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Abstract
We aim to provide a unified convergence analysis for permutation-based Stochas-
tic Gradient Descent (SGD), where data examples are permuted before each
epoch. By examining the relations among permutations, we classify existing
permutation-based SGD algorithms into three categories: Arbitrary Permutations,
Independent Permutations (including Random Reshuffling and FlipFlop [Rajput
et al., 2022]), Dependent Permutations (including GraBs [Lu et al., 2022a; Cooper
et al., 2023]). Existing unified analyses failed to encompass the Dependent Permu-
tations category due to the inter-epoch permutation dependency. In this work, we
propose a generalized assumption that explicitly characterizes the dependence of
permutations across epochs. Building upon this assumption, we develop a unified
framework for permutation-based SGD with arbitrary permutations of examples,
incorporating all the existing permutation-based SGD algorithms. Furthermore,
we adapt our framework for Federated Learning (FL), developing a unified frame-
work for regularized client participation FL with arbitrary permutations of clients.

1 Introduction
We study the finite-sum minimization problem

minx∈Rd

[
f(x) := 1

N

∑N−1
n=0 fn(x)

]
, (1)

where d denotes the dimension of the model parameter vector, N denotes the number of the local
objective functions {fn} and each fn : Rd → R is assumed to be differentiable.

1.1 Initial Motivation: Example Ordering in Permutation-based SGD
Permutation-based SGD. One popular way to solve problem (1) is Stochastic Gradient Descent
(SGD). It updates the parameter vector iteratively according to the rule

xn+1 = xn − γ∇fπ(n)(xn),

where γ denotes the step size and π(n) denotes the index of the local objective function at itera-
tion n. For classic SGD, π(n) is chosen uniformly with replacement from {0, 1, . . . , N − 1}; for
permutation-based SGD, π(n) is the (n + 1)-th element of a permutation π of {0, 1, . . . , N − 1}.
Due to its simple implementation and empirical superiority [Bottou, 2012], permutation-based SGD
has garnered more attention recently. The first topic of this paper is the convergence analysis of
permutation-based SGD (Algorithm 1).
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A measure of the quality of the permutation of examples. The convergence rate of permutation-
based SGD is determined by the permutations of examples. Thus, to study it, we need a measure of
the quality of the permutation of examples. Note that we say that a permutation is good if it leads
to a high convergence rate of permutation-based SGD, and vice versa. For a small finite step size γ,
the cumulative updates in any epoch q are

xq+1 − xq ≈ −γN∇f(xq) + γ2
N−1∑
n=0

∑
i<n

∇2fπ(n)(xq)∇f(xq)︸ ︷︷ ︸
optimization vector

+ γ2
N−1∑
n=0

∑
i<n

∇2fπ(n)(xq)
(
∇fπ(i)(xq)−∇f(xq)

)
︸ ︷︷ ︸

error vector

,

where this equation is from Smith et al. [2021, Equation (13)] (we replace = with ≈ as we omit
O(γ3N3)), and it can be proved by Taylor expansion. Here, we additionally assume that each fn
is twice differentiable. The optimization vector is beneficial; the error vector is detrimental and
depends on the order of examples. Thus, the goal is to suppress the error vector (for instance, we
use Lebesgue 2-norm for both vectors and matrices):

∥Error vector∥ ≤ γ2
N−1∑
n=0

∥∥∇2fπ(n)(xq)
∥∥ ∥∥∥∥∥∑

i<n

(
∇fπ(i)(xq)−∇f(xq)

)∥∥∥∥∥ ≤ γ2LNϕ̄q,
where the last inequality is due to L-smoothness (see Definition 3) and Definition 1 (here, p = 2).

Definition 1 (Order Error, Lu et al. [2022b,a]). The order error ϕ̄q in any epoch q is defined as

ϕ̄q := max
n∈[N ]

ϕnq :=

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥
p

 .

This implies the order error ϕ̄q can be used as a measure of the quality of the permutation of
examples: a smaller ϕ̄q means a faster convergence rate, and a better permutation, and vice versa.
Even though the order error is proposed in Lu et al. [2022b], where the authors justified its validity
on synthetic experiments empirically, the rationale behind it (that is, the above analysis) has not been
well understood until this work.

Existing permutation-based SGD algorithms. Based on the relations among permutations, we
classify the existing permutation-based SGD algorithms into the three categories.

• Arbitrary Permutations (AP): Permutations are generated without any specific structure, allow-
ing for completely arbitrary permutations for all epochs.

• Independent Permutations (IP): Permutations are independent across epochs.

– Random Reshuffling (RR): The permutation in each epoch is generated randomly.

– FlipFlop [Rajput et al., 2022]: See Appendix F.3 for details.

– Greedy Ordering [Lu et al., 2022b; Mohtashami et al., 2022]: The permutation in each
epoch is generated by a greedy algorithm.

• Dependent Permutations (DP): Permutations are dependent across epochs, with the permutation
in one epoch affected by the permutations in previous epochs (explicitly).

– One Permutation (OP): The initial (first-epoch) permutation is used repeatedly for all the
subsequent epochs. When the initial permutation is arbitrary, it is called Incremental
Gradient (IG); when the initial permutation is random, it is called Shuffle Once (SO).

– GraBs: It includes GraB [Lu et al., 2022a] and PairGraB [Lu et al., 2022a; Cooper et al.,
2023]. In particular, GraB has been proven to outperform RR, and even be a theoretically
optimal permutation-based SGD algorithm [Cha et al., 2023]. See Appendix C for details.
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For Greedy Ordering and OP, as done in prior works (see Lu et al. [2022b] for Greedy Ordering and
Mishchenko et al. [2020] for OP), we use the bound of AP as their bounds (The bound of AP applies
to all the other algorithms.) and will not discuss them in the remainder of this paper.

A more general assumption. For AP or IP, the relation among permutations is arbitrary or inde-
pendent, and thus we can bound the order error for any epoch and then apply this bound for all the
epochs. To deal with these categories, Lu et al. [2022b] proposed Assumption 1 (Lu et al. [2022b]
considered an interval of arbitrary length, not necessarily an epoch.).

Assumption 1 (Lu et al. [2022b,a]). There exist nonnegative constants B and D such that for all
xq (the outputs of Algorithm 1), (

ϕ̄q
)2 ≤ B ∥∇f(xq)∥2 +D.

By proving that Assumption 1 holds for AP and IP with specific values of B and D (under some
standard assumptions in SGD), prior works [Lu et al., 2022b; Mohtashami et al., 2022; Koloskova
et al., 2024] successfully incorporate them into one framework. However, none of the unified frame-
works of permutation-based SGD has successfully incorporated DP. The main reason for the failure
can be that, existing works implicitly deal with the order error ϕ̄q separately across epochs (as in
Assumption 1), while in DP (in particular, GraBs), the example orders across consecutive epochs
are dependent. This limitation sparked our initial motivation for this work—to develop a unified
convergence analysis framework of permutation-based SGD that includes DP.

To achieve this, we propose a more general assumption (Assumption 2) than Assumption 1.

Assumption 2. There exist nonnegative constants {Ai}qi=1, {Bi}qi=0 andD such that for all xq (the
outputs of Algorithm 1),(

ϕ̄q
)2 ≤ q∑

i=1

Ai

(
ϕ̄q−i

)2
+

q∑
i=0

Bi ∥∇f(xq−i)∥2 +D.

This assumption explicitly characterizes the dependence between permutations across different
epochs. In particular, when Ai = 0 and Bi = 0 for all i ∈ {1, 2, . . . q}, it reduces to Assumption 1.
Our analytical framework transforms the task of obtaining the algorithm’s bound into proving that
Assumption 2 holds. Especially for DP, the task is to identify the relation between order errors. For
instance, for GraBs, the main task is to establish the relation between ϕ̄q and ϕ̄q−1 for q ≥ 1.

1.2 New Challenges: Client Ordering in FL with Regularized Client Participation
FL with regularized client participation. Federated Learning (FL) [McMahan et al., 2017] is
one of the most popular distributed machine learning paradigms, which aims to learn from data dis-
tributed across multiple clients while ensuring data security and privacy. In cross-device FL [Kairouz
et al., 2021], only a small fraction of clients can participate in the training process simultaneously.
FL with regularized client participation (regularized-participation FL) is one realistic participation
pattern, where each client participates once before any client is reused, which can be caused by
diurnal variation [Eichner et al., 2019]. Wang and Ji [2022] and Cho et al. [2023] showed that the
regularized participation pattern is better than the vanilla participation pattern [Yang et al., 2021].
The second topic of this paper is the convergence analysis of FL with regularized participation (Al-
gorithm 2).

New challenges. Equation (1) is also the problem of FL if the local objective functions fn represent
the clients (In contrast, in SGD, the local objective functions represent the examples.). This correla-
tion raises one important question: Is it possible to apply the example ordering algorithms in SGD to
client ordering in FL? The answer is affirmative; in fact, prior works [Cho et al., 2023; Malinovsky
et al., 2023a] have taken a first step toward this. In this paper, we aim to advance this line of work
by developing a unified framework of regularized-participation FL with arbitrary permutations of
clients. Compared to SGD, the main challenges of FL lie in the following two aspects:

1. Partially parallel updates. In a round of federated training, the selected clients are in parallel.

2. Local updates. It performs multiple local updates on each local objective function.

(i) The first challenge causes that ϕ̄q (for SGD) cannot be applied in FL. To address it, we introduce
a new order error φ̄q for FL in Definition 2. (ii) The second challenge causes that we can only access
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the pseudo-gradients (that is, pn
q in Algorithm 2) of the local objective functions, instead of the true

gradients, which complicates our analysis largely.

Definition 2. The order error φ̄q in any epoch q in FL is defined as

φ̄q := max
n∈[N ]

φv(n)
q :=

∥∥∥∥∥∥
v(n)−1∑

i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥∥
p

 ,

where v(n) := ⌊nS ⌋ · S and S ≥ 2 denotes the number of selected clients in each round (see
Algorithm 2). The main difference compared to ϕ̄q is highlighted in red.

1.3 Main Contributions
The main contributions are as follows:

• Example ordering in SGD (Section 3). We propose a more general assumption (Assumption 2)
to bound the order error, which explicitly characterizes the dependence between permutations
across different epochs. Based on it, we develop a unified framework for permutation-based
SGD with arbitrary permutations of examples, which is the first unified framework that includes
DP. We prove that all the existing permutation-based SGD algorithms can be incorporated into
our framework.

• Client ordering in FL with regularized participation (Section 4). We develop a unified frame-
work for regularized-participation FL with arbitrary permutations of clients, which is the first
unified framework that focuses on client ordering. In particular, we propose FL-GraB to accel-
erate the training of FL.

2 Related Works
Detailed related works are deferred to Appendices A and C.

2.1 Permutation-based SGD

Table 1: Existing unified analyses of permutation-based SGD and their upper bounds (of conver-
gence rates). Numerical constants and polylogarithmic factors are hided. We translate all the bounds
with our notations, assumptions, and step size choice. We let α = 0 in Assumption 3 for comparison.

Alg. Lu et al. [2022b] Koloskova et al. [2024](1) This work

AP(2) AP LF0

Q +
(

LF0Nς
NQ

) 2
3 LF0

NQ +
(

LF0Nς
NQ

) 2
3 ∧

(
LF0Nς2

NQ

) 1
2 (3) LF0

Q +
(

LF0Nς
NQ

) 2
3

IP RR LF0

Q +
(

LF0

√
Nς

NQ

) 2
3

AP(4) LF0

Q +
(

LF0

√
Nς

NQ

) 2
3

FlipFlop – – LF0

Q +
(

LF0

√
Nς

NQ

) 2
3

DP GraBs – – L̃F0+(L2,∞F0ς)
2
3

Q +
(

L2,∞F0ς
NQ

) 2
3 (5)

1 It uses a stronger assumption than Lu et al. [2022b] and ours, equivalent to Assumption 3 with α = 0.
2 For a clearer comparison with other bounds, we keep “N” in both numerators and denominators in the bounds of AP.
3 Here, a ∧ b represents min{a, b}.
4 Koloskova et al. [2024] used the bound of AP as the bound of RR.
5 For GraBs (that is, GraB-proto, GraB, PairGraB), L̃ = L+ L2,∞ + L∞. See Definition 3 for L, L2,∞ and L∞.

Convergence analyses of permutation-based SGD. The most relevant works are the unified anal-
yses [Lu et al., 2022b; Koloskova et al., 2024], which are summarized in Table 1.

• AP. For AP, the best bound is from Koloskova et al. [2024]. (i) Their advantage lies in the first
term, which is not dominant when the number of epochs Q is large. (ii) They bound the order
error over a period of Θ( 1

γL ), rather than an epoch, which complicates the analysis of other
algorithms largely. For example, even for RR, their bound is worse than the other works.

• IP. (i) For RR, Lu et al. [2022b] and this work achieve the same convergence rate, which
matches the baseline [Mishchenko et al., 2020]. (ii) Besides, this work includes FlipFlop for
the first time, showing that FlipFlop can achieve the same rate as RR.
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• DP. For GraBs, this work includes GraBs for the first time. Besides, Our bounds (for GraBs)
match the original bounds of GraBs [Lu et al., 2022a; Cooper et al., 2023] under a weaker
assumption (Assumption 3).

2.2 FL with Regularized Client Participation
Convergence analyses of FL with regularized client participation. The convergence analy-
ses of regularized-participation FL have been studied in Wang and Ji [2022], Cho et al. [2023]
and Malinovsky et al. [2023a], where Wang and Ji [2022] and Cho et al. [2023] consid-
ered regularized-participation FL with AP (FL-AP) and Malinovsky et al. [2023a] considered
regularized-participation FL with RR (FL-RR). This work aims to develop a unified framework
that includes these cases. Since Cho et al. [2023] considered the µ-PL condition and Malinovsky
et al. [2023a] considered the µ-strongly convex objective functions, we next translate our bounds
(non-convex) with PL condition (see Appendix G.3). Table 2 shows that our bounds match the
existing bounds when the optimization term (the first term) is omitted (when Q is large).

Table 2: Existing upper bounds (of f(xQ) − f∗) for regularized-participation FL algorithms. Nu-
merical constants and polylogarithmic factors are hided. We set η = 1 (in Algorithm 2) and α = 0
(in Assumption 3) for comparison. See Appendix G.3.

Alg. Prior works This work (unified framework)

FL-AP F0

NQ2 + L2S2ς2

µ3N2Q2 + L2ς2

µ3Q2
(1) F0 exp

(
−µQ

L

)
+ L2S2ς2

µ3N2Q2 + L2ς2

µ3Q2

FL-RR L
µF0 exp

(
−µKN 1

SQ

L

)
+ L2S2ς2

µ3N2Q2 + L2ς2

µ3NQ2
(2) F0 exp

(
−µQ

L

)
+ L2S2ς2

µ3N2Q2 + L2ς2

µ3NQ2

FL-GraB –
(
F0 +

ς2

L

)
exp

(
−µQ

L

)
+

L2
2,∞S2ς2

µ3N2Q2 +
L2

2,∞ς2

µ3N2Q2

1 It’s from Cho et al. [2023]’s Theorem 2. The difference in the first term can be due to the step size choice.
2 It’s from Malinovsky et al. [2023a]’s Theorem 6.1. The difference in the optimization term is because they consider
µ-strongly convex objectives (in contrast, we consider PL condition), and use the advanced technique of shuffling
variance in Mishchenko et al. [2020].

2.3 Preliminaries of GraBs
The goal of GraB (including other variants) is to find a permutation to minimize the order error ϕ̄q :=

maxn∈[N ]

∥∥∥∑n−1
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥
∞

(Notably, in GraBs, ϕ̄q is defined by ∥·∥∞), which
is aligned with the goal of herding [Welling, 2009]. With this insight, Lu et al. [2022a] proposed
GraB (to produce good permutations online) based on the theory of herding and balancing [Harvey
and Samadi, 2014; Alweiss et al., 2021]. Consider N vectors {zn}N−1

n=0 such that
∑N−1

n=0 zn = 0
and ∥zn∥ ≤ 1. Then, GraB applies the process of balancing and then reordering.

• Balancing. For any permutation π, assign the signs {ϵn}N−1
n=0 (ϵn ∈ {−1,+1}) to the permuted

vectors {zπ(n)}N−1
n=0 using the balancing algorithms (such as Algorithm 3 in Appendix C).

• Reordering. With the assigned signs and the old permutation π, produce a new permutation π′

by the reordering algorithm (that is, Algorithm 4 in Appendix C).

Then, Lemma 3 (in Appendix D) proves that the following equation holds:

max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞︸ ︷︷ ︸

the new herding error

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞︸ ︷︷ ︸

the old herding error

+
1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

ϵizπ(i)

∥∥∥∥∥
∞︸ ︷︷ ︸

=Õ(1), if {ϵi} are assigned by Alg. 3

, (2)

where we call the three terms, the herding error under π′ (new), the herding error under π (old), and
the signed herding error under π, respectively. Equation (2) ensures that the herding error will be
reduced (from π to π′) as long as the signed herding error is small. That is, the herding error can be
progressively reduced by balancing and reordering the vectors. By iteratively applying this process
(balancing and then reordering), the herding error will approach the signed herding error, which
is proved to be Õ (1), if the signs are assigned by Algorithm 3 [Alweiss et al., 2021]. The above
content introduces the key idea of GraB. We show how to use Equation (2) in GraB in Section 3.2.

(i) Importantly, GraB has been proven to outperform RR, and even be a theoretically optimal
permutation-based SGD algorithm [Cha et al., 2023]. (ii) Furthermore, the GraB algorithms have
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also been applied in distributed optimization (not FL) [Cooper et al., 2023] and multi-objective opti-
mization [Yang and Kwok, 2025]. Both give us strong motivations to incorporate this DP algorithm
into one unified framework.

3 Permutation-based SGD

Algorithm 1: Permutation-based SGD
Input: π0, x0; Output: {xq}

1 for q = 0, 1, . . . , Q− 1 do
2 x0

q ← xq

3 for n = 0, 1, . . . , N − 1 do
4 xn+1

q ← xn
q − γ∇fπq(n)(x

n
q )

5 xq+1 ← xN
q

6 πq+1 ← Permute(· · · )

Notations. We use ∥·∥p to denote the Lebesgue
p-norm; For simplicity, we use ∥·∥ to denote the
Lebesgue 2-norm. We use ≲ to denote “less than”
up to some numerical constants and polylogarithmic
factors. See more notations in Appendix B.

Setup. For SGD, we consider the problem in Equa-
tion (1). In the context of SGD, the local objective
functions represent the examples. See Algorithm 1.
Here, π denotes a permutation of {0, 1, . . . , N − 1}
(at the same time, it serves as the training order of
examples). At the end of each epoch, it produces the
next-epoch permutation by some permuting algorithm (Algorithm 1).

3.1 Main Theorem
Theorem 1 gives our main framework for permutation-based SGD. See Appendix J for the additional
extension for Theorem 1.

Definition 3 will help us deal with the multiple smoothness constants in GraBs. We assume that the
global objective function f is lower bounded by f∗ and let F0 = f(x0)− f∗.

Definition 3 (Lp,p′-smoothness). We say f is Lp,p′ -smooth, if it is differentiable and for x,y ∈ Rd,

∥∇f (x)−∇f (y)∥p ≤ Lp,p′ ∥x− y∥p′ .

If p = p′, we write Lp,p′ as Lp; if p = p′ = 2, we write Lp,p′ as L for convenience.

Theorem 1. Let the global objective function f be L-smooth and each local objective functions fn
be L2,p-smooth and Lp-smooth (p ≥ 2). Let ν ≥ 0 be a numerical constant. Suppose that there
exist B̃ and D̃ such that for 0 ≤ q ≤ ν − 1,

(ϕ̄q)
2 ≤ B̃ ∥∇f(xq)∥2 + D̃,

and there exist {Ai}, {Bi} and D such that for q ≥ ν,

(ϕq)
2 ≤

ν∑
i=1

Ai(ϕ̄q−i)
2 +

ν∑
i=0

Bi ∥∇f(xq−i)∥2 +D.

If γ ≤ min

{
1

LN ,
1

32L2,pN
,

√
1−

∑ν
i=1 Ai

4L2,p

√∑ν
i=0 Bi

,

√
1−

∑ν
i=1 Ai

4L2,p

√
B̃

, 1
32LpN

}
, then

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 ≤
5F0

γNQ
+ cγ2L2

2,p

1

Q
νD̃ + cγ2L2

2,pD,

where c = 10/(1−
∑ν

i=1 Ai) is a numerical constant.

3.2 Case Studies
In this section, we prove that the existing algorithms can be incorporated into our framework (The-
orem 1) under some given assumptions (e.g., Assumption 3). The key results are in Table 3. Due to
space limitations, we focus on GraBs, and deferred the details of other algorithms to Appendix F.

Assumption 3. There exist nonnegative constants ς and α such that for any n ∈ {0, 1, . . . , N − 1},

∥∇fn(x)−∇f(x)∥2 ≤ α2 ∥∇f(x)∥2 + ς2, ∀x ∈ Rd.
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Table 3: Upper bounds of permutation-based SGD. Numerical constants and polylogarithmic factors
are hided. To maintain consistency with GraBs, we use high-probability bounds for RR, FlipFlop
and GraBs, instead of in-expectation bounds.

Alg. Upper bound of
(
ϕ̄q
)2 Upper bound (of 1

Q

∑Q−1
q=0 ∥∇f(xq)∥2)

AP AP
(Prop. 2)

(
ϕ̄q
)2 ≤ N2α2 ∥∇f(xq)∥2 +N2ς2 LF0(1+α)

Q +
(

LF0Nς
NQ

) 2
3 (1)

IP

RR
(Prop. 3)

(
ϕ̄q
)2

≲ Nα2 ∥∇f(xq)∥2 +Nς2
LF0

(
1+ α√

N

)
Q +

(
LF0

√
Nς

NQ

) 2
3

FlipFlop(2)

(Prop. 4)

(
ϕ̄q
)2

≲ Nα2 ∥∇f(xq)∥2 +Nς2
LF0

(
1+ α√

N

)
Q +

(
LF0

√
Nς

NQ

) 2
3

DP

GraB-
proto
(Prop. 1)

(
ϕ̄q
)2

≲
(
ϕ̄q−1

)2
+
(
N2 + α2

)
∥∇f(xq−1)∥2 + ς2

L̃F0+(L2,∞F0ς)
2
3

Q +
(

L2,∞F0ς
NQ

) 2
3 (3)

GraB
(Prop. 6)

(
ϕ̄q
)2

≲
(
ϕ̄q−1

)2
+
(
N2 + α2

)
∥∇f(xq−1)∥2

+
(
ϕ̄q−2

)2
+N2 ∥∇f(xq−2)∥2 + ς2

L̃F0+(L2,∞F0ς)
2
3

Q +
(

L2,∞F0ς
NQ

) 2
3 (3)

PairGraB
(Prop. 7)

(
ϕ̄q
)2

≲
(
ϕ̄q−1

)2
+
(
N2 + α2

)
∥∇f(xq−1)∥2 + ς2

L̃F0+(L2,∞F0ς)
2
3

Q +
(

L2,∞F0ς
NQ

) 2
3 (3)

1 For a clearer comparison with other bounds, we keep “N” in both numerators and denominators in the bounds of AP.
2 For FlipFlop, we bound the order error over a period of 2N instead ofN (Appendix F.3). Rajput et al. [2022] gave the

upper bound of FlipFlop for quadratic functions (in contrast, this work gives the bound for non-convex objectives).
3 For GraBs (that is, GraB-proto, GraB, PairGraB), L̃ = L+ L2,∞ (1 + α) + L∞.

Analysis of GraB-proto. To clearly present our theory and analyze GraBs, we focus on GraB-proto,
the simplified version of the original GraB. The key characteristic of GraB-proto (and other variants)
is that the example order depends on the example order of previous epochs. Thus, the goal is to find
the relation between ϕ̄q and ϕ̄q−1. Specifically, for all q ≥ 1 and n ∈ [N ],

ϕnq ≤ 2L∞N ∥xq − xq−1∥∞ + max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(xq−1)−∇f(xq−1)

)∥∥∥∥∥
∞

. (3)

(i) First, note that the first term is the well-studied “parameter deviation” [Mishchenko et al., 2020],
whose upper bound is provided in Lemma 6. (ii) Second, since in GraB-proto, {zπ(i)} correspond
to {∇fπq−1(i)(xq−1) −∇f(xq−1)} and {zπ′(i)} correspond to {∇fπq(i)(xq−1) −∇f(xq−1)}, we
can apply Equation (2) to the second term in Equation (3) (we denote this term as T2):

T2 in (3) ≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq−1(i)(xq−1)−∇f(xq−1)

)∥∥∥∥∥
∞

+
1

2
CGq−1 =

1

2
ϕ̄q−1 +

1

2
CGq−1,

where C = O
(
log
(
dN
δ

))
= Õ (1) is from Alweiss et al. [2021, Theorem 1.1] and Gq−1 :=√

α2 ∥∇f(xq−1)∥2 + ς2. Here, we use Assumption 3 to scale the vector length to be no greater
than 1. Now, combining (i) and (ii) gives the relation in Proposition 1.

Proposition 1 (GraB-proto). Suppose that Assumption 3 holds. If each fn is L∞-smooth and γ ≤
1

32L∞N , we obtain that, for q = 0,
(
ϕ̄0
)2 ≤ N2α2 ∥∇f(x0)∥2 + N2ς2, and for q ≥ 1, with

probability at least 1− δ,(
ϕ̄q
)2 ≤ 3

4

(
ϕ̄q−1

)2
+

(
1

50
N2 + C2α2

)
∥∇f(xq−1)∥2 + C2ς2,

where C = O
(
log
(
dN
δ

))
= Õ (1). Applying Theorem 1 and tuning the step size, we obtain that,

with probability at least 1−Qδ,3

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
(L+ L2,∞ (1 + α) + L∞)F0 + (L2,∞F0ς)

2
3

Q
+

(
L2,∞F0Cς

NQ

) 2
3

)
.

3To main consistency with Lu et al. [2022a] and Cooper et al. [2023], we use a failure probability of Qδ
rather than δ. Appendix F.9 shows that the framework can provide bounds that hold with probability 1− δ.
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Analyses of GraB and PairGraB. See Table 3. (i) First, the upper bounds of GraB and PairGraB
are almost identical to that of GraB-proto. (ii) Second, the ϕ̄q of GraB is affected by the factors from
the previous two epochs (such as ϕ̄q−1 and ϕ̄q−2). This is because GraB uses the average of the stale
gradients for centering, while PairGraB is free of centering (see Appendix C). Formal statements of
GraB and PairGraB are in Propositions 6 and 7 (in Appendix F).

4 Federated Learning

Algorithm 2: Regularized-participation FL
Input: π0, x0; Output: {xq}

1 for q = 0, 1, . . . , Q− 1 do
2 w← xq

3 for n = 0, 1, . . . , N − 1 do
4 Initialize xn

q,0 ← w

5 for k = 0, 1, . . . ,K − 1 do
6 xn

q,k+1 ← xn
q,k − γ∇fπq(n)(x

n
q,k)

7 pn
q ← xn

q,0 − xn
q,K

8 if (n+ 1) mod S = 0 then
9 w← w − 1

S

∑S−1
s=0 pn−s

q

10 xq+1 ← xq − η(xq −w)
11 πq+1 ← Permute(· · · )

Setup. In this section, we adapt our theory
on example ordering in SGD for client order-
ing in FL. For FL, we consider the same prob-
lem as that in SGD (that is, Equation 1). No-
tably, in FL, the local objective functions rep-
resent the clients in FL. We focus on FL with
regularized client participation (regularized-
participation FL), where each client participate
once before any client is reused [Wang and Ji,
2022]. More concretely, see Algorithm 2. Dur-
ing each epoch, it selects S clients at a time
from the permuted clients (under the permuta-
tion π) to complete a round of federated train-
ing, until all the clients have participated. Pay
attention that one “epoch” may include multiple
“rounds”. At the end of each epoch, it produces
the next-epoch permutation by some permuting
algorithm. Here, we also consider the global amplification [Wang and Ji, 2022] (see Line 10). Con-
sidering that we mainly study the client ordering of FL in this paper, we use Gradient Descent (GD)
as the local solver of FL (see Lines 5 and 6) for simplicity. We assume N mod S = 0.

4.1 Main Theorem
Theorem 2 gives our main framework for regularized-participation FL. See Appendix K for the
additional extension for Theorem 2.

We note that the third term (containing ς) on the right hand side in Equation (4) is not subsumed into
the assumptions of the order error. This is because this term comes from the local updates, which is
affected by the example order within each client, rather than by the client order in FL.

