed, and ogbn-arxiv datasets, comparing KCR-GCL with the strongest baselines. An
expanded comparison including additional baselines is provided in Table 7 in Section C.1 of the
appendix. Moreover, Table 8 in Section C.1 of the appendix presents additional results on Coauthor-
CS, Wiki-CS, Amazon-Computers, and Amazon-Photos under both types of label noise and varying
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degrees of attribute noise. It is observed that KCR-GCL consistently achieves the best performance
across all datasets and noise levels. For example, under 80% symmetric label noise on PubMed,
KCR-GCL outperforms RTGNN, the strongest baseline, by 4.7% in accuracy.

Table 1: Performance comparison against the best-performing baseline methods for node classifica-
tion on Cora, Citeseer, PubMed, and the large-scale graphs, ogbn-arxiv and Reddit, with asymmetric
label noise, symmetric label noise, and attribute noise. Comparisons with more baseline methods
on Cora, Citeseer, PubMed, ogbn-arxiv, and Reddit are presented in Table 7 in Section C.1 of the
appendix. The highest values for each dataset under each setting are bold. The results are the mean

values computed over 10 independent runs, with the standard deviation after +.

Noise Type
Dataset Methods 0 40 60 80
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

GCN 0.815£0.005 | 0.547£0.015 0.636+0.007 0.63940.008 | 0.405£0.014 0.517£0.010 0.439+0.012 | 0.265+£0.012 0.354+0.014 0.317+£0.013
RTGNN | 0.828+0.003 | 0.570+0.010 0.682+0.008 0.67840.011 | 0.47440.011 0.555+0.010 0.457+0.009 | 0.280+0.011 0.386+0.014  0.342+0.016
MERIT | 0.83140.005 | 0.560+0.008 0.670+0.008 0.671+0.009 | 0.46740.013  0.547:£0.013  0.450+0.014 | 0.2774£0.013  0.3854+0.013  0.33540.009
ARIEL | 0.843+0.004 | 0.573+£0.013  0.681+0.010 0.67540.009 | 0.47140.012 0.553£0.012 0.455+0.014 | 0.284:+0.014 0.389+0.013  0.343+0.013
Cora SFA 0.839+0.010 | 0.564+£0.011  0.677+0.013  0.67640.015 | 0.473+0.014 0.549£0.014 0.457+0.014 | 0.282+0.016 0.389+0.013  0.344+0.017
GRAND+ | 0.858:£0.006 | 0.570-£0.009 0.682+0.007 0.678+0.011 | 0.472+0.010 0.554+0.008 0.456+0.012 | 0.28440.015 0.387+£0.015 0.345+0.013
GFSA 0.837+0.006 | 0.568+0.012  0.676+0.010  0.67240.009 | 0.46640.012 0.545+0.013  0.451+0.012 | 0.279+0.012  0.384+0.015 0.336+0.013
HONGAT | 0.833+£0.004 | 0.566:£0.011 0.673+0.011  0.667+0.010 | 0.464+0.010 0.543£0.011 0.449+0.010 | 0.278+0.013 0.381+£0.014  0.334+0.014
CGNN 0.83540.006 | 0.567+0.009 0.670£0.012  0.669+0.011 | 0.462+£0.013  0.544+0.011  0.45040.013 | 0.2814+0.012  0.380+0.013  0.337+0.014
KCR-GCL | 0.861+£0.006 | 0.610+£0.011  0.731+0.007  0.71540.011 | 0.5124:0.011  0.610:£0.013  0.500£0.012 | 0.341:£0.012  0.444:0.012  0.390+0.011
GCN 0.703+0.005 | 0.475+0.023  0.501+0.013  0.529+0.009 | 0.351+0.014 0.341£0.014 0.372+£0.01T | 0.291+£0.022 0.281+0.019  0.290+0.014
RTGNN 0.74610.008 | 0.498+0.007 0.556+0.007 0.550+0.012 | 0.392+0.010 0.424+0.013  0.390+0.014 | 0.348+0.017 0.308+0.016  0.302+0.011
MERIT | 0.7404+0.007 | 0.496+0.012 0.536+0.012 0.54240.010 | 0.383£0.011 0.425+0.011  0.387+0.008 | 0.344+0.014 0.301+0.014  0.29540.009
SFA 0.740+0.011 | 0.502+0.014  0.532+0.015  0.54740.013 | 0.39040.014 0.433:£0.014 0.389+0.012 | 0.347:£0.016 ~ 0.312+0.015  0.299+0.013
Citeseer GRAND+ | 0.756£0.004 | 0.497+0.010 0.553+0.010 0.5524+0.011 | 0.390+0.013  0.4224+0.013  0.387+0.013 | 0.348+0.013  0.309+0.014  0.302+0.012
GFSA 0.743+0.006 | 0.495+0.012  0.546+0.012  0.54640.011 | 0.38620.011 0.418+0.011 0.386+0.012 | 0.342+0.013  0.308+0.015 0.298+0.012
HONGAT | 0.738+£0.007 | 0.492:£0.014  0.540+0.011  0.5454+0.009 | 0.380+0.012 0.413£0.010  0.384:£0.013 | 0.340£0.014 0.306+0.016 ~ 0.296+0.011
CGNN 0.74140.007 | 0.493+0.013  0.544+0.012  0.546+0.010 | 0.385+£0.013  0.419+0.012  0.385+0.011 | 0.343+0.013  0.307+0.013  0.297+0.012
KCR-GCL | 0.761+0.010 | 0.535+0.013  0.599+0.013  0.588+-0.007 | 0.431+0.014 0.473+£0.014 0.425+0.012 | 0.398+0.012  0.359+0.014  0.341+0.010
GCN 0.7904£0.007 | 0.584+0.022  0.574£0.012  0.595+0.012 | 0.405£0.025 0.386+0.011  0.488+0.013 | 0.305+0.022  0.295+0.013  0.423+0.013
RTGNN | 0.797+0.004 | 0.610+£0.008 0.622+0.010 0.61440.012 | 0.455+0.010 0.455+£0.011 0.501£0.011 | 0.335£0.013  0.338+0.017  0.452+0.013
MERIT | 0.8014+0.004 | 0.593+0.011 0.612+0.011  0.613£0.011 | 0.44740.012 0.443+£0.012  0.497+0.009 | 0.328+0.011  0.3234+0.011  0.445+0.009
SFA 0.80440.010 | 0.596+0.011 0.615£0.011  0.609+0.011 | 0.447£0.014 0.446+0.017 0.4994+0.014 | 0.330+0.011 0.327£0.011  0.447+0.014
PubMed | GRAND+ | 0.84540.006 | 0.610£0.011 0.624:+0.013 0.617+0.013 | 0.453+0.008 0.453+0.011 0.503%0.010 | 0.3314+0.014 0.337£0.013  0.458+0.014
GFSA 0.823+0.005 | 0.608+0.012  0.621+0.011  0.61640.009 | 0.4504:0.013 0.452:0.012 0.500+0.010 | 0.333+£0.013  0.334+0.011  0.45540.012
HONGAT | 0.818+0.006 | 0.606+0.011 0.619£0.012  0.613£0.010 | 0.44840.014 0.447£0.012 0.498+0.012 | 0.328+0.012 0.32640.013  0.450+0.011
CGNN 0.822+0.006 | 0.607+0.013  0.620+0.011  0.61540.010 | 0.4494+0.012 0.451£0.014 0.499+0.010 | 0.332+0.014 0.330+0.012  0.454+0.013
KCR-GCL | 0.846+0.009 | 0.655+0.014 0.669+0.015  0.6534-0.011 | 0.49340.011 0.501:£0.013  0.544::0.011 | 0.381:£0.011  0.385+0.012  0.502+0.014
GCN 0.717£0.003 | 0.401£0.014 0.421£0.014 0.47810.010 | 0.336£0.01T 0.346£0.021 0.339£0.012 | 0.286£0.022 0.256£0.010 0.294+£0.013
RTGNN | 0.718+0.004 | 0.443+0.012 0.464+0.012 0.48440.014 | 0.38040.011 0.384:0.013 0.340+0.017 | 0.335£0.011 0.285+0.015 0.301+0.006
MERIT | 0.7174+0.004 | 0.442+0.009 0.463+0.009 0.483+0.010 | 0.368+0.011 0.381:£0.011  0.341£0.012 | 0.324+£0.012  0.2724+0.010  0.3040.009
SFA 0.7184+0.009 | 0.445+0.012  0.463%0.013  0.486+0.012 | 0.368+0.011  0.378+0.014  0.338+0.015 | 0.325+0.014 0.273£0.012  0.302+0.013
ogbn-arxiv | GRAND+ | 0.72540.004 | 0.445+0.008 0.466:£0.011 0.481+£0.011 | 0.378+0.010 0.385+0.012  0.34440.010 | 0.3324+0.010 0.282+0.016 0.303+0.009
GFSA 0.719+40.004 | 0.443+0.012  0.460+0.010  0.48240.011 | 0.3704+0.012 0.379£0.012  0.342+£0.011 | 0.328-£0.012  0.278+0.013  0.299+0.011
HONGAT | 0.716£0.005 | 0.440£0.011 0.458+0.012  0.480+0.012 | 0.366+0.013  0.373£0.013  0.339£0.012 | 0.32440.014 0.276+0.014  0.296+0.012
CGNN 0.71740.006 | 0.441+0.013  0.462+0.011  0.48140.010 | 0.36840.014 0.376:£0.012 0.340+0.011 | 0.326£0.015 0.2774+0.013  0.298+0.012
KCR-GCL | 0.733+0.006 | 0.491+0.013 0.511+0.011 0.5234-0.014 | 0.42340.014 0.435:£0.012 0.425:+0.012 | 0.379+0.015 0.337+0.013  0.35240.013
GCN 0.960+£0.003 | 0.543£0.020 0.571+0.0I18 0.64240.018 | 0.438+£0.025 0.462+0.022 0.452+0.020 | 0.384£0.025 0.348+0.020 0.388+0.020
RTGNN | 0.962+0.004 | 0.561+£0.018 0.588+0.017 0.66140.016 | 0.45840.020 0.483:£0.020 0.471+0.018 | 0.402+£0.022 0.363+0.019  0.409+0.018
MERIT 0.9614+0.004 | 0.5564+0.019  0.584+0.018  0.653+£0.017 | 0.456-£0.021  0.476+0.021  0.4674+0.019 | 0.3974+0.023  0.353+0.020 0.407+0.018
SFA 0.963+0.005 | 0.559+0.018  0.592+0.017  0.65940.016 | 0.45940.020 0.479+£0.020 0.468+0.018 | 0.401£0.022 0.362+0.020 0.417+0.018
Reddit GRAND+ | 0.966:£0.003 | 0.573£0.017  0.603+0.016  0.672+0.015 | 0.472+0.019  0.488+0.019 0.481+0.017 | 0.407+0.021 0.367+0.018  0.423+0.017
GFSA 0.96240.004 | 0.567+0.018  0.593+0.017  0.6674+0.016 | 0.467+£0.020 0.486+0.020 0.476+0.018 | 0.398+0.022 0.361+£0.019  0.416+0.017
HONGAT | 0.961+0.004 | 0.562+0.018 0.589+0.017 0.663£0.016 | 0.46140.020 0.482+0.020 0.469+0.018 | 0.396+0.022 0.3574+0.020 0.413+0.018
CGNN 0.962+0.005 | 0.563+0.018  0.590+0.017  0.66640.016 | 0.46540.020 0.484:£0.020 0.473+0.018 | 0.398+£0.022  0.360+0.019  0.415+0.018
KCR-GCL | 0.970+0.003 | 0.600+£0.016  0.630+0.015  0.690+-0.014 | 0.500+0.018 0.520:£0.018 0.510+0.016 | 0.420£0.020 0.380+0.018  0.440+0.017

