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Abstract

Operational decision making in the shipping industry exemplifies a real-world
challenge that extends beyond single tasks and static conditions. We introduce an
agentic LLM system designed to enhance anomaly detection (AD) and maintenance
processes within this highly dynamic domain, involving multi-persona stakeholder
interactions. The method leverages the intrinsic knowledge and reasoning abilities
of LLMs, augmented by a suite of external tools to reason on the severity of
anomalies detected by an out-of-the-box AD tool. Our approach achieves this by
considering environmental factors, interconnected system dynamics extracted from
a knowledge graph, and broader operational parameters. Evaluations on large-scale
shipping data demonstrate that our method effectively reasons about multimodal
data, distilling complex system dynamics into operational insights. This represents
the first agentic application in an open-world maritime environment.

1 Introduction

The global shipping industry, comprising over 100,000 vessels facilitates the transport of 90% of
the world’s goods, yet it also contributes 3% of global greenhouse gas emissions, which have risen
by 20% in the past decade [2, 18]. With the International Maritime Organization (IMO) aiming to
reduce emissions by 20% by 2030 and 70% by 2040 [10], enhancing shipping efficiency has become
essential for achieving environmental goals.

However, these ambitions are complicated by an ageing global fleet, where over half of the vessels
are older than 15 years, making them difficult to retrofit yet premature for scrapping [2]. Amid these
constraints, digitalization and AI offer transformative potential in areas such as route optimization,
fuel efficiency, and predictive maintenance [6]. While platforms like Maersk’s TradeLens and Rolls-
Royce’s autonomous ship initiatives have made strides, the industry’s complexity and regulatory
hurdles demand more scalable, integrated solutions accessible to a broad range of industry persona
[5, 13].

Key priorities include, seamless data integration across fragmented systems, real-time monitoring for
predictive maintenance, scalability for diverse fleets, and transparent adherence to regulatory compli-
ance across global frameworks. Additionally, solutions must provide automation and configurability
to address the varied needs of industry personas without relying on specialised expertise.
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2 Related work

Reinforcement Learning (RL) has achieved outstanding success in domains like Atari [11], Chess,
and Go [16], typically within single-agent environments. However, industrial systems require agents
to interact with multiple entities and understand the broader consequences of their actions on the
overall system, highlighting the need for more complex, multi-agent approaches.

Recent research demonstrates the power of augmenting LLMs with external tools, such as retrieval
augmentation [24], mathematical reasoning tools [8, 14], and code interpreters [3, 20]. These
advancements enable LLMs to dynamically select and configure external tools to solve more complex
reasoning tasks, as seen in systems like HuggingGPT [15], which uses language as a flexible interface
to leverage multiple tools.

Further developments in planning algorithms integrate LLMs for enhanced decision-making in
industrial applications. Auto-GPT [21] and ReAct [22] automate task planning and problem-solving
by interacting with external systems, while Language Agent Tree Search (LATS) [23] combines
LLM reasoning, acting, and planning, incorporating feedback from dynamic environments. These
techniques represent significant progress in using LLMs to handle the complexity and variability of
industrial processes.

3 Methods

Our solution leverages agent-based LLMs to enhance decision-making and planning for industrial
asset management and maintenance. This architecture incorporates a reasoning and planning agent
that decomposes tasks into subtasks and coordinates various specialised agent tools to execute these
subtasks. An LLM-driven agentic approach in shipping enables diverse personas—such as fleet
owners, ship owners, captains, engineers, and technicians—to seamlessly explore various aspects of
the ship’s systems and access tailored information.

3.1 Agentic Tools for Industrial Asset Management

We developed a suite of tools specifically designed for industrial applications, enhancing agentic
decision-making by providing a comprehensive view of real-time ship operations along with contex-
tual insights. These tools integrate structured information from a domain-specific knowledge graph,
real-time sensor data, and technical specifications, including potential failure data. By leveraging
LangGraph2, the framework’s modular and adaptable design allows it to meet diverse operational
requirements and significantly improve decision-making. We demonstrate the method on real-world
shipping data, showcasing its practical applicability and scalability.

Figure 1 illustrates the architecture of the system, integrating agentic reasoning with a domain-
specific knowledge graph and context data to identify relevant components and sensor data to monitor
performance. The system utilises LLM-as-a-judge capabilities to evaluate tool selections and ensure
that the chosen tools align with the context and intent of the user query, optimising decision-making
and anomaly detection.