Theorem 2. Let the global objective function f be L-smooth and each local objective functions fn
beL2,p-smooth andLp-smooth (p ≥ 2). Suppose that Assumption 3 holds. SupposeN mod S = 0.
Let ν ≥ 0 be a numerical constant. Suppose that there exist B̃ and D̃ such that for 0 ≤ q ≤ ν − 1,

(φ̄q)
2 ≤ B̃ ∥∇f(xq)∥2 + D̃,

and there exist {Ai}, {Bi} and D such that for q ≥ ν,

(φ̄q)
2 ≤

ν∑
i=1

Ai(φ̄q−i)
2 +

ν∑
i=0

Bi ∥∇f(xq−i)∥2 +D.

If γ ≤ min

{
1

ηLKN 1
S

, 1
32L2,pKN 1

S (1+α)
,

√
1−

∑ν
i=1 Ai

4L2,pK
1
S

√∑ν
i=0 Bi

,

√
1−

∑ν
i=1 Ai

4L2,pK
1
S

√
B̃
, 1
32LpKN 1

S

}
, then

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 ≤
5F0

γηKN 1
SQ

+ cγ2L2
2,pK

2 1

S2

1

Q
νD̃ + 2γ2L2

2,pK
2ς2 + cγ2L2

2,pK
2 1

S2
D (4)

where c = 10/(1−
∑ν

i=1 Ai) is a numerical constant.

4.2 Case Studies
Our unified framework covers regularized-participation FL with AP (FL-AP), with RR (FL-RR)
and with GraB (FL-GraB). They correspond to AP, RR and PairGraB in SGD, respectively. In
particular, we propose FL-GraB (see Appendix C) by replacing the true gradients in GraBs with the

8



Table 4: Upper bounds of FL with regularized client participation. Numerical constants and poly-
logarithmic factors are hided.

Alg. Upper bound of (φ̄q)
2 Upper bound (of 1

Q

∑Q−1
q=0 ∥∇f(xq)∥2)

FL-AP(1) – LF0

Q +
(

LF0Sς
NQ

) 2
3

+
(

LF0Nς
NQ

) 2
3 (2)

FL-AP
(Prop. 8) (φ̄q)

2 ≤ N2α2 ∥∇f(xq)∥2 +N2ς2 LF0(1+α)
Q +

(
LF0Sς
NQ

) 2
3

+
(

LF0Nς
NQ

) 2
3 (2)

FL-RR
(Prop. 9) (φ̄q)

2 ≲ Nα2 ∥∇f(xq)∥2 +Nς2 LF0(1+α)
Q +

(
LF0Sς
NQ

) 2
3

+
(

LF0

√
Nς

NQ

) 2
3

FL-GraB
(Prop. 10)

(φ̄q)
2 ≲ (φ̄q−1)

2
+
(
N2 + α2

)
∥∇f(xq−1)∥2

+S2ς2 + ς2
L̃F0+(L2,∞F0ς)

2
3

Q +
(

L2,∞F0Sς
NQ

) 2
3

+
(

L2,∞F0ς
NQ

) 2
3 (3)

1 Wang and Ji [2022]’s Theorem 3.1. It uses a stronger assumption, equivalent to Assumption 3 with α = 0.
2 For a clearer comparison with other bounds, we keep “N” in both numerators and denominators in the bounds

of FL-AP.
3 For FL-GraB, L̃ = L+ L2,∞ (1 + α) + L∞.

pseudo-gradients (that is, pn
q in Algorithm 2) of the local objective functions to generate the “good”

permutation as the training order of clients. The key results are in Table 4.

Analysis of FL-GraB. See Table 4. The main difference (in convergence rates) lies in the last
term. The upper bound of FL-GraB Õ(( 1

NQ )
2
3 ) dominants those of the other algorithms in terms of

the number of epochs Q and the number of clients N . This conclusion is aligned with that in SGD.
Notably, the changes (from ϕ̄q to φ̄q , and from true gradients to pseudo-gradients) make the analysis
of FL-GraB quite different from (and more complex than) that of PairGraB in SGD.

5 Experiments

In this section, we use the following simulated experiments to validate the theory. Refer to Lu et al.
[2022a] and Cooper et al. [2023] for the experiments of SGD on real data sets; refer to Appendix I
for the experiments of FL on real data sets. The details of the experiments can be found in the code
available at https://github.com/liyipeng00/ordering.
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Figure 1: The experiments on simulated data. Shaded areas show the min-max values across 10
different random seeds. The left two figures are for SGD; the right two figures are for FL. For both
SGD and FL, γ is set to be the same for the algorithms; N = 1000. For FL, K = 5 and S = 2.

We use the one-dimensional functions fn(x) = ((0.5 + an)1x<0 + an1x≥0)x
2 + bnx as the local

objective functions. We model an ∼ N (0.5, 1) and bn ∼ N (0, 1) (N is the normal distribution).
Here, an and bn control the heterogeneity of the local objective functions. The observations on
Figure 1 validate our theoretical results:

• The distance to the optimum (that is, ∥x− x∗∥) and the order errors have the same trend, which
validates that the order errors can measure the convergence rate.

• The performances of FlipFlop and RR are close. This does not contradict the conclusion in
Rajput et al. [2022], which shows FlipFlop is better than RR on quadratic functions, given that
the functions used in our simulation are strongly convex but not quadratic.

• The performances of PairGraB and GraB are close, and better than RR in both SGD and FL.
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6 Conclusion
We study example ordering in permutation-based SGD and client ordering in regularized-
participation FL. For SGD, we propose a more general assumption (Assumption 2) to bound the
order error. Using it, we develop a unified framework for permutation-based SGD with arbitrary
permutations of examples, including AP, IP (including RR, FlipFlop) and DP (including GraBs).
Furthermore, we develop a unified framework for regularized-participation FL with arbitrary per-
mutations of clients, including FL-AP, FL-RR and FL-GraB.

Limitations and possible future directions: First, explore new algorithm for SGD (no new algorithms
are proposed for SGD in this work). Second, extend the framework to more practical scenarios for
FL (our theory is for FL with regularized participation). Third, study example ordering in local
updates for FL (we use GD as the local solver). Forth, explore the combination of permutation-
based SGD and other algorithms (see Appendix L for an example combining permutation-based
SGD with online learning).
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A Related Works
A.1 Related Works
Convergence analyses of permutation-based SGD. Up to now, there have been a wealth of works
analyzing the convergence of IG, SO and RR (the most classic permutation-based SGD algorithms):
Nagaraj et al. [2019], Ahn et al. [2020], Mishchenko et al. [2020], Nguyen et al. [2021], Yun et al.
[2021], Yu and Li [2023], Cai and Diakonikolas [2024], Liu and Zhou [2024] and Koloskova et al.
[2024] analyzed their upper bounds and Safran and Shamir [2020], Safran and Shamir [2021], Rajput
et al. [2020], Yun et al. [2022], Cha et al. [2023] and Kim et al. [2025] analyzed their lower bounds.
There are also some works analyzing their variants [Mishchenko et al., 2022; Malinovsky et al.,
2023c; Liu and Zhou, 2024; Cai et al., 2024], especially in the FL settings [Mishchenko et al., 2022;
Yun et al., 2022; Horváth et al., 2022; Sadiev et al., 2023; Malinovsky et al., 2023b; Li and Lyu,
2023, 2025].

Several works [Rajput et al., 2022; Lu et al., 2022b; Mohtashami et al., 2022] started to explore the
other permutation-based SGD algorithms beyond the simple IG, SO and RR. Rajput et al. [2022]
proposed the FlipFlop variants (of IG, SO and RR), and proved that these FlipFlop variants are better
than their corresponding original algorithms on the quadratic functions. In this paper, we only stud-
ied the FlipFlop variant of RR, introduced in Appendix F.3. Recently, Chae et al. [2024] extended
the FlipFlop algorithm to stochastic extragradient methods for convex-concave objective functions.
Lu et al. [2022b] and Mohtashami et al. [2022] proposed the Greedy Ordering algorithms to select
the examples greedily to minimize the order error. However, the Greedy Ordering algorithms lack
theoretical justification and suffer from non-trivial memory and computation overhead [Lu et al.,
2022a]. Lu et al. [2022a] found that the goal to minimize the order error is aligned with the goal
of herding [Welling, 2009], and proposed GraB based on the theory in Harvey and Samadi [2014]
and Alweiss et al. [2021]. PairGraB has appeared in the public code of Lu et al. [2022a], and the
key idea of PairGraB was proposed formally in Cooper et al. [2023]. GraB has also been applied in
distributed optimization (not FL) [Cooper et al., 2023] and multi-objective optimization [Yang and
Kwok, 2025].

The most relevant works are the unified analyses of permutation-based SGD [Lu et al., 2022b;
Mohtashami et al., 2022; Koloskova et al., 2024]. They all rely on Assumption 1 (they may consider
an interval of arbitrary length, not necessarily an epoch); this assumption has been widely adopted
in the subsequent works [Islamov et al., 2024; Li and Huang, 2024] for other settings beyond this
paper. See Section 2 for the comparison with Lu et al. [2022b] and Koloskova et al. [2024].

Convergence analyses of FL with regularized client participation. The convergence of vanilla
client participation pattern (the selection of clients across different rounds are independent) has
been analyzed in the early works [Li et al., 2020; Karimireddy et al., 2020; Yang et al., 2021]. The
convergence of regularized client participation pattern [Eichner et al., 2019] was initially analyzed
in Wang and Ji [2022], Cho et al. [2023], Malinovsky et al. [2023a] and Demidovich et al. [2025],
where Wang and Ji [2022] and Cho et al. [2023] considered regularized-participation FL with AP
(FL-AP) and Malinovsky et al. [2023a] considered regularized-participation FL with RR (FL-RR).
This work aims to develop a unified framework that includes these cases. See Tables 2 and 4 for the
comparison with Wang and Ji [2022], Cho et al. [2023] and Malinovsky et al. [2023a]. Importantly,
this work focuses on client ordering in FL with regularized participation, which is different from
the studies of FL with arbitrary participation [Wang and Ji, 2022, 2024; Sun et al., 2025] and client
sampling [Cho et al., 2022; Horváth et al., 2022].

Assumption 2 about the ordering of the examples may also have connections with other topics
[Gorbunov et al., 2021].

A.2 Reformulating Existing Convergence Rates in Our Setting
In the main body, to facilitate comparison, we have reformulated the existing convergence rates to
fit our setting. Here, we provide the details of how these rates are reformulated.

The rates from Lu et al. [2022b]. We reformulate the results of Lu et al. [2022b] as the convergence
rates for AP and RR reported in Table 1.

The correspondence between Lu et al. [2022b]’s notation and ours is as follows: T in Lu et al.
[2022b] corresponds to NQ in this paper; L corresponds to L; ∆ corresponds to F0; A corresponds
to ς; B corresponds to α; n corresponds to N ; α corresponds to γ.
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AP. Substituting the results of Lu et al. [2022b]’s Proposition 1 into Lu et al. [2022b]’s Theorem 1,
and using the correspondence, we obtain

T = Õ
(
L∆C

ϵ3

)
Prop. 1
=⇒ T = Õ

(
L∆nA

ϵ3

)
,

where B is set to B = 0 for comparison (implying that Φ = 0). This complexity (number of

iterations to achieve accuracy ϵ) is equivalent to the convergence rate of Õ
((

L∆nA
T

) 2
3

)
. Based on

the notation correspondence, we obtain the rate of Õ
((

LF0Nς
NQ

) 2
3

)
, which matches the error term

(the last term) in the convergence rate of AP in Table 1. The constraint of the step size for AP is not
clearly given in Lu et al. [2022b]. So, for the optimization term (determined by the constraint of the
step size), we use the one recovered by Koloskova et al. [2024] (see their Table 1).

RR. Substituting the results of Lu et al. [2022b]’s Proposition 3 into Lu et al. [2022b]’s Theo-
rem 1, following the steps as those in AP, using the constraint α ≲ 1

Ln (that is, γ ≲ 1
LN in

our setting) with our Lemma 1, and using the notation correspondence, we can obtain the rate of

Õ
(

LF0

Q +
(
LF0

√
Nς

NQ

) 2
3

)
.

The rates from Koloskova et al. [2024]. We reformulate the results of Koloskova et al. [2024] as
the convergence rates for AP and RR reported in Table 1, and the rate for classic SGD in Table 8.

The correspondence between Koloskova et al. [2024]’s notation and ours is as follows: L in
Koloskova et al. [2024] corresponds to L in this paper; F0 corresponds to F0; T denotes the number
of iterations and corresponds to NQ; n corresponds to N ; σSGD corresponds to ς .

Using the notation correspondence, it is convenient to translate Koloskova et al. [2024]’s bounds
into ours. In fact, Koloskova et al. [2024] gave the same rate for IG, SO and RR (their Examples 3.2,
3.3 and 3.4). We note that this rate also applies to AP.

The rates from Lu et al. [2022a]. We reformulate the results of Lu et al. [2022a] as the convergence
rate for GraB.

In the proof of Theorem 3 in Lu et al. [2022a], we can find the inequality

1

K

K∑
k=1

∥∇f(wk)∥2 ≲
f(w1)− f∗

αnK
+
α2n2ς2L2

2,∞

K
+ α2A2ς2L2

2,∞.

The correspondence between Lu et al. [2022a]’s notation and ours is as follows: f(w1) − f∗ in
Lu et al. [2022a] corresponds to F0 in this paper; α corresponds to γ; n corresponds to N ; K
corresponds to Q; L, L∞ and L2,∞ correspond to L, L∞ and L2,∞ respectively; ς corresponds
to ς; A corresponds to C; 1

K

∑K
k=1 ∥∇f(wk)∥2 corresponds to 1

Q

∑Q−1
q=0 ∥∇f(xq)∥2. Using the

notation correspondence, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(

F0

γNQ
+ γ2L2,∞N

2ς2
1

Q
+ γ2L2

2,∞ς
2

)
.

Then, using the constraint of the step size in Lu et al. [2022a]’s Theorem 3, and tuning the step size
with Lemma 1, we can obtain the same rate as this paper.

The rates from Cooper et al. [2023]. We reformulate the results of Cooper et al. [2023] as the
convergence rate for PairGraB. CD-GraB [Cooper et al., 2023] is an extension of PairGraB. For
Theorem 2, after setting σ = 0 and m = 1, and using the notation correspondence (that is, F1 in Lu
et al. [2022a] corresponds to F0 in this paper, L to L, L∞ to L∞, L2,∞ to L2,∞, T to Q, Ã to C̃
and n to N ), we can obtain the same rate as this paper.

The rates from Cho et al. [2023]. We reformulate the results of Cho et al. [2023] as the convergence
rates for FL-AP reported in Table 2.

After comparing Cho et al. [2023]’s Algorithm 1 (their LocalSGD case) with ours, we find that their
setting is more general than ours, so we need to adapt their results to match ours: Setting N = M

K
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and σ = 0 in their Theorem 2 gives

E
[
F (w(K,0))− F ∗

]
= Õ

(
K

2
(F (w(0,0))− F ∗)

MT 2
+
κ2K

2
α2

µT 2
+

κ2ν2

µN2T 2

)
.

In addition, comparing their model update rule given in Section 3 (Problem Formulation) and Equa-
tion (37), we notice that a factor of 1

N is missing in Equation (37). The model rule of Equation (37)
is used in their Equation (54), causing the missing of the factor of N2 in the term caused by local
updates in their bounds. As a result, we obtain

E
[
F (w(K,0))− F ∗

]
= Õ

(
K

2
(F (w(0,0))− F ∗)

MT 2
+
κ2K

2
α2

µT 2
+
κ2N2ν2

µN2T 2

)
,

where we highlight the missing factor N2 in red.

After the adapting, the correspondence between Cho et al. [2023]’s notation and ours is as follows:
K in Cho et al. [2023] corresponds to N

S in the main body of this paper; F (w(K,0)) − F ∗ corre-
sponds to FQ; F (w(0,0)) − F ∗ corresponds to F0; T corresponds to N

S Q; N corresponds to S; M
corresponds to N ; both α and ν correspond to ς . Using the notation correspondence, we obtain

E [FQ] = Õ
(

F0

NQ2
+

L2S2ς2

µ3N2Q2
+
L2ς2

µ3Q2

)
.

The rates from Malinovsky et al. [2023a]. We reformulate the results of Malinovsky et al. [2023a]
as the convergence rates for FL-RR reported in Table 2.

Malinovsky et al. [2023a] uses RR as the local solver while this paper uses GD, so we need to adapt
their results to fit our setting: Setting σ⋆ = σ̃⋆ in their Theorem 6.1 gives

E ∥xT − x⋆∥2 ≲ (1− γµ)NRT ∥x0 − x⋆∥2 +
γ2

µ

(
LMN2

C2
σ̃2
⋆ + LN2σ̃2

⋆ + LNσ̃2
⋆

)
≲ (1− γµ)NRT ∥x0 − x⋆∥2 + γ2

1

µ
LMN2 1

C2
σ2
⋆ + γ2

1

µ
LN2σ̃2

⋆

≲ exp (−γµNRT ) ∥x0 − x⋆∥2 + γ2
1

µ
LMN2 1

C2
σ2
⋆ + γ2

1

µ
LN2σ̃2

⋆.

Then, using µ
2 ∥x− x∗∥

2 ≤ f(x)− f(x⋆) ≤ L
2 ∥x− x∗∥

2, we obtain

f(xT )− f(x⋆) ≲
L

µ
(f(x0)− f⋆) exp (−γµNRT ) + γ2

1

µ
LMN2 1

C2
σ2
⋆ + γ2

1

µ
LN2σ̃2

⋆.

After the adapting, the correspondence between Malinovsky et al. [2023a]’s notation and ours is as
follows: L in Malinovsky et al. [2023a] corresponds to L in this paper; µ corresponds to µ; f(xT )−
f(x⋆) corresponds to FT ; f(x0) − f(x⋆) corresponds to F0; γ corresponds to γ; C corresponds
to S; M corresponds to N ; Ncorresponds to K; R corresponds to N

S ; T corresponds to Q; σ̃2
⋆

corresponds to ς . Using the notation correspondence, we obtain

FQ ≤
L

µ
F0 exp

(
−γµKN 1

S
Q

)
+ γ2

L2K2Nς2

µS2
+ γ2

L2K2ς2

µ
.

In addition, we need the constraint of the step size γ ≤ 1
L . Then, tuning the step size with Koloskova

et al. [2020, Lemma 15], we obtain the reported bound in Table 2.

The rates from Wang and Ji [2022]. We reformulate the results of Wang and Ji [2022] as the
convergence rate for FL-AP reported in Table 2 and the rate for FL with independent participation
in Table 9.

Wang and Ji [2022]’s framework covers multiple participation patterns (including the regularized
participation and independent participation), and uses SGD as the local solver.
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For regularized participation, we set δ̃(P ) = 0 (see Wang and Ji [2022]’s Proposition 4.2) and σ = 0
in Wang and Ji [2022]’s Theorem 3.1, which gives

min
t

E
[
∥∇f(xt)∥2

]
= O

(
F

γηIT
+ γ2L2I2ν̃2 + γ2L2I2P 2β̃2

)
.

The correspondence between Wang and Ji [2022]’s notation and ours is as follows: F in Wang and
Ji [2022] corresponds to F0 in this paper; γ corresponds to γ; η corresponds to η; I corresponds to
K; P corresponds to N

S ; T corresponds to N 1
SQ; both β̃ and ν̃ correspond to ς (see Wang and Ji

[2022]’s Section 4.1, Discussion on β̃2 and ν̃: Decomposition of Divergence); mint E
[
∥∇f(xt)∥2

]
corresponds to mint E

[
∥∇f(yt)∥2

]
. Using the notation correspondence, we obtain the bound

min
t

E
[
∥∇f(yt)∥2

]
= O

(
F0

γηKN 1
SQ

+ γ2L2K2ς2 + γ2L2K2N2 1

S2
ς2
)
,

where yt denotes the model parameter vector in iteration t (see Appendix K). Then, setting η = 1
and tuning the step size with Lemma 1, we obtain the reported bound in Table 2.

For independent participation, we set δ̃(P ) = Θ(N
2d2

P ) (see Wang and Ji [2022]’s Proposition 4.7)
and σ = 0 in Wang and Ji [2022]’s Theorem 3.1, which gives

min
t

E
[
∥∇f(xt)∥2

]
= Õ

(
F

γηIT
+ γ2L2I2ν̃2 + γ2L2I2P 2β̃2 +

N2d2

P

)
.

Using the notation correspondence, we obtain the bound

min
t

E
[
∥∇f(yt)∥2

]
= Õ

(
F0

γηKN 1
SQ

+ γ2L2K2ς2 + γ2L2K2P 2ς2 +
N2ς2

P

)
.

For comparison, we set η = 1 and P = Θ( 1
γLKS). This gives

min
t

E
[
∥∇f(yt)∥2

]
= Õ

(
F0

γKN 1
SQ

+ γ2L2K2ς2 + ς2 + γLK
1

S
N2ς2

)
.

Notably, under the same setting (η = 1 and P = Θ( 1
γLKS)), there is a non-vanishing term in Wang

and Ji [2022] when γ → 0. Then, following the same steps as Proposition 14, tuning the step size
with Lemma 1, we obtain

min
t

E
[
∥∇f(yt)∥2

]
= Õ

(
LF0

T
+

(
LF0ς

T

) 2
3

+

(
LF0N

2ς2

ST

) 1
2

+ ς2

)
.

The rates from Yang et al. [2021]. We reformulate the results of Yang et al. [2021] as the conver-
gence rate for FL with independent participation in Table 9.

Yang et al. [2021] uses SGD as the local solver while this paper uses GD, so we adapt their results
to fit out setting: Setting σL = 0 in Theorem 2 (Strategy 1) gives

min
t∈[T ]

E[∥∇f(xt)∥2] ≲
f0 − f∗
ηηLKT

+
LKηηL

n
σ2
G +K2η2LL

2σ2
G +

K3ηη3LL
3

n
σ2
G.

Then, using ηLηKL ≲ 1, we obtain

min
t∈[T ]

E[∥∇f(xt)∥2] ≲
f0 − f∗
ηηLKT

+
LKηηL

n
σ2
G +K2η2LL

2σ2
G +

K2η2LL
2

n
σ2
G

≲
f0 − f∗
ηηLKT

+
LKηηL

n
σ2
G +K2η2LL

2σ2
G,

where in the last inequality, the forth term is subsumed into the third term on the right hand side.

The correspondence between Yang et al. [2021]’s notation and ours is as follows: f0 − f∗ in Yang
et al. [2021] corresponds to F0 in this paper; η corresponds to η; ηL corresponds to γ;K corresponds
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to K; T corresponds to N 1
SQ; L corresponds to L; n corresponds to S; σG corresponds to ς ,

mint∈[T ] E[∥∇f(xt)∥2] corresponds to mint E ∥∇f(yt)∥2. Using the notation correspondence, we
obtain

min
t

E ∥∇f(xt)∥2 = O
(

F0

γηKN 1
SQ

+ γ2L2K2ς2 +
γηLK

S
ς2
)
.

Setting η = 1 and tuning the step size with Lemma 1 (γηLK ≲ 1 and γLK ≲ 1), we obtain

min
t

E ∥∇f(xt)∥2 = O

(
LF0

T
+

(
LF0ς

T

) 2
3

+

(
LF0ς

2

ST

) 1
2

)
.

B Notations

Table 5: Summary of key notations.

Notation Description

Q Number of epochs.
N Number of local objective functions.
K Number of local steps in FL.
S Number of participating clients in each round in FL.
µ Strong convexity constant or PL condition constant.
Lp,p′ Smoothness constants (see Definition 3).
A,B,D Constants in Assumption 2 and Theorems 1 and 2.
B̃, D̃ Constants in Theorems 1 and 2.
d Dimension of the model parameter vector.
α, ς Constants in Assumption 3.

Gq Gq :=
√
α2 ∥∇f(xq)∥2 + ς2; see Equation (5).

γ Step size.
η Global step size (in FL).
ϕ̄ Order Error in SGD.
φ̄ Order Error in FL.
π A permutation of {0, 1, . . . , N−1}. It serves as the order of examples or clients.
π(n) The (n+ 1)-th element of permutation π.
f Global objective function.
fn Local objective function. It represents examples in SGD and clients in FL.
F0 F0 = f(x0)− f∗.
x Model parameter vector.
xn
q Parameter vector after n steps in epoch q (in SGD).

xn
q,k Parameter vector after k local updates in client n in epoch q (in FL).

pn
q Pseudo-gradient of client n in epoch q in FL.

Key notations are summarized in Table 5.

Norm. We use ∥·∥p to denote the Lebesgue p-norm; unless otherwise stated, we use ∥·∥ to denote
the Lebesgue 2-norm.

Set. We let [n] := {1, 2, . . . , n} for n ∈ N+ and {xi}i∈S := {xi | i ∈ S} for any set S. We let |S|
be the size of any set S.

Big O notations. We use ≲ to denote “less than” up to some numerical constants and polylogarith-
mic factors, and ≳ and ≍ are defined likewise. We also use the big O notations, Õ, O, Ω, where O,
Ω hide numerical constants, Õ hides numerical constants and polylogarithmic factors.
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Notations in proofs. For convenience, we will use “Tn” to denote the n-th term on the right hand
side in some equation in the following proofs. We will use ± to mean “add (+)” and then “subtract
(−)” the term: a± b means a− b+ b.

For Assumption 3, we let

Gq :=

√
α2 ∥∇f(xq)∥2 + ς2, (5)

which gives

∥∇fn(xq)−∇f(xq)∥2 ≤ α2 ∥∇f(xq)∥2 + ς2 = G2
q.

Importantly, π is a permutation of {0, 1, . . . , N − 1}, and it serves as the training orders of data
examples in SGD or training orders of clients in FL. Next, we need to define an operation on π as
done in Lu et al. [2022a, Appendix B] and Cooper et al. [2023, Appendix C.4]:

π−1(i) := j such that π(j) = i, i, j ∈ {0, 1, . . . , N − 1}.
It represents that the index of i in the permutation π is j, where i, j ∈ {0, 1, . . . , N − 1}. This
operation will be very useful in Appendices F.5, F.6, F.7, F.8, H.3. According to the definition, it
follows that

π−1 (π(j)) = j.

It can be proved as follows: Assume that π−1 (π(j)) = k ̸= j. Then, according to the definition,
we obtain π(j) = π(k), which implies that j = k. This contradicts our assumption. Thus, we have
π−1 (π(j)) = k = j.

C Algorithms
In this section, we provide more details about GraBs.

C.1 Preliminaries of GraBs

Algorithm 3: Balancing [Alweiss et al.,
2021]
1 Function Balance({zn}N−1

n=0 )
2 Initialize running sum s, hyperparameter c
3 Initialize {ϵn} for assigned signs
4 for n = 0, . . . , N − 1 do
5 Compute p̃← 1

2
− ⟨s,zn⟩

2c

6 Assign signs:
ϵn ← +1 with probability p̃;
ϵn ← −1 with probability 1− p̃

7 Update s← s+ ϵn · zn
8 return the assigned signs {ϵn}

Algorithm 4: Reordering [Harvey and
Samadi, 2014]
1 Function Reorder(π, {ϵn}N−1

n=0 )
2 Initialize two lists Lpositive ← [ ],

Lnegative ← [ ]
3 for n = 0, . . . , N − 1 do
4 if ϵn = +1 then
5 Append π(n) to Lpositive
6 else
7 Append π(n) to Lnegative

8 π′ = concatenate(Lpositive, reverse(Lnegative))

9 return the new order π′

Algorithm 5: Basic Balancing and Re-
ordering
1 Function BasicBR(π, {zn}N−1

n=0 , m)a

2 Centering: {cn := zn −m}N−1
n=0

3 {ϵn}N−1
n=0 ← Balance({cn}N−1

n=0 )

4 π′← Reorder(π, {ϵn}N−1
n=0 )

5 return π′

aThe mean vector m is used to center the input
vectors {zn}N−1

n=0 (Line 2). In most cases, it is the
average of the input vectors 1

N

∑N−1
n=0 zn, except in

the original GraB algorithm, where it is replaced by
an estimate of the actual average.

