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Abstract

One of the fundamental challenges found throughout the data sciences is to ex-
plain why things happen in specific ways, or through which mechanisms a certain
variable X exerts influences over another variable Y . In statistics and machine
learning, significant efforts have been put into developing machinery to estimate
correlations across variables efficiently. In causal inference, a large body of lit-
erature is concerned with the decomposition of causal effects under the rubric of
mediation analysis. However, many variations are spurious in nature, including
different phenomena throughout the applied sciences. Despite the statistical power
to estimate correlations and the identification power to decompose causal effects,
there is still little understanding of the properties of spurious associations and how
they can be decomposed in terms of the underlying causal mechanisms. In this
manuscript, we develop formal tools for decomposing spurious variations in both
Markovian and Semi-Markovian models. We prove the first results that allow a
non-parametric decomposition of spurious effects and provide sufficient conditions
for the identification of such decompositions. The described approach has several
applications, ranging from explainable and fair AI to questions in epidemiology
and medicine, and we empirically demonstrate its use.

1 Introduction

Understanding the relationships of cause and effect is one of the core tenets of scientific inquiry and
the human ability to explain why events occurred in the way they did. Hypotheses on possible causal
relations in the sciences are often generated based on observing correlations in the world, after which
a rigorous process using either observational or experimental data is employed to ascertain whether
the observed relationships are indeed causal. One common way of articulating questions of causation
is through the average treatment effect (ATE), also known as the total effect (TE), given by

E[y | do(x1)]−E[y | do(x0)], (1)

where do(·) symbolizes the do-operator [9], and x0, x1 are two distinct values attained by the variable
X . Instead of just quantifying the causal effect, researchers are more broadly interested in determining
which causal mechanisms transmit the change from X to Y . Such questions have received much
attention and have been investigated under the rubric of causal mediation analysis [3, 12, 10, 14].

Often, however, the causal relationship may be entirely absent or account only for a part of the
initially observed correlation. In these cases, the spurious (or confounded) variations between X
and Y play a central role in explaining the phenomenon at hand. Interestingly, though, tools for
decomposing spurious variations are almost entirely missing from the literature in causal inference 1.

1The only previous work which considers decompositions of spurious effects is [16]. However, this work
considers the specific case of the covariance operator, and no claims are made about the general setting.
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Phenomena in which spurious variations are of central importance are abundant throughout the
sciences. For instance, in medicine, the phenomenon called the obesity paradox signifies the counter-
intuitive association of increased body fat with better survival chances in the intensive care unit
(ICU) [6]. While the full explanation is still unclear, evidence in the literature suggests that the
relationship is not causal [5], i.e., it is explained by spurious variations. Spurious variations also play a
central role in many epidemiological investigations [13]. In occupational epidemiology, for example,
the relationship of exposure to hazardous materials with cancer is confounded by other hazardous
working conditions and lifestyle characteristics [4], and such spurious variations themselves may be
the target of scientific inquiry. Quantities that measure such spurious variations (or a subset thereof)
are called spurious effects in this paper.

Spurious variations are key in applications of fair and explainable AI as well. For instance, consider
the widely recognized phenomenon in the literature known as redlining [15, 7], in which the location
where loan applicants live may correlate with their race. Applications might be rejected based on
the zip code, disproportionately affecting certain minority groups. Furthermore, in the context of
criminal justice [8], the association of race with increased probability of being classified as high-risk
for recidivism may in part be explained by the spurious association of race with other demographic
characteristics (we take a closer look at this issue in Sec. 5). Understanding which confounders affect
the relationship, and how strongly, is an important step of explaining the phenomenon, and also
determining whether the underlying classifier is deemed as unfair and discriminatory.

x Y −
P (y | x) P (y | do(x))

x Y

Figure 1: Exp-SE representation.

These examples suggest that a principled approach for
decomposing spurious variations may be a useful addition
to the general toolkit of causal inference, and may find its
applications in a wide range of settings from medicine and
public health all the way to fair and explainable AI. For
concreteness, in this paper we will consider the quantity

P (y | x)− P (y | do(x)),

which we will call the experimental spurious effect (Exp-SE, for short). This quantity, shown
graphically in Fig. 1, captures the difference in variations when observing X = x vs. intervening that
X = x, which can be seen as the spurious counterpart of the total effect. Interestingly, the Exp-SE
quantity is sometimes evoked in the causal inference literature, i.e.,

P (y | x)− P (y | do(x)) = 0 (2)

is known as the zero-bias condition [2, 9, Ch. 6]. This condition allows one to test for the existence
of confounding between the variables X and Y . A crucial observation is that, in many cases, the
quantity itself may be of interest (instead of only its null), as it underpins the spurious variations.

Against this background, we note that tools that allow for decomposing the Exp-SE quantity currently
do not exist in the literature. Our goal in this manuscript is to fill in this gap, and provide a formalism
that allows for non-parametric decompositions of spurious variations. Specifically, our contributions
are the following:

(i) We introduce the notion of a partially abducted submodel (Def. 1), which underpins the
inference procedure called Partial Abduction and Prediction (Alg. 2) (akin to Balke &
Pearl 3-step procedure [9, Ch. 7]). Building on this new primitive, we prove the first
non-parametric decomposition result for spurious effects in Markovian models (Thm. 1),

(ii) Building on the insights coming from the new procedure, we prove the decomposition result
for settings when unobserved confounding is present (Semi-Markovian models) (Thm. 3).

(iii) We develop sufficient conditions for identification of spurious decompositions (Thm 2, 4).

2 Preliminaries

We use the language of structural causal models (SCMs) as our basic semantical framework [9]. A
structural causal model (SCM) is a tupleM := ⟨V,U,F , P (u)⟩ , where V , U are sets of endogenous
(observables) and exogenous (latent) variables respectively, F is a set of functions fVi , one for each
Vi ∈ V , where Vi ← fVi

(pa(Vi), UVi
) for some pa(Vi) ⊆ V and UVi

⊆ U . P (u) is a strictly
positive probability measure over U . Each SCMM is associated to a causal diagram G [9] over
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(a) Causal diagram correspond-
ing to the SCM in Ex. 1.
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(b) Extended representation of Ex. 1,
latent variables in red.
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(c) Diagram of Ex. 1 under
do(X = x) intervention.

Figure 2: Graphical representations of the SCM in Ex. 1.

the node set V where Vi → Vj if Vi is an argument of fVj
, and Vi L9999K Vj if the corresponding

UVi
, UVj

are not independent [2]. A model with no bidirected edges is called Markovian, while a
model with bidirected edges is called Semi-Markovian. An instantiation of the exogenous variables
U = u is called a unit. By Yx(u) we denote the potential response of Y when setting X = x for the
unit u, which is the solution for Y (u) to the set of equations obtained by evaluating the unit u in the
submodelMx, in which all equations in F associated with X are replaced by X = x. In a slight
abuse of notation, we also replace Y = y with just y whenever the former is clear from the context.
We next introduce an important inferential procedure for solving different tasks in causal inference.