5.3 ABLATION STUDY ON THE KCR GRAPH-ATTENTION LAYER

To study the effectiveness of the KCR self-attention layer, we design an ablation model of KCR-
GCL, referred to as Low Rank-GCL (LR-GCL), without the KCR self-attention layer. The
TNN, [|K(0)]|,,, is incorporated as the low-rank regularization term on the kernel gram matrix

K () = H(0)H(0) " to train the GCL encoder gp, instead of the KCR-GCL encoder. Compared
to KCR-GCL, LR-GCL lacks the polynomial graph filtering or graph convolutions implemented
by the KCR self-attention layer. We train the LR-GCL encoder by minimizing Lir.gcL(0) =
Luode(0) + Lprowo(0) + 10/ K(0)]],,,, where 79 > 0 is the weighting parameter for the TNN,
[K(0)]],,, which is decided by the same cross-validation process as described in Section 5.1. The
study is performed on four benchmark datasets, Cora, Citeseer, PubMed, and ogbn-arxiv, under var-
ious types and levels of noise, following Section 5.2. Table 2 demonstrates that incorporating the
KCR self-attention layer consistently improves node classification performance across all datasets
and noise settings. For example, on the Cora dataset under 60% symmetric label noise, KCR-GCL
outperforms LR-GCL by 2.3%, highlighting the effectiveness of the KCR self-attention layer B with
graph convolution, which learns rich frequency information and alleviates over-smoothing, similar
to GFSA (Choi et al., 2024) and HONGAT (Zhang et al., 2024a).

5.4 STUDY ON THE KERNEL COMPLEXITY AND THE UPPER BOUND OF THE TEST LOSS

We present a detailed comparison of the individual components that constitute the upper bound of
the test loss defined in Equation (3), namely L; (K, Y, t), L2 (Kg, N, t), and the kernel complexity
term KC(Kp), based on node representations obtained from various methods. The corresponding



Under review as a conference paper at ICLR 2026

Table 2: Ablation study on the KCR self-attention layer in KCR-GCL for node classification on

Cora, Citeseer, PubMed, and ogbn-arxiv with label noise and attribute noise.

Noise Type
Dataset Methods 0 40 60 80
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute
LR-GCL | 0.858+0.006 | 0.589+0.01T 0.713£0.007 0.695+£0.011 | 0.492£0.011 0.587£0.013  0.477+0.012 | 0.306+0.012 0.419£0.012 0.363%0.011
KCR-GCL | 0.861-£0.006 | 0.610£0.011  0.731+:0.007  0.71540.011 | 0.5124:0.011  0.610-£0.013  0.500-:0.012 | 0.341:£0.012  0.444::0.012  0.390:0.011
LR-GCL | 0.7574£0.010 | 0.520+£0.013 0.581£0.013  0.570£0.007 | 0.410£0.014 0.455£0.014 0.406+0.012 | 0.369£0.012 0.335+0.014 0.318%0.010
KCR-GCL | 0.761+0.010 | 0.535+0.013  0.599+0.013  0.5884-0.007 | 0.43140.014 0.473£0.014 0.425:+0.012 | 0.398£0.012  0.359+0.014  0.341+0.010
LR-GCL | 0.845£0.009 | 0.6374+0.014 0.645+0.015 0.6374+0.011 | 0.4794+0.011 0.484+0.013  0.526+0.01T | 0.356£0.011 0.360+0.012  0.482+0.014
KCR-GCL | 0.846+0.009 | 0.655+0.014 0.669+0.015 0.65310.011 | 0.493+0.011 0.501:£0.013  0.544:0.011 | 0.381:£0.011  0.385+0.012  0.502+0.014
LR-GCL [ 0.728+0.006 | 0.472+0.013  0.492+0.01T 0.508+0.014 | 0.405+0.014 0.411£0.012  0.405+0.012 | 0.359+£0.015 0.307+0.013  0.335+0.013
KCR-GCL | 0.733+0.006 | 0.491+0.013  0.511+0.011  0.52340.014 | 0.4231+0.014 0.435+0.012  0.425+0.012 | 0.379+0.015 0.337+0.013  0.35240.013

Cora

Citeseer

PubMed

ogbn-arxiv

evaluation results are summarized in Table 3. All experiments are conducted on the Cora, Cite-
seer, and PubMed datasets under symmetric label noise with a corruption rate of 40%. The results
demonstrate that KCR-GCL consistently achieves significantly lower values across all three terms
when compared to baseline models. These reductions indicate a stronger capacity for generalization
in semi-supervised node classification tasks, even under the presence of label noise. In addition,
we further compare the KC of the gram matrix computed from node representations generated by
KCR-GCL, and competing baselines across more benchmarks in Section C.5 of the appendix.

Table 3: Comparisons on L (Kg, Y, t), Ly(Kg, N, t), KC(K) and the value of the upper bound
of the test loss from Theorem 4.1. The lowest values for each dataset in the table are bold, and the
second-lowest values are underlined.

Datasets MERIT SFA Jo-SRC GCN GFSA HONGAT LR-GCL KCR-GCL
Ly 524 £049 6.04 £0.23 650 £0.34 738 £0.12 644 £0.01 638 +0.13 3.72+0.38 3.65+0.38

Cora Lo 492 £0.14 4954035 5.05+0.13 524 £0.01 3.80+0.24 4.254+026 297+045 2.72+£042
KC 0.37 £0.29 0.42+0.09 048+039 044 +040 0354031 0404+0.08 0.204+0.02 0.18+0.26

Upper Bound | 10.6840.14 11.59£0.15 12.18 £0.46 13.2240.11 10.80£0.22 11.254+0.02 7.05+0.43 6.74 +0.32

Ly 472+042 4854028 4924023 5.10£0.40 454+046 4.69+0.19 4.024+034 3.95+0.21

Citeseer Ly 433 +£0.04 4.69+0.07 442+0.15 5.08+025 420+0.00 4424003 3.754+0.17 3.60+0.22
KC 0.47 £0.27 0.45+0.18 0.55+0.08 0.64 £0.42 047 +0.10 0.50+042 0.24+0.18 0.21£0.16

Upper Bound | 9.77 £0.14 10.21£0.28 10.17 £0.34 11.07+0.24 9.40£0.25 9.84+0.14 820+0.04 7.974+0.33

Ly 3974029 4.02+0.08 4.11+0.14 435+0.06 4.2640.12 395+0.23 3.38+040 3.40+038

PubMed Ly 2.69+£0.20 2.54 £0.28  2.60 £0.32  2.88 £0.08 2.98 +£0.09 2.85+0.03 2.32+0.10 2.26 +0.45
KC 0.54 £0.49  0.50+0.27 0.62+0.17 0.71 £0.23 0.52+0.17 0.66+0.16 0.30+0.29 0.28 +0.37

Upper Bound | 7.44 £0.22 7.28+0.03 7.594+0.37 8.15+£026 7994023 7.63+0.14 6.254+030 6.16 & 0.40

5.5 EVALUATION ON HETEROPHILIC GRAPHS

We evaluate the performance of KCR-GCL on semi-supervised node classification tasks involving
two widely used heterophilic graph benchmarks, Texas and Chameleon (Pei et al., 2020). To begin,
we illustrate the LFP on Texas and Chameleon in Figure 3 in Section C.6 of the appendix. We
adopt TEDGCN (Yan et al., 2023), a GNN tailored for heterophilic graphs, as the encoder back-
bone for KCR-GCL. As shown in Table 4, KCR-GCL yields substantial improvements over the
base TEDGCN model, demonstrating the benefits of reducing kernel complexity under noisy and
heterophilic conditions.

Table 4: Performance comparison for node classification on Texas and Chameleon.