Algorithm 6: Pair Balancing and Reorder-
ing
1 Function PairBR(π, {zn}N−1

n=0 , m)

2 Centering: {cn := zn −m}N−1
n=0

a

3 Compute {dl := c2l − c2l+1}
N
2
−1

l=0

4 {ϵ̃l}
N
2
−1

l=0 ← Balance({dl}
N
2
−1

l=0 )
5 Compute {ϵn}N−1

n=0 such that
ϵ2l = ϵ̃l and ϵ2l+1 = −ϵ̃l for
l = 0, . . . , N

2
− 1

6 π′← Reorder(π, {ϵn}N−1
n=0 )

7 return π′

aThe step of centering is not required in practical
implementations
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In Section 2.3, we have introduced the key ideas of GraBs. Now, we introduce the concrete GraB
algorithms. We start from GraB-proto and PairGraB-proto, where the former is a simplified version
of the original GraB algorithm [Lu et al., 2022a], and the latter is a simplified version of PairGraB
algorithm [Lu et al., 2022a; Cooper et al., 2023].

• GraB-proto. Use BasicBR (Algorithm 5) as the Permute function in Algorithm 1, with the
inputs of πq , {∇fπq(n)(xq)}N−1

n=0 and ∇f(xq), for each epoch q.

• PairGraB-proto. Use PairBR (Algorithm 6) as the Permute function in Algorithm 1, with the
inputs of πq , {∇fπq(n)(xq)}N−1

n=0 and ∇f(xq), for each epoch q.

The main difference is that GraB-proto uses the basic balancing and reordering algorithm (BasicBR)
while PairGraB-proto uses the pair balancing and reordering algorithm (PairBR). The advantage of
PairBR is that it is free of centering the input vectors in the practical implementation. As shown in
Algorithm 6 (Lines 3–4), it balances the difference of two centered vectors, which is equivalent to
balancing the difference of the two original vectors as the mean vectors are canceled out:

dl = (z2l −m)− (z2l+1 −m) = z2l − z2l+1.

This advantage makes it seamlessly compatible with online algorithms such as SGD. Notably, com-
pared with the original GraB and PairGraB algorithms, whose implementation details are deferred to
Appendix C.2, GraB-proto and PairGraB-proto are impractical in computation and storage, however,
they are simple, and sufficient to support our theory.

Next, we briefly introduce the original GraB and PairGraB algorithms.

• GraB. Use BasicBR (Algorithm 5) as the Permute function in Algorithm 1, with the inputs of
πq , {∇fπq(n)(x

n
q )}N−1

n=0 and 1
N

∑N−1
n=0 ∇fπq−1(n)(x

n
q−1), for each epoch q.

• PairGraB. Use PairBR (Algorithm 6) as the Permute function in Algorithm 1, with the inputs
of πq , {∇fπq(n)(x

n
q )}N−1

n=0 and 1
N

∑N−1
n=0 ∇fπq(n)(x

n
q ), for each epoch q.

They replace∇fπq(n)(xq) in their prototype versions with the easily accessible∇fπq(n)(x
n
q ), reduc-

ing the unnecessary computational cost. Besides, for GraB, to overcome the challenge of centering
the gradients in the BasicBR algorithm, GraB uses the average of the stale gradients as the esti-
mate of the actual average of the fresh gradients, to “center” the (fresh) gradients. This trick is not
required for PairGraB. See the implementation details in Algorithms 9 and 11.

In FL, we propose regularized-participation FL with GraB, which uses the pseudo-gradients
{pn

q }N−1
n=0 to generate the permutations.

• FL-GraB. Use PairBR (Algorithm 6) as the Permute function in Algorithm 2, with the inputs
of πq , {pn

q }N−1
n=0 and 1

N

∑N−1
n=0 pn

q , for each epoch q.

The main differences of GraB algorithms are summarized in Table 6.

Table 6: The main differences of GraB Algorithms.
Algorithm Permute Inputs of Permute (in epoch q)

GraB-proto (Prop. 1) BasicBR πq , {∇fπq(n)(xq)}N−1
n=0 , 1

N

∑N−1
n=0 ∇fπq(n)(xq)

PairGraB-proto (Prop. 5) PairBR πq , {∇fπq(n)(xq)}N−1
n=0 , 1

N

∑N−1
n=0 ∇fπq(n)(xq)

GraB (Prop. 6) BasicBR πq , {∇fπq(n)(x
n
q )}N−1

n=0 , 1
N

∑N−1
n=0 ∇fπq−1(n)(x

n
q−1)

PairGraB (Prop. 7) PairBR πq , {∇fπq(n)(x
n
q )}N−1

n=0 , 1
N

∑N−1
n=0 ∇fπq(n)(x

n
q )

FL-GraB (Prop. 10) PairBR πq , {pn
q }N−1

n=0 , 1
N

∑N−1
n=0 pn

q

C.2 Implementations of GraBs
The practical implementations of GraB are provided in Algorithms 9 and 10. The implementation of
PairGraB is provided in Algorithm 11. The implementation of FL-GraB is provided in Algorithm 12.
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As done in Lu et al. [2022a] and Cooper et al. [2023], we use Algorithm 7 for the theories in this
paper, while we use Algorithm 8 for the experiments in Appendix I.

Notably, Algorithm 9 (the original algorithm in Lu et al. [2022a, Algorithm 4]) is logically equivalent
to Algorithm 10. Compared with Algorithm 9, which updates the new order at the end of each
step (Lines 11–14), Algorithm 10 generates the new order at the end of each epoch (Line 12). In
fact, in Algorithm 10, we can reorder the examples for multiple times with the same signs (see
Line 12), which may be useful in practice [Wei, 2023]. Similar variants can also be formulated for
Algorithms 11 and 12.

Algorithm 7: Assign signs. [Alweiss et al.,
2021]
1 Function AssignSign(s, z, c)a

2 Compute p̃← 1
2
− ⟨s,z⟩

2c

3 Assign signs:
ϵ← +1 with probability p̃;
ϵ← −1 with probability 1− p̃

4 return ϵ

ac is a hyperparameter. See Lu et al. [2022a, Theo-
rem 4].

Algorithm 8: Assign signs without normal-
ization. [Lu et al., 2022a, Algorithm 5]
1 Function AssignSign(s, z)
2 if ∥s+ z∥ < ∥s− z∥ then
3 ϵ← +1
4 else
5 ϵ← −1
6 return ϵ

Algorithm 9: GraB [Lu et al., 2022a, Algorithm 4]
Input: π0, x0; Output: {xq}

1 Initialize s← 0, m← 0, mstale ← 0
2 for q = 0, 1, . . . , Q− 1 do
3 s← 0; mstale ←m; m← 0; l← 0, r ← N − 1
4 for n = 0, 1, . . . , N − 1 do
5 Compute the gradient∇fπq(n)(x

n
q )

6 Update the parameter: xn+1
q ← xn

q − γ∇fπq(n)(x
n
q )

7 Update the mean: m←m+ 1
N∇fπq(n)(x

n
q )

8 Center the gradient c← ∇fπq(n)(x
n
q )−mstale

9 Assign the sign: ϵ← AssignSign(s, c)
10 Update the sign sum: s← s+ ϵ · ∇fπq(n)(x

n
q )

11 if ϵ = +1 then
12 πq+1(l)← πq(n); l← l + 1.
13 else
14 πq+1(r)← πq(n); r ← r − 1.
15 Update the parameter: xq+1 ← xN

q
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Algorithm 10: GraB
Input: π0, x0; Output: {xq}

1 Initialize s← 0, m← 0, mstale ← 0
2 for q = 0, 1, . . . , Q− 1 do
3 s← 0; mstale ←m; m← 0; l← 0, r ← N − 1
4 for n = 0, 1, . . . , N − 1 do
5 Compute the gradient∇fπq(n)(x

n
q )

6 Update the parameter: xn+1
q ← xn

q − γ∇fπq(n)(x
n
q )

7 Update the mean: m←m+ 1
N∇fπq(n)(x

n
q )

8 Center the gradient c← ∇fπq(n)(x
n
q )−mstale

9 Assign the sign: ϵn ← AssignSign(s, c)
10 Update the sign sum: s← s+ ϵn · ∇fπq(n)(x

n
q )

11 Update the parameter: xq+1 ← xN
q

12 πq+1 ← Reorder(πq , {ϵn}N−1
n=0 )

a

aWe can reorder the examples for multiple times with the same signs in this step.

Algorithm 11: PairGraB
Input: π0, x0; Output: {xq}

1 for q = 0, 1, . . . , Q− 1 do
2 s← 0; d← 0, l← 0, r ← N − 1
3 for n = 0, 1, . . . , N − 1 do
4 Compute the gradient∇fπq(n)(x

n
q )

5 Update the parameter: xn+1
q ← xn

q − γ∇fπq(n)(x
n
q )

6 if (n+ 1) mod 2 = 0 then
7 Compute the difference: d← ∇fπq(n−1) −∇fπq(n)

8 Assign the sign: ϵ← AssignSign(s,d)
9 Update the sign sum: s← s+ ϵ · d

10 if ϵ = +1 then
11 πq+1(l)← πq(n); l← l + 1
12 πq+1(r)← πq(n− 1); r ← r − 1
13 else
14 πq+1(l)← πq(n− 1); l← l + 1
15 πq+1(r)← πq(n); r ← r − 1

16 Update the parameter: xq+1 ← xN
q
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Algorithm 12: FL-GraB (Server-side)
Input: π0, x0; Output: {xq}

1 for q = 0, 1, . . . , Q− 1 do
2 s← 0; d← 0, l← 0, r ← N − 1
3 for n = 0, 1, . . . , N − 1 do
4 Get the pseudo-gradient pn

q =
∑K−1

k=0 ∇fπq(n)(x
n
q,k)

/* Update the parameter */
5 if (n+ 1) mod S = 0 then
6 w← w −

∑S−1
s=0 pn−S

q

7 if (n+ 1) mod 2 = 0 then
/* Balance */

8 Compute the difference: d← ∇fπq(n−1) −∇fπq(n)

9 Assign the signs: ϵ← AssignSign(s,d)
10 Update the sign sum: s← s+ ϵ · d

/* Update the new order */
11 if ϵ = +1 then
12 πq+1(l)← πq(n); l← l + 1
13 πq+1(r)← πq(n− 1); r ← r − 1
14 else
15 πq+1(l)← πq(n− 1); l← l + 1
16 πq+1(r)← πq(n); r ← r − 1

/* Update the parameter */
17 xq+1 ← xq − η (xq −w)

D Helper Lemmas
Lemma 1. For any parameters r0 > 0, T > 0, c > 0 and γ ≤ 1

d , there exists constant step sizes

γ = min
{

1
d ,
(
cr0
T

) 1
3

}
≤ 1

d such that

ΨT :=
r0
γT

+ cγ2 ≤ dr0
T

+ 2
c

1
3 r

2
3
0

T
2
3

= O

(
dr0
T

+
c

1
3 r

2
3
0

T
2
3

)
.

Proof. If 1
d ≤

(
r0
cT

) 1
3 , choosing γ = 1

d gives

ΨT =
dr0
T

+
c

d2
≤ dr0

T
+
c

1
3 r

2
3
0

T
2
3

.

If
(
r0
cT

) 1
3 ≤ 1

d , choosing γ =
(
r0
cT

) 1
3 gives

ΨT =
dr0
T

+
c

d2
≤ c

1
3 r

2
3
0

T
2
3

+
c

1
3 r

2
3
0

T
2
3

≤ 2
c

1
3 r

2
3
0

T
2
3

.

Thus,

ΨT ≤
dr0
T

+ 2
c

1
3 r

2
3
0

T
2
3

= O

(
dr0
T

+
c

1
3 r

2
3
0

T
2
3

)
.

Lemma 2. For any parameters r0 > 0, T > 0, c > 0 and γ ≤ 1
d , there exists constant step sizes

γ = min
{

1
d ,
(
cr0
T

) 1
3

}
≤ 1

d such that

ΨT :=
r0
γT

+ cγ ≤ dr0
T

+ 2
c

1
2 r

1
2
0

T
1
2

= O

(
dr0
T

+
c

1
2 r

1
2
0

T
1
2

)
.
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Proof. If 1
d ≤

(
r0
cT

) 1
2 , choosing γ = 1

d gives

ΨT =
dr0
T

+
c

d
≤ dr0

T
+
c

1
2 r

1
2
0

T
1
2

.

If
(
r0
cT

) 1
2 ≤ 1

d , choosing γ =
(
r0
cT

) 1
2 gives

ΨT =
dr0
T

+
c

d2
≤ c

1
2 r

1
2
0

T
1
2

+
c

1
2 r

1
2
0

T
1
2

≤ 2
c

1
2 r

1
2
0

T
1
2

.

Thus,

ΨT ≤
dr0
T

+ 2
c

1
2 r

1
2
0

T
1
2

= O

(
dr0
T

+
c

1
2 r

1
2
0

T
1
2

)
.

Lemma 3. Consider N vectors {zn}N−1
n=0 and a permutation π of {0, 1, . . . , N − 1}. Assign the

signs {ϵn}N−1
n=0 (ϵn ∈ {−1,+1}) by the balancing algorithms (such as Algorithm 3) to the permuted

vectors under the permutation π (that is, {zπ(n)}N−1
n=0 ). Let π′ be the new permutation produced by

Algorithm 4 with the input of the old permutation π and the assigned signs {ϵn}N−1
n=0 . Then,

max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

ϵi · zπ(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥
N−1∑
i=0

zi

∥∥∥∥∥
∞

.

Furthermore, suppose that the signs {ϵn}N−1
n=0 are assigned by Algorithm 3. If ∥zn∥2 ≤ a for all

n ∈ {0, 1, . . . , N − 1} and
∥∥∥∑N−1

i=0 zi

∥∥∥
∞
≤ b, then, with probability at least 1− δ,

max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2
Ca+ b,

where C = 30 log(dNδ ) = O
(
log
(
dN
δ

))
= Õ(1) is from Alweiss et al. [2021, Theorem 1.1].

Proof. This is Lemma 5 in Lu et al. [2022a] and we reproduce it for completeness.

Let M+ = {i ∈ {0, 1, . . . , N − 1} | ϵi = +1} and M− = {i ∈ {0, 1, . . . , N − 1} | ϵi = −1}.
Then, for any n ∈ {1, 2 . . . , N},

n−1∑
i=0

zπ(i) +

n−1∑
i=0

ϵi · zπ(i) = 2 ·
∑

i∈M+∩{0,1,...,n−1}

zπ(i), (6)

n−1∑
i=0

zπ(i) −
n−1∑
i=0

ϵi · zπ(i) = 2 ·
∑

i∈M−∩{0,1,...,n−1}

zπ(i). (7)

By using triangular inequality, for any n ∈ {1, 2 . . . , N}, we have∥∥∥∥∥∥
∑

i∈M+∩{0,1,...,n−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2

∥∥∥∥∥
n−1∑
i=0

ϵi · zπ(i)

∥∥∥∥∥
∞

,

∥∥∥∥∥∥
∑

i∈M−∩{0,1,...,n−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2

∥∥∥∥∥
n−1∑
i=0

ϵi · zπ(i)

∥∥∥∥∥
∞

.

Next, we consider the upper bound of
∥∥∥∑n′−1

i=0 zπ′(i)

∥∥∥
∞

for all n′ ∈ {1, 2, . . . , N}. Recall that
Algorithm 4 puts the vectors with positive assigned signs in the front of the new permutation and
the vectors with negative assigned signs in the back of the new permutation.
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If n′ ≤ |M+| (|M+| denotes the size of M+), we obtain∥∥∥∥∥∥
n′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

≤ max
n∈[N ]

∥∥∥∥∥∥
∑

i∈M+∩{0,1,...,n−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

ϵi · zπ(i)

∥∥∥∥∥
∞

.

If n′ > |M+| (|M−| denotes the size of M+), we obtain∥∥∥∥∥∥
n′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

zπ′(i) −
N−1∑
i=n′

zπ′(i)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥
N−1∑
i=n′

zπ′(i)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

+ max
n∈[N ]

∥∥∥∥∥∥
∑

i∈M−∩{0,1,...,n−1}

zπ(i)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zi

∥∥∥∥∥
∞

+
1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

ϵi · zπ(i)

∥∥∥∥∥
∞

.

Thus we combine the two cases and obtain the relation

max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

ϵi · zπ(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥
N−1∑
i=0

zi

∥∥∥∥∥
∞

.

Using Alweiss et al. [2021]’s Theorem 1.1, for all n ∈ [N ], we have∥∥∥∥∥
n−1∑
i=0

ϵi · zπ(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥
n−1∑
i=0

ϵi ·
zπ(i)

maxj∈{0,1,...,N−1}
∥∥zπ(j)∥∥2

∥∥∥∥∥
∞

· max
j∈{0,1,...,N−1}

∥∥zπ(j)∥∥2 ≤ Ca.
Then, using

∥∥∥∑N−1
i=0 zi

∥∥∥
∞
≤ b, we obtain the claimed bound.

Lemma 4. Let π, {zπ(n)}N−1
n=0 and 1

N

∑N−1
n=0 zπ(n) be the inputs of Algorithm 6, and π′ be the

corresponding output. Suppose that N mod 2 = 0. If ∥zn∥2 ≤ a for all n ∈ {0, 1, . . . , N − 1}
and

∥∥∥∑N−1
i=0 zi

∥∥∥
∞
≤ b, then, with probability at least 1− δ,

max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca+ b,

where C = 30 log(dN2δ ) = O
(
log
(
dN
δ

))
= Õ(1) is from Alweiss et al. [2021, Theorem 1.1].

Proof. This is Lemma 1 in Cooper et al. [2023] and we reproduce it for completeness.

We use ϵ̃j to denote the assigned sign of dj = zπ(2j) − zπ(2j+1) for all j ∈ {0, 1, . . . N2 − 1}; we

use ϵi to denote the assigned sign of zπ(i) for all i ∈ {0, 1, . . . , N − 1}. Since {dj}
N
2 −1
j=0 is the input

of Algorithm 3, according to Alweiss et al. [2021]’s Theorem 1.1, for all l ∈ {1, 2, . . . , N2 },∥∥∥∥∥∥
l−1∑
j=0

ϵ̃jdj

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
l−1∑
j=0

ϵ̃j
dj

maxj∈{0,1,...,l−1} ∥dj∥2

∥∥∥∥∥∥
∞

· max
j∈{0,1,...,l−1}

∥dj∥2

≤ C max
j∈{0,1,...,l−1}

∥dj∥2 ≤ 2Ca,
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where the last inequality is because for any j ∈ {0, 1, . . . N2 − 1},

∥dj∥2 =
∥∥zπ(2j) − zπ(2j+1)

∥∥
2
≤
∥∥zπ(2j)∥∥2 + ∥∥zπ(2j+1)

∥∥
2
≤ 2a .

We define xl and yl for l ∈ {1, 2, . . . , N2 },

xl =

l−1∑
j=0

(
zπ(2j) + zπ(2j+1)

)
=

2l−1∑
i=0

zπ(i),

yl =

l−1∑
j=0

(
ϵ2jzπ(2j) + ϵ2j+1zπ(2j+1)

)
=

l−1∑
j=0

(
ϵ̃jzπ(2j) − ϵ̃jzπ(2j+1)

)
=

l−1∑
j=0

ϵ̃jdj .

Let M+ = {i ∈ {0, 1, . . . , N − 1} | ϵi = +1} and M− = {i ∈ {0, 1, . . . , N − 1} | ϵi = −1}.
Then, for all l ∈ {1, 2, . . . , N2 }, it follows that

∑
i∈M+∩{0,1,...,2l−1}

zπ(i) =
1

2

l−1∑
j=0

(
(1 + ϵ̃j)zπ(2j) + (1− ϵ̃j)zπ(2j+1)

)
=

1

2
xl +

1

2
yl,

∑
i∈M−∩{0,1,...,2l−1}

zπ(i) =
1

2

l−1∑
j=0

(
(1− ϵ̃j)zπ(2j) + (1 + ϵ̃j)zπ(2j+1)

)
=

1

2
xl −

1

2
yl.

By using the triangle inequality, for all l ∈ {1, 2, . . . , N2 }, we obtain∥∥∥∥∥∥
∑

i∈M+∩{0,1,...,2l−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2
∥xl∥∞ +

1

2
∥yl∥∞

=
1

2

∥∥∥∥∥
2l−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2

∥∥∥∥∥∥
l−1∑
j=0

ϵ̃j · dj

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥
2l−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca ,∥∥∥∥∥∥
∑

i∈M−∩{0,1,...,2l−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥
2l−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca .

Next, we consider the upper bound of
∥∥∥∑l′−1

i=0 zπ′(i)

∥∥∥
∞

for all l′ ∈ {1, 2, . . . , N}. Recall that
Algorithm 4 puts the vectors with positive assigned signs in the front of the new permutation and
the vectors with negative assigned signs in the back of the new permutation.

If l′ ∈ {1, 2, . . . , N2 }, we obtain∥∥∥∥∥∥
l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑

i∈M+∩{0,1,...,2l′−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥∥
2l′−1∑
i=0

zπ(i)

∥∥∥∥∥∥
∞

+ Ca.

Note that if l′ ∈ {1, 2, . . . , N2 }, then 2l′ ∈ {2, 4, . . . , N}. Thus, we obtain∥∥∥∥∥∥
l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca.
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If l′ ∈ {N2 + 1, N2 + 2, . . . , N}, we obtain∥∥∥∥∥∥
l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

zπ′(i) −
N−1∑
i=l′

zπ′(i)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥
N−1∑
i=l′

zπ′(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥∥
∑

i∈M−∩{0,1,...,2(N−l′)−1}

zπ(i)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zi

∥∥∥∥∥
∞

+
1

2

∥∥∥∥∥∥
2(N−l′)−1∑

i=0

zπ(i)

∥∥∥∥∥∥
∞

+
1

2

∥∥∥∥∥∥
(N−l′)−1∑

j=0

ϵ̃j · dj

∥∥∥∥∥∥
∞

.

Note that if l′ ∈ {N2 + 1, N2 + 2, . . . , N}, then (N − l′) ∈ {0, 1, . . . , N2 − 1} and 2(N − l′) ∈
{0, 2, . . . , N − 2}. Thus,∥∥∥∥∥∥

l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zi

∥∥∥∥∥
∞

+
1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca .

Thus, combining the two cases and using
∥∥∥∑N−1

i=0 zi

∥∥∥
∞
≤ b, we obtain

max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca+ b ,

which is the claimed bound.

Lemma 5. Let π, {zπ(n)}N−1
n=0 and 1

N

∑N−1
n=0 zπ(n) be the inputs of Algorithm 6, and π′ be the

corresponding output. Suppose that N mod S = 0 and S mod 2 = 0. If ∥zn∥2 ≤ a for all

n ∈ {0, 1, . . . , N − 1} and
∥∥∥∑N−1

i=0 zi

∥∥∥
∞
≤ b, then, with probability at least 1− δ,

max
m∈{S,2S,...,N}

∥∥∥∥∥
m−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

≤ 1

2
max

m∈{S,2S,...,N}

∥∥∥∥∥
m−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca+ b ,

where C = 30 log(dN2δ ) = O
(
log
(
dN
δ

))
= Õ(1) is from Alweiss et al. [2021, Theorem 1.1].

Proof. This lemma is first introduced in this paper and tailored to FL-GraB.

We use ϵ̃j to denote the assigned sign of dj = zπ(2j) − zπ(2j+1) for all j ∈ {0, 1, . . . N2 − 1}; we

use ϵi to denote the assigned sign of zπ(i) for all i ∈ {0, 1, . . . , N − 1}. Since {dj}
N
2 −1
j=0 is the input

of Algorithm 3, according to Alweiss et al. [2021]’s Theorem 1.1, for all l ∈ {1, 2, . . . , N2 },∥∥∥∥∥∥
l−1∑
j=0

ϵ̃jdj

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
l−1∑
j=0

ϵ̃j
dj

maxj∈{0,1,...,l−1} ∥dj∥2

∥∥∥∥∥∥
∞

· max
j∈{0,1,...,l−1}

∥dj∥2

≤ C max
j∈{0,1,...,l−1}

∥dj∥2 ≤ 2Ca .

where the last inequality is because for any j ∈ {0, 1, . . . N2 − 1},

∥dj∥2 =
∥∥zπ(2j) − zπ(2j+1)

∥∥
2
≤
∥∥zπ(2j)∥∥2 + ∥∥zπ(2j+1)

∥∥
2
≤ 2a .
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We define xl and yl for l ∈ {1, 2, . . . , N2 },

xl =

l−1∑
j=0

(
zπ(2j) + zπ(2j+1)

)
=

2l−1∑
i=0

zπ(i) ,

yl =

l−1∑
j=0

(
ϵ2jzπ(2j) + ϵ2j+1zπ(2j+1)

)
=

l−1∑
j=0

(
ϵ̃jzπ(2j) − ϵ̃jzπ(2j+1)

)
=

l−1∑
j=0

ϵ̃jdj .

Let M+ = {i ∈ {0, 1, . . . , N − 1} | ϵi = +1} and M− = {i ∈ {0, 1, . . . , N − 1} | ϵi = −1}.
Then, for all l ∈ {1, 2, . . . , N2 }, it follows that

∑
i∈M+∩{0,1,...,2l−1}

zπ(i) =
1

2

l−1∑
j=0

(
(1 + ϵ̃j)zπ(2j) + (1− ϵ̃j)zπ(2j+1)

)
=

1

2
xl +

1

2
yl ,

∑
i∈M−∩{0,1,...,2l−1}

zπ(i) =
1

2

l−1∑
j=0

(
(1− ϵ̃j)zπ(2j) + (1 + ϵ̃j)zπ(2j+1)

)
=

1

2
xl −

1

2
yl .

By using the triangle inequality, for all l ∈ {1, 2, . . . , N2 }, we obtain

∥∥∥∥∥∥
∑

i∈M+∩{0,1,...,2l−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2
∥xl∥∞ +

1

2
∥yl∥∞

=
1

2

∥∥∥∥∥
2l−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2

∥∥∥∥∥∥
l−1∑
j=0

ϵ̃j · dj

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥
2l−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca ,∥∥∥∥∥∥
∑

i∈M−∩{0,1,...,2l−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥
2l−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca .

Next, we consider the upper bound of
∥∥∥∑l′−1

i=0 zπ′(i)

∥∥∥
∞

for all l′ ∈ { 12S, S,
3
2S, . . . ,

N
S · S}.

If l′ ≤ N
S ·

1
2S, or equivalently, l′ ∈ { 12S, S,

3
2S, . . . ,

N
S ·

1
2S} ⊆ {1, 2, . . . ,

N
2 }, then we obtain

∥∥∥∥∥∥
l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑

i∈M+∩{0,1,...,2l′−1}

zπ(i)

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥∥
2l′−1∑
i=0

zπ(i)

∥∥∥∥∥∥
∞

+ Ca .

Then, note that if l′ ∈ { 12S, S,
3
2S, . . . ,

N
S ·

1
2S}, which implies that 2l′ ∈ {S, 2S, 3S, . . . , N}, then

∥∥∥∥∥∥
l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

≤ 1

2
max

m∈{S,2S,3S,...,N}

∥∥∥∥∥
m−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca .
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If l′ > N
S ·

1
2S, or equivalently, l′ ∈ {

(
N
S + 1

)
S
2 ,
(
N
S + 2

)
S
2 , . . . , N}, then we obtain∥∥∥∥∥∥

l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

zπ′(i) −
N−1∑
i=l′

zπ′(i)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥
N−1∑
i=l′

zπ′(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥∥
∑

i∈M−∩{0,1,...,2(N−l′)−1}

zπ(i)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

+
1

2

∥∥∥∥∥∥
2(N−l′)−1∑

i=0

zπ(i)

∥∥∥∥∥∥
∞

+
1

2

∥∥∥∥∥∥
(N−l′)−1∑

j=0

ϵ̃jdj

∥∥∥∥∥∥
∞

.

Note that if l′ ∈ {
(
N
S + 1

)
S
2 ,
(
N
S + 2

)
S
2 , . . . , N}, then (N − l′) ∈ {0, S2 , S, . . . ,

(
N
S − 1

)
S
2 } and

2(N − l′) ∈ {0, S, 2S, . . . , N − S}. Thus, we obtain∥∥∥∥∥∥
l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥
N−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2
max

m∈{S,2S,3S,...,N−S}

∥∥∥∥∥
m−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca

≤

∥∥∥∥∥
N−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+
1

2
max

m∈{S,2S,3S,...,N}

∥∥∥∥∥
m−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca .

The bounds for these two cases hold for all l′ ∈ { 12S, S,
3
2S, . . . ,

N
S · S}, which means that

max
l′∈{ 1

2S,S,
3
2S,...,

N
S ·S}

∥∥∥∥∥∥
l′−1∑
i=0

zπ′(i)

∥∥∥∥∥∥
∞

≤ 1

2
max

m∈{S,2S,3S,...,N}

∥∥∥∥∥
m−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥
N−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca .

Since {S, 2S, 3S, . . . , NS · S} ⊆ {
1
2S, S,

3
2S, . . . ,

N
S · S}, then

max
m∈{S,2S,3S,...,N}

∥∥∥∥∥
m−1∑
i=0

zπ′(i)

∥∥∥∥∥
∞

≤ 1

2
max

m∈{S,2S,3S,...,N}

∥∥∥∥∥
m−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+

∥∥∥∥∥
N−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

+ Ca .

Using
∥∥∥∑N−1

i=0 zi

∥∥∥
∞
≤ b, we obtain the claimed bound.

E Theorem 1

E.1 Proof of Theorem 1
We define the maximum parameter deviation (drift) in any epoch q, ∆q as

∆q = max
n∈[N ]

∥∥xn
q − x0

q

∥∥
p
.

Lemma 6. If γLpN ≤ 1
32 , the maximum parameter drift is bounded:

∆q ≤
32

31
γϕ̄q +

32

31
γN ∥∇f(xq)∥ ,

(∆q)
2 ≤ 3γ2

(
ϕ̄q
)2

+ 3γ2N2 ∥∇f(xq)∥2 .
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Proof. For any n ∈ [N ], it follows that∥∥xn
q − x0

q

∥∥
p

= γ

∥∥∥∥∥
n−1∑
i=0

∇fπq(i)(x
i
q)

∥∥∥∥∥
p

= γ

∥∥∥∥∥
n−1∑
i=0

(
∇fπ(i)(xi

q)−∇fπ(i)(x0
q) +∇fπq(i)(x

0
q)−∇f(x0

q) +∇f(x0
q)
)∥∥∥∥∥

p

≤ γ

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(x

i
q)−∇fπq(i)(x

0
q)
)∥∥∥∥∥

p

+ γ

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(x

0
q)−∇f(x0

q)
)∥∥∥∥∥

p

+ γ

∥∥∥∥∥
n−1∑
i=0

∇f(x0
q)

∥∥∥∥∥
p

≤ γLp

n−1∑
i=0

∥∥xi
q − x0

q

∥∥
p
+ γϕn + γn

∥∥∇f(x0
q)
∥∥
p

≤ γLpN∆q + γϕ̄+ γN
∥∥∇f(x0

q)
∥∥
p
.

Note that this bound holds for any n ∈ [N ]. This means
∆q ≤ γLpN∆q + γϕ̄q + γN ∥∇f(xq)∥p .

Then, using γLpN ≤ 1
32 , we have

∆q ≤
32

31
γϕ̄q +

32

31
γN ∥∇f(xq)∥p ,

(∆q)
2 ≤ 3γ2

(
ϕ̄q
)2

+ 3γ2N2 ∥∇f(xq)∥2p .
At last, using ∥x∥p ≤ ∥x∥ for x ∈ Rd and p ≥ 2, we obtain the claim of this lemma.

Proof of Theorem 1. For permutation-based SGD, the cumulative updates over any epoch q are

xq+1 − xq = −γ
N−1∑
n=0

∇fπq(n)(x
n
q ). (8)

Since the global objective function f is L-smooth, it follows that

f(xq+1) ≤ f(xq) + ⟨∇f(xq),xq+1 − xq⟩+
1

2
L ∥xq+1 − xq∥2 . (9)

Using Equation (8), we obtain
⟨∇f(xq),xq+1 − xq⟩

= −γN

〈
∇f(xq),

1

N

N−1∑
n=0

∇fπ(n)(xn
q )

〉

= −1

2
γN ∥∇f(xq)∥2 −

1

2
γN

∥∥∥∥∥ 1

N

N−1∑
n=0

∇fπq(n)(x
n
q )

∥∥∥∥∥
2

+
1

2
γN

∥∥∥∥∥ 1

N

N−1∑
n=0

∇fπq(n)(x
n
q )−∇f(xq)

∥∥∥∥∥
2

,

where the second equality uses 2⟨x,y⟩ = ∥x∥2 + ∥y∥2−∥x− y∥2. Using Equation (8), we obtain

1

2
L ∥xq+1 − xq∥2 =

1

2
γ2LN2

∥∥∥∥∥ 1

N

N−1∑
n=0

∇fπq(n)(x
n
q )

∥∥∥∥∥
2

.

Plugging back the preceding two inequalities into Equation (9), we obtain

f(xq+1) ≤ f(xq) + ⟨∇f(xq),xq+1 − xq⟩+
1

2
L ∥xq+1 − xq∥2

≤ f(xq)−
1

2
γN ∥∇f(xq)∥2 −

1

2
γN(1− γLN)E

∥∥∥∥∥ 1

N

N−1∑
n=0

∇fπq(n)(x
n
q )

∥∥∥∥∥
2

+
1

2
γN

∥∥∥∥∥ 1

N

N−1∑
n=0

∇fπq(n)(x
n
q )−∇f(xq)

∥∥∥∥∥
2

.
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Since γLN ≤ 1, we obtain

f(xq+1) ≤ f(xq)−
1

2
γN ∥∇f(xq)∥2 +

1

2
γN

∥∥∥∥∥ 1

N

N−1∑
n=0

∇fπq(n)(x
n
q )−∇f(xq)

∥∥∥∥∥
2

. (10)

Since each local objective function fn is L2,p-smooth, we have

T3 in (10) =
1

2
γN

∥∥∥∥∥ 1

N

N−1∑
n=0

∇fπq(n)(x
n
q )−∇f(xq)

∥∥∥∥∥
2

=
1

2
γN

∥∥∥∥∥ 1

N

N−1∑
n=0

(
∇fπq(n)(x

n
q )−∇fπq(n)(xq)

)∥∥∥∥∥
2

≤ 1

2
γL2

2,p

N−1∑
n=0

∥∥xn
q − xq

∥∥2
p
.

Plugging the preceding inequality back into Equation (10), we obtain

f(xq+1) ≤ f(xq)−
1

2
γN ∥∇f(xq)∥2 +

1

2
γL2

2,p

N−1∑
n=0

∥∥xn
q − xq

∥∥2
p

≤ f(xq)−
1

2
γN ∥∇f(xq)∥2 +

1

2
γL2

2,pN (∆q)
2

≤ f(xq)−
1

2
γN ∥∇f(xq)∥2 +

1

2
γL2

2,pN
(
3γ2

(
ϕ̄q
)2

+ 3γ2N2 ∥∇f(xq)∥2
)

≤ f(xq)−
1

2
γN

(
1− 3γ2L2

2,pN
2
)
∥∇f(xq)∥2 +

3

2
γ3L2

2,pN
(
ϕ̄q
)2

≤ f(xq)−
255

512
γN ∥∇f(xq)∥2 + 2γ3L2

2,pN
(
ϕ̄q
)2
, (11)

where the third inequality uses Lemma 6 and the last inequality uses γL2,pN ≤ 1
32 . Then,

f(xq+1)− f(xq) ≤ −
255

512
γN ∥∇f(xq)∥2 + 2γ3L2

2,pN
(
ϕ̄q
)2

Average both sides over q ∈ {0, 1, . . . , Q− 1}, we obtain

f(xQ)− f(x0)

γNQ
≤ −255

512

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 + 2γ2L2
2,p

1

Q

Q−1∑
q=0

(
ϕ̄q
)2
. (12)

Since (
ϕ̄q
)2 ≤ A1

(
ϕ̄q−1

)2
+A2

(
ϕ̄q−2

)2
+ · · ·+Aν

(
ϕ̄q−ν

)2
+B0 ∥∇f(xq)∥2 +B1 ∥∇f(xq−1)∥2 + · · ·+Bν ∥∇f(xq−ν)∥2 +D,

we obtain

1

Q

Q−1∑
q=0

(
ϕ̄q
)2 ≤ 1

(1−
∑ν

i=1Ai)

1

Q

ν−1∑
i=0

(
ϕ̄i
)2

+
(
∑ν

i=0Bi)

(1−
∑ν

i=1Ai)

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 +
1

(1−
∑ν

i=1Ai)
D. (13)

For
(
ϕ̄i
)2

(0 ≤ i ≤ ν − 1), we have

(
ϕ̄i
)2 ≤ B̃ ∥∇f(xi)∥2 + D̃ =⇒

ν−1∑
i=0

(
ϕ̄i
)2 ≤ B̃ Q−1∑

q=0

∥∇f(xq)∥2 + νD̃. (14)
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Plugging Equation (14) into Equation (13), and the resulting inequality into Equation (12), and then
using the condition

γ ≤ min

{
1

4
·
√
1−

∑ν
i=1Ai

L2,p

√∑ν
i=0Bi

,
1

4
·
√
1−

∑ν
i=1Ai

L2,p

√
B̃

}
,

we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 ≤ 5 · f(x0)− f(xQ)

γNQ
+ c · γ2L2

2,p

1

Q
νD̃ + c · γ2L2

2,pD,

where c = 10

(1−
∑ν

i=1 Ai)
. Using f(x0)− f(xQ) ≤ f(x0)− f∗ = F0, we obtain the claimed bound.

At last, we summarize the constraints on the step size γ:

γ ≤ min

{
1

4
·
√
1−

∑ν
i=1Ai

L2,p

√∑ν
i=0Bi

,
1

4
·
√

1−
∑ν

i=1Ai

L2,p

√
B̃

}
,

γLN ≤ 1,

γL2,pN ≤
1

32
,

γLpN ≤
1

32
,

where the last one is from Lemma 6. For simplicity, we use a tighter constraint

γ ≤ min

{
1

LN
,

1

32L2,pN
,

√
1−

∑ν
i=1Ai

4L2,p

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,p

√
B̃

,
1

32LpN

}
.

F Special Cases in SGD
As shown in Theorem 1, the constraint of γ relies on the choices of all Ai and Bi (for i ∈
{1, 2, . . . , ν}). For clarity, we summarize the constraints of the existing permutation-based SGD
algorithms in Table 7. It can be seen that the choices of Ai and Bi do not impose stronger con-
straints than the existing works [Lu et al., 2022b,a; Cooper et al., 2023; Koloskova et al., 2024].

Table 7: Specific choices of Ai, Bi and D for different algorithms. The coefficients not explicitly
specified equal 0. The numerical constants and polylogarithmic factors of Bi and D are omitted.

Algorithm B0 A1 B1 A2 B2 D γ

AP N2α2 0 0 0 0 N2ς2 γ ≲ 1
LN(1+α)

RR/FlipFlop N2α2 0 0 0 0 Nς2 γ ≲ 1
LN(1+α/

√
N)

GraB-proto 0 3
4

(1) N2 + α2 0 0 ς2 γ ≲ min{ 1
LN ,

1
L2,∞N(1+α) ,

1
L∞N }

GraB 0 3
5

(1) N2 + α2 1
50

(1) N2 ς2 γ ≲ min{ 1
LN ,

1
L2,∞N(1+α) ,

1
L∞N }

PairGraB 0 4
5

(1) N2 + α2 0 0 ς2 γ ≲ min{ 1
LN ,

1
L2,∞N(1+α) ,

1
L∞N }

1 Ai may take other values as long as
∑ν

i=1 Ai < 1 for GraBs.

F.1 Arbitrary Permutation (AP)
Proposition 2 (AP). Suppose that Assumption 3 holds. Then, we can obtain that, for q ≥ 0,(

ϕ̄q
)2 ≤ N2 ∥∇f(xq)∥2 +N2ς2.

Applying Theorem 1 and tuning the step size, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
LF0

Q
+

(
LF0ς

Q

) 2
3

)
.
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Proof. For any q, it follows that

(
ϕ̄q
)2

= max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥
2

≤ max
n∈[N ]

{
n

n−1∑
i=0

∥∥∇fπq(i)(xq)−∇f(xq)
∥∥2}

≤ max
n∈[N ]

{
n2G2

q

}
≤ N2α2 ∥∇f(xq)∥2 +N2ς2.

In this example, for Theorem 1, p = 2, ν = 0, B0 = N2α2, D = N2ς2 and c = 10. These lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γNQ
+ γ2L2N2ς2

)
.

Next, we summarize the constraints:

γ ≤ min

{
1

LN
,

1

32L2,pN
,

√
1−

∑ν
i=1Ai

4L2,p

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,p

√
B̃

,
1

32LpN

}
.

It is from Theorem 1. For simplicity, we can use a tighter constraint

γ ≤ 1

32LN (1 + α)
.

After we use the effective step size γ̃ := γN , the constraint becomes

γ̃ ≤ 1

32L (1 + α)
,

and the upper bound becomes

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(
F0

γ̃Q
+ γ̃2L2ς2

)
.

Applying Lemma 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
LF0 (1 + α)

Q
+

(
LF0Nς

NQ

) 2
3

)
.

F.2 Random Reshuffling (RR)
Proposition 3 (RR). Suppose that Assumption 3 holds. Then, we obtain that, for q ≥ 0, with
probability at least 1− δ,(

ϕ̄q
)2 ≤ 4 log2

(
8

δ

)(
Nα2 ∥∇f(xq)∥2 +Nς2

)
.

Applying Theorem 1 and tuning the step size, we obtain that, with probability at least 1−Qδ,

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ

LF0

(
1 + α√

N

)
Q

+

(
LF0

√
Nς

NQ

) 2
3

 .

Proof. Since the permutations {πq} are independent across different epochs, for any q, when con-
ditional on xq , we obtain that, with probability at least 1− δ,

(
ϕ̄q
)2

= max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥
2

≤ NCα2 ∥∇f(xq)∥2 +NCς2, (15)
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where C = 4 log2
(
8
δ

)
and the last inequality uses Yu and Li [2023]’s Proposition 2.3.

In this example, for Theorem 1, p = 2, ν = 0, B0 = NCα2, D = NCς2 and c = 10. These lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γNQ
+ γ2L2NCς2

)
,

Equation (15) is used for each epoch (that is, for Q times), so by the union bound, the preceding
bound holds with probability at least 1−Qδ. Next, we summarize the constraints:

γ ≤ min

{
1

LN
,

1

32L2,pN
,

√
1−

∑ν
i=1Ai

4L2,p

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,p

√
B̃

,
1

32LpN

}
.

It is from Theorem 1. For simplicity, we can use a tighter constraint

γ ≤ 1

32L
(
N +

√
NCα

) .
After we use the effective step size γ̃ := γN , the constrain becomes

γ̃ ≤ 1

32L
(
1 +

√
C
N α
) ,

and the upper bound becomes

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(
F0

γ̃Q
+ γ̃2L2 1

N
ς2
)
.

Applying Lemma 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ

LF0

(
1 + α√

N

)
Q

+

(
LF0

√
Nς

NQ

) 2
3

 .

F.3 FlipFlop
Introduction of FlipFlop. The permutation in each even epoch (q = 0, 2, . . .) is generated randomly
and independently; the permutation in each odd epoch (q = 1, 3, . . .) is the reversed version of the
previous epoch’s permutation. Take N = 3 as an example: If π0 = (0, 1, 2), then π1 = (2, 1, 0).

FlipFlop belongs to IP. We regard each even epoch and its succeeding odd epoch as a meta epoch.
Accordingly, we regard the permutation in such a meta epoch as the meta permutation (denoted as
σ). For example, if the original permutations are π0 = (0, 1, 2) and π1 = (2, 1, 0), then the meta
permutation is σ0 = (π0, π1) = (π0, reverse(π0)) = (0, 1, 2, 2, 1, 0). Now, we see that the meta
permutations are independent. Thus, it should be seen as a variant of IP.

Analysis of FlipFlop. Since the length of each meta permutation is 2N and the meta permutations
are independent, we define the order error of each meta epoch m (m = 0, 1, . . . , Q2 − 1) as ψ̄m :=

maxn∈[2N ]

{
∥
∑n−1

i=0 (∇fσm(i)(x2m)−∇f(x2m))∥
}

to distinguish it from the original order error

ϕ̄q . As shown in Proposition 4, FlipFlop achieves the same convergence rate as RR. This is aligned
with the conclusion of Chae et al. [2024], and the observation of Lu et al. [2022a].

Proposition 4 (FlipFlop). For FlipFlop, we assume thatQ mod 2 = 0. Suppose that Assumption 3
holds. Then, we can obtain that, for m = 0, 1, . . . , Q2 − 1, with probability at least 1− δ,(

ψ̄m

)2 ≤ 4 log2
(
8

δ

)(
N ∥∇f(x2m)∥2 +Nς2

)
.

Applying Theorem 1 and tuning the step size, we obtain that, with probability at least 1− (Qδ)/2,

1

Q/2

Q/2−1∑
m=0

∥∇f(x2m)∥2 = Õ

LF0

(
1 + α√

N

)
Q

+

(
LF0

√
Nς

NQ

) 2
3

 .
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Proof. FlipFlop is one variant of IP. For clarity, we define the order error of each meta epoch m as

ψ̄m := max
n∈[2N ]

{
ψn
m :=

∥∥∥∥∥
n−1∑
i=0

(∇fσm(i)(x2m)−∇f(x2m))

∥∥∥∥∥
}
,

where σm is the meta permutation σm = (π2m, π2m+1) = (π2m, reverse(π2m)). Since the meta
permutations are independent, we next deal with each ψ̄m separately, and thus drop the subscripts
m. For each 1 ≤ n ≤ N ,

(ψn)2 =

∥∥∥∥∥
n−1∑
i=0

(
∇fσ(i)(x)−∇f(x)

)∥∥∥∥∥
2

=

∥∥∥∥∥
n−1∑
i=0

(
∇fπ(i)(x)−∇f(x)

)∥∥∥∥∥
2

≤ NCα2 ∥∇f(x)∥2 +NCς2,

where C = 4 log2
(
8
δ

)
and the last inequality uses Yu and Li [2023]’s Proposition 2.3. Similar to

Chae et al. [2024, Lemma E.5], we obtain that, for each N + 1 ≤ n ≤ 2N ,

(ψn)
2
=

∥∥∥∥∥
n−1∑
i=0

(
∇fσ(i)(x)−∇f(x)

)∥∥∥∥∥
2

=

∥∥∥∥∥
2N−1∑
i=0

(
∇fσ(i)(x)−∇f(x)

)
−

n−1∑
i=0

(
∇fσ(i)(x)−∇f(x)

)∥∥∥∥∥
2

=

∥∥∥∥∥
2N−1∑
i=n

(
∇fσ(i)(x)−∇f(x)

)∥∥∥∥∥
2

=

∥∥∥∥∥∥
(2N−n)−1∑

i=0

(
∇fπ(i)(x)−∇f(x)

)∥∥∥∥∥∥
2

≤ NCα2 ∥∇f(x)∥2 +NCς2.

This implies that ψ̄m ≤ NCς2 +NCα2 ∥∇f(x2m)∥2 for each meta epoch m. Following the same
steps as those of RR in Appendix F.2, we obtain

1

Q/2

Q/2−1∑
m=0

∥∇f(x2m)∥2 = Õ

LF0

(
1 + α√

N

)
Q

+

(
LF0

√
Nς

NQ

) 2
3

 ,

which shows the sames rate as that of RR.

F.4 One Permutation (OP)
OP, the simplest DP algorithm, is one persistent topic due to its simple implementation. However, as
shown in the prior works [Mishchenko et al., 2020; Koloskova et al., 2024], for non-convex objective
functions, its convergence rate is no better than AP. In this section, we show that our framework can
still help analyze the convergence of OP.

As done in the prior works, we can use the bound of AP as the bound of OP. However, this general
bound (for AP) cannot catch the key characteristic of OP that the initial permutation is reused for
the subsequent epochs. To further explore the potential of OP, we have the following analysis.

In OP, the key characteristic is that the initial permutation is reused for the subsequent epochs. To
fully use this characteristic, we try to establish the relation between ϕ̄q and ϕ̄0. Specifically, for all
q ≥ 1 and n ∈ [N ] (here, p ≥ 2),

ϕnq ≤ 2LN ∥xq − x0∥p +

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(x0)−∇f(x0)

)∥∥∥∥∥
p

≤ 2LN ∥xq − x0∥p + ϕ̄0,
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where the last inequality is due to πq = π0 for all q ≥ 1. Under the standard settings, to bound the
term ∥xq − x0∥p, the step size γ needs to be made very small (that is, γ ≲ 1

LNQ ), causing a very
slow convergence. Therefore, to use the dependence property of OP, we need additional assumptions
to bound ∥xq − x0∥p. Further research is left for future work.

F.5 GraB-proto
GraB-proto: Use BasicBR (Algorithm 5) as the Permute function in Algorithm 1, with the inputs
of πq , {∇fπq(n)(xq)}N−1

n=0 and ∇f(xq), for each epoch q.

Thus, the key idea of our proof is as follows:

ϕ̄q+1 → max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

Lemma 3→ ϕ̄q.

Proof of Proposition 1. We need to find the relation between ϕ̄q and ϕ̄q−1 for q ≥ 1. For any
n ∈ [N ],

ϕnq+1 =

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq+1)−∇f(xq+1)

)∥∥∥∥∥
∞

≤

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq+1)−∇fπq+1(i)(xq)

)∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(∇f(xq+1)−∇f(xq))

∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

≤
n−1∑
i=0

∥∥∇fπq+1(i)(xq+1)−∇fπq+1(i)(xq)
∥∥
∞ +

n−1∑
i=0

∥∇f(xq+1)−∇f(xq)∥∞

+

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

≤ 2L∞n ∥xq+1 − xq∥∞ +

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

.

Since the above inequality holds for all n ∈ [N ], we have

ϕ̄q+1 ≤ 2L∞N ∥xq+1 − xq∥∞ + max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

.

Note that ∇fπq(i)(xq) − ∇f(xq) and ∇fπq+1(i)(xq) − ∇f(xq) correspond to zπ(i) and zπ′(i) in
Lemma 3, respectively. In GraB-proto, since

∥∇fi(xq)− f(xq)∥ ≤ Gq, ∀i ∈ {0, 1, . . . , N − 1},∥∥∥∥∥
N−1∑
i=0

(∇fi(xq)− f(xq))

∥∥∥∥∥
∞

= 0,

we apply Lemma 3 with a = ς and b = 0, and obtain

max
n∈[N ]

∥∥∥∥∥
N−1∑
i=0

(
∇fπq+1(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

≤ 1

2
max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

+
1

2
CGq

=
1

2
ϕ̄q +

1

2
CGq.
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Using Lemma 6 that ∆q ≤ 32
31γϕ̄q +

32
31γN ∥∇f(xq)∥, we obtain

ϕ̄q+1 ≤ 2L∞N ∥xq+1 − xq∥∞ + max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

≤ 2L∞N

(
32

31
γϕ̄q +

32

31
γN ∥∇f(xq)∥

)
+

(
1

2
ϕ̄q +

1

2
CGq

)
≤ 35

62
ϕ̄q +

2

31
N ∥∇f(xq)∥+

1

2
CGq,

where the last inequality uses γL∞N ≤ 1
32 . Next, we obtain(

ϕ̄q+1

)2 ≤ 3

4

(
ϕ̄q
)2

+

(
1

50
N2 + C2α2

)
∥∇f(xq)∥2 + C2ς2.

As a result, the relation between ϕ̄q and ϕ̄q−1 is(
ϕ̄q
)2 ≤ 3

4

(
ϕ̄q−1

)2
+

(
1

50
N2 + C2α2

)
∥∇f(xq−1)∥2 + C2ς2, (16)

for q ≥ 1. Besides, we need to obtain the bound of
(
ϕ̄0
)2

:

(
ϕ̄0
)2

= max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπ0(i)(x0)−∇f(x0)

)∥∥∥∥∥
2

≤ N2α2 ∥∇f(x0)∥2 +N2ς2.

In this example, for Theorem 1, p =∞, ν = 1, A1 = 3
4 , B0 = 0, B1 = 1

50N
2 +C2α2, D = C2ς2,

B̃ = N2α2 and D̃ = N2ς2, and c = 40. These lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γNQ
+ γ2L2

2,∞N
2 1

Q
ς2 + γ2L2

2,∞C
2ς2
)
.

where F0 = f(x0) − f∗. Lemma 3 is used for each epoch (that is, for Q times), so by the union
bound, the preceding bound holds with probability at least 1−Qδ.

Next, we summarize the constraints on the step size:

γ ≤ min

{
1

LN
,

1

32L2,pN
,

√
1−

∑ν
i=1Ai

4L2,p

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,p

√
B̃

,
1

32LpN

}
,

γ ≤ 1

32L∞N
,

where the first one is from Theorem 1 and the other is from the derivation of the relation. For
simplicity, we can use a tighter constraint

γ ≤ min

{
1

LN
,

1

32L2,∞N(1 + α)
,

1

32L∞N

}
.

After we use the effective step size γ̃ := γN , the constraint will be

γ̃ ≤ min

{
1

L
,

1

32L2,∞ (1 + α)
,

1

32L∞

}
,

and the upper bound will be

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(
F0

γ̃Q
+ γ̃2L2

2,∞
1

Q
ς2 + γ̃2L2

2,∞
1

N2
C2ς2

)
.

Applying Lemma 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
(L+ L2,∞ (1 + α) + L∞)F0

Q
+

(L2,∞F0ς)
2
3

Q
+

(
L2,∞F0Cς

NQ

) 2
3

)
.
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F.6 PairGraB-proto
Proposition 5 (PairGraB-proto). Suppose that Assumption 3 holds. If each fn is L∞-smooth and
γ ≤ 1

32L∞N , we obtain that, for q = 0,
(
ϕ̄0
)2 ≤ N2α2 ∥∇f(x0)∥2 + N2ς2, and for q ≥ 1, with

probability at least 1− δ,(
ϕ̄q
)2 ≤ 3

4

(
ϕ̄q−1

)2
+

(
1

50
N2 + 4C2α2

)
∥∇f(xq−1)∥2 + 4C2ς2,

where C = O
(
log
(
dN
δ

))
= Õ (1). Applying Theorem 1 and tuning the step size, we obtain that,

with probability at least 1−Qδ,

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
L̃F0 + (L2,∞F0ς)

2
3

Q
+

(
L2,∞F0Cς

NQ

) 2
3

)
,

where L̃ = L+ L2,∞ (1 + α) + L∞.

PairGraB-proto. Use PairBR (Algorithm 6) as the Permute function in Algorithm 1, with the inputs
of πq , {∇fπq(n)(xq)}N−1

n=0 and ∇f(xq), for each epoch q.

Thus, the key idea of our proof is as follows:

ϕ̄q+1 → max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq)−∇f(xq)

)∥∥∥∥∥
∞

Lemma 4→ ϕ̄q.

Proof. The proof of Example 5 is almost identical to that of Example 1, except that Lemma 3
is replaced by Lemma 4. This difference only causes that some numerical constants are changed
accordingly.

F.7 GraB
Proposition 6 (GraB). Suppose that Assumption 3 holds. If each fn is L2,∞-smooth and
L∞-smooth and γ ≤ min{ 1

128L2,∞C ,
1

128L∞N }, we obtain that, for q = 0, 1,
(
ϕ̄q
)2 ≤

N2α2 ∥∇f(xq)∥2 +N2ς2, and for q ≥ 2, with probability at least 1− δ,(
ϕ̄q
)2 ≤ 3

5

(
ϕ̄q−1

)2
+

1

50

(
ϕ̄q−2

)2
+

(
1

50
N2 + 2C2α2

)
∥∇f(xq−1)∥2 +

1

50
N2 ∥∇f(xq−2)∥2 + 2C2ς2,

where C = O
(
log
(
dN
δ

))
= Õ (1). Applying Theorem 1 and tuning the step size, we obtain that,

with probability at least 1−Qδ,

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
L̃F0 + (L2,∞F0ς)

2
3

Q
+

(
L2,∞F0Cς

NQ

) 2
3

)
,

where L̃ = L+ L2,∞
(
1 + C

N + α
)
+ L∞.

GraB. Use BasicBR (Algorithm 5) as the Permute function in Algorithm 1, with the inputs of πq ,
{∇fπq(n)(x

n
q )}N−1

n=0 and 1
N

∑N−1
n=0 ∇fπq−1(n)(x

n
q−1), for each epoch q.

Thus, the key idea of our proof is as follows:

ϕ̄q+1 → max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)
− 1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)

)∥∥∥∥∥
∞

Lemma 3→ max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)

(
xi
q

)
− 1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)

)∥∥∥∥∥
∞

→ ϕ̄q .
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Proof. We need to find the relation between ϕ̄q+1 and ϕ̄q .