3.1.1 Knowledge Graph Exploration

Knowledge graphs (KG) help integrate diverse data sources, provide context, and support applications
such as semantic data integration, knowledge discovery, and predictive analytics and forecasting.

Our implementation utilised an Apollo Server connected to a Neo4j database, built around a predefined
GraphQL schema [19]. Given the broad scope of applications pertinent to ship operations, the KG
functions as an operational metamodel or semantic layer, bridging actual system operations with
higher-level use cases supported by the data. This includes ship performance metrics, operational
requirements, performance benchmarks, environmental conditions, and the corresponding setpoints
required to achieve operational objectives. Additionally, it encompasses optimization strategies such
as weather routing and port arrival management

While the KG can represent many aspects of ship operations, efficiencies, and predictive analytics
(e.g. model management), we focused on the relationships between the vessel, its components, and

2https://langchain-ai.github.io/langgraph/
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Figure 1: Flow diagram showing the user interaction with the agentic system, highlighting the
Anomaly Detection Route. The router is used for path selection.

associated operational variables. Components such as the main engine, auxiliary engine, and cargo
system are linked to variables like temperature, pressure, and performance metrics, creating a network
that reflects the ship’s functional state. Importantly in the context of anomaly detection, it allows
greater visibility into how components can be influenced by exogenous factors such as sea-state or
navigation patterns.

3.1.2 Anomaly Detection for Industrial Asset Management

Anomaly detection for industrial asset management is a challenging problem: operating conditions
extremely dynamic due to fluctuating loads and environmental factors, there can be complex inter-
actions between subsystems and components, while industrial labelled data are scarce. High false
positive rates can lead to high maintenance costs and undermine confidence in the condition-based
approach. Further, interpreting the results of many anomaly detection methods is non-trivial, and
often requires operator input and judgement to manually flag alerts.

In this work, we extend the approach proposed by [7]. This online, unsupervised anomaly detection
approach leverages an efficient formulation of the optimal transport (OT) problem in one dimension
to detect anomalies in noisy, seasonal time series data. A key benefit of this approach is the built-in
counterfactual explanations for each anomaly, which are derived from the optimal transport plan.

Based on these explanations, we modify the binary anomaly prediction in [7] (OT-AD) to leverage
the counterfactual explanations explicitly. In lieu of labels to tune against, we set the parameters
for OT-AD to nref = 36, ntest = 24, nbuf = 48 for all data. Considering the factual point y and its
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counterfactual ŷ, we can approximate the severity of the anomaly by considering the percentage
change between these two, γ = y−ŷ

y . Both the magnitude and direction of γ can be used to reason
about each anomaly, boosting the interpretability of the method.

3.1.3 Anomaly Synthesis Based on Intrinsic Knowledge

Reflecting the interconnected nature of many industrial systems, anomalies are often detected in
multiple data streams concurrently. Often, an anomaly that originates in the environment, or a
component of some distant subsystem (the source) propagates through many other downstream
components. However, the relationships that govern the spread of anomalies through components are
not made explicit in the KG. As such, we leverage the internal knowledge and reasoning abilities
of the LLM to produce candidate sources for a given subsystem based on available data. We then
present these sources to the operator for human evaluation.

Once the sources have been validated, we conduct an anomaly detection step on each source as in
Section 3.1.2. Now, for each anomaly in the component of interest, we can compare the score γ to the
coincident anomaly score in each source γsource. If γsource = 0, i.e. there is no anomaly in the source,
we can attribute all of γ to the target anomaly. Similarly, for |γsource| < |γ|, then, while the source
perturbation may have influenced the component anomaly, we cannot attribute all of the anomaly to
the source. In this case, we adjust the anomaly score γ = γ − γsource. Conversely, if |γsource| ≥ |γ|,
then we can reason that the component of interest is only anomalous due to the perturbation in the
source, and label this period non-anomalous, i.e. γ = 0.

3.1.4 Failure Modes and Effects Analysis (FMEA) Tool

FMEA is a systematic method used to identify and assess potential failure modes within a system,
process, or product. It focuses on understanding the causes and effects of each failure mode and
evaluating their potential impact [17]. FMEA helps prioritise risks based on factors such as severity,
occurrence, and detectability, enabling preventive measures to be taken. Typical information included
in an FMEA consists of the component or system location, potential failure modes, causes of failure,
severity of the failure, and the resulting effects of the failure on the system [17]. In industrial
sectors like shipping, Failure Mode and Effects Analysis (FMEA) is often mandated by classification
societies, including the American Bureau of Shipping [1]. Alternatively, when an FMEA for an asset
or component doesn’t exist it can be generated using LLMs [9].