Noise Type
Dataset Methods 0 40 60 80

B Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute
TEDGCN | 0.771£0.025 | 0.525+0.023  0.528+0.018 0.541£0.022 | 0.402+0.016 0.418+0.019 0.445£0.021 | 0.312+£0.015 0.328+0.017 0.341£0.020
Texas KCR-GCL | 0.785+0.018 | 0.556+0.016 0.563-£0.013  0.576+0.015 | 0.451+0.012 0.45240.014 0.472:+0.016 | 0.338:£0.010 0.367+0.012 0.382-:0.014
TEDGCN | 0.569+0.009 | 0.382+0.021 0.401£0.018 0.425£0.020 | 0.298£0.017 0.315+0.019 0.328£0.022 | 0.225£0.016 0.241+0.018  0.254%0.021
Chameleon | KCR-GCL | 0.585+0.008 | 0.41240.016 0.444:£0.013  0.452+0.014 | 0.341+0.011  0.3524:0.013  0.361-£0.015 | 0.262:£0.010  0.282+0.012  0.290-:0.014

6 CONCLUSIONS

This paper introduces Kernel Complexity Reduced Graph Contrastive Learning, or KCR-GCL,
which consists of a KCR-GCL encoder that learns robust node representation, which will be used
for transductive node classification. The KCR-GCL encoder integrates a novel self-attention mech-
anism that adaptively combines multiple powers of the feature kernel matrix to balance spectral
components and reduce kernel complexity. The encoder is trained within a prototypical graph con-
trastive learning (GCL) framework, with a truncated nuclear norm (TNN) on the gram matrix of the
learned features incorporated as a regularizer. The TNN regularizer encourages the KCR-GCL en-
coder to learn low-rank representations, motivated by the prevalence of low-frequency components
in real-world graphs and the theoretical tightness of generalization bounds in transductive settings.
Extensive empirical results across diverse graph benchmarks demonstrate that KCR-GCL exhibits
strong robustness and consistently outperforms state-of-the-art in learning effective node represen-
tations for transductive node classification under noisy conditions, where graphs are subjected to
either label corruption or attribute perturbations.
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A THEORETICAL RESULTS

We present the proof of Theorem 4.1 in this section.
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Proof of Theorem 4.1. Define N :=Y — Y € RY as the label noise. It can be verified that at the
t-th iteration of gradient descent for ¢ > 1, we have
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where @ follows from the Cauchy-Schwarz inequality, (6), and > d=rot1 )\q = |Kr||,,- Equation
(3) in Theorem 4.1 of the main paper then follows directly from (8). O
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B ADDITIONAL EXPERIMENT SETTINGS

B.1 DATASET

We assess the effectiveness of our approach on eight established benchmark datasets commonly em-
ployed in node representation learning: Cora, Citeseer, PubMed (Sen et al., 2008), Coauthor CS,
ogbn-arxiv (Hu et al., 2020a), Wiki-CS (Mernyei & Cangea, 2020), and Amazon-Computers and
Amazon-Photos (Shchur et al., 2018). Among these, Cora, Citeseer, and PubMed are canonical
citation networks frequently used in the literature. Coauthor CS represents a co-authorship net-
work among computer science researchers, while ogbn-arxiv is a directed citation graph curated
from the Open Graph Benchmark. Wiki-CS captures hyperlink connections between computer sci-
ence entries on Wikipedia. The Amazon-Computers and Amazon-Photos datasets model product
co-purchasing behavior on Amazon.com, where nodes correspond to products and edges indicate
frequently bought-together relationships. A summary of the key statistics for all datasets is provided
in Table 5.

Table 5: Statistics of the datasets.

Dataset Nodes Edges Features  Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Coauthor CS 18,333 81,894 6,805 15
ogbn-arxiv 169,343 1,166,243 128 40
Reddit 232,965 11,606,919 602 41
Wiki-CS 11,701 215,863 300 10
Amazon-Computers 13,752 245,861 767 10
Amazon-Photos 7,650 119,081 745 8

B.2 ADDITIONAL DETAILS OF THE TRAINING SETTINGS

Hyperparameters are selected via five-fold cross-validation on the
training set of each  dataset. We sweep the learning rate  over
{1x107,5x107%,1x107%,5x 1073,1 x 1072,3 x 10,6 x 1072,1 x 107*,5 x 107}
and the weight decay from {1x107°5x1075,1x107*,5x 10741 x 107%,5 x 1073},
Dropout probabilities are selected from {0.3,0.4,0.5,0.6,0.7}. The best hyperparameters are
identified as those minimizing the validation loss. We train all models using the Adam optimizer
for a maximum of 500 epochs, employing early stopping if the validation loss does not improve for
20 consecutive epochs. To account for random initialization effects, each configuration is repeated
over 10 independent runs using different random seeds.

Cross-Validation for Tuning ry, 7, and M. The rank parameter r(, the regularization weight
7 associated with the TNN loss, and the value of the maximum power, M, in KCR atten-
tion are selected through cross-validation tailored to each dataset. We define the rank as
ro = [ymin{N,d}|, where v represents the rank ratio. The hyperparameter ~ is searched
over the set {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, while the TNN weight 7 is chosen from
{0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}. The value of the maximum power, M, in KCR
attention is selected from {1,2,3,4,5}. All the above parameters are tuned using five-fold cross-
validation, conducted on a randomly sampled 20% subset of the training data. The final selected
values for each dataset are reported in Table 6.

Table 6: Selected rank ratio v and TNN weight \ for each dataset.

Parameters | Cora Citeseer PubMed Coauthor CS ogbn-arxiv ~ Wiki-CS  Computers  Photos
T 0.10 0.10 0.10 0.20 0.10 0.25 0.20 0.20
5 0.2 0.2 0.3 0.3 04 0.2 0.2 0.3
M 3 2 4 3 3 3 4 3
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B.3 ADDITIONAL DETAILS OF THE COMPARED METHODS

We perform an extensive comparison of KCR-GCL against a broad range of semi-supervised node
representation learning baselines. This includes classical methods such as GCN (Kipf & Welling,
2017), GCE (Zhang & Sabuncu, 2018), S2GC (Zhu & Koniusz, 2021), and GRAND+(Feng et al.,
2022b). To evaluate performance under label corruption, we also include two specialized baselines
designed to address noisy labels, NRGNN(Dai et al., 2021) and RTGNN (Qian et al., 2023). To
assess contrastive learning capabilities, we compare KCR-GCL with leading GCL-based methods,
including GraphCL (You et al., 2020), MERIT (Jin et al., 2021), SUGRL (Mo et al., 2022), and
SFA (Zhang et al., 2023). We further evaluate KCR-GCL against CRGNN (Li et al., 2024b) and
CGNN (Yuan et al., 2023), which incorporate contrastive paradigms tailored to noisy label environ-
ments. Additionally, we compare KCR-GCL with attention-based GNN architectures, GFSA (Choi
et al., 2024) and HONGAT (Zhang et al., 2024a), both of which are designed to integrate infor-
mation across different frequency components of the graph spectrum. To investigate KCR-GCL'’s
resilience in learning robust representations, we adapt two methods originally introduced in the vi-
sual domain, Jo-SRC (Yao et al., 2021) and Sel-CL (Li et al., 2022), to the graph setting. Both
Jo-SRC and Sel-CL rely on clean sample selection strategies that are architecture-agnostic and thus
transferable to graph domains. Jo-SRC identifies clean training examples using a representation-
level selection mechanism based on Jensen-Shannon divergence and strengthens robustness through
a consistency regularization term applied to the contrastive loss. In our adaptation, we integrate
Jo-SRC’s selection and regularization components into the MERIT framework. Specifically, we
augment MERIT’s contrastive objective with the consistency loss from Jo-SRC and restrict training
to samples flagged as clean by the divergence-based selection process. Sel-CL, on the other hand,
focuses on constructing contrastive pairs exclusively from confidently labeled nodes, determined by
evaluating alignment between feature representations and label propagation using cross-entropy. It
filters node pairs whose similarity outperforms a dynamic confidence threshold. In our implementa-
tion, we adapt Sel-CL’s high-confidence pair selection mechanism into MERIT by selecting reliable
contrastive pairs based on representation-level agreement, thereby improving robustness to noisy
labels in the graph domain.

B.4 ADDITIONAL DETAILS OF THE LABEL NOISE

To introduce label noise, we follow established methodologies from the literature (Han et al., 2020;
Dai et al., 2022; Qian et al., 2023), adopting (1) Symmetric noise, where each label is replaced by
a randomly chosen label from the remaining classes with uniform probability; and (2) Asymmetric
noise, in which labels are more likely to be flipped to semantically related classes. We implement the
formal noise model described in (Song et al., 2022), where a noise transition matrix T € [0, l]CXC
is used, with entries T;; := P(y = j | y = i) denoting the probability of a clean label i being
corrupted into a noisy label j. For symmetric corruption at noise rate 7, we define T;; = 1 — 7 and
Ti; = &= forall j # 4. In the asymmetric case, T;; = 1 — 7 while the off-diagonal entries are
structured such that T';; > Ty, for certain pairs j, k # 1, reflecting realistic label confusion patterns.

C ADDITIONAL EXPERIMENT RESULTS

C.1 ADDITIONAL NODE CLASSIFICATION RESULTS ON MORE DATASETS

Table 7 presents the node classification results under symmetric label noise, asymmetric label noise,
and attribute noise on Cora, Citeseer, Pubmed, and ogbn-arxiv. Table 8 presents the node classifica-
tion results under symmetric label noise, asymmetric label noise, and attribute noise on Coauthor-
CS, Wiki-CS, Amazon-Computers, and Amazon-Photos. The table reports the mean accuracy and
standard deviation over 10 independent runs. As shown, both KCR-GCL and its ablation model, LR-
GCL, consistently outperform all baseline methods across these benchmark datasets, demonstrating
superior robustness to both label and attribute noise.
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Table 7: Performance comparison for node classification on Cora, Citeseer, PubMed, and ogbn-arxiv
with asymmetric label noise, symmetric label noise, and attribute noise. The highest values for each
dataset under each setting in the table are bold, and the second-lowest values are underlined. The
results represent the mean values computed over 10 independent runs, with the standard deviation
reported after =+.