ϕnq+1 =

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq+1)−∇f(xq+1)

)∥∥∥∥∥
∞

≤

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq+1)−∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

))∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(
1

N

N−1∑
l=0

∇fπq+1(l)(xq+1)−
1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)

)∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)
− 1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)

)∥∥∥∥∥
∞

. (17)

Then,

T1 in (17) =

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq+1)−∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

))∥∥∥∥∥
∞

≤
n−1∑
i=0

∥∥∥∥∇fπq+1(i)(xq+1)−∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)∥∥∥∥
∞

≤ L∞

n−1∑
i=0

∥∥∥∥xq+1 − x
π−1
q (πq+1(i))

q

∥∥∥∥
∞

≤ L∞

n−1∑
i=0

(
∥xq+1 − xq∥∞ +

∥∥∥∥xq − x
π−1
q (πq+1(i))

q

∥∥∥∥
∞

)
≤ 2L∞N∆q,

T2 in (17) =

∥∥∥∥∥
n−1∑
i=0

(
1

N

N−1∑
l=0

∇fπq+1(l)(xq+1)−
1

N

N−1∑
l=0

∇fπq−1(l)

(
xl
q−1

))∥∥∥∥∥
∞

=

∥∥∥∥∥
n−1∑
i=0

(
1

N

N−1∑
l=0

∇fl (xq+1)−
1

N

N−1∑
l=0

∇fl
(
x
π−1
q−1(l)

q−1

))∥∥∥∥∥
∞

≤
n−1∑
i=0

1

N

N−1∑
l=0

∥∥∥∥∇fl(xq+1)−∇fl
(
x
π−1
q−1(l)

q−1

)∥∥∥∥
∞

≤ L∞

n−1∑
i=0

1

N

N−1∑
l=0

∥∥∥∥xq+1 − x
π−1
q−1(l)

q−1

∥∥∥∥
∞

≤ L∞

n−1∑
i=0

1

N

N−1∑
l=0

(
∥xq+1 − xq∥∞ + ∥xq − xq−1∥∞ +

∥∥∥∥xq−1 − x
π−1
q−1(l)

q−1

∥∥∥∥
∞

)
≤ L∞N∆q + 2L∞N∆q−1.

Since the preceding inequalities hold for all n ∈ [N ], we have

ϕ̄q+1 ≤ 3L∞N∆q + 2L∞N∆q−1

+ max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)
− 1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)

)∥∥∥∥∥
∞

. (18)

Note that ∇fπq(i)

(
xi
q

)
− 1

N

∑N−1
l=0 ∇fπq−1(l)(x

l
q−1) and ∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)
−

1
N

∑N−1
l=0 ∇fπq−1(l)(x

l
q−1) correspond to zπ(i) and zπ′(i) in Lemma 3, respectively. We next
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obtain the upper bounds of

∥∥zπ(i)∥∥2 ,
∥∥∥∥∥
N−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

and max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

,

and then apply Lemma 3 to the last term on the right hand side in Equation (18).

∥∥zπ(i)∥∥2
=

∥∥∥∥∥∇fπq(i)(x
i
q)−

1

N

N−1∑
l=0

∇fπq−1(l)

(
xl
q−1

)∥∥∥∥∥
2

=

∥∥∥∥∥
(
∇fπq(i)(x

i
q)−

1

N

N−1∑
l=0

∇fπq−1(l)

(
xl
q−1

))
±

(
∇fπq(i)(xq)−

1

N

N−1∑
l=0

∇fπq(l)(xq)

)∥∥∥∥∥
2

≤
∥∥∇fπq(i)(x

i
q)−∇fπq(i)(xq)

∥∥
2
+

∥∥∥∥∥ 1

N

N−1∑
l=0

∇fπq−1(l)

(
xl
q−1

)
− 1

N

N−1∑
l=0

∇fπq(l)(xq)

∥∥∥∥∥
2

+Gq

≤
∥∥∇fπq(i)(x

i
q)−∇fπq(i)(xq)

∥∥
2
+

∥∥∥∥∥ 1

N

N−1∑
l=0

∇fl
(
x
π−1
q−1(l)

q−1

)
− 1

N

N−1∑
l=0

∇fl(xq)

∥∥∥∥∥
2

+Gq

≤ L2,∞
∥∥xi

q − xq

∥∥
∞ +

1

N

N−1∑
l=0

L2,∞

∥∥∥∥xπ−1
q−1(l)

q−1 − xq

∥∥∥∥
∞

+Gq

≤ L2,∞
∥∥xi

q − xq

∥∥
∞ +

1

N

N−1∑
l=0

L2,∞

(∥∥∥∥xπ−1
q−1(l)

q−1 − xq−1

∥∥∥∥
∞

+ ∥xq−1 − xq∥∞

)
+Gq

≤ L2,∞∆q + 2L2,∞∆q−1 +Gq.

The preceding inequality holds for any i ∈ {0, 1, . . . , N − 1}.

∥∥∥∥∥
N−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

(
∇fπq(i)(x

i
q)−

1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)

)∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

∇fπq(i)(x
i
q)−

N−1∑
i=0

∇fπq−1(i)(x
i
q−1)

∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

∇fi
(
x
π−1
q (i)

q

)
−

N−1∑
i=0

∇fi
(
x
π−1
q−1(i)

q−1

)∥∥∥∥∥
∞

≤
N−1∑
i=0

∥∥∥∥∇fi(xπ−1
q (i)

q

)
−∇fi

(
x
π−1
q−1(i)

q−1

)∥∥∥∥
∞

≤ L∞

N−1∑
i=0

∥∥∥∥xπ−1
q (i)

q − x
π−1
q−1(i)

q−1

∥∥∥∥
∞

≤ L∞

N−1∑
i=0

(∥∥∥∥xπ−1
q (i)

q − xq

∥∥∥∥
∞

+ ∥xq − xq−1∥∞ +

∥∥∥∥xq−1 − x
π−1
q−1(i)

q−1

∥∥∥∥
∞

)
≤ L∞N∆q + 2L∞N∆q−1.
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For any n ∈ [N ], we have∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)

(
xi
q

)
− 1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)

)∥∥∥∥∥
∞

=

∥∥∥∥∥
n−1∑
i=0

((
∇fπq(i)

(
xi
q

)
− 1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)

)
±

(
∇fπq(i) (xq)−

1

N

N−1∑
l=0

∇fπq(l)(xq)

))∥∥∥∥∥
∞

≤

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(x

i
q)−∇fπq(i)(xq)

)∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(
1

N

N−1∑
l=0

∇fπq−1(l)(x
l
q−1)−

1

N

N−1∑
l=0

∇fπq(l)(xq)

)∥∥∥∥∥
∞

+ ϕ̄q

≤

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(x

i
q)−∇fπq(i)(xq)

)∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(
1

N

N−1∑
l=0

∇fl
(
x
π−1
q−1(l)

q−1

)
− 1

N

N−1∑
l=0

∇fl(xq)

)∥∥∥∥∥
∞

+ ϕ̄q

≤
n−1∑
i=0

∥∥∇fπq(i)(x
i
q)−∇fπq(i)(xq)

∥∥
∞ +

n−1∑
i=0

1

N

N−1∑
l=0

∥∥∥∥∇fl(xπ−1
q−1(l)

q−1

)
−∇fl(xq)

∥∥∥∥
∞

+ ϕ̄q

≤ L∞

n−1∑
i=0

∥∥xi
q − xq

∥∥
∞ + L∞

n−1∑
i=0

1

N

N−1∑
l=0

∥∥∥∥xπ−1
q−1(l)

q−1 − xq

∥∥∥∥
∞

+ ϕ̄q

≤ L∞

n−1∑
i=0

∥∥xi
q − xq

∥∥
∞ + L∞

n−1∑
i=0

1

N

N−1∑
l=0

(∥∥∥∥xπ−1
q−1(l)

q−1 − xq−1

∥∥∥∥
∞

+ ∥xq−1 − xq∥∞

)
+ ϕ̄q

≤ L∞N∆q + 2L∞N∆q−1 + ϕ̄q .

Since it holds for all n ∈ [N ], we have

max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

≤ L∞N∆q + 2L∞N∆q−1 + ϕ̄q .

Now, applying Lemma 3 to the last term on the right hand side in Equation (18), we obtain

ϕ̄q+1 ≤ (3L∞N∆q + 2L∞N∆q−1) +
1

2

(
L∞N∆q + 2L∞N∆q−1 + ϕ̄q

)
+ (L∞N∆q + 2L∞N∆q−1) +

1

2
C (L2,∞∆q + 2L2,∞∆q−1 +Gq)

≤
(
9

2
L∞N +

1

2
CL2,∞

)
∆q + (5L∞N + CL2,∞)∆q−1 +

1

2
ϕ̄q +

1

2
CGq

≤
(
9

2
L∞N +

1

2
CL2,∞

)(
32

31
γϕ̄q +

32

31
γN ∥∇f(xq)∥

)
+ (5L∞N + CL2,∞)

(
32

31
γϕ̄q−1 +

32

31
γN ∥∇f(xq−1)∥

)
+

1

2
ϕ̄q +

1

2
CGq,

where the last inequality uses Lemma 6. If γL∞N ≤ 1
128 and γL2,∞C ≤ 1

128 , then(
9
2γL∞N + 1

2γCL2,∞
)
· 3231 ≤

5
124 and (5γL∞N + CγL2,∞) · 3231 ≤

6
124 ; we obtain

ϕ̄q+1 ≤
67

124
ϕ̄q +

6

124
ϕ̄q−1 +

5

124
N ∥∇f(xq)∥ +

6

124
N ∥∇f(xq−1)∥ +

1

2
CGq.

Then, we obtain(
ϕ̄q+1

)2 ≤ 3

5

(
ϕ̄q
)2

+
1

50

(
ϕ̄q−1

)2
+

(
1

50
N2 + 2C2α2

)
∥∇f(xq)∥2 +

1

50
N2 ∥∇f(xq−1)∥2 + 2C2ς2.
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So the relation between ϕ̄q and ϕ̄q−1 is(
ϕ̄q
)2 ≤ 3

5

(
ϕ̄q−1

)2
+

1

50

(
ϕ̄q−2

)2
+

(
1

50
N2 + 2C2α2

)
∥∇f(xq−1)∥2 +

1

50
N2 ∥∇f(xq−2)∥2 + 2C2ς2,

for q ≥ 2. We have
(
ϕ̄0
)2 ≤ N2α2 ∥∇f(x0)∥2 +N2ς2 and

(
ϕ̄1
)2 ≤ N2α2 ∥∇f(x1)∥2 +N2ς2.

In this example, for Theorem 1, p = ∞, ν = 2, A1 = 3
5 , A2 = 1

50 , B0 = 0, B1 =(
1
50N

2 + 2C2α2
)
, B2 = 1

50N
2, D = 2C2ς2, B̃ = N2α2, D̃ = N2ς2 and c = 25. These

lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γNQ
+ γ2L2

2,∞N
2 1

Q
ς2 + γ2L2

2,∞C
2ς2
)
.

where F0 = f(x0) − f∗. Lemma 3 is used for each epoch (that is, for Q times), so by the union
bound, the preceding bound holds with probability at least 1−Qδ.

Next, we summarize the constraints on the step size:

γ ≤ min

{
1

LN
,

1

32L2,pN
,

√
1−

∑ν
i=1Ai

4L2,p

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,p

√
B̃

,
1

32LpN

}
,

γ ≤ 1

128L∞N
,

γ ≤ 1

128L2,∞C
,

where the first one is from Theorem 1 and the others is from the derivation of the relation. For
simplicity, we can use a tighter constraint

γ ≤ min

{
1

LN
,

1

128L2,∞(N + C +Nα)
,

1

128L∞N

}
.

After we use the effective step size γ̃ := γN , the constraint will be

γ̃ ≤ min

{
1

L
,

1

128L2,∞
(
1 + C

N + α
) , 1

128L∞

}
,

and the upper bound will be

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(
F0

γ̃Q
+ γ̃2L2

2,∞
1

Q
ς2 + γ̃2L2

2,∞
1

N2
C2ς2

)
.

Applying Lemma 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2

= O

((
L+ L2,∞

(
1 + C

N + α
)
+ L∞

)
F0

Q
+

(L2,∞F0ς)
2
3

Q
+

(
L2,∞F0Cς

NQ

) 2
3

)
.

F.8 PairGraB
Proposition 7 (PairGraB). Suppose that Assumption 3 holds and that N mod 2 = 0. If each
fn is L2,∞-smooth and L∞-smooth and γ ≤ min{ 1

64L2,∞C ,
1

64L∞N }, we obtain that, for q = 0,(
ϕ̄0
)2 ≤ N2α2 ∥∇f(x0)∥2 +N2ς2, and for q ≥ 1, with probability at least 1− δ,(

ϕ̄q
)2 ≤ 4

5

(
ϕ̄q−1

)2
+

(
3

50
N2 + 4C2α2

)
∥∇f(xq−1)∥2 + 4C2ς2,
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where C = O
(
log
(
dN
δ

))
= Õ (1). Applying Theorem 1 and tuning the step size, we obtain that,

with probability at least 1−Qδ,

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
L̃F0 + (L2,∞F0ς)

2
3

Q
+

(
L2,∞F0Cς

NQ

) 2
3

)
,

where L̃ = L+ L2,∞
(
1 + C

N + α
)
+ L∞.

PairGraB. Use PairBR (Algorithm 6) as the Permute function in Algorithm 1, with the inputs of
πq , {∇fπq(n)(x

n
q )}N−1

n=0 and 1
N

∑N−1
n=0 ∇fπq(n)(x

n
q ), for each epoch q.

Thus, the key idea of our proof is as follows:

ϕ̄q+1 → max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)
− 1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)∥∥∥∥∥
∞

Lemma 4→

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)

(
xi
q

)
− 1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)∥∥∥∥∥
∞

→ ϕ̄q .

Proof. We need to find the relation between ϕ̄q+1 and ϕ̄q .

ϕnq+1 =

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq+1)−∇f(xq+1)

)∥∥∥∥∥
∞

≤

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq+1)−∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

))∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(
1

N

N−1∑
l=0

∇fπq(l)(xq+1)−
1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)
− 1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)∥∥∥∥∥
∞

. (19)

Then,

T1 in (19) =

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)(xq+1)−∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

))∥∥∥∥∥
∞

≤
n−1∑
i=0

∥∥∥∥∇fπq+1(i)(xq+1)−∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)∥∥∥∥
∞

≤ L∞

n−1∑
i=0

∥∥∥∥xq+1 − x
π−1
q (πq+1(i))

q

∥∥∥∥
∞

≤ L∞

n−1∑
i=0

(
∥xq+1 − xq∥∞ +

∥∥∥∥xq − x
π−1
q (πq+1(i))

q

∥∥∥∥
∞

)
≤ 2L∞N∆q ,
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T2 in (19) =

∥∥∥∥∥
n−1∑
i=0

(
1

N

N−1∑
l=0

∇fπq(l)(xq+1)−
1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)∥∥∥∥∥
∞

≤
n−1∑
i=0

1

N

N−1∑
l=0

∥∥∇fπq(l)(xq+1)−∇fπq(l)(x
l
q)
∥∥
∞

≤ L∞

n−1∑
i=0

1

N

N−1∑
l=0

∥∥xq+1 − xl
q

∥∥
∞

≤ L∞

n−1∑
i=0

1

N

N−1∑
l=0

(
∥xq+1 − xq∥∞ +

∥∥xq − xl
q

∥∥
∞

)
≤ 2L∞N∆q .

Since the preceding inequalities hold for all n ∈ [N ], we have

ϕ̄q+1 ≤ 4L∞N∆q + max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

(
∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)
− 1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)∥∥∥∥∥
∞

.

(20)

Note that ∇fπq(i)

(
xi
q

)
− 1

N

∑N−1
l=0 ∇fπq(l)(x

l
q) and ∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q

)
−

1
N

∑N−1
l=0 ∇fπq(l)(x

l
q) correspond to zπ(i) and zπ′(i) in Lemma 4, respectively. We next

derive the upper bounds of

∥∥zπ(i)∥∥2 ,
∥∥∥∥∥
N−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

and max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

,

and then apply Lemma 4 to the last term on the right hand side in Equation (20).

∥∥zπq(i)

∥∥
2
=

∥∥∥∥∥∇fπq(i)(x
i
q)−

1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

∥∥∥∥∥
2

=

∥∥∥∥∥
(
∇fπq(i)(x

i
q)−

1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)
±

(
∇fπq(i)(xq)−

1

N

N−1∑
l=0

∇fπq(l)(xq)

)∥∥∥∥∥
2

≤
∥∥∇fπq(i)(x

i
q)−∇fπq(i)(xq)

∥∥
2
+

∥∥∥∥∥ 1

N

N−1∑
l=0

∇fπq(l)(x
l
q)−

1

N

N−1∑
l=0

∇fπq(l)(xq)

∥∥∥∥∥
2

+

∥∥∥∥∥∇fπq(i)(xq)−
1

N

N−1∑
l=0

∇fπq(l)(xq)

∥∥∥∥∥
2

≤ L2,∞
∥∥xi

q − xq

∥∥
∞ +

1

N

N−1∑
l=0

L2,∞
∥∥xl

q − xq

∥∥
∞ +Gq

≤ 2L2,∞∆q +Gq,

∥∥∥∥∥
N−1∑
i=0

zπq(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥
N−1∑
i=0

(
∇fπq(i)(x

i
q)−

1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)∥∥∥∥∥
∞

= 0 .
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For any n ∈ [N ], we obtain∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)

(
xi
q

)
− 1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)∥∥∥∥∥
∞

=

∥∥∥∥∥
n−1∑
i=0

((
∇fπq(i)

(
xi
q

)
− 1

N

N−1∑
l=0

∇fπq(l)(x
l
q)

)
±

(
∇fπq(i) (xq)−

1

N

N−1∑
l=0

∇fπq(l)(xq)

))∥∥∥∥∥
∞

≤

∥∥∥∥∥
n−1∑
i=0

(
∇fπq(i)(x

i
q)−∇fπq(i)(xq)

)∥∥∥∥∥
∞

+

∥∥∥∥∥
n−1∑
i=0

(
1

N

N−1∑
l=0

∇fπq(l)(x
l
q)−

1

N

N−1∑
l=0

∇fπq(l)(xq)

)∥∥∥∥∥
∞

+ ϕ̄q

≤
n−1∑
i=0

∥∥∇fπq(i)(x
i
q)−∇fπq(i)(xq)

∥∥
∞ +

n−1∑
i=0

1

N

N−1∑
l=0

∥∥∇fπq(l)(x
l
q)−∇fπq(l)(xq)

∥∥
∞ + ϕ̄q

≤ L∞

n−1∑
i=0

∥∥xi
q − xq

∥∥
∞ + L∞

n−1∑
i=0

1

N

N−1∑
l=0

∥∥xl
q − xq

∥∥
∞ + ϕ̄q

≤ 2L∞N∆q + ϕ̄q .

Since it holds for all n ∈ [N ], we obtain

max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

≤ 2L∞N∆q + ϕ̄q .

Now, applying Lemma 4 to the last term on the right hand side in Equation (20), we obtain

ϕ̄q+1 ≤ 4L∞N∆q +
1

2

(
2L∞N∆q + ϕ̄q

)
+ C (2L2,∞∆q +Gq)

≤ (5L∞N + 2L2,∞C)∆q +
1

2
ϕ̄q + CGq

≤ (5L∞N + 2L2,∞C)

(
32

31
γϕ̄q +

32

31
γN ∥∇f(xq)∥

)
+

1

2
ϕ̄q + CGq,

where the last inequality uses Lemma 6. If γL∞N ≤ 1
64 and γL2,∞C ≤ 1

64 , we obtain

ϕ̄q+1 ≤
38

62
ϕ̄q +

7

62
N ∥∇f(xq)∥∞ + CGq.

Then, we obtain (
ϕ̄q+1

)2 ≤ 4

5

(
ϕ̄q
)2

+

(
3

50
N2 + 4C2α2

)
∥∇f(xq)∥2 + 4C2ς2.

So the relation between ϕ̄q and ϕ̄q−1 is(
ϕ̄q
)2 ≤ 4

5

(
ϕ̄q−1

)2
+

(
3

50
N2 + 4C2α2

)
∥∇f(xq−1)∥2 + 4C2ς2.

for q ≥ 1. In addition, we have
(
ϕ̄0
)2 ≤ N2α2 ∥∇f(x0)∥2 +N2ς2.

In this example, for Theorem 1, p = ∞, ν = 1, A1 = 4
5 , B0 = 0, B1 = 3

50N
2 + 4C2α2,

D = 4C2ς2, B̃ = N2α2, D̃ = N2ς2 and c = 50. These lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γNQ
+ γ2L2

2,∞N
2 1

Q
ς2 + γ2L2

2,∞C
2ς2
)
.

where F0 = f(x0) − f∗. Lemma 4 is used for each epoch (that is, for Q times), so by the union
bound, the preceding bound holds with probability at least 1−Qδ.
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Next, we summarize the constraints on the step size:

γ ≤ min

{
1

LN
,

1

32L2,pN
,

√
1−

∑ν
i=1Ai

4L2,p

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,p

√
B̃

,
1

32LpN

}
,

γ ≤ 1

64L∞N
,

γ ≤ 1

64L2,∞C
,

where the first one is from Theorem 1 and the others are from the derivation of the relation. For
simplicity, we can use a tighter constraint

γ ≤ min

{
1

LN
,

1

64L2,∞ (N + C +Nα)
,

1

64L∞N

}
.

After we use the effective step size γ̃ := γN , the constraint will be

γ̃ ≤ min

{
1

L
,

1

64L2,∞
(
1 + C

N + α
) , 1

64L∞

}
,

and the upper bound will be

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(
F0

γ̃Q
+ γ̃2L2

2,∞
1

Q
ς2 + γ̃2L2

2,∞
1

N2
C2ς2

)
.

Applying Lemma 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2

= O

((
L+ L2,∞

(
1 + C

N + α
)
+ L∞

)
F0

Q
+

(L2,∞F0ς)
2
3

Q
+

(
L2,∞F0Cς

NQ

) 2
3

)
.

F.9 Refinement of the High Probability Bounds from Qδ to δ
To maintain consistency with Lu et al. [2022a]; Cooper et al. [2023], we use a failure probability
of Qδ rather than δ in the main body. This can lead to looser bounds as Q increases. This section
shows that the framework can also provide bounds that hold with probability at least 1− δ.

Considering that the bound for AP is deterministic (not a probabilistic one), we next only discuss IP
and DP:

IP. Taking RR as an example. Starting from Equation (15), we obtain that, with probability at least
1− δ′,

(ϕ̄q)
2 ≤ 4 log2

(
8

δ′

)
U,

where U = Nα2∥∇f(xq)∥2 +Nς2 for brevity. That is,

P
(
(ϕ̄q)

2 ≥ 4 log2
(
8

δ′

)
U

)
≤ δ′

for any q ∈ {0, 1, . . . , Q−1}. Then, applying the union bound for q ∈ {0, 1, . . . , Q−1}, we obtain

P
(
∃q, (ϕ̄q)2 ≥ 4 log2

(
8

δ′

)
U

)
≤ Qδ′.

Then, setting δ = δ′

Q , we obtain

P
(
∃q, (ϕ̄q)2 ≥ 4 log2

(
8Q

δ

)
U

)
≤ δ.
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That is, with probability at least 1− δ, (ϕ̄q)2 ≤ 4 log2
(

8Q
δ

)
U for all q ∈ {0, 1, . . . , Q− 1}. Then,

using these bounds, we obtain the desired bound that holds with probability at least 1− δ.

DP. Taking GraB-proto as an example. Starting from Equation (16), we obtain that, with probability
at least 1− δ′,

(ϕ̄q)
2 ≤ log2

(
dN

δ′

)
U + V,

where U = 900(α2∥∇f(xq−1)∥2 + ς2) and V = 3
4 (ϕ̄q−1)

2 + 1
50N

2∥∇f(xq−1)∥2. That is,

P
(
(ϕ̄q)

2 ≥ log2
(
dN

δ′

)
U + V

)
≤ δ′

for any q ∈ {1, 2, . . . , Q−1}. Then, applying the union bound for q ∈ {1, 2, . . . , Q−1}, we obtain

P
(
∃q, (ϕ̄q)2 ≥ log2

(
dN

δ′

)
U + V

)
≤ (Q− 1)δ′.

Then, setting δ = δ′

Q−1 , we obtain

P
(
∃q, (ϕ̄q)2 ≥ log2

(
dN(Q− 1)

δ

)
U + V

)
≤ (Q− 1)δ.

That is, with probability at least 1−δ, (ϕ̄q)2 ≤ log2
(

dN(Q−1)
δ

)
U+V for all q ∈ {1, 2, . . . , Q−1}.

Then, using the bound of (ϕ̄0)2 (it is deterministic) and these bounds, we obtain the desired bound
that holds with probability at least 1− δ.

G Theorem 2
G.1 Order Error in FL
Theoretical understanding of Definition 2. We can prove that, for small finite step sizes, the cumu-
lative updates in one epoch are

xq+1 − xq

= −γ 1
S

N−1∑
n=0

K−1∑
k=0

∇fπq(n)

(
xn
q,k

)
= −γ 1

S

N−1∑
n=0

K−1∑
k=0

∇fπ(n) (xq)

+ γ2
1

S

N−1∑
n=0

K−1∑
k=0

∇∇fπ(n)(xq)

k−1∑
j=0

∇fπ(n) (xq)

+ γ2
1

S

N−1∑
n=0

K−1∑
k=0

∇∇fπ(n)(xq)
1

S

v(n)−1∑
i=0

K−1∑
j=0

∇fπ(i) (xq) +O
(
γ3K3N3 1

S3

)
. (21)

Similar to the analysis in the main body, it can be seen that the error vectors are caused by the second
and third terms on the right hand side in Equation (21). Note that when we consider∇∇fπ(n)(x0

0) ≈
L, the second term can be also seen as a optimization vector (with the same direction as∇f(x0

q,0)).
This is mainly because the local solver is the classic SGD in our setup, and it can be different when
the local solver is the permutation-based SGD. As a result, we next focus on the third term. With a
similar decomposition in the main body, our goal turns to suppress the error vector as follows

Error vector = γ2
1

S

N−1∑
n=0

K−1∑
k=0

∇∇fπ(n)(xq)
1

S

v(n)−1∑
i=0

K−1∑
j=0

(
∇fπ(i)

(
x0
q,0

)
−∇fπ(i) (xq)

)
.
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One straightforward way is to minimize the norm of error vector

∥Error vector∥ ≤ γ2L

∥∥∥∥∥∥ 1S
N−1∑
n=0

K−1∑
k=0

1

S

v(n)−1∑
i=0

K−1∑
j=0

(
∇fπ(i) (xq)−∇fπ(i) (xq)

)∥∥∥∥∥∥
≤ γ2LK2 1

S2

N−1∑
n=0

∥∥∥∥∥∥
v(n)−1∑
i=0

(
∇fπ(i) (xq)−∇fπ(i) (xq)

)∥∥∥∥∥∥
≤ γ2LK2N

1

S2
φ̄q .

G.2 Proof of Theorem 2
To avoid ambiguity, we define

x̃q+1 := xN−1
q,K = xN

q,0.

Due to the amplified updates (see Lines 5 and 6) [Wang and Ji, 2022], we have

x̃q+1 − xq = −γ 1

S

N−1∑
n=0

K−1∑
k=0

∇fπq(n)

(
xn
q,k

)
,

xq+1 − xq = −γη 1

S

N−1∑
n=0

K−1∑
k=0

∇fπq(n)

(
xn
q,k

)
.

We define the maximum parameter deviation (drift) of FL in any epoch q, ∆q as

∆q = max

 max
n∈{0,...,N−1}
k∈{0,...,K−1}

∥∥xn
q,k − xq

∥∥
p
, ∥x̃q+1 − xq∥p

 .

Then, we obtain the relation

∥xq+1 − xq∥p = η ∥x̃q+1 − xq∥p ≤ η∆q.

Lemma 7. We first prove that if γLpKN
1
S ≤

1
32 , the maximum parameter drift in FL is bounded:

∆q ≤
32

31
γK

1

S
φ̄q +

32

31
γKN

1

S
∥∇f(xq)∥+

32

31
γKGq,

(∆q)
2 ≤ 4γ2K2 1

S2
(φ̄q)

2
+ 4γ2K2N2 1

S2
∥∇f(xq)∥2 + 4γ2K2G2

q.

Proof. Let v(n) = ⌊nS ⌋ · S. Then,

xn
q,k − xq = xn

q,k − xn
q,0 + xn

q,0 − x
v(n)
q,0︸ ︷︷ ︸

=0

+x
v(n)
q,0 − xq

= −γ
k−1∑
j=0

∇fπq(n)

(
xn
q,j

)
− γ 1

S

v(n)−1∑
i=0

K−1∑
j=0

∇fπq(i)

(
xi
q,j

)
.