3.1.5 LLM as a Judge

As the number of tools available to an LLM agent increases, discerning the correct tools and the
sequence of their usage becomes more complex. Classical methods rely on orchestration frameworks
like LangGraph, utilising the LLM’s pretrained knowledge to grasp the context of the query. Addi-
tionally, the LLM can be augmented with predefined rules or logic that map specific query types to
corresponding tools, streamlining tool selection and usage.

However, LLMs continue to face challenges in accurately selecting and invoking the appropriate
external tools for specific tasks [15]. We implemented an LLM-as-a-judge agent to evaluate tool
usage in relation to the user query and the associated subtasks. The agent reviewed the LLM’s tool
calls, assessing whether the completed actions aligned with the task’s objectives or if additional tool
invocations were necessary to fully meet the requirements.

4 Experiments

We leveraged real-world data from a 9-year-old, 330-meter crude oil tanker, collected continuously
over one year from approximately 400 sensors. These sensors monitored critical ship components
such as the main engine, electrical systems, navigational data, weather, cargo holds, and the fuel
system. The relationships between components and their sensor data were represented by the
knowledge graph [19]. Additionally, external factors like weather conditions, ship draught, and speed
were considered for their influence on overall performance. The Llama 3 70B Instruct model was
used for all experiments.
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Our experimental setup aimed to evaluate the capacity of agentic systems to handle complex queries
about ship components and subsystems. Through workshops with stakeholders from four major
shipping companies, we identified over 40 user stories highlighting the industry’s digitalisation
requirements across multiple stakeholders. These include tools or methods that can help stakeholders
detect machinery degradation, predict performance metrics under varying operational and environ-
mental conditions, standardise and integrate data from diverse sources, and assist with maintenance
scheduling and cargo handling.

The user stories underscored the need for agentic solutions capable of accurately interpreting user
intent and surfacing relevant information. Ship-specific and domain-specific data integration is
essential, reinforcing the importance of external tools. The clear distinction in user needs further
supports the use of a high-level routing mechanism like LangGraph to analyse query types and select
the appropriate tools or paths.

Agentic Reasoning for Shipping

User Query: Can you help me understand anomalies in the ship’s engine over the past year. I would like to view anomalies and
receive recommendations or suggestions to address these anomalies as part of a condition based maintenance strategy

Reasoning: The user query requires multiple tool calls to fulfill their request. They want to detect and graph anomalies for
the main engine, and if relevant, generate a maintenance strategy to address anomalies. To accomplish this, we need to call the
get_data_knowledge_graph, get_anomalies, and get_anomalies_graph tools to process anomalies.

Tool C a l l : {
’ name ’ : ’ g e t _ d a t a _ k n o w l e d g e _ g r a p h ’ , # t o o l name
’ a r g s ’ : {

’ component ’ : ’ main e n g i n e ’ , # u s e r query r e l a t e s t o e n g i n e
’ m o n t h s _ o f _ d a t a ’ : 12 # u s e r query p a s t year o f da ta

}}

Tool C a l l : { ’ name ’ : ’ g e t _ a n o m a l i e s _ g r a p h ’ , ’ a r g s ’ : {
’ s e n s o r s ’ : [ ’ me_tc1_rpm ’ ] ,
’ f i l t e r _ a n o m a l y _ b y _ c o m p o n e n t ’ : [ ’ sog ’ , ’ e r _ a m b i e n t _ p r e s s u r e ’ ] } }

Reasoning: The user has asked to detect and graph anomalies for the main engine and then generate a work order for any
anomalies. The tools calls that have been made are get_data_kg and get_anomalies_graph. We must now use the information on
the detected anomalies that were filtered by speed over ground and engine room ambient pressure to recommend a maintenance
strategy. Leveraging industry best practices, I will generate a work order providing details on the anomaly and maintenance strategy.
Additional tool calls are required to fulfill the user’s request. I need to call the get_fmea and create_work_order tools to evaluate
anomalies and generate work order

Tool C a l l : { ’ name ’ : ’ ge t_ fmea ’ , ’ a r g s ’ : {
’ component ’ : ’ main e n g i n e ’ }}

Tool C a l l : { ’ name ’ : ’ c r e a t e _ w o r k _ o r d e r ’ , ’ a r g s ’ : {
’ component ’ : ’ main e n g i n e ’ , ’ fmea ’ : [ g e n e r a t e d _ f m e a ] ,
’ a n o m a l i e s ’ : [ g e n e r a t e d _ a n o m a l i e s ] } ,

Reasoning: The tools called have already answered the user’s query. The get_anomalies_graph tool has generated an anomaly
graph for the main engine filtered by speed over ground and engine room parameters, and the create_work_order tool has generated
a work order for the anomalies found. No more tool calls are required.