Noise Type
Dataset Methods 0 40 60 80
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute ‘Asymmetric Symmetric Attribute
GCN 0.81510.005 | 0.547£0.015 0.636£0.007 0.639+0.008 | 0.405+£0.014 0.517+0.010 0.439£0.012 | 0.265£0.012 0.354£0.014 0.317£0.013

S?GC 0.835+0.002 | 0.569+0.007 0.664+0.007 0.661+0.007 | 0.422+0.010 0.535+0.010 0.454+0.011 | 0.279+0.014 0.366+0.014  0.320+0.013
GCE 0.81940.004 | 0.573+0.011  0.652+0.008 0.650+0.014 | 0.449+0.011  0.509+0.011  0.44540.015 | 0.280+0.013  0.353+0.013  0.325+0.015
UnionNET | 0.8204+0.006 | 0.569+0.014  0.664+0.007 0.653+0.012 | 0.452+0.010 0.54140.010  0.450+0.009 | 0.283+0.014 0.370+0.011  0.320+0.012
NRGNN | 0.822+0.006 | 0.571+0.019  0.676+0.007 0.645+0.012 | 0.470+0.014 0.548+0.014 0.451£0.011 | 0.282+0.022 0.373+£0.012  0.326+0.010
RTGNN | 0.8284+0.003 | 0.570+0.010  0.682+0.008 0.678+0.011 | 0.474£0.011  0.555+0.010 0.45740.009 | 0.2804+0.011 0.386+0.014  0.342+0.016
SUGRL | 0.834+0.005 | 0.564+0.011 0.674+0.012 0.675+0.009 | 0.468+0.011 0.5524+0.011 0.452+0.012 | 0.280+0.012 0.381+0.012  0.338+0.014
MERIT 0.83140.005 | 0.560+0.008 0.670+0.008 0.671+0.009 | 0.467+0.013  0.54740.013  0.450+0.014 | 0.277+0.013  0.385+0.013  0.335+0.009
ARIEL 0.8434+0.004 | 0.573+0.013  0.681£0.010  0.675+0.009 | 0.471+£0.012 0.553+0.012  0.45540.014 | 0.28440.014  0.389+0.013  0.343+0.013

Cora SFA 0.83940.010 | 0.5644+0.011 0.677£0.013  0.676+0.015 | 0.473+£0.014 0.549+0.014 0.457+0.014 | 0.282+0.016 0.389+0.013  0.344+0.017
Sel-Cl 0.828+0.002 | 0.5704+0.010  0.685+0.012  0.676+0.009 | 0.472+0.013  0.55440.014  0.455+0.011 | 0.282:£0.017 0.389+0.013  0.341+0.015
Jo-SRC 0.8254+0.005 | 0.5714+0.006 0.684+0.013  0.679+0.007 | 0.473+£0.011  0.556+0.008 0.458+0.012 | 0.285+0.013  0.387+0.018 0.345+0.018

GRAND+ | 0.8584+0.006 | 0.57040.009 0.682+0.007 0.678+0.011 | 0.472+0.010 0.554+0.008 0.456+0.012 | 0.284+0.015 0.387+0.015 0.345+0.013
GFSA 0.837+0.006 | 0.568+0.012  0.676+0.010 0.672+0.009 | 0.466+0.012 0.5454+0.013  0.451:£0.012 | 0.279+£0.012 0.384+0.015  0.336+0.013
HONGAT | 0.83340.004 | 0.56640.011 0.673+£0.011  0.667+0.010 | 0.464+0.010 0.54340.011 0.449+0.010 | 0.278+0.013  0.381+0.014  0.334+0.014
CRGNN | 0.842+0.005 | 0.572+0.010 0.678+0.010 0.674+0.010 | 0.470+0.012 0.551+0.013  0.454+0.013 | 0.283+0.014 0.386+0.014  0.341+0.015
CGNN 0.83540.006 | 0.5674+0.009 0.670+£0.012  0.669+0.011 | 0.462+0.013  0.544+0.011  0.450+0.013 | 0.281£0.012 0.380+0.013  0.337+0.014
KCR-GCL | 0.861+0.006 | 0.602+0.011  0.724+0.007  0.708+0.011 | 0.510+0.011  0.605+0.013  0.492:£0.012 | 0.329+0.012 0.436+0.012  0.382+0.011
GCN 0.703+0.005 | 0.475+0.023 0.501+£0.013  0.529+0.009 | 0.351+0.014 0.341+0.014 0.372+0.011 | 0.291:£0.022 0.281+0.019  0.290+0.014
S?GC 0.7364+0.005 | 0.488+0.013  0.528+0.013  0.553+0.008 | 0.363+0.012  0.36740.014  0.390+0.013 | 0.304+0.024  0.284+0.019  0.288+0.011
GCE 0.705+0.004 | 0.490+0.016 0.512+0.014 0.540+0.014 | 0.362+0.015 0.352+0.010 0.381+0.009 | 0.309+0.012 0.285+0.014  0.285+0.011
UnionNET | 0.706+0.006 | 0.499+0.015 0.5474+0.014  0.545£0.013 | 0.379£0.013  0.399+0.013  0.3794+0.012 | 0.3224+0.021  0.302+0.013  0.290+0.012
NRGNN | 0.710+£0.006 | 0.498+0.015 0.546+0.015 0.538+0.011 | 0.382+0.016 0.412+0.016 0.37740.012 | 0.336£0.021  0.309+0.018  0.284+0.009
RTGNN | 0.746+0.008 | 0.498+0.007 0.556+0.007 0.550+0.012 | 0.3924+0.010 0.424+0.013  0.390+0.014 | 0.348+0.017 0.308+0.016 0.302+0.011
SUGRL | 0.730£0.005 | 0.493£0.011 0.541£0.011  0.544+0.010 | 0.376+0.009 0.42140.009 0.388+0.009 | 0.339+0.010 0.305+0.010  0.30040.009
MERIT 0.7404+0.007 | 0.496+0.012  0.536+0.012  0.542+0.010 | 0.383+0.011  0.4254+0.011 0.387+0.008 | 0.344+0.014 0.301+0.014  0.295+0.009
SFA 0.740+0.011 | 0.502+0.014  0.532+£0.015  0.547+0.013 | 0.390+0.014 0.4334+0.014  0.389+0.012 | 0.347+£0.016 0.312+0.015  0.299+0.013
Citeseer ARIEL 0.72740.007 | 0.50040.008  0.550+£0.013  0.548+0.008 | 0.391+£0.009 0.427+0.012  0.389+0.014 | 0.3494+0.014  0.307£0.013  0.299+0.013
Sel-Cl 0.7254+0.008 | 0.499+0.012  0.551£0.010 0.549+0.008 | 0.389+0.011  0.42640.008 0.391+0.020 | 0.350+0.018 0.310+0.015  0.300+0.017
Jo-SRC 0.7304+0.005 | 0.500+0.013  0.555+0.011 0.551+0.011 | 0.394+0.013  0.4254+0.013  0.393+0.013 | 0.351£0.013  0.305+0.018  0.303+0.013
GRAND+ | 0.756+£0.004 | 0.497+0.010 0.553+0.010 0.5524+0.011 | 0.390+0.013  0.42240.013  0.387+0.013 | 0.348+0.013  0.309+0.014  0.302+0.012
GFSA 0.7434+0.006 | 0.495+0.012 0.546+0.012 0.546+0.011 | 0.386+0.011 0.4184+0.011 0.386+0.012 | 0.342+0.013  0.308+0.015  0.298+0.012
HONGAT | 0.7384+0.007 | 0.49240.014  0.540+£0.011  0.545+0.009 | 0.380+0.012  0.413£0.010 0.384+0.013 | 0.340+0.014  0.306+0.016  0.296+0.011
CRGNN | 0.751+0.006 | 0.497+0.011  0.55240.010  0.549+0.012 | 0.389+0.014 0.423+0.013  0.388+0.012 | 0.34740.015 0.310+£0.014  0.301+0.012
CGNN 0.7414+0.007 | 0.493+0.013  0.544+0.012  0.546+0.010 | 0.385+0.013 0.4194+0.012 0.385+0.011 | 0.343+£0.013  0.307+0.013  0.297+0.012
KCR-GCL | 0.76240.010 | 0.53340.013  0.597:£0.013  0.588+0.007 | 0.430+£0.014  0.4724+0.014  0.423+0.012 | 0.39240.012  0.352+0.014  0.335+0.010