2.1 Abduction, Action and Prediction

The steps of the abduction-action-prediction method can be summarized as follows:
Algorithm 1 (Abduction, Action and Prediction [9]). Given an SCM ⟨F , P (u)⟩, the conditional
probability P (YC | E = e) of a counterfactual sentence “if it were C then Y ", upon observing the
evidence E = e, can be evaluated using the following three steps:

(i) Abduction – update P (u) by the evidence e to obtain P (u | e),

(ii) Action – modify F by the action do(C), where C is an antecedent of Y , to obtain FC ,

(iii) Prediction – use the model ⟨FC , P (u | e)⟩ to compute the probability of YC .

In the first step, the probabilities of the exogenous variables U are updated according to the observed
evidence E = e. Next, the modelM is modified to a submodelMC . The action step allows one to
consider queries related to interventions or imaginative, counterfactual operations. In the final step,
the updated model ⟨FC , P (u | e)⟩ is used to compute the conditional probability P (yC | e). There
are two important special cases of the procedure. Whenever the action step is empty, the procedure
handles queries in the first, associational layer of the Pearl’s Causal Hierarchy (PCH, [2]). Whenever
the abduction step is empty, but the action step is not, the procedure handles interventional queries
in the second layer of the PCH. The combination of the two steps, more generally, allows one to
consider queries in all layers of the PCH, including the third, counterfactual layer. In the following
example, we look at the usage of the procedure on some queries.
Example 1 (Abduction, Action, Prediction). Consider the following SCM:

F :


X ←fX(UX , UXZ)

Z ←fZ(UZ , UXZ)

Y ←fY (X,Z,UY ),

(3)
(4)
(5)

with P (UX , UXZ , UZ , UY ) the distribution over the exogenous variables. The causal diagram of the
model is shown in Fig. 2a, with an explicit representation of the exogenous variables in Fig. 2b.

We are first interested in the query P (y | x) in the given model. Based on the abduction-prediction
procedure, we can simply compute that:

P (y | x) =
∑
u

1(Y (u) = y)P (u | x) =
∑
u

1(Y (u) = y)P (uz, uy)P (ux, uxz | x). (6)

where the first step follows from the definition of the observational distribution, and the second step
follows from noting the independence UZ , UY⊥⊥UX , UXZ , X . In the abduction step, we can compute
the probabilities P (ux, uxz | x). In the prediction step, query P (y | x) is computed based on Eq. 6.
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Based on the procedure, we can also compute the query P (yx) (see Fig. 2c):

P (yx) =
∑
u

1(Yx(u) = y)P (u) =
∑
u

1(Y (x, uxz, uz, uy) = y)P (u). (7)

where the first step follows from the definition of an interventional distribution, and the second step
follows from noting that Yx does not depend on ux. In this case, the abduction step is void, since we
are not considering any specific evidence E = e. The value of Y (x, uxz, uz, uy) can be computed
from the submodelMx. Finally, using Eq. 7 we can perform the prediction step. We remark that

1(Y (x, uxz, uz, uy) = y) =
∑
ux

1(Y (ux, uxz, uz, uy) = y)P (ux | x, uxz, uz, uy), (8)

by the law of total probability and noting that X is a deterministic function of ux, uxz . Thus, P (yx)
also admits an alternative representation

P (yx) =
∑
u

1(Y (ux, uxz, uz, uy) = y)P (ux | x, uxz, uz, uy)P (uxz, uz, uy) (9)

=
∑
u

1(Y (u) = y)P (ux | x, uxz)P (uxz, uz, uy), (10)

where Eq. 10 follows from using the independencies among U and X in the graph in Fig. 2b. We
revisit the representation in Eq. 10 in Ex. 2.

3 Foundations of Decomposing Spurious Variations

After getting familiar with the abduction-action-prediction procedure, our next task is to introduce
a new procedure that allows us to decompose spurious effects. First, we define the concept of a
partially abducted submodel:
Definition 1 (Partially Abducted Submodel). Let U1, U2 ⊆ U be a partition of the exogenous
variables. Let the partially abducted (PA, for short) submodel with respect to the exogenous variables
U1 and evidence E = e be defined as:

MU1,E=e := ⟨F , P (u1)P (u2 | u1, E)⟩. (11)

In words, in the PA submodel, the typically obtained posterior distribution P (u | e) is replaced by
the distribution P (u2 | u1, e). Effectively, the exogenous variables U1 are not updated according
to evidence. The main motivation for introducing the PA model is that spurious variations arise
whenever we are comparing units of the population that are different, a realization dating back to
Pearson in the 19th century [11]. To give a formal discussion on what became known as Pearson’s
shock, consider two sets of differing evidence E = e and E = e′. After performing the abduction
step, the variations between posterior distributions P (u | e) and P (u | e′) will be explained by all
the exogenous variables that precede the evidence E. In a PA submodel, however, the posterior
distribution P (u1)P (u2 | u1, e) will differ from P (u1)P (u2 | u1, e

′) only in variables that are in
U2, while the variables in U1 will induce no spurious variations. Note that if U1 = U , then the PA
submodel will introduce no spurious variations, a point to which we return in the sequel.

We now demonstrate how the definition of a PA submodel can be used to obtain partially abducted
conditional probabilities:
Proposition 1 (PA Conditional Probabilities). Let P (Y = y | E = eU1) denote the conditional
probability of the event Y = y conditional on evidence E = e, defined as the probability of Y = y
in the PA submodelMU1,E=e (i.e., the exogenous variables U1 are not updated according to the
evidence). Then, we have that:

P (Y = y | E = eU1) =
∑
u1

P (U1 = u1)P (Y = y | E = e, U1 = u1). (12)

3.1 Partial Abduction and Prediction

Based on the notion of a PA submodel, we can introduce the partial-abduction and prediction
procedure:
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Figure 3: Graphical representations of the SCM in Ex. 1.

Algorithm 2 (Partial Abduction and Prediction). Given an SCM ⟨F , P (u)⟩, the conditional prob-
ability P (Y = y | E = eU1) of an event Y = y upon observing the evidence e, in a world where
variables U1 are unresponsive to evidence, can be evaluated using the following two steps:

(i) Partial Abduction – update P (u) by the evidence e to obtain P (u1)P (u2 | u1, e), where
(u1, u2) is a partition of the exogenous variables u,

(ii) Prediction – use the model ⟨F , P (u1)P (u2 | u1, e)⟩ to compute the probability of Y = y.