For any q > 0 and all n ∈ {0, 1, . . . , N − 1} and k ∈ {0, 1, . . . ,K − 1}, it follows that

∥∥xn
q,k − xq

∥∥
p
=

∥∥∥∥∥∥γ
k−1∑
j=0

∇fπq(n)(x
n
q,j) + γ

1

S

v(n)−1∑
i=0

K−1∑
j=0

∇fπq(i)(x
i
q,j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥γ
k−1∑
j=0

∇fπq(n)(x
n
q,j)

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥γ 1S
v(n)−1∑
i=0

K−1∑
j=0

∇fπq(i)(x
i
q,j)

∥∥∥∥∥∥
p

. (22)
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Then, we bound the two terms on the right hand side in Equation (22) respectively.

T1 in (22)

=

∥∥∥∥∥∥γ
k−1∑
j=0

∇fπq(n)(x
n
q,j)

∥∥∥∥∥∥
p

≤ γ

∥∥∥∥∥∥
k−1∑
j=0

(
∇fπq(n)(x

n
q,j)−∇fπq(n)(xq)

)∥∥∥∥∥∥
p

+ γ

∥∥∥∥∥∥
k−1∑
j=0

(
∇fπq(n)(xq)−∇f(xq)

)∥∥∥∥∥∥
∞

+ γ

∥∥∥∥∥∥
k−1∑
j=0

(∇f(xq))

∥∥∥∥∥∥
p

≤ γ
k−1∑
j=0

∥∥∇fπq(n)(x
n
q,j)−∇fπq(n)(xq)

∥∥
p
+ γ

k−1∑
j=0

∥∥∇fπq(n)(xq)−∇f(xq)
∥∥
p
+ γ

k−1∑
j=0

∥∇f(xq)∥p

≤ γLp

k−1∑
j=0

∥∥xn
q,j − xq

∥∥
p
+ γ

k−1∑
j=0

Gq + γ

k−1∑
j=0

∥∇f(xq)∥p

≤ γLpK∆q + γKGq + γK ∥∇f(xq)∥p ,

T2 in (22)

=

∥∥∥∥∥∥γ 1S
v(n)−1∑
i=0

K−1∑
j=0

∇fπq(i)(x
i
q,j)

∥∥∥∥∥∥
p

= γ
1

S

∥∥∥∥∥∥
v(n)−1∑
i=0

K−1∑
j=0

(
∇fπq(i)(x

i
q,j)−∇fπq(i)(xq) +∇fπq(i)(xq)−∇f(xq) +∇f(xq)

)∥∥∥∥∥∥
p

≤ γ 1
S

∥∥∥∥∥∥
v(n)−1∑
i=0

K−1∑
j=0

(
∇fπq(i)(x

i
q,j)−∇fπq(i)(xq)

)∥∥∥∥∥∥
p

+ γ
1

S

∥∥∥∥∥∥
v(n)−1∑
i=0

K−1∑
j=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥∥
p

+ γ
1

S

∥∥∥∥∥∥
v(n)−1∑
i=0

K−1∑
j=0

(∇f(xq))

∥∥∥∥∥∥
p

≤ γ 1
S

v(n)−1∑
i=0

K−1∑
j=0

∥∥∇fπq(i)(x
i
q,j)−∇fπq(i)(xq)

∥∥
p
+ γK

1

S
φv(n)
q + γ

1

S

v(n)−1∑
i=0

K−1∑
j=0

∥∇f(xq)∥p

≤ γLp
1

S

v(n)−1∑
i=0

K−1∑
j=0

∥∥xi
q,j − xq

∥∥
p
+ γK

1

S
φv(n)
q + γK (v(n))

1

S
∥∇f(xq)∥p

≤ γLpK (v(n))
1

S
∆q + γK

1

S
φ̄q + γK (v(n))

1

S
∥∇f(xq)∥p .

Next, we return to the upper bound of ∥xn
q,k−xq∥p for any n, k such that nK+k ≤ NK. If k = 0,

then v(n) ≤ N and the first term on the right hand in Equation (22) equals zero, so we obtain

∥∥xn
q,k − xq

∥∥
p
≤ γLpKN

1

S
∆q + γK

1

S
φ̄q + γKN

1

S
∥∇f(xq)∥p .
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If k > 0, then v(n) ≤ N − S, so we obtain∥∥xn
q,k − xq

∥∥
p
≤ γLpK∆q + γKGq + γK ∥∇f(xq)∥p

+ γLpK (v(n))
1

S
∆q + γK

1

S
φ̄q + γK (v(n))

1

S
∥∇f(xq)∥p

≤ γLpK∆q + γKGq + γK ∥∇f(xq)∥p

+ γLpK

(
N

S
− 1

)
∆q + γK

1

S
φ̄q + γK

(
N

S
− 1

)
∥∇f(xq)∥p

≤ γLpKN
1

S
∆q + γK

1

S
φ̄q + γKN

1

S
∥∇f(xq)∥p + γKGq.

Therefore, for any n, k such that nK + k ≤ NK, we obtain

∆q = max
n,k

∥∥xn
q,k − xq

∥∥
p

≤ γLpKN
1

S
∆q + γK

1

S
φ̄q + γKN

1

S
∥∇f(xq)∥p + γKGq.

Then, if γLpKN
1
S ≤

1
32 , we obtain

∆q ≤
32

31
γK

1

S
φ̄q +

32

31
γKN

1

S
∥∇f(xq)∥p +

32

31
γKGq .

It also implies that

(∆q)
2 ≤ 4γ2K2 1

S2
(φ̄q)

2
+ 4γ2K2N2 1

S2
∥∇f(xq)∥2p + 4γ2K2G2

q.

At last, using ∥x∥q ≤ ∥x∥ for x ∈ Rd and p ≥ 2, we obtain the claim of this lemma.

Proof of Theorem 2. For FL with regularized participation (Algorithm 2), the cumulative updates
over any epoch q are

xq+1 − xq = −γη 1
S

N−1∑
n=0

K−1∑
k=0

∇fπq(n)

(
xn
q,k

)
. (23)

Since the global objective function f is L-smooth, it follows that

f(xq+1)− f(xq) ≤ ⟨∇f(xq),xq+1 − xq⟩+
1

2
L ∥xq+1 − xq∥2 . (24)

Using Equation (23), we obtain

⟨∇f(xq),xq+1 − xq⟩

= −γη 1
S
KN

[〈
∇f(xq),

1

N

N−1∑
n=0

1

K

K−1∑
k=0

∇fπq(n)(x
n
q,k)

〉]

= −1

2
γη

1

S
KN ∥∇f(xq)∥2 −

1

2
γη

1

S
KN

∥∥∥∥∥ 1

N

N−1∑
n=0

1

K

K−1∑
k=0

∇fπq(n)(x
n
q,k)

∥∥∥∥∥
2

+
1

2
γη

1

S
KN

∥∥∥∥∥ 1

N

N−1∑
n=0

1

K

K−1∑
k=0

∇fπq(n)(x
n
q,k)−∇f(xq)

∥∥∥∥∥
2

,

where the second equality uses 2⟨x,y⟩ = ∥x∥2+∥y∥2−∥x− y∥2. Using Equation (23), we obtain

1

2
L ∥xq+1 − xq∥2 =

1

2
L

∥∥∥∥∥γη 1S
N−1∑
n=0

K−1∑
k=0

∇fπq(n)(x
n
q,k)

∥∥∥∥∥
2

=
1

2
γ2η2L

1

S2
K2N2

∥∥∥∥∥ 1

N

N−1∑
n=0

1

K

K−1∑
k=0

∇fπq(n)(x
n
q,k)

∥∥∥∥∥
2

.
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Plugging the preceding inequalities back into Equation (24), and using γηLKN 1
S ≤ 1, we obtain

f(xq+1)− f(xq)

≤ −1

2
γη

1

S
KN ∥∇f(xq)∥2 +

1

2
γη

1

S
KN

∥∥∥∥∥ 1

N

N−1∑
n=0

1

K

K−1∑
k=0

∇fπq(n)(x
n
q,k)−∇f(xq)

∥∥∥∥∥
2

≤ −1

2
γη

1

S
KN ∥∇f(xq)∥2 +

1

2
γηL2

2,p

1

S

N−1∑
n=0

K−1∑
k=0

∥∥xn
q,k − xq

∥∥2
p

≤ −1

2
γη

1

S
KN ∥∇f(xq)∥2 +

1

2
γηL2

2,pKN
1

S
(∆q)

2
,

where the second inequality is because fπq(n) is L2,p smooth for all n. Applying Lemma 7, and the
constraints γL2,pKN

1
S ≤

1
32 and γL2,pKα ≤ 1

32 , we obtain

f(xq+1)− f(xq)

≤ −127

256
γηKN

1

S
∥∇f(xq)∥2 + 2γ3ηL2

2,pK
3N

1

S3
(φ̄q)

2
+ 2γ3ηL2

2,pK
3N

1

S
ς2. (25)

Averaging over q ∈ {0, 1, . . . , Q− 1}, we obtain

f(xQ)− f(x0)

γηKN 1
SQ

≤ −127

256

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 + 2γ2L2
2,pK

2 1

S2

1

Q

Q−1∑
q=0

(φ̄q)
2
+ 2γ2L2

2,pK
2ς2.

(26)

The following steps are similar to those in Theorem 1. Since

(φ̄q)
2 ≤ A1 (φ̄q−1)

2
+A2 (φ̄q−2)

2
+ · · ·+Aν (φ̄q−ν)

2

+B0 ∥∇f(xq)∥2 +B1 ∥∇f(xq−1)∥2 + · · ·+Bν ∥∇f(xq−ν)∥2 +D,

we obtain

1

Q

Q−1∑
q=0

(φ̄q)
2 ≤ 1

(1−
∑ν

i=1Ai)

1

Q

ν−1∑
i=0

(φ̄i)
2

+
(
∑ν

i=0Bi)

(1−
∑ν

i=1Ai)

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 +
1

(1−
∑ν

i=1Ai)
D. (27)

For (φ̄i)
2 (0 ≤ i ≤ ν − 1), we have

(φ̄i)
2 ≤ B̃ ∥∇f(xi)∥2 + D̃ =⇒

ν−1∑
i=0

(φ̄i)
2 ≤ B̃

Q−1∑
q=0

∥∇f(xq)∥2 + νD̃. (28)

Substituting Equation (28) into Equation (27), and the resulting inequality into Equation (26), and
then using the condition

γ ≤ min

{
1

4
·
√
1−

∑ν
i=1Ai

L2,pK
1
S

√∑ν
i=0Bi

,
1

4
·
√
1−

∑ν
i=1Ai

L2,pK
1
SMα

}
,

we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 ≤ 5 · f(x0)− f(xQ)

γηKN 1
SQ

+ c · γ2L2
2,pK

2 1

S2

1

Q
νD̃ + 2γ2L2

2,pK
2ς2 + c · γ2L2

2,pK
2 1

S2
D,

where c = 10

(1−
∑ν

i=1 Ai)
. Using f(x0)− f(xQ) ≤ f(x0)− f∗ = F0, we obtain the claimed bound.
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At last, we summarize the constraints on the step sizes γ and η:

γ ≤ min

{
1

4
·
√

1−
∑ν

i=1Ai

L2,pK
1
S

√∑ν
i=0Bi

,
1

4
·
√
1−

∑ν
i=1Ai

L2,pK
1
S

√
B̃

}
,

γηLKN
1

S
≤ 1,

γL2,pKN
1

S
≤ 1

32
,

γL2,pKα ≤
1

32
,

γLpKN
1

S
≤ 1

32
,

where the last one is from Lemma 7. For simplicity, we use a stricter constraint

γ ≤ min

{
1

ηLKN 1
S

,
1

32L2,pKN
1
S (1 + α)

,

√
1−

∑ν
i=1Ai

4L2,pK
1
S

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,pK
1
S

√
B̃
,

1

32LpKN
1
S

}
.

G.3 PL Condition
In this section, we translate our bounds in Theorem 2 with µ-PL condition

∥∇f(x)∥2 ≥ 2µ (f(x)− f∗) , ∀x ∈ Rd.

Using Theorem 3 and the relations derived in Appendix H, we can obtain the bounds in Table 2 for
FL-AP, FL-RR and FL-GraB. Here, we tune the step size with Koloskova et al. [2020, Lemma 15].

Theorem 3. Unless explicitly stated, we assume the same conditions as those in Theorem 3. Suppose
that all the local objective functions fn satisfy the µ-PL condition. If

γ ≤ min

 1

32ηLKN 1
S

,
1

32L2,pKN
1
S (1 + α)

,

√
1−

∑ν
i=1Aici

4L2,pK
1
S

√
B̃ +

∑ν
i=0Bici

,
1

32LpKN
1
S

 ,

we obtain

f(xQ)− f∗ ≤
(
1− 1

2
γηµKN

1

S

)Q
(
f(x0)− f∗ + c1 ·

D̃

LN2

)

+ 4γ2
1

µ
L2
2,pK

2ς2 + c2 · γ2
1

µ
L2
2,pK

2 1

S2
D.

where c = 64
63 , c1 =

2
∑ν

i=1 ci

1−
∑ν

i=1 Aici
and c2 = 4

1−
∑ν

i=1 Aici
.

Proof. Starting from Equation (25), we obtain

f(xq+1)− f∗ ≤ f(xq)− f∗ −
127

256
γηKN

1

S
∥∇f(xq)∥2

+ 2γ3ηL2
2,pK

3N
1

S3
(φ̄q)

2
+ 2γ3ηL2

2,pK
3N

1

S
ς2

≤ f(xq)− f∗ −
1

4
γηKN

1

S
∥∇f(xq)∥2 −

63

256
γηKN

1

S
∥∇f(xq)∥2

+ 2γ3ηL2
2,pK

3N
1

S3
(φ̄q)

2
+ 2γ3ηL2

2,pK
3N

1

S
ς2

≤
(
1− 1

2
γηµKN

1

S

)
(f(xq)− f∗)−

63

256
γηKN

1

S
∥∇f(xq)∥2

+ 2γ3ηL2
2,pK

3N
1

S3
(φ̄q)

2
+ 2γ3ηL2

2,pK
3N

1

S
ς2,
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where the last inequality is due to PL condition, ∥∇f(x)∥2 ≥ 2µ (f(x)− f∗). Letting Fq :=
f(xq)− f∗ and ρ = 1− 1

2γηµKN
1
S , and then applying the recursion repeatedly, we obtain

FQ ≤ ρQF0 −
63

256
γηKN

1

S

Q−1∑
q=0

ρQ−1−q ∥∇f(xq)∥2

+ 2γ3ηL2
2,pK

3N
1

S3

Q−1∑
q=0

ρQ−1−q (φ̄q)
2
+ 2γ3ηL2

2,pK
3N

1

S
ς2

Q−1∑
q=0

ρQ−1−q. (29)

Since for 0 ≤ i ≤ ν − 1,

(φ̄i)
2 ≤ B̃ ∥∇f(xi)∥2 + D̃

and for q ≥ ν,

(φ̄q)
2 ≤ A1 (φ̄q−1)

2
+A2 (φ̄q−2)

2
+ · · ·+Aν (φ̄q−ν)

2

+B0 ∥∇f(xq)∥2 +B1 ∥∇f(xq−1)∥2p + · · ·+Bν ∥∇f(xq−ν)∥2p +D,

after some lengthy calculations, we can obtain that

Q−1∑
q=ν

ρQ−1−q
(
ϕ̄q
)2 ≤ (A1

1

ρ
+A2

1

ρ2
+ · · ·+Aν

1

ρν

)Q−1∑
q=0

ρQ−1−q
(
ϕ̄q
)2

+

(
B0 +B1

1

ρ
+ · · ·+Bν

1

ρν

)Q−1∑
q=0

ρQ−1−q ∥∇f(xq)∥2

+
1

1− ρ
D, (30)

and
ν−1∑
q=0

ρQ−1−q
(
ϕ̄q
)2 ≤ B̃ Q−1∑

q=0

ρQ−1−q ∥∇f(xq)∥2 + ρQD̃

ν−1∑
q=0

ρ−1−q. (31)

Combining Equation (30) and Equation (31) gives

Q−1∑
q=0

ρQ−1−q (φ̄q)
2 ≤ A

(
B̃ + B

)Q−1∑
q=0

ρQ−1−q ∥∇f(xq)∥2 +
AD
1− ρ

+AD̃ρQ
ν−1∑
q=0

ρ−1−q, (32)

where A = 1

1−
(
A1

1
ρ+A2

1
ρ2

+···+Aν
1
ρν

) and B = B0 +B1
1
ρ + · · ·+Bν

1
ρν .

Substituting
∑Q−1

q=0 ρ
Q−1−q (φ̄q)

2 in Equation (29) with Equation (32) yields

FQ ≤ ρQF0 + 2γ3ηL2
2,pK

3N
1

S3
AD̃ρQ

ν−1∑
q=0

ρ−1−q

+ 2γ3ηL2
2,pK

3N
1

S

ς2

1− ρ
+ 2γ3ηL2

2,pK
3N

1

S3

AD
1− ρ

− γηKN 1

S

(
63

256
− 2γ2L2

2,pK
2 1

S2
A
(
B̃ + B

))Q−1∑
q=0

ρQ−1−q ∥∇f(xq)∥2 .

Since ρ = 1− 1
2γηµKN

1
S and γηLKN 1

S ≤
1
32 , we obtain

1

1− ρ
=

2

γηµKN 1
S

and
1

ρ
≤ 64

63
.
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For simplicity, we let c = 64
63 . Then,

A =
1

1−
(
A1

1
ρ +A2

1
ρ2 + · · ·+Aν

1
ρν

) ≤ 1

1− (A1c+A2c2 + · · ·+Aνcν)
=

1

1−
∑ν

i=1Aici
,

B = B0 +B1
1

ρ
+ · · ·+Bν

1

ρν
≤ B0 +B1c+ · · ·+Bνc

ν =

ν∑
i=0

Bic
i,

and
ν−1∑
q=0

ρ−1−q =
1

ρ
+

1

ρ2
+ · · · 1

ρν
≤ c+ c2 + · · ·+ cν =

ν∑
i=1

ci.

Next, after we use the condition

γ ≤
√
1−

∑ν
i=1Aici

4L2,pK
1
S

√
B̃ +

∑ν
i=0Bici

,

and the upper bounds of A, B and
∑ν−1

q=0 ρ
−1−q , we obtain

FQ ≤ ρQF0 + 2γ3ηL2
2,pK

3N
1

S3
AD̃ρQ

ν−1∑
q=0

ρ−1−q

+ 2γ3ηL2
2,pK

3N
1

S

ς2

1− ρ
+ 2γ3ηL2

2,pK
3N

1

S3

AD
1− ρ

≤ ρQF0 +
2
∑ν

i=1 c
i

1−
∑ν

i=1Aici
· ρQ D̃

LN2

+ 4γ2
1

µ
L2
2,pK

2ς2 +
4

1−
∑ν

i=1Aici
· γ2 1

µ
L2
2,pK

2 1

S2
D.

At last, we summarize the constraints on the step sizes γ and η:

γ ≤
√
1−

∑ν
i=1Aici

4L2,pK
1
S

√
B̃ +

∑ν
i=0Bici

,

γηLKN
1

S
≤ 1

32
,

γL2,pKN
1

S
≤ 1

32
,

γL2,pKα ≤
1

32
,

γLpKN
1

S
≤ 1

32
,

where the last one is from Lemma 7. For simplicity, we use a stricter constraint

γ ≤ min

 1

32ηLKN 1
S

,
1

32L2,pKN
1
S (1 + α)

,

√
1−

∑ν
i=1Aici

4L2,pK
1
S

√
B̃ +

∑ν
i=0Bici

,
1

32LpKN
1
S

 .

H Special Cases in FL

In this section, we provide proofs of the examples of FL.
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H.1 FL-AP

Proposition 8 (FL-AP). Suppose that Assumption 3 holds. Then, we obtain that, for q ≥ 0,

(φ̄q)
2 ≤ N2α2 ∥∇f(xq)∥2 +N2ς2.

Applying Theorem 2, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γηKN 1
SQ

+ γ2L2K2ς2 + γ2L2K2N2 1

S2
ς2
)
.

If we set η = 1 and tune the step size, the upper bound becomes

O
(

LF0(1+α)
Q +

(
LF0Sς
NQ

) 2
3

+
(

LF0Nς
NQ

) 2
3

)
.

Proof. For any epoch q,

(φ̄q)
2
= max

n∈[N ]

∥∥∥∥∥∥
v(n)−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥∥
2

≤ N2G2
q ≤ N2α2 ∥∇f(xq)∥2 +N2ς2.

In this example, for Theorem 2, p = 2, ν = 0, B0 = N2α2, D = N2ς2 and c = 10. These lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γηKN 1
SQ

+ γ2L2K2ς2 + γ2L2K2N2 1

S2
ς2
)
.

Next, we summarize the constraints:

γ ≤ min

{
1

ηLKN 1
S

,
1

32L2,pKN
1
S (1 + α)

,

√
1−

∑ν
i=1Ai

4L2,pK
1
S

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,pK
1
S

√
B̃
,

1

32LpKN
1
S

}
.

It is from Theorem 2. For simplicity, we can use a tighter constraint

γ ≤ 1

32LKN 1
S (1 + η + α)

.

After we use the effective step size γ̃ := γηKN 1
S , the constraint becomes

γ̃ ≤ 1

32L
(
1 + 1

η + α
η

) ,
and the upper bound becomes

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(
F0

γ̃Q
+ γ̃2L2 1

η2N2 1
S2

ς2 + γ̃2L2 1

η2N2
N2ς2

)
.

Applying Lemma 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
LF0 (1 + η + α)

ηQ
+

(
LF0Sς

ηNQ

) 2
3

+

(
LF0Nς

ηNQ

) 2
3

)
.

For comparison with other algorithms, we set η = 1, and get

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
LF0(1 + α)

Q
+

(
LF0Sς

NQ

) 2
3

+

(
LF0Nς

NQ

) 2
3

)
.
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H.2 FL-RR

Proposition 9 (FL-RR). Suppose that Assumption 3 holds. Then, we obtrain, for q ≥ 0, with
probability at least 1− δ,

(φ̄q)
2 ≤ 4 log2 (8/δ)

(
Nα2 ∥∇f(xq)∥2 +Nς2

)
.

Applying Theorem 2, we obtain that, with probability at least 1−Qδ,

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(

F0

γηKN 1
SQ

+ γ2L2K2ς2 + γ2L2K2N
1

S2
ς2
)
.

If we set η = 1 and tune the step size, the upper bound becomes

Õ
(

LF0(1+α)
Q +

(
LF0Sς
NQ

) 2
3

+
(

LF0

√
Nς

NQ

) 2
3

)
.

Proof. Since the permutations {πq} are independent across different epochs, for any q, when con-
ditional on xq , we obtain that, with probability at least 1− δ,

(
ϕ̄q
)2

= max
n∈[N ]

∥∥∥∥∥∥
v(n)−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥∥
2

≤ NCς2 +NCα2 ∥∇f(xq)∥2 , (33)

where C = 4 log2
(
8
δ

)
and the last inequality is due to Yu and Li [2023]’s Proposition 2.3.

In this example, for Theorem 2, p = 2, ν = 0, B0 = NCα2, D = NCς2 and c = 10. These lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γηKN 1
SQ

+ γ2L2K2ς2 + γ2L2K2NC
1

S2
ς2
)
,

where F0 = f(x0)−f∗ and L = L2,p = Lp when p = 2. Equation (33) is used for each epoch (that
is, for Q times), so by the union bound, the preceding bound holds with probability at least 1−Qδ.

Next, we summarize the constraints:

γ ≤ min

{
1

ηLKN 1
S

,
1

32L2,pKN
1
S (1 + α)

,

√
1−

∑ν
i=1Ai

4L2,pK
1
S

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,pK
1
S

√
B̃
,

1

32LpKN
1
S

}
.

It is from Theorem 2. For simplicity, we can use a tighter constraint

γ ≤ 1

32LKN 1
S

(
1 + η + α+

√
C
N α
) .

After we use the effective step size γ̃ := γηKN 1
S , the constrain becomes

γ̃ ≤ 1

32L

(
1 + 1

η + α
η +

√
C
N α

η

) ,
and the upper bound becomes

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(
F0

γ̃Q
+ γ̃2L2 1

η2N2 1
S2

ς2 + γ̃2L2 1

η2N2
Nς2

)
.

Applying Lemma 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ

LF0 (1 + η + α)

ηQ
+

(
LF0Sς

ηNQ

) 2
3

+

(
LF0

√
Nς

ηNQ

) 2
3

 .

For comparison with other algorithms, we set η = 1, and get

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ

LF0 (1 + α)

Q
+

(
LF0Sς

NQ

) 2
3

+

(
LF0

√
Nς

NQ

) 2
3

 .
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H.3 FL-GraB
Proposition 10 (FL-GraB). Suppose that Assumption 3 holds and that N mod S =
0 and S mod 2 = 0. If each fn is L2,∞-smooth and L∞-smooth and γ ≤
min{ 1

128L2,∞KC 1
S

, 1
128(1+η)L∞KN 1

S

}, we obtain that, for q = 0, (φ̄0)
2 ≤ N2 ∥∇f(x0)∥2 +N2ς2

and for q ≥ 1, with probability at least 1− δ,

(φ̄q)
2 ≤ 3

5
(φ̄q−1)

2
+

(
1

96
N2 + 6C2α2

)
∥∇f(xq−1)∥2 +

1

96
S2ς2 + 6C2ς2,

where C = O
(
log
(
dN
δ

))
= Õ (1). Applying Theorem 2, we obtain that, with probability at least

1−Qδ,

1

Q

Q−1∑
q=0

∥∇f(xq)∥2

= O
(

F0

γηKN 1
SQ

+ γ2L2
2,∞K

2N2 1

S2

1

Q
ς2 + γ2L2

2,∞K
2ς2 + γ2L2

2,∞K
2C2 1

S2
ς2
)
.

After we set η = 1 and tune the step size, the upper bound becomes

O
(

L̃F0+(L2,∞F0ς)
2
3

Q +
(

L2,∞F0Sς
NQ

) 2
3

+
(

L2,∞F0Cς
NQ

) 2
3

)
where L̃ = L+L2,∞

(
1 + C

N + α
)
+L∞.

FL-GraB. Use PairBR (Algorithm 6) as the Permute function in Algorithm 2, with the inputs of
πq , {pn

q }N−1
n=0 and 1

N

∑N−1
n=0 pn

q , for each epoch q.

Thus, the key idea of our proof is as follows:

φ̄q+1 → max
m∈{S,2S,...,N}

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq(i)

(
xi
q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
∞

Lemma 5→ max
m∈{S,2S,...,N}

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
∞

→ φ̄q .

Proof. We need to find the relation between φ̄q+1 and φq . For all m ∈ {S, 2S, . . . , N},

φm
q+1 =

∥∥∥∥∥
m−1∑
i=0

(
∇fπq+1(i) (xq+1)−∇f (xq+1)

)∥∥∥∥∥
∞

=
1

K

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

(
∇fπq+1(i) (xq+1)−∇f (xq+1)

)∥∥∥∥∥∥
∞

≤ 1

K

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq+1(i) (xq+1)−
m−1∑
i=0

K−1∑
j=0

∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q,j

)∥∥∥∥∥∥
∞

+
1

K

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

1

N

N−1∑
l=0

∇fπq(l) (xq+1)−
m−1∑
i=0

1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
∞

+
1

K

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
∞

, (34)
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where the last inequality is due to∇f(xq+1) =
1
N

∑N−1
l=0 ∇fπq(l) (xq+1). Then,

T1 in (34) =
1

K

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq+1(i) (xq+1)−
m−1∑
i=0

K−1∑
j=0

∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q,j

)∥∥∥∥∥∥
∞

≤ 1

K

m−1∑
i=0

K−1∑
j=0

∥∥∥∥∇fπq+1(i) (xq+1)−∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q,j

)∥∥∥∥
∞

≤ L∞
1

K

m−1∑
i=0

K−1∑
j=0

∥∥∥∥xq+1 − x
π−1
q (πq+1(i))

q,j

∥∥∥∥
∞

≤ L∞
1

K

m−1∑
i=0

K−1∑
j=0

(
∥xq+1 − xq∥∞ +

∥∥∥∥xq − x
π−1
q (πq+1(i))

q,j

∥∥∥∥
∞

)

≤ L∞
1

K

m−1∑
i=0

K−1∑
j=0

(η∆q +∆q)

≤ L∞N (η∆q +∆q) ,

T2 in (34) =
1

K

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

1

N

N−1∑
l=0

∇fπq(l) (xq+1)−
m−1∑
i=0

1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
∞

≤ 1

K

m−1∑
i=0

K−1∑
j=0

1

N

N−1∑
l=0

∥∥∇fπq(l) (xq+1)−∇fπq(l)

(
xl
q,j

)∥∥
∞

≤ L∞
1

K

m−1∑
i=0

K−1∑
j=0

1

N

N−1∑
l=0

∥∥xq+1 − xl
q,j

∥∥
∞

≤ L∞
1

K

m−1∑
i=0

K−1∑
j=0

1

N

N−1∑
l=0

(
∥xq+1 − xq∥∞ +

∥∥xq − xl
q,j

∥∥
∞

)

≤ L∞
1

K

m−1∑
i=0

K−1∑
j=0

1

N

N−1∑
l=0

(η∆q +∆q)

≤ L∞N (η∆q +∆q) .