GCN 0.790+0.007 | 0.5844+0.022 0.574+0.012 0.595+0.012 | 0.405+0.025 0.3860.011 0.488+0.013 | 0.305+£0.022 0.295+0.013  0.423+0.013
S?GC 0.802+0.005 | 0.585+0.023  0.589+0.013  0.610+0.009 | 0.421+0.030 0.40140.014  0.497+£0.012 | 0.310£0.039  0.290+0.019  0.431£0.010
GCE 0.79240.009 | 0.589+0.018 0.581+0.011 0.590+0.014 | 0.430+£0.012  0.39940.012  0.491+0.010 | 0.3114£0.021  0.301+0.011  0.424+0.012
UnionNET | 0.793+0.008 | 0.603+0.020 0.620+0.012 0.592+0.012 | 0.445+0.022 0.42440.013  0.489+0.015 | 0.313+£0.025 0.327+0.015  0.435+0.009
NRGNN | 0.79740.008 | 0.6024+0.022  0.618+0.013  0.603+0.008 | 0.443+0.012 0.43440.012  0.499+0.009 | 0.330+0.023  0.325+0.013  0.433+0.011
RTGNN | 0.797-0.004 | 0.610+£0.008 0.622+0.010 0.614+0.012 | 0.455+0.010 0.455+0.011 0.50140.011 | 0.3354+0.013  0.338+0.017  0.452+0.013
SUGRL | 0.8194+0.005 | 0.603+0.013  0.615+0.013 0.615+0.010 | 0.445+0.011 0.4414+0.011 0.501+0.007 | 0.321£0.009 0.321+0.009  0.446+0.010
MERIT 0.80140.004 | 0.5934+0.011 0.612+0.011  0.613+£0.011 | 0.447+0.012 0.443+0.012  0.497+0.009 | 0.32840.011  0.323+£0.011  0.445+0.009
ARIEL 0.8004+0.003 | 0.610+0.013  0.622+0.010  0.615+0.011 | 0.453+0.012 0.4534+0.012 0.502+0.014 | 0.331£0.014 0.336+0.018 0.457+0.013
PubMed SFA 0.804+0.010 | 0.596+0.011  0.615+£0.011 0.609+0.011 | 0.447+0.014 0.44640.017 0.499+0.014 | 0.330£0.011 0.327+0.011  0.447+0.014
Sel-Cl 0.79940.005 | 0.605+0.014  0.625+0.012  0.614+0.012 | 0.455+0.014  0.449+0.010  0.502+0.008 | 0.334+0.021  0.332+0.014  0.456+0.014
Jo-SRC 0.80140.005 | 0.613+0.010  0.624+0.013  0.617+0.013 | 0.453+0.008 0.4554+0.013 0.504+0.013 | 0.330+£0.015 0.334+0.018 0.459+0.018
GRAND+ | 0.8454+0.006 | 0.6104+0.011  0.624+0.013  0.617+0.013 | 0.453+0.008 0.453+0.011 0.503+0.010 | 0.331+£0.014 0.337+0.013  0.458+0.014
GFSA 0.82340.005 | 0.608+0.012  0.621£0.011  0.616+0.009 | 0.450+0.013  0.4524+0.012  0.500£0.010 | 0.333£0.013  0.334+£0.011  0.455+0.012
HONGAT | 0.81840.006 | 0.60640.011 0.619£0.012  0.613+0.010 | 0.448+0.014 0.447+0.012 0.498+0.012 | 0.328+0.012 0.326+0.013  0.450+0.011
CRGNN | 0.829+£0.005 | 0.612+0.010 0.623+0.009 0.618+0.011 | 0.452+0.011 0.455+0.013  0.503+0.009 | 0.335+0.013  0.333+£0.014  0.457+0.012
CGNN 0.82240.006 | 0.6074+0.013  0.620+£0.011  0.615+0.010 | 0.449+0.012 0.451+0.014  0.49940.010 | 0.33240.014  0.330+£0.012  0.454+0.013
KCR-GCL | 0.846+0.009 | 0.652+0.014  0.662+0.015 0.655+0.011 | 0.498+0.011 0.503+0.013  0.544-0.011 | 0.379+0.011 0.379+0.012  0.498+0.014
GCN 0.7174+0.003 | 0.401+0.014 0.421£0.014 0.478+0.010 | 0.336+£0.011  0.346+0.021  0.339+0.012 | 0.286+0.022  0.256+0.010 0.294+0.013
S?GC 0.71240.003 | 0.41740.017 0.429+0.014 0.492+0.010 | 0.344+0.016 0.353+0.031  0.343+0.009 | 0.297+0.023  0.266+0.013  0.284+0.012
GCE 0.7204+0.004 | 0.410+0.018  0.428+0.008 0.480+0.014 | 0.348+0.019 0.34440.019  0.342+£0.015 | 0.310+£0.014 0.260+0.011  0.275+0.015
UnionNET | 0.724:0.006 | 0.429-£0.021  0.449+0.007 0.485+0.012 | 0.3624+0.018  0.367-+£0.008 0.340+0.009 | 0.3324+0.019  0.269+0.013  0.280+0.012
NRGNN | 0.721£0.006 | 0.449+0.014 0.466+0.009 0.485+0.012 | 0.371£0.020 0.379+0.008 0.342+0.011 | 0.330£0.018 0.271+0.018 0.300+0.010
RTGNN | 0.718+0.004 | 0.443+£0.012 0.464+0.012 0.484+0.014 | 0.380+0.011 0.384:£0.013  0.3404+0.017 | 0.335+0.011  0.285+0.015  0.301+:0.006
SUGRL | 0.693+0.002 | 0.439+0.010 0.467+0.010 0.480+0.012 | 0.365+0.013  0.385+0.011  0.34140.009 | 0.327+£0.011 0.275+0.011  0.2954+0.011
MERIT 0.71740.004 | 0.442+0.009 0.463+£0.009 0.483+0.010 | 0.368+0.011 0.38140.011 0.341+0.012 | 0.324+£0.012 0.272+0.010  0.304+0.009
ARIEL 0.71740.004 | 0.448+0.013  0.471£0.013  0.482+0.011 | 0.379+0.014  0.384+0.015 0.342+0.015 | 0.334+0.014  0.280+0.013  0.300+0.010
ogbn-arxiv SFA 0.7184+0.009 | 0.445+0.012 0.463+0.013  0.486+0.012 | 0.368+0.011 0.378+0.014  0.338+0.015 | 0.325+0.014 0.273+0.012  0.302+0.013
Sel-Cl 0.7194+0.002 | 0.4474+0.007 0.469+0.007 0.486+0.010 | 0.375+0.008 0.3894+0.025 0.344+0.013 | 0.331£0.008 0.284+0.019  0.304+0.012
Jo-SRC 0.71540.005 | 0.4454+0.011  0.466+0.009 0.481+0.010 | 0.377+£0.013  0.3874+0.013  0.340+0.013 | 0.333£0.013  0.282+0.018  0.297+0.009
GRAND+ | 0.72540.004 | 0.4454+0.008 0.466+£0.011 0.481+0.011 | 0.378+0.010 0.38540.012  0.344+0.010 | 0.33240.010  0.282+0.016  0.303+0.009
GFSA 0.7194+0.004 | 0.443+0.012  0.460+0.010 0.482+0.011 | 0.370+£0.012 0.379+0.012  0.342+0.011 | 0.328+0.012 0.278+0.013  0.299+0.011
HONGAT | 0.716£0.005 | 0.440+£0.011  0.458+0.012  0.480+0.012 | 0.366+0.013  0.37340.013  0.339+0.012 | 0.324+0.014 0.276+0.014  0.296+0.012
CRGNN | 0.721£0.003 | 0.446+0.010 0.465+0.010 0.483+0.009 | 0.372+0.010 0.382+0.011  0.3434+0.010 | 0.330£0.012 0.281+0.012  0.302+0.010
CGNN 0.7174+0.006 | 0.4414+0.013  0.462+0.011 0.481+0.010 | 0.368+0.014 0.37640.012  0.340+0.011 | 0.326+0.015 0.277+0.013  0.298+0.012
KCR-GCL | 0.731+0.006 | 0.487+0.013  0.507+0.011  0.523+0.014 | 0.423+0.014  0.43040.012  0.423:£0.012 | 0.374:+0.015  0.332+0.013  0.350-+0.013