In the first step of the algorithm, we only perform partial abduction. The exogenous variables U2

are updated according to the available evidence E = e, while the variables U1 retain their original
distribution P (u1) and remain unresponsive to evidence. This procedure allows us to consider queries
in which only a subset of the exogenous variables respond to the available evidence. We next explain
what kind of queries fall within this scope, beginning with an example:

Example 2 (Partial Abduction and Prediction). Consider the model in Eq. 3-5. We are interested in
computing the query:

P (y | xUxz,Uz ) =
∑
u

1(Y (u) = y)P (uxz, uz)P (ux, uy | uxz, ux, x) (13)

=
∑
u

1(Y (u) = y)P (uxz, uz)P (uy)P (ux | uxz, ux, x) (14)

=
∑
u

1(Y (u) = y)P (uxz, uz, uy)P (ux | uxz, ux, x), (15)

where the first step follows from Prop. 1, and the remaining steps from conditional independencies
between the U variables and X . Crucially, the query yields the same expression as in Eq. 10 that we
obtained for P (yx) in Ex. 1. Therefore, the conditional probability P (y | xUxz,Uz ) in a world where
UXZ , UZ are unresponsive to evidence is equal to the interventional probability P (yx).

As the example illustrates, we have managed to find another procedure that mimics the behavior of the
interventional (do(X = x)) operator in the given example. Interestingly, however, in this procedure,
we have not made use of the submodelMx that was used in the abduction-action-prediction procedure.
We next introduce an additional example that shows how the new procedure allows one to decompose
spurious variations in causal models:

Example 3 (Spurious Decomposition). Consider an SCM compatible with the graphical repre-
sentation in Fig. 3b (with exogenous variables U shown explicitly in red), and the corresponding
Semi-Markovian causal diagram in Fig. 3a. We note that, based on the partial abduction-prediction
procedure, the following two equalities hold:

P (y | x) = P (y | x∅) (16)

P (yx) = P (y | xUxz1
,Uxz2 ), (17)

which shows that

Exp-SEx(y) = P (y | x∅)− P (y | xUxz1
,Uxz2 ). (18)

The experimental spurious effect can be written as a difference of conditional probabilities y | x
in a world where all variables U are responsive to evidence vs. a world in which UXZ1

, UXZ2
are
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Figure 4: Graphical representation of how the Exp-SE effect is decomposed in Ex. 3.

Procedure SCM Queries

Abduction-Prediction ⟨F , P (u | E)⟩ Layer 1

Action-Prediction ⟨Fx, P (u)⟩ Layer 2

Abduction-Action-Prediction ⟨Fx, P (u | E)⟩ Layers 1, 2, 3

Partial Abduction-Prediction ⟨F , P (u1)P (u2 | E)⟩ Layers 1, 2, 3

Table 1: Summary of the different procedures and the corresponding probabilistic causal models.

unresponsive to evidence. Furthermore, we can also consider a refinement that decomposes the effect

Exp-SEx(y) = P (y | x∅)− P (y | xUxz1 )︸ ︷︷ ︸
variations of Uxz1

+P (y | xUxz1 )− P (y | xUxz1
,Uxz2 )︸ ︷︷ ︸

variations of Uxz2

, (19)

allowing for an additive, non-parametric decomposition of the experimental spurious effect.

The first term in Eq. 19, shown in Fig. 8a, encompasses spurious variations explained by the variable
UXZ1 . The second term, in Fig. 4b, encompasses spurious variations explained by UXZ2 .

For an overview, in Tab. 1 we summarize the different inferential procedures discussed so far,
indicating the structural causal models associated with them.

4 Non-parametric Spurious Decompositions

We now move on to deriving general decomposition results for the spurious effects. Before doing so,
we first derive a new decomposition result for the TV measure, not yet appearing in the literature
(due to space constraints, all proofs are given in Appendix A):

Proposition 2. Define the total variation (TV) measure as TVx0,x1(y) = P (y | x1) − P (y | x0),
and the total effect TE as TEx0,x1

(y) = P (yx1
) − P (yx0

). The total variation measure can be
decomposed as:

TVx0,x1(y) = TEx0,x1(y) + (Exp-SEx1
(y)− Exp-SEx0

(y)). (20)

The above result clearly separates out the causal variations (measured by the TE) and the spurious
variations (measured by Exp-SE terms) within the TV measure. The seminal result from [10] can be
used to further decompose the TE measure. In the sequel, we show how the Exp-SE terms can be
further decomposed, thereby reaching a full non-parametric decomposition of the TV measure.

4.1 Spurious Decompositions for the Markovian case

When using the definition of a PA submodel, the common variations between X,Y can be attributed
to (or explained by) the unobserved confounders U1, . . . , Uk. In order to do so, we first define the
notion of an experimental spurious effect for a set of latent variables:

Definition 2 (Spurious effects for Markovian models). LetM be a Markovian model. Let Z1, . . . , Zk

be the confounders between variables X and Y sorted in any valid topological order, and denote
the corresponding exogenous variables as U1, . . . , Uk, respectively. Let Z[i] = {Z1, . . . , Zi} and
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Z−[i] = {Zi+1, . . . , Zk}. U[i] and U−[i] are defined analogously. Define the experimental spurious
effect associated with variable Ui+1 as

Exp-SE
U[i],U[i+1]
x (y) = P (y | xU[i])− P (y | xU[i+1]). (21)

The intuition behind the quantity Exp-SE
U[i],U[i+1]
x (y) can be explained as follows. The quantity

P (y | xU[i]) captures all the variations in Y induced by observing that X = x apart from those
explained by the latent variables U1, . . . , Ui, which are fixed a priori and not updated. Similarly, the
quantity P (y | xU[i+1]) captures the variations in Y induced by observing that X = x, apart from
those explained by U1, . . . , Ui, Ui+1. Therefore, taking the difference of the two quantities measures
the variation in Y induced by observing that X = x that is explained by the latent variable Ui+1.

Based on this definition, we can derive the first key non-parametric decomposition of the experimental
spurious effect that allows the attribution of the spurious variations to the latent variables Ui:
Theorem 1 (Latent spurious decomposition for Markovian models). The experimental spurious effect
Exp-SEx(y) can be decomposed into latent variable-specific contributions as follows:

Exp-SEx(y) =

k−1∑
i=0

Exp-SE
U[i],U[i+1]
x (y) =

k−1∑
i=0

P (y | xU[i])− P (y | xU[i+1]). (22)

An illustrative example of applying the theorem is shown in Appendix B.1. Thm. 1 allows one to
attribute spurious variations to latent variables influencing both X and Y . The key question is when
such an attribution, as shown in Eq. 22, can be computed from observational data in practice (known
as an identifiability problem [9]). In fact, when variables are added to the PA submodel in topological
order, the attribution of variations to the latents Ui is identifiable, as we prove next:
Theorem 2 (Spurious decomposition identification in topological ordering). The quantity P (y | xU[i])
can be computed from observational data using the expression

P (y | xU[i]) =
∑
z

P (y | z, x)P (z−[i] | z[i], x)P (z[i]), (23)

rendering each term of decomposition in Eq. 22 identifiable from the observational distribution P (v).

We discuss in Appendix B.2 why a decomposition that does not follow a topological order of the
variables Ui is not identifiable.