Route to Agent: All steps have been completed, now we need to summarise activities to the user. A visualisation of the anomalies
have been prepared for the end users and associated work orders were created for situations where detected anomalies were not
explainable by external factors such as environmental conditions or speed of the vessel

While we are unable to share the data used in our experiments, the results presented here offer valuable
insights for the domain. Specifically, they highlight the effective use of agentic frameworks and
external tools in complex, open-world applications, where user requirements involve multi-persona
interactions and multiple pathways to solutions. These findings can help inform the design and
implementation of similar systems, emphasizing the adaptability of agentic approaches in meeting
diverse and dynamic user needs.
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5 Results

The implementation of the agentic framework, orchestrated through LangGraph, demonstrated strong
capabilities in navigating multiple paths tailored to different user requirements and contexts. Each
path was designed to handle specific tasks, such as data exploration, asset health forecasting, and
anomaly detection in ship systems. These are illustrated in Figure 1.

The anomaly detection path was perhaps the most complex, requiring the agentic framework to detect,
visualise, and report anomalous conditions within ship systems. We assessed the effectiveness of the
agentic framework in accurately resolving the query’s context and intent to meet the user’s needs.
This process involved identifying relevant ship components or subsystems, pertinent sensor data, and
reasoning on the potential impact of the detected anomalies. Of particular interest were the system’s
reasoning capabilities, especially in selecting and utilising the correct tools while factoring in key
operational considerations.

5.1 Agentic Workflow

The agent interprets the query by analysing intent, relevant components, and information on any
specific data or trends to consider. The text box on the previous page summarises the reasoning
trajectories. For the identified component, the agent is aided by a knowledge graph detailing entity
relationships, alongside external data informed by the LLM’s pretrained knowledge. This highlights
the utility of combining structured knowledge with insight from the LLM on operational aspects.
Subsequent tool calls relate to aspects such as anomaly detection, visualisation, generation of work
orders or maintenance strategies, and integration of external knowledge from an FMEA system. At
each tool call, an LLM-as-a-judge agent assess the status and reasons whether additional tool calls
are required to address user query.

LLM Response

To monitor the performance of the main engine, I’ll select three sensors that provide a comprehensive view of the engine’s operation,
considering both environmental and operational data. Here’s my revised selection:

Step 1: Identify the most critical engine performance metric
I’ll choose a sensor that directly measures the main engine’s performance. Let’s select:

• ME Turbocharger 1 - RPM: This sensor provides a direct measurement of the main engine’s speed, which is a critical
indicator of its performance.

Step 2: Consider operational data that impacts engine performance
Operational data, such as the ship’s speed and load, can significantly impact the main engine’s performance. Let’s select a sensor that
provides insight into these conditions:

• Speed Over Ground: This sensor measures the ship’s speed, which affects the main engine’s load and performance.

Step 3: Choose a sensor that provides environmental context
Environmental conditions, such as ambient pressure, can also impact the main engine’s performance. Let’s select a sensor that
provides insight into these conditions:

• E/R Ambient Pressure: This sensor measures the ambient pressure in the engine room, which can affect the engine’s
efficiency and performance.

These three sensors provide a well-rounded view of the main engine’s performance, considering both operational and environmental
factors. By monitoring these sensors, you can gain insights into the engine’s speed, load, and efficiency, as well as the environmental
conditions that affect its performance.

5.2 Knowledge Graph Exploration

Knowledge graphs enhance LLMs by complementing their pre-trained knowledge with structured,
factual external data sources [12]. This is particularly beneficial when reasoning about domain-
specific applications or when handling real-time data is critical [4]. In our implementation, we
focused on the subject-predicate-object structure, commonly referred to as triples, which includes
entities such as the vessel component (e.g., auxiliary engine), the variable being measured (e.g.,
auxiliary engine power output), and the relationship between them (e.g., RELATED_TO).