C.2 NODE CLASSIFICATION RESULTS FOR GCL METHODS WITH DIFFERENT TYPES OF
CLASSIFIERS

Existing GCL approaches, including MERIT (Jin et al., 2021), SUGRL (Mo et al., 2022), and
SFA (Zhang et al., 2023), typically follow a two-stage procedure: they first train a graph encoder
using contrastive objectives such as InfoNCE (Jin et al., 2021), and subsequently train a linear clas-
sifier in a supervised manner on the resulting node representations. In contrast, KCR-GCL integrates
a transductive classifier directly atop the contrastively learned representations, enabling label prop-
agation during training. To ensure a fair comparison, we retrain all baseline GCL methods using the
same transductive classifier employed in KCR-GCL, as well as an additional two-layer transductive
GCN classifier. The results with different types of classifiers are shown in Table 9. It is observed

19



Under review as a conference paper at ICLR 2026

Table 8: Performance comparison for node classification on Coauthor-CS, Wiki-CS, Amazon-
Computers, and Amazon-Photos with asymmetric label noise, symmetric label noise, and attribute
noise.

Noise Type
Dataset Methods 0 40 60 80
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute
GCN 0.918+0.00T | 0.645£0.009 0.656+0.006 0.702£0.010 | 0.511=0.013  0.501=0.009 0.531£0.010 | 0.429£0.022 0.389+0.01T 0.415+0.013
S2GC 0.91840.001 | 0.6574+0.012  0.6634+0.006 0.71340.010 | 0.516+0.013  0.514+0.009  0.556+0.009 | 0.43740.020 0.396:0.010 0.422:0.012
GCE 0.922+0.003 | 0.662:£0.017  0.659£0.007  0.705+0.014 | 0.515+0.016 0.502+0.007 0.539+£0.009 | 0.44340.017  0.389+0.012  0.41240.011
UnionNET | 0.918+0.002 | 0.669+0.023 0.671+£0.013  0.706£0.012 | 0.525+0.011  0.5294+0.011  0.54040.012 | 0.458+0.015 0.401+0.011  0.420+0.007
NRGNN | 0.919£0.002 | 0.678+0.014  0.689£0.009 0.705+£0.012 | 0.545+0.021  0.5560.011  0.546:£0.011 | 0.461£0.012 0.410£0.012  0.4170.007
RTGNN 0.920+£0.005 | 0.678+0.012  0.6914+0.009  0.71240.008 | 0.559+0.010 0.569+0.011  0.560+0.008 | 0.455+0.015 0.415£0.015 0.412+0.014
SUGRL 0.922+0.005 | 0.675+0.010  0.69540.010  0.71440.006 | 0.550+0.011  0.560+0.011  0.561+0.007 | 0.449£0.011  0.411£0.011  0.429:0.008
MERIT 0.924:0.004 | 0.679+0.011  0.6894+0.008 0.70940.005 | 0.552+0.014  0.562+0.014  0.562+0.011 | 0.452+0.013  0.403£0.013  0.426-+0.005
ARIEL 0.925+0.004 | 0.682+0.011  0.69940.009  0.71240.005 | 0.555+£0.011 0.566+0.011  0.556+0.011 | 0.454£0.014 0.415£0.019 0.427+0.013
Coauthor-CS SFA 0.92540.009 | 0.682+0.011  0.690+0.012  0.715+0.012 | 0.555+0.015 0.567+0.014 0.565+0.013 | 0.458+0.013 0.402+0.013  0.42940.015
Sel-Cl 0.922:40.008 | 0.684+0.009 0.69440.012  0.71440.010 | 0.557+0.013  0.568+0.013  0.566+0.010 | 0.457+£0.013  0.412+£0.017  0.425:0.009
Jo-SRC | 0.921+0.005 | 0.684=0.011  0.695+0.004 ~0.709+0.007 | 0.560+0.011 ~0.566+0.011 0.561+0.009 | 0.45640.013  0.410+0.018 0.428-0.010
GRAND+ | 0.92740.004 | 0.682+0.011 0.693+0.006 0.715+0.008 | 0.554:0.008 0.568+0.013 0.557+£0.011 | 0.4554+0.012 0.416+0.013  0.42840.011
GFSA 0.923+0.004 | 0.679+£0.010  0.687-£0.009  0.71140.009 | 0.550+0.012  0.559+0.011  0.558:£0.010 | 0.45340.014 0.410+0.012  0.42640.011
HONGAT | 0.92440.003 | 0.681+0.012 0.692+0.010  0.713+0.008 | 0.553+0.013  0.563+0.013  0.560-£0.012 | 0.456+0.013 0.411+0.015  0.42740.010
CRGNN | 0.926£0.005 | 0.683£0.011  0.690+0.011  0.712:£0.007 | 0.551£0.015 0.561£0.012  0.559+0.011 | 0.454+0.012 0.412+0.014  0.426:0.012
CGNN 0.925-£0.006 | 0.680+0.012  0.6894+0.012  0.71040.010 | 0.549+0.014  0.560+0.012  0.5574+0.012 | 0.45240.013  0.409+0.015 0.425:+0.012
KCR-GCL | 0.934+0.006 | 0.714:£0.015 0.736:£0.011  0.758-:0.015 | 0.594::0.014 0.612:+0.018 0.606+-0.015 | 0.489+0.015 0.453+0.015 0.470+0.017
GCN 0.801£0.004 | 0.612+0.008 0.6254+0.010 0.64740.009 | 0.497+0.013 0.483+0.012 0.502+0.011 | 0.401£0.016 0.365+£0.017 0.382+0.016
$2GC 0.806+0.003 | 0.621:£0.009  0.630:£0.011 ~ 0.659+0.010 | 0.503+0.014 0.492+0.012  0.516+0.012 | 0.411£0.018 0.373+0.016  0.39740.015
GCE 0.808-+0.004 | 0.618+0.007 0.6294+0.008 0.65140.009 | 0.495+0.012 0.481+0.010 0.510+0.010 | 0.404£0.015 0.361£0.013 0.383+£0.014
UnionNET | 0.805+0.005 | 0.629+0.011  0.634:£0.012  0.661:£0.009 | 0.506+0.011  0.505+0.011  0.520+0.012 | 0.421£0.017 0.375+0.015  0.392+0.014
NRGNN | 0.809+0.003 | 0.635+0.008 0.642+0.009 0.665+0.008 | 0.51440.012 0.51840.011  0.5264:0.010 | 0.426+0.014 0.386+0.016 0.403+0.012
RTGNN 0.811£0.004 | 0.638+0.010  0.645+0.010  0.66740.008 | 0.517£0.011  0.522+0.011  0.528+0.009 | 0.428+0.013  0.391£0.015  0.406=:0.012
MERIT 0.8130.004 | 0.641+0.009  0.648+0.010  0.67040.009 | 0.519+0.012  0.525+0.012  0.53240.010 | 0.43240.014  0.392+0.013  0.410+0.013
ARIEL 0.814£0.003 | 0.645+0.010  0.65240.009  0.67440.008 | 0.523+£0.013  0.528+0.011 0.535+0.011 | 0.434£0.012  0.394£0.012  0.412+£0.012
SFA 0.815£0.005 | 0.643+0.011  0.650£0.010  0.67340.009 | 0.520+0.013  0.527+0.012  0.533+0.010 | 0.430+£0.015 0.391£0.014  0.408-+0.012
Wiki-CS Sel-Cl 0.813£0.004 | 0.644+0.009 0.65140.010  0.67240.009 | 0.521+0.012  0.526+0.011  0.531+£0.009 | 0.429+0.013  0.390+0.014  0.407+0.013
Jo-SRC 0.81240.004 | 0.646=0.010  0.652+0.008 0.671£0.009 | 0.522+0.012  0.528+0.011 0.534£0.011 | 0.431+0.014 0.393+0.015 0.409+0.012
GRAND+ | 0.81640.003 | 0.647+0.011 0.653+0.009 0.676+0.008 | 0.524:+0.010 0.529+0.011  0.536:£0.010 | 0.43240.014 0.395+0.013  0.411£0.011
CGNN | 0.813+0.004 | 0.643£0.010  0.649:£0.009  0.669+0.009 | 0.519+0.011  0.524:0.011  0.5310.010 | 0.428+0.014 0.389+0.015  0.406+-0.012
CRGNN | 0.8154+0.005 | 0.645£0.010 0.652+0.010 0.671£0.009 | 0.52240.013  0.52840.012  0.53340.011 | 0.431+0.013 0.392+0.013  0.4104+0.011
HONGAT | 0.81440.004 | 0.642+0.011  0.648+0.010 0.670:£0.009 | 0.518+0.012 0.523+0.011 ~ 0.530+0.010 | 0.427+0.013  0.388+0.013  0.405+0.012
KCR-GCL | 0.826-0.004 | 0.678+0.013  0.699+0.010 0.707+0.012 | 0.553+0.014 0.572:40.013  0.569-0.011 | 0.4594+0.014 0.426:0.014 0.44340.012
GCN 0.872+0.005 | 0.619+£0.012 0.638+£0.01T 0.658+0.013 | 0.471=0.014 0.484=0.012° 0.501+0.010 | 0.377£0.017 0.354+£0.016 0.368+0.015
S2GC 0.876£0.004 | 0.625+0.010  0.64240.012  0.66440.011 | 0.479+0.013 0.491+0.013  0.509+0.012 | 0.382+0.016 0.359+0.015 0.375+0.014
GCE 0.879+0.006 | 0.623+£0.011  0.641:£0.010  0.661+0.012 | 0.475+0.014  0.486+0.012  0.505+0.012 | 0.380+0.015 0.356+0.016  0.370+0.014
UnionNET | 0.8744+0.005 | 0.633+£0.012 0.648+0.011  0.668-+0.010 | 0.483%0.011 0.495+0.010 0.51140.011 | 0.388+0.015 0.361+0.014 0.378+0.013
NRGNN | 0.87840.004 | 0.639+0.010 0.656:£0.010 0.672:£0.011 | 0.491+0.013  0.503+0.011  0.518+0.011 | 0.3910.014  0.364=0.015  0.380+0.014
RTGNN 0.880-£0.005 | 0.641+0.010  0.658+0.010  0.67440.009 | 0.494+0.012 0.507+0.012  0.5214+0.010 | 0.392+0.014 0.366+0.013  0.383£0.012
MERIT 0.883£0.004 | 0.6440.011 0.660£0.010  0.676+0.009 | 0.496+0.012 0.508+0.012 0.523£0.011 | 0.394+0.015 0.368+0.013  0.386+0.012
ARIEL 0.884-0.004 | 0.645+0.010  0.6624+0.009  0.67940.010 | 0.498+0.011 0.510+£0.011  0.526+0.011 | 0.396+0.013  0.369+0.014  0.388-0.012
SFA 0.885+0.005 | 0.643+0.011  0.661£0.010  0.67740.010 | 0.497+0.012  0.509+0.011  0.525+0.012 | 0.395+0.013  0.368+0.012  0.387+0.013
Amazon-Computers Sel-Cl 0.882-£0.006 | 0.646+0.009  0.6634+0.011  0.67840.010 | 0.499+0.011 0.511+0.011  0.527+0.012 | 0.396+0.013  0.369+0.013  0.389-£0.012
Jo-SRC 0.881£0.004 | 0.644+0.010  0.66140.009 0.67540.009 | 0.495+0.011 0.508+0.010 0.523+0.011 | 0.393£0.014 0.367+0.013  0.385+0.013
GRAND+ | 0.886+0.004 | 0.647+0.009  0.665+0.009 0.680-£0.010 | 0.501+0.010 0.513+0.010  0.52940.010 | 0.398+0.013  0.370+0.013  0.390+0.011
CGNN 0.8840.005 | 0.642+0.010  0.65940.010  0.67640.010 | 0.494+0.011 0.507+0.011  0.52240.011 | 0.39240.014  0.366+0.013  0.384+0.013
CRGNN | 0.88540.004 | 0.6440.009 0.662+£0.009 0.678:£0.009 | 0.496+0.011  0.509+0.010  0.524+0.011 | 0.395+£0.013  0.368+0.012  0.387+0.011
HONGAT | 0.88340.005 | 0.640+0.010 0.658+0.010 0.674+0.010 | 0.492£0.011 0.505+0.011  0.520£0.010 | 0.3904+0.014  0.365+0.014  0.3824-0.012
KCR-GCL | 0.896+0.005 | 0.676::0.014 0.694::0.011  0.701:0.013 | 0.534::0.014 0.548+0.013  0.545+0.013 | 0.4320.014  0.401+0.015  0.418-0.014
GCN 0.899+£0.004 | 0.638+0.011  0.64940.009 0.66540.010 | 0.487+0.012 0.498+0.011 0.509+0.011 | 0.395+£0.014 0.361£0.013 0.374£0.012
$2GC 0.903+0.005 | 0.645+0.010  0.6554+0.010  0.67240.010 | 0.495+0.011  0.506+0.010  0.517+0.011 | 0.399+0.014  0.366+0.013  0.379+0.013
GCE 0.905+£0.004 | 0.642+0.011  0.65440.009  0.6704:0.010 | 0.492+0.012  0.503+0.010  0.513+0.011 | 0.397£0.013  0.364:£0.012 0.377+£0.012
UnionNET | 0.902+£0.004 | 0.648+0.010  0.659+0.009 0.676+0.010 | 0.497£0.010 0.509£0.010  0.521£0.011 | 0.403£0.013  0.368+0.012  0.381=£0.011
NRGNN | 0.906+0.003 | 0.653+£0.010 0.663+£0.010 0.680-£0.010 | 0.503%0.011  0.51440.010 0.5264-0.010 | 0.408+0.013 0.371+0.012  0.386+0.012
RTGNN | 0.908+0.004 | 0.656:£0.009  0.665:£0.010  0.68240.009 | 0.506+0.010 0.517+0.010 0.529+0.011 | 0.41140.012  0.373+0.012  0.38840.011
MERIT 0.910£0.005 | 0.659+0.010  0.6674+0.009  0.68440.010 | 0.508+0.011 0.519+0.010 0.531+0.010 | 0.413+£0.012 0.374£0.012  0.390+0.012
ARIEL 0.911£0.005 | 0.660+0.010  0.669+0.010  0.686+0.010 | 0.511+0.010 0.521+0.011  0.533£0.010 | 0.415+0.013  0.376+0.013  0.392+0.011
SFA 0.912:£0.004 | 0.658+0.009 0.66840.010 0.68540.009 | 0.509+0.010 0.520+0.010  0.5324+0.010 | 0.41440.012 0.375£0.011  0.391£0.012
Amazon-Photos Sel-Cl 0.909£0.005 | 0.6610.009  0.67040.009  0.68740.009 | 0.512+0.010  0.522£0.010  0.534:£0.010 | 0.416£0.012  0.377+£0.011  0.393£0.011
Jo-SRC 0.908-0.004 | 0.659+0.009 0.668+0.009 0.68440.010 | 0.510+£0.010  0.520+0.010  0.532+0.011 | 0.413+£0.012  0.374£0.012  0.390-£0.012
GRAND+ | 0.91340.005 | 0.662+0.010 0.671+0.009 0.688+0.010 | 0.513£0.010 0.523£0.010  0.535:£0.010 | 0.4174£0.012  0.378+0.012  0.394+0.011
CGNN 0.911£0.004 | 0.657+0.009  0.667+0.010  0.68340.010 | 0.507+0.010 0.518+0.011  0.530+0.010 | 0.412+0.012 0.373+£0.012  0.389+0.011
CRGNN | 0.91240.004 | 0.659+0.010 0.669+0.010 0.685:£0.010 | 0.509+0.011  0.521£0.011  0.53340.011 | 0.414+0.012 0.375+0.012  0.391+0.012
HONGAT | 0.910£0.004 | 0.655+0.010 0.666+0.009 0.682+0.010 | 0.505+0.010 0.5160.010 0.528+0.010 | 0.410+0.012 0.372+0.012  0.387+0.012
KCR-GCL | 0.92240.005 | 0.692+0.013  0.708+0.011 0.7174+0.011 | 0.545£0.014 0.558+0.013  0.553:0.013 | 0.44210.014 0.408+0.014 0.42140.013
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that KCR-GCL still outperforms SOTA GCL methods even when the transductive classifiers are
employed.