4.2 Spurious Decompositions in Semi-Markovian Models

In the Markovian case, considered until now, there was a one-to-one correspondence between the
observed confounders Zi and their latent variables Ui. This, however, is no longer the case in
Semi-Markovian models. In particular, it can happen that there exist exogenous variables Uj that
induce common variations between X,Y , but affect more than one confounder Zi. We are interested
in Uj ⊆ U that have causal (directed) paths to both X,Y , described by the following definition:
Definition 3 (Trek). LetM be an SCM corresponding to a Semi-Markovian model. Let G be the
causal diagram ofM. A trek τ in G (from X to Y ) is an ordered pair of causal paths (gl, gr) with a
common exogenous source Ui ∈ U . That is, gl is a causal path Ui → · · · → X and gr is a causal
path Ui → · · · → Y . The common source Ui is called the top of the trek (ToT for short), denoted
top(gl, gr). A trek is called spurious if gr is a causal path from Ui to Y that is not intercepted by X .

When decomposing spurious effects, we are in fact interested in all the exogenous variables Ui that
lie on top of a spurious trek between X and Y . It is precisely these exogenous variables that induce
common variations between X and Y . Using any subset of the variables that are top of spurious treks,
we define a set-specific notion of a spurious effect:
Definition 4 (Exogenous set-specific spurious effect). Let UsToT ⊆ U be the subset of exogenous
variables that lie on top of a spurious trek between X and Y . Suppose A,B ⊆ UsToT are two nested
subsets of UsToT , that is A ⊆ B. We then define the exogenous experimental spurious effect with
respect to sets A,B as

Exp-SEA,B
x (y) = P (y | xA)− P (y | xB). (24)
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Figure 5: Quantity Exp-SEA,B
x (y) as a graphical contrast. Dots · · · indicate arbitrary observed

confounders along the indicated pathway.

The above definition is analogous to Def. 2, but we are now fixing different subsets of the tops of
spurious treks. Def. 2 supports partial abduction of exogenous variables that are not on top of a
spurious trek, but we are seldom interested in these since they do not induce covariations of X,Y .
The quantity Exp-SEA,B

x (y) is presented as a graphical contrast in Fig. 5. In particular, the set of
tops of spurious treks UsToT is partitioned into three parts (UA, UB\A, UBC ). The causal diagram in
the figure is informal, and the dots (· · ·) represent arbitrary possible observed confounders that lie
along indicated pathways. On the l.h.s. of the figure, the set UA does not respond to the conditioning
X = x, whereas UB\A, UBC do. This is contrasted with the r.h.s., in which neither UA nor UB\A
respond to X = x, whereas UBC still does respond to the X = x conditioning. The described
contrast thus captures the spurious effect explained by the tops of spurious treks in UB\A.

Analogous to Thm. 1, we next state a variable-specific decomposition of the spurious effect, which is
now with respect to exogenous variables that are top of spurious treks:

Theorem 3 (Semi-Markovian spurious decomposition). Let UsToT = {U1, . . . , Um} ⊆ U be the
subset of exogenous variables that lie on top of a spurious trek between X and Y . Let U[i] denote the
variables U1, . . . , Ui (U[0] denotes the empty set ∅). The experimental spurious effect Exp-SEx(y)
can be decomposed into variable-specific contributions as follows:

Exp-SEx(y) =

m−1∑
i=0

Exp-SE
U[i],U[i+1]
x (y) =

k−1∑
i=0

P (y | xU[i])− P (y | xU[i+1]). (25)

An example demonstrating the Semi-Markovian decomposition is given in Appendix B.3. We next
discuss the question of identification. We begin by discussing how to annotate the exogenous variables
given a Semi-Markovian causal diagram:

Definition 5 (Top of trek from the causal diagram). LetM be a Semi-Markovian model and let G be
the associated causal diagram. A set of nodes fully connected with bidirected edges is called a clique.
A maximal clique Ci is such that there is no clique C ′

i such that Ci ⊊ C ′
i. The set of variables UsToT

can be constructed from the causal diagram in the following way:

(I) initialize UsToT = ∅,

(II) for each maximal clique Ci, consider the associated exogenous variable UCi
pointing to

each node in the clique; if there exists a spurious trek between X and Y with a top in UCi
,

add UCi
to UsToT .

After defining the explicit construction of the set UsToT , we define the notion of the anchor set:

Definition 6 (Anchor Set). Let U1, . . . Ul ⊆ U be a subset of the exogenous variables. We define the
anchor set AS(U1, . . . , Ul) of (U1, . . . , Ul) as the subset of observables V that are directly influenced
by any of the Uis,

AS(U1, . . . , Ul) =

l⋃
i=1

ch(Ui). (26)

Another important definition is that of anchor set exogenous ancestral closure:
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SCMM Causal Diagram G

Z1 ← B(0.5)

Z2 ← B(0.4 + 0.2Z1)

Z3 ← B(0.3 + 0.3Z1Z2)

X ← B(0.2 + λ1Z1 + λ2Z2 + λ3Z3)

Y ← B(0.1 + 0.2X + λ1Z1 + λ2Z2 + λ3Z3) X

Z1

Z2

Z3

Y

Table 2: SCM and causal diagram for the Synthetic A example.

Definition 7 (Anchor Set Exogenous Ancestral Closure). Let Us ⊆ U be a subset of the exogenous
variables. Let AS(Us) denote the anchor set of Us, and let anex(AS(Us)) denote all exogenous
variables that have a causal path to any variable in AS(Us). Us is said to satisfy anchor set
exogenous ancestral closure (ASEAC) if

Us = anex(AS(Us)). (27)

Based on the above, we provide a sufficient condition for identification in the Semi-Markovian case:
Theorem 4 (ID of variable spurious effects in Semi-Markovian models). Let Us ⊆ UsToT . The
quantity P (y | xUs) is identifiable from observational data P (V ) if the following hold:

(i) X /∈ AS(Us), Y /∈ AS(Us)

(ii) Us satisfies anchor set exogenous ancestral closure, Us = anex(AS(Us)).

Some instructive examples grounding Defs. 5-7 and Thm. 4 can be found in Appendix B.4. In
words, the conditional expectation of Y given X in the partially abducted submodel w.r.t. a set Us

is identifiable whenever (i) neither X nor Y are elements of the anchor set of Us and (ii) the set Us

satisfies the anchor set exogenous ancestral closure. Thm. 4 provides a sufficient, but not a necessary
condition for identification. An additional discussion of the conditions is given in Appendix C. We
hope to address in future work an algorithmic way for identifying spurious effects in full generality.