Beyond direct relationships between ship components and their measurements, vessel performance
is also influenced by external factors like speed or weather conditions. These indirect influences
are not typically encoded in an entity-relationship knowledge graph and require an LLM agent to
interpret relevant exogenous factors. This approach allows the LLM agent to not only identify all
variables directly related to ship components through the knowledge graph but also query and reason
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(a) Anomalies detected for me_tc1_rpm alongside the environmen-
tal and operational sources identified in by the LLM, sog and
er_ambient_pressure (shaded lavender).

(b) Anomalies for me_tc1_rpm filtered by the two anomaly sources,
above.

Figure 2: Anomalies for me_tc1_rpm before and after the anomaly synthesis (filtering) step described
in Section 3.1.3. Anomalous periods are highlighted in red or blue based on their direction, with paler
colours corresponding to lower values of γ.

across other operational and environmental variables. The LLM’s reasoning ability helps identify
a subset of variables pertinent to the specific component being analyzed. For example, the LLM
response (presented on the previous page) identifies the relevant sensor data for monitoring main
engine performance, considering both direct measurements and operational contexts.

5.3 Anomaly Detection and Synthesis

Figure 2a shows the anomalies detected by the OT-AD tool [7] for the main engine turbocharger
component, along with the anomalies associated with two potential sources suggested by the LLM.
It’s clear from these results that a number of anomalies in the turbocharger RPM are due to variations
in the vessel’s speed, resulting in a large number of false positives.

Figure 2b shows the result of our synthesis operation, where the severity of detected anomalies is
moderated by concurrent anomalies in the source features. This demonstrates the effectiveness of
the method for filtering anomalies due to external factors, reducing the overhead required by human
operators.

5.4 Work Order Generation

A key challenge in industrial asset maintenance is distinguishing between spurious anomalies and
events requiring human attention. Using the anomaly detection procedure outlined in Section 5.3, we
filtered out insignificant events, allowing the system to focus on extracting meaningful insights. This
process involved multiple tool calls: first, to identify the relevant Failure Mode and Effects Analysis
(FMEA) for the specific ship component (Section 3.1.4), and second, to evaluate the potential root
causes of the anomalies based on potential failures. This multi-step approach ensured that each
anomaly was contextualised, enabling informed decisions on whether manual intervention was
necessary. Figure 3 presents an example snapshot highlighting information surfaced to the user about
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Figure 3: An example of a work order generated based on a detected anomaly. The agent reasons
on the severity of the anomaly and uses pretrained knowledge to evaluate potential root causes or
associated failure modes.

the asset, anomaly, and potential failure modes. It details a description of the anomaly and reasoning
on which potential failure modes this could relate to.

6 Discussion

Agentic workflows for anomaly detection in shipping face key limitations, particularly around
explainability and trust. While LLMs can automate tool calls, they often struggle to provide clear
reasoning behind decisions, which can reduce industry confidence. This is particularly true in complex,
interconnected systems such as shipping subject to multiple regulatory obligations. Additionally, the
LLM’s ability to make correct tool calls and pass accurate parameters is not guaranteed, potentially
leading to errors in anomaly detection. The reliance on an LLM’s internal knowledge to relate ship
components further complicates the process, and while retrieval-augmented generation (RAG) can
help, it still requires improvement. Enhancing the robustness of this approach will depend on refining
decision-making processes and integrating real-time feedback to adapt to changing operational
environments. Enhancing agentic observability is particularly critical

6.1 Broader Impacts (Societal)

Decarbonising the shipping industry is a critical societal goal, with efficiency improvements through
digital twin technologies playing a key role in achieving it. However, the inherent complexity of ship
systems, vessel heterogeneity, and the diverse range of operational challenges make it difficult to scale
digital twin solutions, often requiring significant in-house data science expertise. Agentic LLMs,
when augmented with external tools, can significantly accelerate progress towards these objectives by
automating and streamlining decision-making processes across various ship types and operational
scenarios, making digital twin capabilities more scalable and accessible through a generic natural
language interface.

7 Conclusion

This paper presented an agentic LLM-based framework for anomaly detection in shipping, leveraging
real-time data integration, knowledge graphs, and external tools to support complex decision-making
in industrial asset management. By evaluating on real-world data, we demonstrated the ability to
streamline the anomaly detection process, and provide contextual insights through dynamic tool
selection. This approach offers a scalable solution to the challenges of digitalisation in the maritime
sector, addressing issues such as machinery degradation, data integration, and operational efficiency.
Future work will focus on enhancing explainability, improving tool orchestration, and integrating
additional predictive analytics to further support decarbonisation and automation efforts in shipping.
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