Table 9: Performance comparison for node classification by inductive linear classifier, transductive
two-layer GCN classifier, and transductive classifier used in KCR-GCL. The comparisons are per-
formed on Cora.

Noise Type
Methods 0 40 60 80
- Asymmetric Symmetric Attribute Asymmetric  Symmetric Attribute Asymmetric  Symmetric Attribute
SUGRL (original, inductive classifier) | 0.834+0.005 | 0.564+£0.011 0.674+0.012 0.675+0.009 | 0.468+0.011  0.552+0.011  0.452+0.0 0.280+0.012  0.381+0.012  0.338+0.014
SUGRL + transductive GCN 0.833+0.006 | 0.562+0.013  0.675+0.015  0.673£0.012 | 0.470£0.011  0.551:£0.011  0.454+0.0

SUGRL + linear transductive classifier | 0.836+0.007 | 0.568+0.013  0.677+0.010  0.674:£0.011 | 0.47240.011  0.555+0.011  0.457+0.0
MERIT (original, inductive classifier) | 0.831+0.005 | 0.560+£0.008 0.670£0.008 0.671£0.009 | 0.467+0.013 0.5474+0.013  0.450+0.0

0.284+0.012  0.383+0.012  0.34140.014

12
12 | 0.280+0.012  0.380+0.012  0.340£0.014
12
141 0.277£0.013  0.385+0.013  0.335£0.009

MERIT + transductive GCN 0.831+0.007 | 0.562+0.011  0.668+0.013  0.672:£0.014 | 0.4660.013  0.549+0.015 0.451+0.016 | 0.276+0.012  0.38240.014  0.337+0.013
MERIT + linear ive classifier | 0.833+0.003 | 0.562+0.014  0.673£0.012  0.673£0.011 | 0.466:£0.015 0.546+0.016  0.4534+0.017 | 0.280+0.016  0.386£0.011  0.336:£0.014
SFA (original, inductive classifier) 0.839+0.010 | 0.564+0.011 0.677+0.013  0.676+0.015 | 0.473£0.014 0.549+0.014 0.457£0.014 | 0.282+0.016 0.389+0.013  0.344+0.017
SFA + transductive GCN 0.837+0.013 | 0.565+0.011  0.673+0.017  0.673+0.018 | 0.474+0.016 0.551£0.015 0.453+0.018 | 0.277+0.016  0.38940.015 0.343+0.019

SFA + linear ive classifier 0.841+0.015 | 0.566+0.013  0.678+0.014  0.679£0.014 | 0.477£0.015 0.552+0.012  0.456+0.016 | 0.284+0.017 0.39140.015  0.348+0.019
LR-GCL 0.858+0.006 | 0.589+0.011 0.713+£0.007 0.695+0.011 | 0.492+0.011 0.587£0.013  0.477£0.012 | 0.306+0.012 0.419+0.012 0.363+0.011

KCR-GCL 0.8610.006 | 0.610+0.011  0.731+0.007  0.715:£0.011 | 0.512:£0.011  0.610+0.013  0.50040.012 | 0.341+0.012  0.444+0.012  0.390-:0.011

C.3 STATISTICAL SIGNIFICANCE ANALYSIS

In this section, we compute the p-values from paired t-tests comparing the performance of KCR-
GCL and its ablation model, LR-GCL, against the strongest baseline methods to assess the statistical
significance of the observed improvements. As shown in Table 10, the p-values for both KCR-
GCL and LR-GCL remain consistently below the threshold of 0.05 across all datasets and noise
conditions, thereby confirming that the performance gains over the top baselines are statistically
significant.

Table 10: P-values of the t-tests for LR-GCL and KCR-GCL against the top baseline methods under
each noise setting on all the benchmark datasets.

Noise Type
Datasets Methods 40 60 80
Asymmetric Symmetric Attribute | Asymmetric Symmetric Attribute | Asymmetric Symmetric  Attribute

Cora LR-GCL 0.038 0.024 0.021 0.035 0.021 0.041 0.025 0.028 0.031
KCR-GCL 0.027 0.022 0.018 0.018 0.038 0.035 0.031 0.023 0.030
Citeseer LR-GCL 0.043 0.035 0.022 0.021 0.030 0.041 0.027 0.024 0.022
KCR-GCL 0.037 0.038 0.019 0.027 0.025 0.040 0.035 0.037 0.030
PubMed LR-GCL 0.028 0.043 0.030 0.026 0.027 0.043 0.036 0.040 0.042
KCR-GCL 0.025 0.030 0.026 0.023 0.024 0.041 0.033 0.035 0.037
Coauthor-CS LR-GCL 0.041 0.032 0.036 0.043 0.044 0.040 0.027 0.037 0.042
KCR-GCL 0.036 0.030 0.034 0.041 0.042 0.039 0.025 0.033 0.036
ogbn-arxiv LR-GCL 0.040 0.032 0.036 0.043 0.044 0.040 0.027 0.037 0.042
KCR-GCL 0.036 0.030 0.034 0.041 0.042 0.039 0.025 0.033 0.036
Wiki-CS LR-GCL 0.044 0.035 0.033 0.028 0.034 0.041 0.036 0.040 0.042
KCR-GCL 0.040 0.036 0.031 0.026 0.029 0.039 0.034 0.038 0.040
Amazon-Computers LR-GCL 0.033 0.043 0.034 0.031 0.034 0.041 0.036 0.040 0.042
KCR-GCL 0.031 0.038 0.030 0.028 0.030 0.038 0.034 0.037 0.040
Amazon-Photos LR-GCL 0.040 0.041 0.038 0.043 0.044 0.040 0.027 0.037 0.042
KCR-GCL 0.037 0.039 0.036 0.041 0.042 0.039 0.025 0.033 0.036
Texas LR-GCL 0.038 0.024 0.021 0.035 0.021 0.041 0.025 0.028 0.031
KCR-GCL 0.027 0.022 0.018 0.018 0.038 0.035 0.031 0.023 0.030
Chameleon LR-GCL 0.044 0.035 0.033 0.028 0.034 0.041 0.036 0.040 0.042
KCR-GCL 0.040 0.036 0.031 0.026 0.029 0.039 0.034 0.038 0.040

C.4 SENSITIVITY ANALYSIS ON THE HYPERPARAMETERS

We perform a sensitivity analysis on the weighting parameter 7 associated with the TNN. This
analysis is conducted using KCR-GCL on the Coauthor-CS dataset under the setting of semi-
supervised node classification with 60% asymmetric label noise. We vary 7 over the set
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, and the corresponding classification accuracies are re-
ported in Table 11. The highest accuracy is achieved at 7 = 0.5, though KCR-GCL maintains
stable and competitive performance across the entire range. Even in the least favorable case, with
7 = 0.1, the accuracy declines by only 0.6%, highlighting the robustness of the model to variations
inT.

In addition, we conduct an ablation study on the hyperparameter M, which is the maximum power
in the KCR self-attention. As discussed in Section 4.1, larger values of M allow the attention matrix
B to incorporate higher-order feature propagation through polynomial kernel expansions. We vary
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M from 1 to 9, and the corresponding classification accuracies are also reported in Table 11. The
results indicate that KCR-GCL is robust to the choice of M, with the best performance observed
when M = 3.

Table 11: Sensitivity analysis on the weighting parameter 7 for the TNN and the maximum power
M in the KCR self-attention. The study is performed using KCR-GCL on the Coauthor-CS dataset
for semi-supervised node classification under 60% asymmetric label noise.

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy | 0.588 0.594 0.593 0.591 0594 0.590 0.591 0.590 0.589

M 1 2 3 4 5 6 7 8 9
Accuracy | 0.590 0.592 0.594 0593 0.594 0.592 0593 0.587 0.588

We also perform an ablation study to examine the influence of the rank parameter ry =
[vmin {N,d}] in the regularization term employed in the training loss of the KCR-GCL. Table 12
shows the classification performance of LR-GCL under various choices of ry. The results indicate
that KCR-GCL consistently maintains near-optimal accuracy across a wide range of rank settings,
particularly when + is chosen within the interval 0.1 to 0.3.

Table 12: Ablation study on the value of rank 7y in the optimization problem (1) on Cora with
different levels of asymmetric and symmetric label noise. The accuracy with the optimal rank is
shown in the last row. The accuracy difference against the optimal rank is shown for other ranks.
‘Asy’ and ‘Sy’ in this table denote the asymmetric label noise and symmetric label noise.

Noise Type
v 0 40 60 80
- Asy Sy Asy Sy Asy Sy

0.1 -0.002 | -0.001 -0.002 | -0.002 -0.001 | -0.001 -0.000
0.2 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000
0.3 -0.000 | -0.000 -0.001 | -0.002 -0.001 | -0.000 -0.001
04 -0.001 | -0.003 -0.002 | -0.001 -0.002 | -0.002 -0.002
0.5 -0.001 | -0.002 -0.003 | -0.003 -0.003 | -0.001 -0.002
0.6 -0.003 | -0.002 -0.002 | -0.003 -0.002 | -0.002 -0.003
0.7 -0.003 | -0.004 -0.003 | -0.004 -0.004 | -0.004 -0.005
0.8 -0.002 | -0.005 -0.006 | -0.006 -0.006 | -0.007 -0.007
0.9 -0.004 | -0.004 -0.005 | -0.007 -0.008 | -0.008 -0.006
1.0 -0.004 | -0.004 -0.007 | -0.007 -0.008 | -0.010 -0.008

optimal | 0.858 | 0.589 0.713 | 0.492 0.587 | 0.306 0.419

Table 13: Comparisons in the kernel complexity defined in Theorem 4.1 of the main paper. The
evaluation is performed on the semi-supervised node classification task with 40% of symmetric
label noise.