5 Experiments

We now apply our framework to a synthetic example (called Synthetic A) with a known ground
truth, summarized in Tab. 2 where the SCMM and the causal diagram G are given. The source
code for the experiment can be found in our repository. For this example, we set the parameters
λ1 = λ2 = λ3 = 0.2. We then vary each parameter λi ∈ [0, 0.2] (while keeping the other two
parameters fixed), which changes the value of the effect associated with latent variable Ui. The
effects associated with each Ui, i ∈ {1, 2, 3} are computed based on the decomposition in Thm. 1:

Exp-SEU1
x (y) := Exp-SE∅,U1

x (y) = P (y | x∅)− P (y | xU1) (28)

Exp-SEU2
x (y) := Exp-SEU1,{U1,U2}

x (y) = P (y | xU1)− P (y | xU1,U2) (29)

Exp-SEU3
x (y) := Exp-SE{U1,U2},{U1,U2,U3}

x (y) = P (y | xU1,U2)− P (y | xU1,U2,U3). (30)

The key task is to compute the ground truth values of P (y | xU[i]) for different values of i. According
to Def. 1, we want to obtain the conditional distribution of Y given X = x but subject to not updating
U[i] according to the evidence X = x. Based on the true SCM, this can be done efficiently using
rejection sampling as follows:

(1) Take N samples from the SCMM in Tab. 2,

(2) For all samples k ∈ {1, . . . , N} with u(k) such that

X(u(k)) ̸= x, (31)

re-sample the part of the unit u(k) that is not included in U[i] (e.g., if U[i] = {U1, U2}, latent
u
(k)
1 , u

(k)
2 are not re-sampled but u(k)

3 is) and replace u(k) with this new sample,
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Figure 6: Experimental results on the Synthetic A example. Lines indicate the estimated values,
dots the ground truth obtained from the SCM using rejection sampling, and the 95% confidence
intervals are indicated with color. As expected, increasing the λi coefficient increases the spurious
effect associated with the latent variable Ui.

(3) Evaluate the mechanisms F ofM for all units u(k),

(4) If there exists a sample k with X(u(k)) ̸= x go back to Step (2),

(5) Return the mean of the Y variables 1
N

∑N
k=1 Y

(k).

Notice that the described procedure gives us samples from the distribution P (y | xU[i]). The values of
U[i] are sampled only once and are not updated after the initial sampling. Other values in U , however,
are sampled anew until their values are such that they are compatible with the evidence X = x.
Therefore, the procedure guarantees that U[i] do not respond to the evidence, whereas the complement
of U[i] does, allowing us to compute P (y | xU[i]) and in turn the expressions in Eqs. 28-30. The
effects are also estimated from observational data based on the identification expressions in Thm. 2.
Fig. 6 demonstrates that the SCM-based ground truth matches the estimates based on Thm. 2.

6 Conclusions

In this paper, we introduced a general toolkit for decomposing spurious variations in causal models. In
particular, we introduced a new primitive called partially abducted submodel (Def. 1), together with
the procedure of partial abduction and prediction (Alg. 2). This procedure allows for new machinery
for decomposing spurious variations in Markovian (Thm. 1) and Semi-Markovian (Thm. 3) models.
Finally, we also developed sufficient conditions for identification of such spurious decompositions
(Thms. 2, 4), and demonstrated the approach empirically (Sec. 5). The main limitation of our approach
is the need for a fully-specified causal diagram, which may be challenging in practice. However, from
a fully specified graph and the data, our tools for decomposing spurious effects give a fine-grained
quantification of what the main confounders are. As is common in causal inference, the granularity
of the obtained knowledge needs to be matched with the strength of the causal assumptions (in this
case, specifying the causal diagram). Conversely, in the absence of such assumptions, fine-grained
quantitative knowledge about these effects cannot be obtained in general [2], and we hypothesize that
precise quantification of spurious effects is not attainable in the absence of a causal diagram. Finally,
we discuss another technical solution that may alleviate some of the difficulty of causal modeling.
Recently, cluster diagrams have been proposed [1], in which one can consider groups of confounders
(instead of considering each confounder separately), and thus the specification of causal assumptions
becomes less demanding (due to clustering, the number of nodes in the graph is smaller). However,
causal decompositions as described in this paper can still be applied to cluster diagrams. This offers
a way to choose a different level of granularity for settings where domain knowledge may not be
specific enough to elicit a full causal diagram.
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Supplementary Material for A Causal Framework for
Decomposing Spurious Variations

The source code for reproducing the experiments can be found in our code repository.

A Theorem and Proposition Proofs

A.1 Proof of Prop. 2

Proof. Note that TV and TE are defined as:
TVx0,x1

(y) = P (y | x1)− P (y | x0) (32)
TEx0,x1

(y) = P (yx1
)− P (yx0

). (33)
We can expand the TV measure in the following way:

TVx0,x1(y) = P (y | x1)− P (y | x0) (34)
= P (y | x1)− P (yx1

) + P (yx1
)− P (y | x0) (35)

= P (y | x1)− P (yx1
)︸ ︷︷ ︸

Exp-SEx1
(y)

+P (yx1
)− P (yx0

)︸ ︷︷ ︸
TEx0,x1 (y)

+P (yx0
)− P (y | x0)︸ ︷︷ ︸

−Exp-SEx0
(y)

(36)

= TEx0,x1(y) + Exp-SEx1
(y)− Exp-SEx0

(y), (37)
showing the required result.

A.2 Proof of Thm. 1

Proof. Note that
k−1∑
i=0

Exp-SE
U[i],U[i+1]
x (y) =

k−1∑
i=0

P (y | xU[i])− P (y | xU[i+1]) (38)

is a telescoping sum, and thus we have that
k−1∑
i=0

Exp-SE
U[i],U[i+1]
x (y) =

k−1∑
i=0

P (y | xU[i])− P (y | xU[i+1]) (39)

= P (y | x∅)− P (y | xU[k]) (40)
= P (y | x)− P (yx) (41)
= Exp-SEx(y), (42)

completing the proof of the theorem.

A.3 Proof of Thm. 2

Proof. Notice that fixing a specific value for the variables (U1, . . . , Uk) = (u1, . . . , uk) also gives a
unique value for the variables (Z1, . . . , Zk) = (z1, . . . , zk). Therefore, we can write

P (y | xU[i]) =
∑
u[i]

P (u[i])P (y | x, u[i]) (43)

=
∑
u[i]

P (u[i])P (y | x, u[i], z[i](u[i])) (44)

=
∑
z[i]

∑
u[i]

P (u[i])1(Z[i](u[i]) = z[i])P (y | x, z[i]) (45)

=
∑
z[i]

P (z[i])P (y | x, z[i]) (46)

=
∑
z

P (y | x, z)P (z−[i] | x, z[i])P (z[i]). (47)
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The above proof makes use of the fact that the exogenous variables Ui are considered in the topological
ordering in the decomposition in Eq. 22, since in this case a fixed value of u[i] implies a fixed value
of z[i]. However, when considering decompositions that do not follow a topological ordering, this is
not the case, and we lose the identifiability property of the corresponding effects, as shown in the
example in Appendix B.2.