Since it holds for any m ∈ {S, 2S, . . . , N}, we have

φ̄q+1 ≤ 2L∞N (η∆q +∆q)

+
1

K
max

m∈{S,2S,...,N}

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
∞

.

(35)

Note that

K−1∑
j=0

∇fπq(i)

(
xi
q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)
and

K−1∑
j=0

∇fπq+1(i)

(
x
π−1
q (πq+1(i))

q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)
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correspond to zπ(i) and zπ′(i) in Lemma 5, respectively. We next obtain the upper bounds of

∥∥zπ(i)∥∥2 ,
∥∥∥∥∥
N−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

and max
n∈[N ]

∥∥∥∥∥
n−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

,

and then apply Lemma 5 to the last term on the right hand side in Equation (35).

∥∥zπ(i)∥∥2 =

∥∥∥∥∥∥
K−1∑
j=0

∇fπq(i)

(
xi
q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
K−1∑
j=0

∇fπq(i)

(
xi
q,j

)
−

K−1∑
j=0

∇fπq(i) (xq)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l) (xq)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
K−1∑
j=0

∇fπq(i) (xq)−
1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l) (xq)

∥∥∥∥∥∥
2

≤
K−1∑
j=0

∥∥∇fπq(i)

(
xi
q,j

)
−∇fπq(i) (xq)

∥∥
2

+
1

N

N−1∑
l=0

K−1∑
j=0

∥∥∇fπq(l)

(
xl
q,j

)
−∇fπq(l) (xq)

∥∥
2
+KGq

≤ L2,∞

K−1∑
j=0

∥∥xi
q,j − xq

∥∥
∞ + L2,∞

1

N

N−1∑
l=0

K−1∑
j=0

∥∥xl
q,j − xq

∥∥
∞ +KGq

≤ L2,∞

K−1∑
j=0

∆q + L2,∞
1

N

N−1∑
l=0

K−1∑
j=0

∆q +KGq

≤ 2L2,∞K∆q +KGq,

∥∥∥∥∥
N−1∑
i=0

zπq(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
N−1∑
i=0

K−1∑
j=0

∇fπq(i)

(
xi
q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
∞

= 0 .
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In addition, for any m ∈ {S, 2S, . . . , N}, we have∥∥∥∥∥
m−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq(i)

(
xi
q,j

)
− 1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq(i)

(
xi
q,j

)
−

m−1∑
i=0

K−1∑
j=0

∇fπq(i) (xq)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
m−1∑
i=0

1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l)

(
xl
q,j

)
−

m−1∑
i=0

1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l) (xq)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
m−1∑
i=0

K−1∑
j=0

∇fπq(i) (xq)−
1

N

N−1∑
l=0

K−1∑
j=0

∇fπq(l) (xq)

∥∥∥∥∥∥
∞

≤
m−1∑
i=0

K−1∑
j=0

∥∥∇fπq(i)

(
xi
q,j

)
−∇fπq(i) (xq)

∥∥
∞

+

m−1∑
i=0

1

N

N−1∑
l=0

K−1∑
j=0

∥∥∇fπq(l)

(
xl
q,j

)
−∇fπq(l) (xq)

∥∥
∞ +Kφ̄q

≤ L∞

m−1∑
i=0

K−1∑
j=0

∥∥xi
q,j − xq

∥∥
∞ + L∞

m−1∑
i=0

1

N

N−1∑
l=0

K−1∑
j=0

∥∥xl
q,j − xq

∥∥
∞ +Kφ̄q

≤ L∞

m−1∑
i=0

K−1∑
j=0

∆q + L∞

m−1∑
i=0

1

N

N−1∑
l=0

K−1∑
j=0

∆q +Kφ̄q

≤ 2L∞KN∆q +Kφ̄q .

Since it holds for all m ∈ {S, 2S, . . . , N}, we have

max
m∈{S,2S,...,N}

∥∥∥∥∥
m−1∑
i=0

zπ(i)

∥∥∥∥∥
∞

≤ 2L∞KN∆q +Kφ̄q .

Now, applying Lemma 5 to the last term on the right hand side in Equation (35), we obtain

φ̄q+1 ≤ 2L∞N (η∆q +∆q) +
1

2
(2L∞N∆q + φ̄q) + C (2L2,∞∆q +Gq)

≤ ((3 + 2η)L∞N + 2L2,∞C)∆q +
1

2
φ̄q + CGq .

Applying Lemma 7, we obtain

φ̄q+1 ≤ ((3 + 2η)L∞N + 2L2,∞C)∆q +
1

2
φ̄q + CGq

≤ ((3 + 2η)L∞N + 2L2,∞C) ·
32

31
γK

1

S
(φ̄q +N ∥∇f(xq)∥+ SGq) +

1

2
φ̄q + CGq

≤ 13

24
φ̄q +

1

24
N ∥∇f(xq)∥+

1

24
SGq + CGq.

where the last inequality uses γ(1 + η)L∞KN
1
S ≤

1
128 and γL2,∞KC

1
S ≤

1
128 . Then, we obtain

(φ̄q+1)
2 ≤ 3

5
(φ̄q)

2
+

1

96
N2 ∥∇f(xq)∥2 + 6C2α2 ∥∇f(xq)∥2 +

1

96
S2ς2 + 6C2ς2.

So the relation between φ̄q and φ̄q−1 is

(φ̄q)
2 ≤ 3

5
(φ̄q−1)

2
+

1

96
N2 ∥∇f(xq−1)∥2 + 6C2α2 ∥∇f(xq−1)∥2 +

1

96
S2ς2 + 6C2ς2,
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for q ≥ 1. Besides, we have (φ̄0)
2 ≤ N2 ∥∇f(x0)∥2 +N2ς2.

In this example, for Theorem 2, p = ∞, ν = 1, A1 = 3
5 , B0 = 0, B1 = 1

96N
2 + 6C2α2,

D = 6C2ς2, B̃ = N2α2, D̃ = N2ς2 and c = 25. These lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2

= O
(

F0

γηKN 1
SQ

+ γ2L2
2,∞K

2N2 1

S2

1

Q
ς2 + γ2L2

2,∞K
2ς2 + γ2L2

2,∞K
2C2 1

S2
ς2
)
,

where F0 = f(x0) − f∗. Lemma 4 is used for each epoch (that is, for Q times), so by the union
bound, the preceding bound holds with probability at least 1−Qδ.

Next, we summarize the constraints on the step size:

γ ≤ min

{
1

ηLKN 1
S

,
1

32L2,pKN
1
S (1 + α)

,

√
1−

∑ν
i=1Ai

4L2,pK
1
S

√∑ν
i=0Bi

,

√
1−

∑ν
i=1Ai

4L2,pK
1
S

√
B̃
,

1

32LpKN
1
S

}
,

γ ≤ 1

128(1 + η)L∞KN
1
S

,

γ ≤ 1

128L2,∞KC
1
S

.

where the first one is from Theorem 1 and the others are from the derivation of the relation. For
simplicity, we can use a tighter constraint

γ ≤ min

{
1

ηLKN 1
S

,
1

128L2,∞K(N + C +Nα) 1
S

,
1

128(1 + η)L∞KN
1
S

}
.

After we use the effective step size γ̃ := γηKN 1
S , the constraint becomes

γ̃ ≤ min

{
1

L
,

η

128L2,∞
(
1 + C

N + α
) , η

128(1 + η)L∞

}
,

and the upper bound becomes

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(
F0

γ̃Q
+ γ̃2L2

2,∞
1

η2
1

Q
ς2 + γ̃2L2

2,∞
1

η2N2 1
S2

ς2 + γ̃2L2
2,∞

1

η2N2
C2ς2

)
.

Applying Lemma 1, and setting η = 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2

= O

((
L+ L2,∞

(
1 + C

N + α
)
+ L∞

)
F0

Q
+

(L2,∞F0ς)
2
3

Q
+

(
L2,∞F0Sς

NQ

) 2
3

+

(
L2,∞F0Cς

NQ

) 2
3

)
.

I Experiments
In this section, we provide the experimental results of FL on real data sets. Refer to Lu et al. [2022a];
Cooper et al. [2023] for the experimental results of SGD on real data sets.

Algorithms. We consider the two algorithms in (regularized-participation) FL in the main body:
FL-RR and FL-GraB.

Datasets and models. We consider the datasets CIFAR-10 [Krizhevsky et al., 2009], CIFAR-100
[Krizhevsky et al., 2009] and CINIC-10 [Darlow et al., 2018]. We use the convolutional neural
network (CNN) from [Acar et al., 2021] and ResNet-10 [He et al., 2016].
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Hyperparameters. We partition the data examples by the way in McMahan et al. [2017]; Zeng
et al. [2023] among N = 1000 clients, ensuring that each client contains data examples from about
one label. We use SGD as the local solver with the learning rate being constant, the momentum
being 0 and weight decay being 0. We set the global step size to η = 1. We set the total number of
training rounds to 20000 (that is, Q = 200 epochs). For other setups, following those in Wang and
Ji [2022], we set the number of participating clients in each training round to S = 10, the number
of local update steps to K = 5, the mini-batch size to 16.

Two-stage grid search. We use a two-stage grid search for tuning the step size. Specifically, we
first perform a coarse-grained search over a broad range of step sizes to identify a best step size at
a high level. After that, based on the best step size found, we perform a fine-grained search around
it by testing neighboring step sizes to find a more precise value. For instance, in the first stage, we
can use a grid of {10−2, 10−1, 100} to find the coarse-grained best step size; in the second stage,
if the coarse-grained best step size is 10−1, we use the grid of {10−1.5, 10−1, 100.5} to find the
fine-grained best step size. Notably, we tune the step size by the two-stage grid search for FL-RR,
and reuse the best step size for FL-GraB. We get that the best step size is 10−1 = 0.1 for CNN; in
the same way, we get that the best step size is 10−0.5 ≈ 0.316 for ResNet-10.

Computational resources. We use one machine with one CPU and three GPUs. The CPU is
Intel(R) Xeon(R) Gold 5218R CPU with 2.10GHz. The GPU is NVIDIA GeForce RTX 4090. It
takes about 3 hours, 3 hours and 4 hours for each single run of training CNN on CIFAR-10, CIFAR-
100 and CINIC-10, respectively. It takes about 4 hours, 4 hours, and 5 hours for each single run of
training ResNet-10 on CIFAR-10, CIFAR-100 and CINIC-10, respectively.

Experimental results. The experimental results are in Figures 2 and 3. We see that FL-GraB
outperforms FL-RR across all tasks, especially in the early stages. This is aligned with our theory
that the convergence rate of FL-GraB is better than that of FL-RR.
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Figure 2: Test accuracy results for training CNN on CIFAR-10, CIFAR-100 and CINIC-10. As done
in Wang and Ji [2022], we apply moving average on the recorded data points with a window length
of 6; note that we record the results every 100 rounds (that is, one epoch). The shaded areas show
the standard deviation across 5 random seeds.

0 2500 5000 7500 10000 12500 15000 17500 20000
30

40

50

60

70

80

90

Te
st

 To
p1

 A
cc

ur
ac

y 
(%

)

CIFAR-10

0 2500 5000 7500 10000 12500 15000 17500 20000
10

20

30

40

50

Te
st

 To
p1

 A
cc

ur
ac

y 
(%

)

CIFAR-100

0 2500 5000 7500 10000 12500 15000 17500 20000
30

40

50

60

70

Te
st

 To
p1

 A
cc

ur
ac

y 
(%

)

CINIC-10
FL-RR FL-GraB

Figure 3: Test accuracy results for training ResNet-10 on CIFAR-10, CIFAR-100 and CINIC-10. As
done in Wang and Ji [2022], we applied moving average on the recorded data points with a window
length of 6; note that we record the results every 100 rounds (that is, one epoch). The shaded areas
show the standard deviation across 5 random seeds.

J Additional Extensions of SGD
In the main body, we considered periods of the same size as an epoch, which is sufficient for the
convergence of permutation-based SGD. In fact, we can consider periods of arbitrary fixed sizes,
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by which we can extend the framework to include classic SGD. This mainly relies on the technique
developed in Lu et al. [2022b], Wang and Ji [2022] and Koloskova et al. [2024].

J.1 Results
Let the size of the periods be E, which can be different from the epoch length N . To extend the
results developed in the main body for this scenario, we make the following changes. First, before
stating the adjusted results, we redefine some notations, that is, to reformulate those defined over
“epochs” in terms of “periods”. For instance, the order error ϕ̄q in any period q is defined as

ϕ̄q := max
e∈[E]

ϕeq :=

∥∥∥∥∥
e−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥
p

 ,

where πq denotes the order in period q and xq means the initial parameter vector in period q. See
Definition 1 for comparison. Furthermore, we need to define

ψE
q := max

q∈{0,1,...,Q−1}

∥∥∥∥∥
E−1∑
e=0

∇fπq(e)(x
e
q)−∇f(xq)

∥∥∥∥∥ ,
where xn

q denotes the parameter vector after e steps in period q. Theorem 4 provides the extended
framework for SGD.

Theorem 4. Let the global objective function f be L-smooth and each local objective functions fn
be L2,p-smooth and Lp-smooth (p ≥ 2). Let ν ≥ 0 be a numerical constant. Suppose that there
exist B̃ and D̃ such that for 0 ≤ q ≤ ν − 1,

(ϕ̄q)
2 ≤ B̃ ∥∇f(xq)∥2 + D̃,

and there exist {Ai}, {Bi} and D such that for q ≥ ν,

(ϕ̄q)
2 ≤

ν∑
i=1

Ai(ϕ̄q−i)
2 +

ν∑
i=0

Bi ∥∇f(xq−i)∥2 +D.

If γ ≤ min

{
1

LE ,
1

32L2,pE
,

√
1−

∑ν
i=1 Ai

4L2,p

√∑ν
i=0 Bi

,

√
1−

∑ν
i=1 Ai

4L2,p

√
B̃

, 1
32LpE

}
, then

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 ≤ 10 · F0

γEQ
+ c · γ2L2

2,p

1

Q
νD̃ + c · γ2L2

2,pD + 10 · 1

E2

(
ψE
q

)2
,

where c = 30/(1−
∑ν

i=1 Ai) is a numerical constant.

When E is a multiple of N (ψE
q = 0), Theorem 4 is reduced to Theorem 1, including the

permutation-based SGD algorithms. When E = Θ( 1
γL ) (ψE

q is allowed to be nonzero), we can
obtain the convergence rates of AP (Proposition 11) and classic SGD (Proposition 12). As shown in
Table 8, theses rates match those of Koloskova et al. [2024].

Assumption 4. There exists a nonnegative constant ς such that for any n ∈ {0, 1, . . . , N − 1},

∥∇fn(x)−∇f(x)∥2 ≤ ς2, ∀x ∈ Rd.

Proposition 11 (AP). Suppose that Assumption 4 holds. Then, we can obtain that, for q ≥ 0,(
ϕ̄q
)2 ≤ N2ς2, and ψE

q ≤ N2ς2.

Applying Theorem 4, choosing E = Θ(⌊ 1
γL )⌋ and tuning the step size, for E ≤ T

2 , we obtain

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 = O

(
LF0

T
+min

{(
LF0Nς

T

) 2
3

,

(
LF0Nς

2

T

) 1
2

})
,

where yt denotes the model parameter vector in iteration t.
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Proposition 12 (Classic SGD). Suppose that Assumption 4 holds. Then, we can obtain that, for
q ≥ 0, with probability at least 1− δ,(

ϕ̄q
)2 ≤ ECς2, and ψE

q ≤ ECς2.

where C = 9 log2( 8δ ). Applying Theorem 4, choosing E = Θ(⌊ 1
γL⌋) and tuning the step size, for

E ≤ T
2 , we obtain that, with probability at least 1− Tδ,

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 = O

(
LF0

T
+

(
LF0ς

2

T

) 1
2

)
,

where yt denotes the model parameter vector in iteration t.

At last, we discuss some strengths and weaknesses of Theorem 4 and the technique (setting E =
Θ( 1

γL )) developed in Lu et al. [2022b], Wang and Ji [2022] and Koloskova et al. [2024]:

• For classic SGD, Theorem 4 does not require the unbiased condition, which often used in the
convergence analysis of classis SGD [Ghadimi and Lan, 2013]. This motivates a new approach
for the convergence analysis of Markov chain SGD [Even, 2023; Beznosikov et al., 2023;
Koloskova et al., 2024], where the unbiased condition is not satisfied.

• The standard approach (analyzing convergence over periods of a fixed size E) in permutation-
based SGD causes a constraint of γLE ≲ 1. In the main body, E = N , causing the constraint
on the step size γLN ≲ 1, which finally leads to a worse bound on the optimization term (See
the “AP” row in Table 1). As noted in Koloskova et al. [2024], we can set E = Θ( 1

γL ) to
circumvent the constraint of γLE ≲ 1, leading to a better bound on the optimization term for
AP (Proposition 11).

◦ For AP, whose permutations are arbitrary (without any specific structure), analyzing conver-
gence for arbitrary E will not affect the statistical properties of these permutations. However,
this does not apply to IP and DP. Take IP as an example. For IP, whose permutations are
independently generated across epochs, analyzing convergence for E = Θ( 1

γL ) (E does not
necessarily equal N ) will compromise the nice statistical properties of these permutations: The
elements in different permutations may be divided into the same period and the elements in one
permutation may be divided into different periods.

◦ For the cases E = Θ( 1
γL ), this work and the previous works [Wang and Ji, 2022; Koloskova

et al., 2024] use Assumption 4, which is stronger than Assumption 3 used in the cases E is a
multiple of N (in the main body).

◦ Compared with Koloskova et al. [2024], one additional constraint E ≤ T
2 is required for ours

(Propositions 11 and 12) and Wang and Ji [2022].

Table 8: Comparison of convergence rates (of AP and classic SGD) with Koloskova et al. [2024].
Numerical constants and polylogarithmic factors are hided.

Algorithm Koloskova et al. [2024] This work

AP LF0

T +min

{(
LF0Nς

T

) 2
3 ,
(

LF0Nς2

T

) 1
2

}
(1) LF0

T +min

{(
LF0Nς

T

) 2
3 ,
(

LF0Nς2

T

) 1
2

}
(2)

Classic SGD LF0

T +
(

LF0ς
2

T

) 1
2 (1) LF0

T +
(

LF0ς
2

T

) 1
2 (2)

1 These bounds are for 1
T

∑T−1
t=0 E ∥∇f(yt)∥2 and do not require the additional constraint E ≤ T

2
. Therefore, if

these factors are taken into consideration, the bounds of Koloskova et al. [2024] are better than ours.
2 These bounds are for mint∈{0,1,...,T−1} ∥∇f(yt)∥2 and require the additional constraint E ≤ T

2
.

J.2 Proofs
This section provides the proofs of Theorem 4 and the helper lemmas for Theorem 4.

Lemma 8. Suppose that there are n vectors x0,x1 . . . ,xn−1 ∈ Rd such that 1
n

∑n−1
i=0 xi = 0 and

∥xi∥2 ≤ ς2 for any i ∈ {0, 1 . . . , n − 1}. Suppose that the indices π are sampled uniformly at
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random from {0, 1, . . . , n − 1} with replacement in an i.i.d. manner. Then, for any integer m ≥ 1,
the following inequality holds with probability at least 1− δ:∥∥∥∥∥

m−1∑
i=0

xπ(i)

∥∥∥∥∥
2

≤ 9mς2 log2
(
8

δ

)
.

Proof. The proof is modified from Yu and Li [2023, Proposition 2.3]. For any i ∈ {0, 1 . . . , n− 1},
the matrix

Xi =

[
0 xi

xT
i 0

]
∈ R(d+1)×(d+1)

can be constructed. It can be obtained that

∥Xi∥2 = ∥xi∥ ≤ ς,∥∥∥∥∥
n−1∑
i=0

Xi

∥∥∥∥∥
2

≤ nς2.

Then, applying Yu and Li [2023, Lemma 2.1] (it also holds for sampling with replacement) with
λ = nς2, b = ς , we obtain

P

(∥∥∥∥∥
m−1∑
i=0

Xπ(i)

∥∥∥∥∥
2

≥ s

)
≤ 4d̃ exp

(
− s2/2

λm/n+ bs/3

)
= 4d̃ exp

(
− s2/2

mς2 + ςs/3

)
.

Solving 4d̃ exp
(
− s2/2

mς2+ςs/3

)
≤ δ yields s ≥ ς

3 log(
4d̃
δ ) +

√
ς2

9 log2( 4d̃δ ) + 2mς2 log( 4d̃δ ). Using

log( 4d̃δ ) > 1, we obtain that if s ≥ 3
√
mς log( 4d̃δ ), then 4d̃ exp

(
− s2/2

mς2+ςs/3

)
≤ δ. As a result, we

obtain

P

(∥∥∥∥∥
m−1∑
i=0

Xπ(i)

∥∥∥∥∥
2

≥ 3
√
mς log

(
4d̃

δ

))
≤ δ.

Using
∥∥∥∑m−1

i=0 Xπ(i)

∥∥∥
2
=
∥∥∥∑m−1

i=0 xπ(i)

∥∥∥
2

and d̃ = 2, we obtain the claimed result.

Proof of Theorem 4. For SGD, the cumulative updates over any epoch q are

xq+1 − xq = −γ
E−1∑
e=0

∇fπq(e)(x
e
q). (36)

Since the global objective function f is L-smooth, it follows that

f(xq+1) ≤ f(xq) + ⟨∇f(xq),xq+1 − xq⟩+
1

2
L ∥xq+1 − xq∥2 . (37)

Using Equation (36), we obtain

⟨∇f(xq),xq+1 − xq⟩

= −γE

〈
∇f(xq),

1

E

E−1∑
e=0

∇fπq(e)(x
e
q)

〉

= −1

2
γE ∥∇f(xq)∥2 −

1

2
γE

∥∥∥∥∥ 1

E

E−1∑
n=0

∇fπq(e)(x
e
q)

∥∥∥∥∥
2

+
1

2
γE

∥∥∥∥∥ 1

E

E−1∑
n=0

∇fπq(e)(x
e
q)−∇f(xq)

∥∥∥∥∥
2

,

where the second equality uses 2⟨x,y⟩ = ∥x∥2+∥y∥2−∥x− y∥2. Using Equation (36), we obtain

1

2
L ∥xq+1 − xq∥2 =

1

2
γ2LE2

∥∥∥∥∥ 1

E

E−1∑
e=0

∇fπq(e)(x
e
q)

∥∥∥∥∥
2

.
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Next, plugging the preceding two equalities back in to Equation (37), we obtain

f(xq+1) ≤ f(xq) + ⟨∇f(xq),xq+1 − xq⟩+
1

2
L ∥xq+1 − xq∥2

≤ f(xq)−
1

2
γE ∥∇f(xq)∥2 −

1

2
γE(1− γLE)E

∥∥∥∥∥ 1

E

E−1∑
e=0

∇fπq(e)(x
e
q)

∥∥∥∥∥
2

+
1

2
γE

∥∥∥∥∥ 1

E

E−1∑
e=0

∇fπq(e)(x
e
q)−∇f(xq)

∥∥∥∥∥
2

.

Since γLE ≤ 1, we obtain

f(xq+1) ≤ f(xq)−
1

2
γE ∥∇f(xq)∥2 +

1

2
γE

∥∥∥∥∥ 1

E

E−1∑
e=0

∇fπq(e)(x
e
q)−∇f(xq)

∥∥∥∥∥
2

. (38)

Since each local objective function fn is L2,p-smooth, we obtain

T3 in (38) =
1

2
γE

∥∥∥∥∥ 1

E

E−1∑
e=0

∇fπq(e)(x
e
q)−∇f(xq)

∥∥∥∥∥
2

≤ γE

∥∥∥∥∥ 1

E

E−1∑
e=0

∇fπq(e)(x
e
q)−

1

E

E−1∑
e=0

∇fπq(e)(xq)

∥∥∥∥∥
2

+ γE

∥∥∥∥∥ 1

E

E−1∑
e=0

∇fπq(e)(xq)−∇f(xq)

∥∥∥∥∥
2

≤ γL2
2,p

E−1∑
e=0

∥∥xe
q − xq

∥∥2
p
+ γ

1

E

(
ψE
q

)2
≤ γL2

2,pE (∆q)
2
+ γ

1

E

(
ψE
q

)2
.

This is the key change of the proof of Theorem 4 compared to Theorem 1. Plugging the preceding
inequality back into Equation (38), we obtain

f(xq+1) ≤ f(xq)−
1

2
γE ∥∇f(xq)∥2 + γL2

2,pE (∆q)
2
+ γ

1

E

(
ψE
q

)2
≤ f(xq)−

1

2
γE
(
1− 6γ2L2

2,pE
2
)
∥∇f(xq)∥2 + 3γ3L2

2,pE
(
ϕ̄q
)2

+ γ
1

E

(
ψE
q

)2
≤ f(xq)−

509

1024
γE ∥∇f(xq)∥2 + 3γ3L2

2,pE
(
ϕ̄q
)2

+ γ
1

E

(
ψE
q

)2
,

where the second inequality uses Lemma 9 and the last inequality uses γL2,pE ≤ 1
32 . Notably, the

resulting inequality is almost identical to Equation (11), except an additional term γ 1
E

(
ψE
q

)2
. The

term
(
ψE
q

)2
will not be dealt with further in this theorem, so the remaining steps of this proof are

almost the same as those in Theorem 1. For these reasons, we omit the remaining steps.

To prove Theorem 4, we require the following lemma. In particular, we define the maximum param-
eter deviation (drift) in any period q, ∆q as

∆q = max
e∈[E]

∥∥xe
q − x0

q

∥∥
p
.

Lemma 9. If γLpE ≤ 1
32 , the maximum parameter drift is bounded:

∆q ≤
32

31
γϕ̄q +

32

31
γE ∥∇f(xq)∥ ,

(∆q)
2 ≤ 3γ2

(
ϕ̄q
)2

+ 3γ2E2 ∥∇f(xq)∥2 .
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Proof. The proof is identical to that of Lemma 6, except that the epoch-based notations are replaced
by the period-based notations.

Proof of Proposition 11. For any q ∈ {0, 1 . . . , Q− 1} and e ∈ [E],

(
ϕeq
)2

=

∥∥∥∥∥
e−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥
2

≤ 4min{E,N}Nς2. (39)

See the analyses of Equation (39) in Koloskova et al. [2024, Appendix C, Proofs of the bounds in
Table 2] and Lu et al. [2022b, Appendix A.5, Justifications for Assumption 2 under various example
orderings].

In this proposition, for Theorem 4, p = 2, ν = 0, D = 4min{E,N}Nς2, c = 30 and ψE
q =

4min{E,N}Nς2. These lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γEQ
+ γ2L2 min{N2, NE}ς2 + 1

E2
min{N2, NE}ς2

)
,

with the constraint γ ≤ 1
32LE .

Then, choosing E = ⌊ 1
32γL⌋, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O
(

F0

γEQ
+min{γ2L2N2ς2, γLNς2}

)
.

Using γ ≲ 1
L , which is due to E = ⌊ 1

32γL⌋ ≥ 1, and applying Lemmas 1 and 2, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = O

(
LF0

EQ
+min

{(
LF0Nς

EQ

) 2
3

,

(
LF0Nς

2

EQ

) 1
2

})
.

Given that γ can be chosen different in different propositions, EQ (E is chosen according to γ) can
be different in different propositions. To ensure a fair comparison between algorithms, we use the
total number of iterations T instead of NQ in the bounds:

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 ≤ min
t∈{0,E,...,(⌊ T

E ⌋−1)}
∥∇f(yt)∥2

= min
q∈{0,1,...,Q−1}

∥∇f(xq)∥2

≤ 1

Q

Q−1∑
q=0

∥∇f(xq)∥2

= O

(
LF0

T
+min

{(
LF0Nς

T

) 2
3

,

(
LF0Nς

2

T

) 1
2

})
,

where yt denotes the model parameter vector in iteration t and the last equality uses 1
QE = 1

⌊ T
E ⌋E ≤

T
2 when E ≤ T

2 [Wang and Ji, 2022, Appendix C, Proofs].