Datasets MERIT SFA Jo-SRC GCN GFSA HONGAT LR-GCL KCR-GCL
Cora KC 0.37 0.42 0.48 044 035 0.40 0.20 0.14
ro 1420 1478 1665 1511 1262 1450 440 395
Citeseer KC 0.47 0.45 0.55 0.64 047 0.50 0.24 0.18
T 1214 1180 1405 1590 1224 1285 405 369
PubMed KC 0.54 0.50 0.62 0.71 0.52 0.66 0.30 0.25
ro 1644 1562 1785 1993 1588 1874 1197 1090
Wiki-CS KC 0.42 0.44 0.40 049 043 0.45 0.19 0.14
T 1805 1993 1746 2130 1842 2048 970 904
Amazon-Computers KC 0.39 0.37 0.40 0.45 0.35 0.37 0.12 0.10
ro 1450 1428 1489 1632 1370 1415 874 820
Amazon-Photos KC 0.38 0.38 0.43 0.47 0.39 0.41 0.14 0.12
0 1872 1884 1990 2145 1895 1921 750 722
Coauthor-CS KC 0.29 0.28 0.32 034 031 0.32 0.12 0.10
o 1774 1725 1896 1903 1872 1890 1120 1039
ogbn-arxiv KC 0.12 0.13 0.12 0.14  0.12 0.13 0.05 0.04
o 1860 1936 1852 1996 1845 1920 1354 1328

C.5 ADDITIONAL STUDY IN THE KERNEL COMPLEXITY

We further assess the kernel complexity (KC) of the gram matrix computed from node representa-
tions generated by KCR-GCL, its ablation model LR-GCL, and several competing baseline methods
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across more benchmark datasets. This evaluation is conducted under symmetric label noise with a
corruption rate of 40%. As shown in Table 13, the node representations learned by KCR-GCL ex-
hibit consistently lower kernel complexity, suggesting that transductive classifiers trained on such
representations are likely to achieve smaller generalization errors on previously unseen nodes.

C.6 EIGEN-PROJECTION AND CONCENTRATION ENTROPY ANALYSIS ON ADDITIONAL
DATASETS

Figure 2 illustrates the eigen-projection visualizations and corresponding signal concentration ra-
tios for Coauthor-CS, Amazon-Computers, Amazon-Photos, and ogbn-arxiv. We also investigate
the presence of the Low Frequency Property (LFP) in heterophilic graph benchmarks, Texas and
Chameleon (Pei et al., 2020), through eigen-projection plots and signal concentration ratio analysis,
as illustrated in Figure 3. The findings reveal that the LFP persists in heterophilic settings, similar
to homophilic graphs. The analysis is performed under asymmetric label noise with a corruption
rate of 60%. When setting the rank parameter to 0.2 min { N, d}, the corresponding concentration
entropy scores are observed to be 0.762 for Chameleon and 0.725 for Texas.
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Figure 2: Eigen-projection (first row) and energy concentration (second row) on Coauthor-CS,
Amazon-Computers, Amazon-Photos, and ogbn-arxiv. By the rank of 0.2 min { N, d}, the concen-
tration entropy on Coauthor-CS, Amazon-Computers, Amazon-Photos, and ogbn-arxiv are 0.779,
0.809, 0.752, and 0.787.

Study of the Low Frequency Property (LFP) for Attribute Noise. We study how the information
from the ground-truth labels is distributed across different eigenvectors of the feature gram matrix
Ky when the feature F is learned from the graph with attribute noise. It is noted that the observed
label Y € RV X is the clean ground-truth label without any noise in this setting. Following Figure 1
in Section 4.1, we compute the eigen-projection score of the label Y on the eigenvectors of the gram
matrix Ky and the corresponding signal concentration ratios. Figure 4 illustrates that the ground-
truth label signals are primarily concentrated on the leading eigenvectors of Ky, even when the
feature F' is learned from the graph with attribute noise. The above observation motivates learning
low-rank features for node classification with attribute noise.

C.7 TRAINING TIME COMPARISON

In this section, we report a comparative analysis of the training time for KCR-GCL and other base-
line methods across all benchmark datasets. The total training time for LR-GCL encompasses three
components: the time required for robust graph contrastive learning, the computation time for the
singular value decomposition (SVD) of the kernel matrix, and the training time of the transductive
classifier.

For the baseline GCL methods, the reported training time includes both the encoder training phase
and the downstream classifier training. All experiments are conducted using a single 80 GB NVIDIA
A100 GPU. The detailed results are provided in Table 14. As shown, the overall training time of
KCR-GCL is comparable to that of state-of-the-art GCL methods such as SFA and MERIT.
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Figure 3: Eigen-projection (first row) and signal concentration ratio (second row) on Chameleon
and Texas. The study in this figure is performed for asymmetric label noise with a noise level of
60%. By the rank of 0.2 min { N, d}, the concentration entropy on Chameleon and Texas are 0.762
and 0.725.
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Figure 4: Eigen-projection (first row) and signal concentration ratio (second row) on Cora, Citeseer,
and Pubmed, as the illustration of the Low Frequency Property (LFP). The study in this figure is
performed on graphs consisting of attribute noise with a noise level of 60%. By the rank r =
0.2 min {N, d}, the signal concentration ratio of Y for Cora, Citeseer, and Pubmed are 0.815, 0.785,
and 0.689 respectively.

D ALGORITHMS

Algorithm 1 presents the training procedure for the Prototypical Graph Contrastive Learning (GCL)
encoder. At each iteration, the model computes node representations via the current GCN encoder,
clusters them into K semantic prototypes, and generates augmented graph views. The model pa-
rameters 6 are then updated by minimizing the sum of the node-level and prototype-level contrastive
losses. This iterative process encourages the encoder to learn robust and semantically meaningful
node embeddings through prototype-guided alignment.

Algorithm 2 details the full training procedure for KCR-GCL. Starting from the GCL encoder pre-
trained by GCL, the algorithm iteratively updates the encoder parameters 0, the classifier weights
W, and the KCR self-attention weights c. At each training step, the encoder is first updated by
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Table 14: Training time (seconds) comparisons for node classification.

Methods Cora  Citeseer PubMed Coauthor CS  Wiki-CS ~ Amazon Computer ~Amazon Photo  ogbn-arxiv
GCN 11.5 13.7 38.6 432 22.3 30.2 19.0 215.1
S?GC 20.7 22.5 472 57.2 27.6 38.5 222 243.7
GCE 32.6 36.9 67.3 80.8 37.6 50.1 322 346.1

NRGNN 72.4 80.5 142.7 189.4 74.3 97.2 62.4 650.2

RTGNN 143.3 169.5 299.5 353.5 153.7 201.5 124.2 1322.2

SUGRL 100.3 122.1 207.4 227.1 107.7 142.8 87.7 946.8

MERIT 167.2 179.2 336.7 375.3 172.3 226.5 140.6 1495.1

ARIEL 156.9 164.3 284.3 332.6 145.1 190.4 118.3 1261.4
SFA 237.5 269.4 457.1 492.3 233.5 304.5 187.2 2013.1
Sel-Cl 177.3 189.9 313.5 352.5 161.7 211.1 130.9 1401.1
Jo-SRC 148.2 157.1 281.0 306.1 144.5 188.0 118.5 1256.0
GRAND+ | 574 68.4 101.7 124.2 54.8 73.8 44.5 479.2
LR-GCL 159.9 174.5 350.7 380.9 180.3 235.7 145.5 1552.7
KCR-GCL | 166.2 185.4 372.7 399.5 195.4 253.6 159.2 1674.8

optimizing the contrastive loss. Then, based on the updated encoder, node representations are re-
computed and used to optimize the KCR-GCL objective L(W, 0, ), which includes both classifi-
cation loss and low-rank regularization. This two-stage update ensures that the final representations
achieve both semantic alignment and low kernel complexity.

Algorithm 1 Training of the Prototypical Graph Contrastive Learning (PGCL)

1: Input: Attribute matrix X, adjacency matrix A, training epochs tm,x, learning rate n
2: Qutput: The GCL encoder gg

3: Randomly initialize model parameters 6(°)
4: for t = 110ty do
Compute node representations H = gg:—1) (X, A)
Cluster {H;}¥ , into K clusters {S; }2< | using K-means

for k =1to K do

Compute prototype ¢, = ‘S—l“ ZHG Sy H;

9:  end for
10:  Generate augmented views G = (X!, Al) and G? = (X2 A?)
11:  Compute H! = gg—1) (X!, Al), H? = gg—1) (X2, A?)
12:  Perform gradient descent on 8 by 8() <— (=1 — Vg Lic (¢1))
13: end for
14: Return the GCL encoder gg(tmw)

Algorithm 2 Training Algorithm for the KCR-GCL Encoder

1: Input: Attribute matrix X, adjacency matrix A, training epochs ty.x, parameters of the pre-
trained GCL encoder 8(?), learning rate 7

2: Qutput: The GCL encoder gg, the weights of the classifier W, and the weights of the KCR
self-attention o

3: Randomly initialize W(®) and a(®)

4: for t = 1to tyx do

5:  Compute node representations H = gg.—1) (X, A)

6.

7

8

Cluster {H;}Y , into K clusters {Sx }_ | using K-means
for k =1to K do
Compute prototype ¢, = ‘Silkl > H,es, Hi
9:  end for
10:  Generate augmented views G! = (X!, A!) and G? = (X?, A?)
11:  Compute H! = gge—1) (X1, AL), H? = gge—1) (X2, A2?)
12:  Perform gradient descent on 8 and e by 8) « 8~ — ¥V LxcrgeL (04D, alt=1) and
a® «— a=Y — Vo LycpoeL (00D, alt=D).
13: end for
14: Compute node representations F = BH = Bgy) (X, A).
15: Return the KCR-GCL encoder, and the node representations F'.
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