A.4 Proof of Thm. 3

Proof. The proof is analogous to the proof of Thm. 1, the only difference being that there is no longer
a 1-to-1 of the latent variables Ui with the observed confounders Zi. Rather, each Ui may correspond
to one or more Zi variables. However, we still have that

k−1∑
i=0

Exp-SE
U[i],U[i+1]
x (y) =

k−1∑
i=0

P (y | xU[i])− P (y | xU[i+1]) (48)

is a telescoping sum, and thus we have that

k−1∑
i=0

Exp-SE
U[i],U[i+1]
x (y) =

k−1∑
i=0

P (y | xU[i])− P (y | xU[i+1]) (49)

= P (y | x∅)− P (y | xU[k]) (50)
= P (y | x)− P (yx) (51)
= Exp-SEx(y), (52)

completing the proof of the theorem.

A.5 Proof of Thm. 4

Proof. Let UPA be the set of exogenous variables not updated according to evidence, and suppose
that (i) X,Y /∈ AS(UPA); (ii) UPA = anex(AS(UPA)). Note that

P (y | xUPA)
(def)
=

∑
uPA

P (uPA)P (y | x, uPA) (53)

=
∑

uPA,zAS

P (uPA)P (y | x, uPA, zAS)P (zAS | x, uPA), (54)

where ZAS is the anchor set of UPA and the second line follows from the law of total probability.
Consider any exogenous ancestor of ZAS , denoted by Uz . By condition (ii) of ancestral closure, Uz

must be in UPA. Therefore, UPA contains all exogenous ancestors of ZAS . Consequently, a fixed
value of uPA also implies a value of ZAS , labeled zAS . This means that

P (zAS | x, uPA) = 1(ZAS(uPA) = zAS). (55)

Next, suppose there is an open path from UPA to Y when conditioning on X,ZAS , labeled UPA,i →
Zs
→←Zs′ → · · · → Y . By definition of the anchor set, ZAS must contain the first variable on

this path, Zs, and Zs is different from X,Y . Consider first the case with the arrow from Zs

outgoing, UPA,i → Zs → · · · → Y . When conditioning on ZAS , this path is closed since
Zs ∈ ZAS , yielding a contradiction. Consider then the second case with the arrow incoming into Zs,
UPA,i → Zs ← Zs′ → · · · → Y . Since Zs′ points to Zs, Zs′ differs from X,Y . Furthermore, by
anchor set exogenous ancestral closure, the exogenous variable of Zs′ , labeled Us′ , must also be in
UPA. Hence, ZAS contains Zs′ , and Zs′ cannot be a collider on this path, so conditioning on ZAS

blocks the path, again yielding a contradiction. We conclude that no open path between UPA and Y
exists when conditioning on ZAS , X . Therefore, it holds that

P (y | x, uPA, zAS) = P (y | x, zAS). (56)

Finally, by plugging in Eqs. 55-56 into Eq. 54 we obtain that

P (y | xUPA) =
∑

uPA,zAS

P (uPA)P (y | x, zAS)1(ZAS(uPA) = zAS) (57)
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U1 U2

Z1 Z2

X Y .

Figure 7: Markovian causal diagram used in Ex. 4 with explicitly drawn latent variables U1, U2.

=
∑
zAS

P (y | x, zAS)
∑
uPA

P (uPA)1(ZAS(uPA) = zAS)︸ ︷︷ ︸
P (zAS) by definition

(58)

=
∑
zAS

P (y | x, zAS)P (zAS), (59)

therefore witnessing identifiability of P (y | xUPA) and completing the proof.

B Examples

B.1 Markovian Decomposition Example

Example 4 (Latent variable attribution in a Markovian model). Consider the following SCMM∗:

M∗ :


Z1 ← B(0.5)

Z2 ← B(0.4 + 0.2Z1)

X ← B(0.3 + 0.2Z1 + 0.2Z2)

Y ← X + Z1 + Z2,

(60)
(61)
(62)
(63)

and the causal diagram in Fig. 7. We wish to decompose the quantity Exp-SEx(y) into the variations
attributed to the latent variables U1, U2. Following the decomposition from Thm. 1 we can write

Exp-SEx(y | x1) =E(y | x1)−E(y | xU1
1 )︸ ︷︷ ︸

U1 contribution

(64)

+E(y | xU1
1 )−E(y | xU1,U2

1 )︸ ︷︷ ︸
U2 contribution

.

We now need to compute the terms appearing in Eq. 64. In particular, we know that

E(y | xU1,U2

1 ) = E(y | do(x1)) (65)
= 1 +E(Z1 | do(x1)) +E(Z2 | do(x1)) (66)
= 1 +E(Z1) +E(Z2) = 1 + 0.5 + 0.5 = 2. (67)

Similarly, we can also compute

E(y | x1) = 1 + P (Z1 = 1 | x1) + P (Z2 = 1 | x1), (68)

where P (Z1 = 1 | x1) can be expanded as

P (Z1 = 1 | x1) =
P (Z1 = 1, X = 1)

P (X = 1)
(69)

=
P (Z1 = 1, X = 1, Z2 = 1) + P (Z1 = 1, X = 1, Z2 = 0)

P (X = 1)
(70)

=
0.5 ∗ 0.6 ∗ 0.7 + 0.5 ∗ 0.4 ∗ 0.5

0.5
= 0.62. (71)

The value of P (Z2 = 1 | x1) is computed analogously and also equals 0.62, implying that E(y |
x1) = 1 + 0.62 + 0.62 = 2.24. Finally, we want to compute E(y | xU1

1 ), which equals

E(y | xU1
1 ) = 1 + P (Z1 = 1 | xU1

1 ) + P (Z2 = 1 | xU1
1 ). (72)
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Z1 Z2

x Y −
P (y | x) PMZ1 (y | x)

Z1 Z2

x Y

(a) Exp-SE∅,U1
x (y).

Z1 Z2

x Y −
PMZ1 (y | x) PMZ1,Z2 (y | x)

Z1 Z2

x Y

(b) Exp-SEU1,{U1,U2}
x (y).

Figure 8: Graphical representation of Exp-SE effect decomposition in Ex. 4.

By definition, P (Z1 = 1 | xU1
1 ) = P (Z1 = 1) = 0.5. For P (Z2 = 1 | xU1

1 ) we write

P (Z2 = 1 | xU1
1 ) =

∑
z1

P (Z2 = 1 | x1, z1)P (z1) (73)

=
1

2

[P (Z2 = 1, X = 1, Z1 = 1)

P (X = 1, Z1 = 1)
+

P (Z2 = 1, X = 1, Z1 = 0)

P (X = 1, Z1 = 0)

]
(74)

=
1

2

[0.21
0.31

+
0.21

0.31

]
≈ 0.68, (75)

implying that E(y | xU1
1 ) = 2.18. Putting everything together, we found that

Exp-SEx(y | x1)︸ ︷︷ ︸
=0.24

= Exp-SE∅,U1
x (y | x1)︸ ︷︷ ︸

=0.06 from U1

+Exp-SEU1,{U1,U2}
x (y | x1)︸ ︷︷ ︸
=0.18 from U2

. (76)

The terms appearing on the r.h.s. of Eq. 76 are shown as graphical contrasts in Fig. 8. On the left side
of Fig. 8a, U1, U2 are responding to the conditioning X = x, compared against the right side where
only U2 is responding to the conditioning X = x. In the second term, in Fig. 8b, on the left only U2

responds to X = x, compared against the right side in which neither U1 nor U2 respond to X = x
conditioning.