Proof of Proposition 12. For any q ∈ {0, 1 . . . , Q− 1} and e ∈ [E],

(
ϕeq
)2

=

∥∥∥∥∥
e−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥
2

≤ ECς2. (40)

where C = 9 log2( 8δ ) and the last inequality uses Lemma 8.

In this proposition, for Theorem 4, p = 2, ν = 0, D = NCς2, c = 30 and ψE
q = ECς2. These give

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(

F0

γEQ
+ γ2L2Eς2 +

1

E
ς2
)
,
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with the constraint γ ≤ 1
32LE . Since Equation (40) is used for each period (that is, for Q times), so

by the union bound, the preceding bound holds with probability at least 1−Qδ.

Then, choosing E = ⌊ 1
32γL⌋, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(

F0

γEQ
+ γLς2

)
.

Using γ ≲ 1
L (due to E ≥ 1) and applying Lemma 1, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ

(
LF0

EQ
+

(
LF0ς

2

EQ

) 1
2

)
.

To ensure a fair comparison between algorithms, we use the total number of iterations T instead of
NQ in the bounds:

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 = Õ

(
LF0

T
+

(
LF0ς

2

T

) 1
2

)
,

where yt denotes the model parameter vector in iteration t.

K Additional Extensions of FL
In this section, we extend the framework to cover the independent client participation pattern in
Karimireddy et al. [2020], Yang et al. [2021] and Wang and Ji [2022] with the same way studied in
Appendix J.

K.1 Results
Similar to Appendix J, we redefine some notations, that is, to reformulate those defined over
“epochs” in terms of “periods”. For instance, the order error ϕ̄q in any period q is defined as

φ̄q := max
e∈[E]

φv(e)
q :=

∥∥∥∥∥∥
v(e)−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥∥
p

 ,

where πq denotes the order in period q and xq means the initial parameter vector in period q. See
Definition 2 for comparison. Furthermore, we define

ψE
q := max

q∈{0,1,...,Q−1}

∥∥∥∥∥
E−1∑
e=0

∇fπq(e)(x
e
q)−∇f(xq)

∥∥∥∥∥ ,
where xe

q denotes the parameter vector after k local updates in client n in epoch q.

Theorem 5 provides the extended framework for FL, which covers the independent participation
pattern (Propositions 13 and 14).

Theorem 5. Let the global objective function f be L-smooth and each local objective functions fn
beL2,p-smooth andLp-smooth (p ≥ 2). Suppose that Assumption 3 holds. SupposeE mod S = 0.
Let ν ≥ 0 be a numerical constant. Suppose that there exist B̃ and D̃ such that for 0 ≤ q ≤ ν − 1,

(φ̄q)
2 ≤ B̃ ∥∇f(xq)∥2 + D̃,

and there exist {Ai}, {Bi} and D such that for q ≥ ν,

(φ̄q)
2 ≤

ν∑
i=1

Ai(φ̄q−i)
2 +

ν∑
i=0

Bi ∥∇f(xq−i)∥2 +D.

If γ ≤ min

{
1

ηLKE 1
S

, 1
32L2,pKE 1

S

,

√
1−

∑ν
i=1 Ai

4L2,pK
1
S

√∑ν
i=0 Bi

,

√
1−

∑ν
i=1 Ai

4L2,pK
1
S

√
B̃
, 1
32LpKE 1

S

}
, then

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 ≤
5F0

γηKE 1
SQ

+ cγ2L2
2,pK

2 1

S2

1

Q
νD̃ + 20γ2L2

2,pK
2ς2

+ cγ2L2
2,pK

2 1

S2
D + 5

1

E2

(
ψE
q

)2
,

where c = 10/(1−
∑ν

i=1 Ai) is a numerical constant.
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When E is a multiple of N (ψE
q = 0), and Theorem 5 is reduced to Theorem 2, covering the

examples in FL with regularized participation. When E = Θ( 1
γL ) (ψE

q is allowed to be nonzero),
we can obtain the convergence rates of FL with independent participation. Two strategies appeared
in previous works are considered (see Propositions 13 and 14). The comparison of convergence rates
with the previous works [Yang et al., 2021; Wang and Ji, 2022] are provided in Table 9. Note that
the assumption that the clients are selected according to Equation (46) is also used in Wang and Ji
[2022, Proposition 4.7]. See the statement in Wang and Ji [2022]: “In the following, we assume that
µt0 is chosen such that µt0 = E[qnt ] for all n ∈ {1, . . . , N} and t ∈ {t0, t0 + 1, . . . , t0 + P − 1}”.

Proposition 13 (Strategy 1). Let the clients be selected uniformly at random with replacement in
each round, independently across rounds. Suppose that Assumption 4 holds. Then, we obtain that,
for q ≥ 0, with probability at least 1− δ,

(φ̄q)
2 ≤ ECς2, and ψE

q ≤ ECς2,

where C = 9 log2( 8δ ). Applying Theorem 5, choosing E = Θ(⌊ 1
γKL⌋S) and tuning the step size,

for E
S ≤

T
2 , we obtain that, with probability at least 1− Tδ,

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 = Õ

(
LF0

T
+

(
LF0ς

T

) 2
3

+

(
LF0ς

2

ST

) 1
2

)
.

where yt denotes the model parameter vector in round t.

Proposition 14 (Strategy 2). Let the clients be selected in a manner that satisfies Equation (46) in
each round, independently across rounds. Suppose that Assumption 4 holds. Then, we obtain that,
for q ≥ 0, with probability at least 1− δ,

(φ̄q)
2 ≤ ESCς2, and ψE

q ≤ ESCς2,

where C = 9 log2( 8δ ). Applying Theorem 5, choosing E = Θ(⌊ 1
γKL⌋S) and tuning the step size,

for E
S ≤

T
2 , we obtain that, with probability at least 1− Tδ,

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 = Õ

(
LF0

T
+

(
LF0ς

T

) 2
3

+

(
LF0ς

2

T

) 1
2

)
.

where yt denotes the model parameter vector in round t.

Table 9: Comparison of convergence rates (of FL with independent participation) with previous
works. Numerical constants and polylogarithmic factors are hided. We set η = 1 for comparison.

Algorithm Previous works This work

Strategy 1 LF0

T +
(
LF0ς
T

) 2
3 +

(
LF0ς

2

ST

) 1
2 (1) LF0

T +
(
LF0ς
T

) 2
3 +

(
LF0ς

2

ST

) 1
2 (2)

Strategy 2 LF0

T +
(
LF0ς
T

) 2
3 +

(
LF0N

2ς2

ST

) 1
2

+ ς2(2,3) LF0

T +
(
LF0ς
T

) 2
3 +

(
LF0ς

2

T

) 1
2 (2)

1 This bound is from Yang et al. [2021, Theorem 2]. This bound is for 1
T

∑T−1
t=0 E ∥∇f(yt)∥2 and do

not require the additional constraint E
S
≤ T

2
. Therefore, if these factors are taken into consideration,

the bounds of Yang et al. [2021] are better than ours.
2 These bounds is for mint∈{0,1,...,T−1} ∥∇f(yt)∥2 and requires the additional constraint E

S
≤ T

2
.

3 This bound is from Wang and Ji [2022].

K.2 Proofs
This section provides the proofs of Theorem 5 and the helper lemmas for Theorem 5.

To avoid ambiguity, we define

x̃q+1 := xE−1
q,K = xE

q,0.
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Due to the amplified updates [Wang and Ji, 2022], we have

x̃q+1 − xq = −γ 1

S

E−1∑
e=0

K−1∑
k=0

∇fπq(e)

(
xe
q,k

)
,

xq+1 − xq = −γη 1

S

E−1∑
e=0

K−1∑
k=0

∇fπq(e)

(
xe
q,k

)
.

We define the maximum parameter deviation (drift) of FL in any period q, ∆q as

∆q = max

 max
e∈{0,...,E−1}
k∈{0,...,K−1}

∥∥xe
q,k − xq

∥∥
p
, ∥x̃q+1 − xq∥p

 .

Then, we obtain the relation

∥xq+1 − xq∥p = η ∥x̃q+1 − xq∥p ≤ η∆q.

Lemma 10. If γLpKN
1
S ≤

1
32 and E is a multiple of S, the maximum parameter drift in FL is

bounded:

∆q ≤
32

31
γK

1

S
φ̄q +

32

31
γKE

1

S
∥∇f(xq)∥+

32

31
γKς,

(∆q)
2 ≤ 4γ2K2 1

S2
(φ̄q)

2
+ 4γ2K2E2 1

S2
∥∇f(xq)∥2 + 4γ2K2ς2.

Proof. The proof is identical to that of Lemma 10, except that the epoch-based notations are replaced
by the period-based notations.

Proof of Theorem 5. For FL with regularized participation (Algorithm 2), the cumulative updates
over any period q are

xq+1 − xq = −γη 1
S

N−1∑
n=0

K−1∑
k=0

∇fπq(n)

(
xn
q,k

)
. (41)

Since the global objective function f is L-smooth, it follows that

f(xq+1)− f(xq) ≤ ⟨∇f(xq),xq+1 − xq⟩+
1

2
L ∥xq+1 − xq∥2 . (42)

Using Equation (41), we obtain

⟨∇f(xq),xq+1 − xq⟩

= −γη 1
S
KE

[〈
∇f(xq),

1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(x
e
q,k)

〉]

= −1

2
γη

1

S
KE ∥∇f(xq)∥2 −

1

2
γη

1

S
KE

∥∥∥∥∥ 1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(x
e
q,k)

∥∥∥∥∥
2

+
1

2
γη

1

S
KE

∥∥∥∥∥ 1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(x
e
q,k)−∇f(xq)

∥∥∥∥∥
2

,

where the second equality uses 2⟨x,y⟩ = ∥x∥2+∥y∥2−∥x− y∥2. Using Equation (41), we obtain

1

2
L ∥xq+1 − xq∥2 =

1

2
L

∥∥∥∥∥γη 1S
E−1∑
e=0

K−1∑
k=0

∇fπq(e)(x
e
q,k)

∥∥∥∥∥
2

=
1

2
γ2η2L

1

S2
K2E2

∥∥∥∥∥ 1

E

E−1∑
n=0

1

K

K−1∑
k=0

∇fπq(e)(x
e
q,k)

∥∥∥∥∥
2

.
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Plugging the preceding two equations back into Equation (42), and using γηLKN 1
S ≤ 1, we obtain

f(xq+1)− f(xq)

≤ −1

2
γη

1

S
KE ∥∇f(xq)∥2 +

1

2
γη

1

S
KE

∥∥∥∥∥ 1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(x
e
q,k)−∇f(xq)

∥∥∥∥∥
2

. (43)

Then,

T2 in (43) =
1

2
γη

1

S
KE

∥∥∥∥∥ 1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(x
e
q,k)−∇f(xq)

∥∥∥∥∥
2

≤ γη 1
S
KE

∥∥∥∥∥ 1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(x
e
q,k)−

1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(xq)

∥∥∥∥∥
2

+ γη
1

S
KE

∥∥∥∥∥ 1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(xq)−∇f(xq)

∥∥∥∥∥
2

≤ γηL2
2,p

1

S

E−1∑
e=0

K−1∑
k=0

∥∥xe
q,k − xq

∥∥2
p

+ γη
1

S
KE

∥∥∥∥∥ 1

E

E−1∑
e=0

1

K

K−1∑
k=0

∇fπq(e)(xq)−∇f(xq)

∥∥∥∥∥
2

≤ γηL2
2,pKE

1

S
(∆q)

2
+ γηK

1

ES

(
ψE
q

)2
,

where the second inequality is because fπq(e) is L2,p smooth and the last inequality uses the defini-
tions of ∆q and ψE

q . Plugging the preceding inequality back into Equation (43), we obtain

f(xq+1)− f(xq) ≤ −
1

2
γη

1

S
KE ∥∇f(xq)∥2 + γηL2

2,pKE
1

S
(∆q)

2
+ γηK

1

ES

(
ψE
q

)2
.

Using Lemma 7 and γL2,pKN
1
S ≤

1
32 , we obtain

f(xq+1)− f(xq) ≤ −
127

256
γηKE

1

S
∥∇f(xq)∥2 + 4γ3ηL2

2,pK
3E

1

S3
(φ̄q)

2

+ 4γ3ηL2
2,pK

3E
1

S
ς2 + γηK

1

ES

(
ψE
q

)2
.

Note that the preceding inequality is almost identical to Equation (25), except an additional term
γηK 1

ES

(
ψE
q

)2
. The term

(
ψE
q

)2
will not be dealt with further in this theorem, so the remaining

steps of this proof are almost the same as those in Theorem 2. For these reasons, we omit the
remaining steps.

Proof of Proposition 13. For any q ∈ {0, 1 . . . , Q− 1} and e ∈ [E],

(
φv(e)
q

)2
=

∥∥∥∥∥∥
v(e)−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥∥
2

≤ ECς2 (44)

where C = 9 ln2( 8δ ) and the first inequality uses Lemma 8.

In this proposition, for Theorem 5, p = 2, ν = 0, D = ECς2, c = 10 and ψE
q = ECς2. These give

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(

F0

γηKE 1
SQ

+ γ2L2K2ς2 + γ2L2K2E
1

S2
ς2 +

1

E
ς2
)
,

with the constraint γ ≤ 1
32ηLKE 1

S

. Equation (44) is used for each period (that is, for Q times), so
by the union bound, the preceding bound holds with probability at least 1−Qδ.
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Then, choosing E = ⌊ 1
32γLK ⌋S, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(

F0

γηKE 1
SQ

+ γ2L2K2ς2 + γLK
1

S
ς2
)
.

Using γ ≲ 1
LK (due to E = ⌊ 1

32γLK ⌋S ≥ S), and applying Lemmas 1 and 2, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ

(
LF0

ηE 1
SQ

+

(
LF0ς

ηE 1
SQ

) 2
3

+

(
LF0ς

2

ηEQ

) 1
2

)
.

Given that γ can be chosen different in different propositions, EQ (E is chosen according to γ) can
be different in different propositions. To ensure a fair comparison between algorithms, we use the
total number of iterations T instead of NQ in the bounds:

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 ≤ min
t∈{0,ES ,...,(⌊TS

E ⌋−1)}
∥∇f(yt)∥2

= min
q∈{0,1,...,Q−1}

∥∇f(xq)∥2

≤ 1

Q

Q−1∑
q=0

∥∇f(xq)∥2

= Õ

(
LF0

ηT
+

(
LF0ς

ηT

) 2
3

+

(
LF0ς

2

ηST

) 1
2

)
,

where yt denotes the model parameter vector in round t and the last equality uses 1
QE

S

= 1
⌊TS

E ⌋E
S

≤
2
T when E

S ≤
T
2 [Wang and Ji, 2022, Appendix C, Proofs]. We set η = 1 for comparison:

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 = Õ

(
LF0

T
+

(
LF0ς

T

) 2
3

+

(
LF0ς

2

ST

) 1
2

)
.

Proof of Proposition 14. For any q ∈ {0, 1 . . . , Q− 1} and e ∈ [E],

(
φv(e)
q

)2
=

∥∥∥∥∥∥
v(e)−1∑
i=0

(
∇fπq(i)(xq)−∇f(xq)

)∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
v(e)−1∑
i=0

(
1

S

S−1∑
s=0

∇fπq(⌊ i
S ⌋S+s)(xq)−∇f(xq)

)∥∥∥∥∥∥
2

≤ ESC max
i∈{0,1...,E−1}

∥∥∥∥∥ 1S
S−1∑
s=0

∇fπq(⌊ i
S ⌋S+s)(xq)−∇f(xq)

∥∥∥∥∥
2

≤ ESC max
i∈{0,1...,E−1}

1

S

S−1∑
s=0

∥∥∥∇fπq(⌊ i
S ⌋S+s)(xq)−∇f(xq)

∥∥∥2
≤ ESCς2 (45)

where C = 9 ln2( 8δ ) and the first inequality uses Lemma 8 and the condition

E

[
1

S

S−1∑
s=0

∇fπq(⌊ i
S ⌋S+s)(xq)

]
= ∇f(xq) (46)

for any i ∈ {0, 1 . . . , E − 1} and q ∈ {0, 1, . . . , Q− 1}.
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In this proposition, for Theorem 5, p = 2, ν = 0, D = ESCς2, c = 10 and ψE
q = ESCς2. These

lead to

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(

F0

γηKE 1
SQ

+ γ2L2K2ς2 + γ2L2K2E
1

S
ς2 +

1

E
Sς2
)
,

with the constraint γ ≤ 1
32ηLKE 1

S

. Equation (44) is used for each period (that is, for Q times), by
the union bound, we can obtain that the preceding bound holds with probability at least 1−Qδ.

Then, choosing E = ⌊ 1
32γKL⌋S, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ
(

F0

γηKE 1
SQ

+ γ2L2K2ς2 + γLKς2
)
.

Using γ ≲ 1
LK (due to E = ⌊ 1

32γLK ⌋S ≥ S), and applying Lemmas 1 and 2, we obtain

1

Q

Q−1∑
q=0

∥∇f(xq)∥2 = Õ

(
LF0

ηE 1
SQ

+

(
LF0ς

ηE 1
SQ

) 2
3

+

(
LF0ς

2

ηE 1
SQ

) 1
2

)
.

To ensure a fair comparison between algorithms, we use the total number of iterations T instead of
NQ in the bounds. Following the same steps as Proposition 13, we obtain

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 = Õ

(
LF0

ηT
+

(
LF0ς

ηT

) 2
3

+

(
LF0ς

2

ηT

) 1
2

)
,

where yt denotes the model parameter vector in round t. We set η = 1 for comparison:

min
t∈{0,1,...T−1}

∥∇f(yt)∥2 = Õ

(
LF0

T
+

(
LF0ς

T

) 2
3

+

(
LF0ς

2

T

) 1
2

)
.

L Permutation-based SGD and Online Learning

In modern large-scale language model training, it may be impossible to actually shuffle all the data
examples in a very large dataset. In this section, we analyze a hybrid algorithm that combines
permutation-based SGD with online learning [Orabona, 2019; Hazan et al., 2016].

The hybrid algorithm, notations and assumptions. The data examples are sampled from a very
large dataset in a online fashion. Each time K data examples are sampled (which can be stored in
a small memory), these data examples are permuted and then fed into the model. For simplicity,
we use projected online gradient descent (see Orabona [2019, Algorithm 2.1]) to train this model
with the shuffled examples. The details are in Algorithm 13, which combines Algorithm 1 and
Orabona [2019, Algorithm 2.1]. Intuitively, Algorithm 13 is a hybrid (hierarchical) algorithm where
the top-level part is projected online gradient descent and the bottom-level part is permutation-based
SGD.

In this section, we need to redefine some notations. We call each group of K examples a block,
indexed by q. We use fπq(k) to denote the loss function of the k-th example in block q, where πq is
the permutation in block q. We use Fq = 1

K

∑K−1
k=0 fqk to denote the loss function of the block q.

We use x to denote the iterates: xk
q denotes the iterate in example k and block q and xq denotes the

initial iterate in block q.
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Algorithm 13: A hybrid algorithm that combines permutation-based SGD with online learn-
ing

Input: V , π0, x0 ∈ V
Output: {xq}

1 for q = 0, 1, . . . , Q− 1 do
2 Sample K examples in an online fashion
3 for k = 0, 1, . . . ,K − 1 do
4 xk+1

q ← xk
q − γ∇f

q
πq(k)

(xk
q )

5 xq+1 ← ΠV(x
K
q ) = argminy∈V ∥xK

q − y∥2
6 πq+1 ← Permute(· · · )

The assumptions are as follows:

Assumption 5. All iterations x ∈ V , where V is a closed convex set with diameter D.

Assumption 6. There exists a constant σ such that for any q ∈ {0, 1, . . . , Q− 1},

∥∇Fq(x)∥2 ≤ σ2, ∀x ∈ Rd,

where Fq(x) =
1
K

∑K−1
k=0 fqk (x).

Assumptions 5 and 6 are used in Orabona [2019, Theorem 2.13].

Definition 4. The order error in any block q is defined as

ϕ̄q = max
k∈[K]

∥∥∥∥∥
k−1∑
i=0

(∇fqπq(k)
(xq)−∇Fq(xq))

∥∥∥∥∥ .
Assumption 7. There exists a constant ς such that for any q ∈ {0, 1, . . . , Q − 1} and k ∈
{0, 1, . . . ,K − 1},

∥∇fqk (x)−∇Fq(x)∥
2 ≤ ς2, ∀x ∈ Rd.

Regret analysis. The average regret bound of Algorithm 13 is given in Theorem 6. Suppose that
Assumption 7 holds, we can obtain the bounds of ϕ̄q for AP and IP (as in Appendix F), by which
we can further obtain the average regret bounds for AP and IP. These bounds imply that a nice
permutation (the value of ϕ̄q is small) will lead to a nice bound. Thus, shuffling a subset of the
dataset can also help improve the performance. Notably, in online learning, the examples appear
only once, which means that the information gained from the previous blocks may not apply to the
subsequent blocks. As a result, the original DP algorithms cannot be applied for online learning.
Given the complexity, we leave DP to future works.

Theorem 6. Suppose that Assumptions 5 and 6 hold. The average regret bound of Algorithm 13 is

1

Q

Q−1∑
q=0

(∇Fq(xq)−∇Fq(u)) ≤
D2

2γKQ
+ 2γ2L

(
ϕ̄q
)2

+ 2γKσ2,

where u ∈ V is an arbitrary competitor.

Proof. This analysis is based on Orabona [2019, Theorem 2.13].

∥xq+1 − u∥2 − ∥xq − u∥2 =
∥∥ΠV(x

K
q )− u

∥∥2 − ∥xq − u∥2

≤
∥∥xK

q − u
∥∥2 − ∥xq − u∥2

≤ ∥xq − γ
K−1∑
k=0

∇fqπq(k)
(xk

q )− u∥2 − ∥xq − u∥2

≤ −2γ
K−1∑
k=0

⟨xq − u,∇fqπq(k)
(xk

q )⟩+ γ2∥
K−1∑
k=0

∇fqπq(k)
(xk

q )∥2 (47)
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where u ∈ V is an arbitrary competitor, and the first inequality uses Orabona [2019, Proposition
2.11]. Then, using Karimireddy et al. [2020, Lemma 5], we obtain

T1 in (47) = −2γ
K−1∑
k=0

⟨xq − u,∇fqπq(k)
(xk

q )⟩

≤ −2γ
K−1∑
k=0

(
fqπq(k)

(xq)− fqπq(k)
(u)− L

∥∥xk
q − xq

∥∥2)
= −2γK (Fq(xq)− Fq(u)) + 2γL

K−1∑
k=0

∥∥xk
q − xq

∥∥2 ,
and

T2 in (47) = γ2

∥∥∥∥∥
K−1∑
k=0

∇fqπq(k)
(xk

q )

∥∥∥∥∥
2

≤ 2γ2

∥∥∥∥∥
K−1∑
k=0

∇fqπq(k)
(xk

q )−
K−1∑
k=0

∇fqπq(k)
(xq)

∥∥∥∥∥
2

+ 2γ2

∥∥∥∥∥
K−1∑
k=0

∇fqπq(k)
(xq)

∥∥∥∥∥
2

= 2γ2L2K

K−1∑
k=0

∥∥xk
q − xq

∥∥2 + 2γ2K2∇Fq(xq)

≤ 2γ2L2K

K−1∑
k=0

∥∥xk
q − xq

∥∥2 + 2γ2K2σ2.

Plugging the preceding two bounds into Equation (47), we obtain

∥xq+1 − u∥2 − ∥xq − u∥2

≤ −2γK (Fq(xq)− Fq(u)) + 2γL(1 + γLK)

K−1∑
k=0

∥∥xk
q − xq

∥∥2 + 2γ2K2σ2.

Note that Lemma 6 applies to the local updates (Lines 3–4) in Algorithm 13, and then we obtain

∥xq+1 − u∥2 − ∥xq − u∥2

≤ −2γK (Fq(xq)− Fq(u)) + 2γLK(1 + γLK)∆2
q + 2γ2K2σ2

≤ −2γK (Fq(xq)− Fq(u))

+ 2γLK(1 + γLK)
(
3γ2

(
ϕ̄q
)2

+ 3γ2K2 ∥∇Fq(xq)∥2
)
+ 2γ2K2σ2

≤ −2γK (Fq(xq)− Fq(u)) + 4γ3LK
(
ϕ̄q
)2

+ 4γ3LK3 ∥∇Fq(xq)∥2 + 2γ2K2σ2

≤ −2γK (Fq(xq)− Fq(u)) + 4γ3LK
(
ϕ̄q
)2

+ 4γ3LK3σ2 + 2γ2K2σ2

≤ −2γK (Fq(xq)− Fq(u)) + 4γ3LK
(
ϕ̄q
)2

+ 3γ2K2σ2,

where the first inequality uses the definition ∆q := maxk∈[K]

∥∥xk
q − xq

∥∥2, the second inequality
uses Lemma 6, the third inequality uses γLK ≤ 1

32 , the forth inequality uses Assumption 6 and the
fifth inequality uses γLK ≤ 1

32 . Then,

Fq(xq)− Fq(u) ≤
∥xq − u∥2

2γK
− ∥xq+1 − u∥2

2γK
+ 2γ2L

(
ϕ̄q
)2

+ 2γKσ2.

Averaging over q in the preceding inequality, we obtain

1

Q

Q−1∑
q=0

(Fq(xq)− Fq(u)) ≤
∥x0 − u∥2 − ∥xQ − u∥2

2γKQ
+ 2γ2L

(
ϕ̄q
)2

+ 2γKσ2

≤ D2

2γKQ
+ 2γ2L

(
ϕ̄q
)2

+ 2γKσ2,
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where we use Assumption 5. Applying Lemmas 1 and 2, we obtain the average regret bound

1

Q

Q−1∑
q=0

(Fq(xq)− Fq(u)) = O

LD2

Q
+

(√
LD2ϕ̄q
KQ

) 2
3

+

(
σ2D2

Q

) 1
2

 .
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that we provide a unified analysis for permutation-based SGD with
arbitrary permutations of examples and a unified analysis for regularized client participa-
tion FL with arbitrary permutations of clients in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions in all the theorems (Theorems 1, 2
and 3) and propositions (Propositions 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10). The proof of The-
orem 1 is provided in Appendix E. The proofs of Theorems 2 and 3 are provided in Ap-
pendix G. The proofs of Propositions 1, 2, 3, 4, 5, 6 and 7 are provided in Appendix F. The
proofs of Propositions 8, 9 and 10 are provided in Appendix H.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of the experiments on simulated data in Section 5 and
real data sets in Appendix I. We also provide the codes for the experiments on simulated
data in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the codes for the experiments on simulated data in the supplemen-
tary material. We will provide open access to the data and code if the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

81

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Justification: We provide the details of the experiments on simulated data in Section 5 and
real data sets in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run the experiments for multiple random seeds, and provide the min-max
values in the experiments on simulated data in Section 5 and provide the standard deviation
in the experiments on real data sets in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information on the computational resources in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There are two main contributions in this work: (i) A unified convergence
analysis framework for permutation-based SGD with arbitrary permutations of examples.
(ii) A unified convergence analysis framework for FL with regularized client participation
with arbitrary permutations of clients. This work is primarily theoretical and foundational,
it contributes to a better understanding of optimization methods widely used in machine
learning systems. Thus, we do not feel specific societal impacts beyond those existing in
general machine learning and federated learning.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.
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Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

85



only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

86

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Initial Motivation: Example Ordering in Permutation-based SGD
	New Challenges: Client Ordering in FL with Regularized Client Participation
	Main Contributions

	Related Works
	Permutation-based SGD
	FL with Regularized Client Participation
	Preliminaries of GraBs

	Permutation-based SGD
	Main Theorem
	Case Studies

	Federated Learning
	Main Theorem
	Case Studies

	Experiments
	Conclusion
	Related Works
	Related Works
	Reformulating Existing Convergence Rates in Our Setting

	Notations
	Algorithms
	Preliminaries of GraBs
	Implementations of GraBs

	Helper Lemmas
	Theorem 1
	Proof of Theorem 1

	Special Cases in SGD
	Arbitrary Permutation (AP)
	Random Reshuffling (RR)
	FlipFlop
	One Permutation (OP)
	GraB-proto
	PairGraB-proto
	GraB
	PairGraB
	Refinement of the High Probability Bounds from Q to 

	Theorem 2
	Order Error in FL
	Proof of Theorem 2
	PL Condition

	Special Cases in FL
	FL-AP
	FL-RR
	FL-GraB

	Experiments
	Additional Extensions of SGD
	Results
	Proofs

	Additional Extensions of FL
	Results
	Proofs

	Permutation-based SGD and Online Learning