B.2 Non-topological Counterexample

Example 5 (Non-identification of latent spurious decomposition). Consider two SCMsM1,M2.
Both SCMs have the same set of assignment equations F , given by

F :=



Z1 ← U1

Z2 ←


Z1 if U2 = 1

1− Z1 if U2 = 2

1 if U2 = 3

0 if U2 = 4

X ← (Z1 ∧ UX1) ∨ (Z2 ∧ UX2) ∨ UX

Y ← X + Z1 + Z2,

(77)

(78)

(79)
(80)

and the causal diagram given in Fig. 7. The two SCMs differ in the distribution over the latent
variables. In particular, forM1 we have

PM1(U) :


U1, UX1, UX2, UX ∼ Bernoulli(0.5)

U2 ∼ Multinom(4, 1, (0,
1

4
,
1

2
,
1

4
)),

(81)

(82)

and forM2

PM2(U) :


U1, UX1, UX2, UX ∼ Bernoulli(0.5)

U2 ∼ Multinom(4, 1, (
1

4
,
1

2
,
1

4
, 0)).

(83)

(84)

That is, the only difference between PM1(U) and PM2(U) is in how U2 attains its value. In fact,
one can check that the observational distributions PM1(V ) and PM2(V ) are the same. However,

15



Z1 Z2

X Y

Figure 9: Causal diagram appearing in Exs. 6-7.

when computing EM(y | xU2
0 ) we have that

E
M1(y | xU2

0 ) = 1 (85)

E
M2(y | xU2

0 ) = 0.93, (86)

showing that the quantity EM(y | xU2
0 ) is non-identifiable.

The example illustrates that even in the Markovian case, when the variables are not considered in
a topological order (in the example above, the variable U2 was considered without the variable U1

being added first), we might not be able to identify the decomposition of the spurious effects.

B.3 Semi-Markovian Decomposition Example

Example 6 (Semi-Markovian spurious decomposition). Consider the following SCMM:

F , P (U) :



Z1 ← U1 ∧ U1X

Z2 ← U2 ∨ U2X

X ← UX ∧ (U1X ∨ U2X)

Y ← X + Z1 + Z2

U1, U2, U1X , U2X , UX
i.i.d.∼ Bernoulli(0.5).

(87)
(88)
(89)
(90)

(91)

The causal diagram G associated withM is given in Fig. 9. The exogenous variables that lie on
top of a spurious trek are U1X , U2X . Therefore, following the decomposition from Thm. 3, we can
attribute spurious variations to these two variables:

Exp-SEx(y | x1) =E(y | x1)−E(y | xU1X
1 )︸ ︷︷ ︸

U1X contribution

(92)

+E(y | xU1X
1 )−E(y | xU1X ,U2X

1 )︸ ︷︷ ︸
U2X contribution

.

We now compute the terms appearing in Eq. 92. In particular, we know that

E(y | xU1X ,U2X

1 ) = E(y | do(x1)) = 1 +E(Z1 | do(x1)) +E(Z1 | do(x1)) (93)
= 1 +E(Z1) +E(Z2) = 1 + 0.25 + 0.75 = 2. (94)

Similarly, we can also compute

E(y | x1) = 1 + P (Z1 = 1 | x1) + P (Z2 = 1 | x1), (95)

Now, P (Z1 = 1 | x1) = P (Z1=1,x1)
P (x1)

, and we know that X = 1 if and only if UX = 1 and
U1X ∨ U2X = 1, which happen independently with probabilities 1

2 and 3
4 , respectively. Next,

Z1 = 1, X = 1 happens if and only if UX = 1, U1X = 1 and U1 = 1, which happens with
probability 1

8 . Therefore, we can compute

P (Z1 = 1 | x1) =
1
8

1
2 ∗

3
4

=
1

3
. (96)

Furthermore, we similarly compute that Z2 = 1, X = 1 happens if either UX = 1, U2X = 1 or
UX = 1, U2X = 0, U2 = 1, U1X = 1 which happens disjointly with probabilities 1

4 , 1
16 , respectively.

Therefore,

P (Z2 = 1 | x1) =
1
4 + 1

16
1
2 ∗

3
4

=
5

6
. (97)
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Putting everything together we obtain that

E(y | x1) = 1 +
1

3
+

5

6
=

13

6
. (98)

Finally, we want to compute E(y | xU1X
1 ), which equals

E(y | xU1X
1 ) = 1 + P (Z1 = 1 | xU1X

1 ) + P (Z2 = 1 | xU1X
1 ). (99)

Now, to evaluate these expressions, we distinguish two cases, namely (i) U1X = 1 and (ii) U1X = 0.
In the first case, P (Z1 | x1) =

1
2 and P (Z2 = 1 | x1) =

3
4 . In the second case, P (Z1 | x1) = 0 and

P (Z2 = 1 | x1) = 1. Therefore, we can compute

P (Z1 = 1 | xU1X
1 ) =

1

2
PU1X=1(Z1 | x1) +

1

2
PU1X=0(Z1 | x1) =

1

4
(100)

P (Z2 = 1 | xU1X
1 ) =

1

2
PU1X=1(Z2 | x1) +

1

2
PU1X=0(Z2 | x1) =

7

8
, (101)

which implies that E(y | xU1X
1 ) = 17

8 . Finally, this implies that

Exp-SEx(y | x1)︸ ︷︷ ︸
= 1

6

= Exp-SE∅,U1X
x (y | x1)︸ ︷︷ ︸

= 1
24 from U1X

+Exp-SEU1X ,{U1X ,U2X}
x (y | x1)︸ ︷︷ ︸

= 1
8 from U2X

. (102)

The terms appearing on the r.h.s. of Eq. 102 are shown as graphical contrasts in Fig. 4. On the left
side of Fig. 4a, U1X , U2X are responding to the conditioning X = x, compared against the right side
where only U2X is responding to the conditioning X = x. In the second term, in Fig. 4b, on the
left only U2X responds to X = x, compared against the right side in which neither U1X nor U2X

respond to X = x conditioning.

B.4 Semi Markovian Identification Examples

Example 7 (Spurious Treks). Consider the causal diagram in Fig. 7. In the diagram, latent variables
U1, U2 both lie on top of a spurious trek because:

X ← Z1 ← U1 → Z1 → Y is a spurious trek with top U1

X ← Z2 ← U2 → Z2 → Y is a spurious trek with top U2.

There are also other spurious treks with U1 on top, such as X ← Z1 ← U1 → Z1 → Z2 → Y .
Example 7 (continued - UsToT construction). We continue with Ex. 6 and the causal graph in Fig. 9
and perform the steps as follows:

(i) initialize UsToT = ∅,

(ii) note that {X,Z1} create a maximal clique, since:

(a) they are connected with a bidirected edge and thus form a clique,
(b) {X,Z1, Z2} do not form a clique, due to the bidirected edge Z1 L9999K Z2 not being

present,
(c) {X,Z1, Y }, {X,Z1, Z2, Y } do not form a clique, since Y is not incident to any

bidirected edges,
(d) thus, the clique {X,Z1} is also maximal.

Let the variable U1X be associated with this clique, pointing to X,Z1, and note that U1X

lies on top of a spurious trek between X,Y ,

(iii) similarly, {X,Z2} also create a maximal clique, associated with the variable UX2, pointing
to X,Z2, that lies on top of a spurious trek between X,Y ,

(iv) the node Y also forms a maximal clique and is associated with the variable UY that does
not lie on top of a spurious trek (it does not have a path to X).

Therefore, we have constructed the set UsToT = {U1X , U2X}.
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Z1 Z2 Z3

X Y

(a) Causal diagram in Ex. 8.

Z1 Z2

X Y

(b) Causal diagram in Ex. 9.

Figure 10: Causal diagrams in Exs. 8-9.

Example 7 (continued - anchor set). For the set UsToT = {U1X , U2X} associated with the causal
diagram in Fig. 9, the anchor sets can be computed as follows:

AS(U1X) = {X,Z1}, (103)
AS(U2X) = {X,Z2}, (104)

AS(U1X , U2X) = {X,Z1, Z2}. (105)
Example 7 (continued - anchor set exogenous ancestral closure). Consider the causal diagram in
Fig. 9. With respect to the diagram, we have that

anex(AS(U1X)) = anex(X,Z1) = {U1X , U2X}, (106)
anex(AS(U2X)) = anex(X,Z2) = {U1X , U2X}, (107)

anex(AS({U1X , U2X})) = anex(X,Z1, Z2) = {U1X , U2X}. (108)
Therefore, {U1X , U2X} satisfies anchor set exogenous ancestral closure, whereas U1X and U2X do
not, since for instance U1X has X in its anchor set, but X has U2X as its ancestor.

We now consider an example of effect identification based on Thm. 4:
Example 8 (Thm. 4 Application). Consider the causal diagram in Fig. 10a. Consider the queryE(y |
xU12
1 ) associated with a partially abducted submodel in which the noise variable U12 determining

the values of Z1, Z2 is not updated according to evidence. Based on Thm. 4, we verify that

(i) X,Y are not in the anchor set AS(U12) = {Z1, Z2};

(ii) anex(AS(U12)) = anex(Z1, Z2) = U12 meaning that U12 satisfies anchor set exogenous
ancestral closure (ASEAC).

Therefore, the query E(y | xU12
1 ) is identifiable from observational data. To witness, we expand the

query as:

E(y | xU12
1 ) =

∑
u12

P (u12)E(y | x1, u12) (109)

=
∑

u12,z1,z2

P (u12)E(y | x1, u12, z1, z2)1(Z1(u12) = z1, Z2(u12) = z2) (110)

=
∑

u12,z1,z2

P (u12)E(y | x1, z1, z2)1(Z1(u12) = z1, Z2(u12) = z2) (111)

=
∑
z1,z2

E(y | x1, z1, z2)
∑
u12

P (u12)1(Z1(u12) = z1, Z2(u12) = z2) (112)

=
∑
z1,z2

E(y | x1, z1, z2)P (z1, z2) (113)

=
∑

z1,z2,z3

E(y | x1, z1, z2, z3)P (z1, z2)P (z3 | x1, z1, z2), (114)

providing an identification expression from observational data.

C Discussion of Thm. 4

Thm. 4 introduces a sufficient condition for the identification of quantities under partial abduction
(Def. 2). Here, we discuss why some of the conditions in the theorem are necessary, and provide an
example that further elucidates the theorem’s scope.
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Example 9 (Non-Identification in Semi-Markovian Models). Consider the causal diagram in Fig. 10b
and consider two SCMsM1,M2 constructed as follows. Both SCMs have the same set of assignment
equations F , given by

F :=



Z1 ←
{
1 if U1X > 4

0 if U1X ≤ 4

Z2 ← U2

X ←


1 if U1X ∈ {1, 5}
Z2 if U1X ∈ {2, 6}
1− Z2 if U1X ∈ {3, 7}
0 if U1X ∈ {4, 8}

Y ← Z1 ∨ Z2.

(115)

(116)

(117)

(118)
The two SCMs differ in the distribution over the latent variables. In particular, forM1 we have

PM1(U) :


U2 ∼ Bernoulli(0.6)

U1X ∼ Multinom(8, 1, (
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
)),

(119)

(120)

and forM2

PM2(U) :


U2 ∼ Bernoulli(0.6)

U1X ∼ Multinom(8, 1, (0,
1

4
,
1

4
, 0, 0,

1

4
,
1

4
, 0)),

(121)

(122)

That is, the only difference between PM1(U) and PM2(U) is in how U1X attains its value. Fur-
thermore, we can verify thatM1 andM2 generate the same observational distribution, given by
following distribution table

Z1 Z2 X P (Z1, Z2, X)

0 0 0 0.10

1 0 0 0.10

0 1 0 0.15

1 1 0 0.15

0 0 1 0.10

1 0 1 0.10

0 1 1 0.15

1 1 1 0.15

and Y given simply as a deterministic function of Z1, Z2. Now, suppose we are interested in
computing the conditional probability of Y given X = x1 in a partially abducted submodel where
U1X does not respond to evidence. The quantity E(y | xU1X

1 ) can be computed as

E(y | xU1X
1 ) =

8∑
u1x=1

P (u1x)E(y | x1, u1x) (123)

=

8∑
u1x=1

P (u1x)E(y | x1, u1x, z2)P (z2 | x1, u1x) (124)

=

8∑
u1x=1

P (u1x)P (z2 | x1, u1x)[Z1(u1x) ∨ z2], (125)

where P (Z2 = 1 | x1, u1x) = 0.6 for u1x ∈ {1, 4, 5, 8}, P (Z2 = 1 | x1, u1x) = 0 for u1x ∈ {3, 7},
and P (Z2 = 1 | x1, u1x) = 1 for u1x ∈ {4, 8}. Evaluating the expression in Eq. 125 for the two
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SCMs yields

E
M1(y | xU1X

1 ) =
31

40
(126)

E
M2(y | xU1X

1 ) =
3

4
, (127)

demonstrating that the quantity E(y | xU1X
1 ) is not identifiable for the diagram in Fig. 10b.

The above example provides some intuition about why the variable X cannot be in the anchor set of
the variables UPA that are not updated according to evidence. Very similarly, an analogous example
demonstrating that the variable Y cannot be in the anchor set of UPA can also be constructed.
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