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ABSTRACT

Leveraging neural implicit representation to conduct dense RGB-D SLAM has
been studied in recent years. However, this approach relies on a static environment
assumption and does not work robustly within a dynamic environment due to the
inconsistent observation of geometry and photometry. To address the challenges
presented in dynamic environments, we propose a novel dynamic SLAM frame-
work with neural radiance field. Specifically, we introduce a motion mask genera-
tion method to filter out the invalid sampled rays. This design effectively fuses the
optical flow mask and semantic mask to enhance the precision of motion mask. To
further improve the accuracy of pose estimation, we have designed a divide-and-
conquer pose optimization algorithm that distinguishes between keyframes and
non-keyframes. The proposed edge warp loss can effectively enhance the geom-
etry constraints between adjacent frames. Extensive experiments are conducted
on the two challenging datasets, and the results show that RoDyn-SLAM achieves
state-of-the-art performance among recent neural RGB-D methods in both accu-
racy and robustness.

1 INTRODUCTION

Dense visual simultaneous localization and mapping (SLAM) is a fundamental task in 3D computer
vision and robotics, which has been widely used in various forms in fields such as service robotics,
autonomous driving, and augmented/virtual reality (AR/VR). It is defined as reconstructing a dense
3D map in an unknown environment while simultaneously estimating the camera pose, which is
regarded as the key to achieving autonomous navigation for robots (Leonard & Durrant-Whyte,
1991). However, the majority of methods assume a static environment, limiting the applicability of
this technology to more practical scenarios. Thus, it becomes a challenging problem that how the
SLAM system can mitigate the interference caused by dynamic objects.

Traditional visual SLAM methods using semantic segmentation prior (Yu et al., 2018; Bescos et al.,
2018; Xiao et al., 2019; Zhang et al., 2020a), optical flow motion (Sun et al., 2018; Cheng et al.,
2019; Zhang et al., 2020b) or re-sampling and residual optimization strategies (Mur-Artal & Tardós,
2017; Campos et al., 2021; Palazzolo et al., 2019) to remove the outliers under dynamic environ-
ments, which can improve the accuracy and robustness of pose estimation. However, re-sampling
and optimization methods can only handle small-scale motions and often fail when encountering
large-scale continuous object movements. Moreover, semantic priors are specific to particular cat-
egories and can not represent the real motion state of the observation object. The above learning-
based methods often exhibit a domain gap when applied in real-world environments, leading to the
introduction of prediction errors.

Recently, dense visual SLAM with neural implicit representation has gained more attention and
popularity. This novel map representation is more compact, continuous, efficient, and able to be op-
timized with differentiable rendering, which has the potential to benefit applications like navigation,
planning, and reconstruction. Moreover, the neural scene representations have attractive properties
for mapping, including improving noise and outlier handling, geometry estimation capabilities for
unobserved scene parts, high-fidelity reconstructions with reduced memory usage, and the ability to
generate high-quality static background images from novel views. Existing methods like iMap (Su-
car et al., 2021) and NICE-SLAM (Zhu et al., 2022) respectively leverage single MLP and hierar-
chical feature grids to achieve a consistent geometry representation. However, these methods have
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limited capacity to capture intricate geometric details. Recent works such as Co-SLAM (Wang et al.,
2023) and ESLAM (Johari et al., 2023) explore hash encoding or tri-plane representation strategy
to enhance the capability of scene representation and the system’s execution efficiency. However,
all these above-mentioned methods do not perform well in dynamic scenes. The robustness of these
systems significantly decreases, even leading to tracking failures when dynamic objects appear in
the environment.

To tackle these problems, we propose a novel NeRF-based RGB-D SLAM that can reliably track
camera motion in indoor dynamic environments. One of the key elements to improve the robustness
of pose estimation is the motion mask generation algorithm that filters out the sampled rays located
in invalid regions. By incrementally fusing the optical flow mask (Xu et al., 2022), the semantic
segmentation mask (Jain et al., 2023) can become more precise to reflect the true motion state of
objects. To further improve the accuracy of pose estimation, we design a divide-and-conquer pose
optimization algorithm for keyframes and non-keyframes. While an efficient edge warp loss is used
to track camera motions for all keyframes and non-keyframes w.r.t. adjacent frames, only keyframes
are further jointly optimized via rendering loss in the global bundle adjustment (GBA).

In summary, our contributions are summarized as follows: (i) To the best of our knowledge, this is
the first robust dynamic RGB-D SLAM with neural implicit representation. (ii) In response to the
issue of inaccurate semantic priors, we propose a motion mask generation strategy fusing spatio-
temporally consistent optical flow masks to improve the robustness of camera pose estimation and
quality of static scene reconstruction. (iii) Instead of a single frame tracking method, we design
a novel mixture pose optimization algorithm utilizing an edge warp loss to enhance the geometry
consistency in the non-keyframe tracking stage. (iv) We evaluate our method on two challenging
dynamic datasets to demonstrate the state-of-the-art performance of our method in comparison to
existing NeRF-based RGB-D SLAM approaches.

2 RELATED WORK

Conventional visual SLAM with dynamic objects filter Dynamic object filtering aims to re-
construct the static scene and enhance the robustness of pose estimation. Prior methods can be
categorized into two groups: the first one utilizes the re-sampling and residual optimization strate-
gies to remove the outliers (Mur-Artal & Tardós, 2017; Campos et al., 2021; Palazzolo et al., 2019).
However, these methods can only handle small-scale motions and often fail when encountering
large-scale continuous object movements. The second group employs the additional prior knowl-
edge, such as semantic segmentation prior (Yu et al., 2018; Bescos et al., 2018; Xiao et al., 2019;
Bescos et al., 2021; Zhang et al., 2020a) or optical flow motion (Sun et al., 2018; Cheng et al., 2019;
Zhang et al., 2020b) to remove the dynamic objects. However, all these methods often exhibit a
domain gap when applied in real-world environments, leading to the introduction of prediction er-
rors. In this paper, we propose a motion mask generation strategy that complements the semantic
segmentation mask with warping optical flow masks (Teed & Deng, 2020; Xu et al., 2022), which
is beneficial for reconstructing more accurate static scene maps and reducing observation error.

RGB-D SLAM with neural implicit representation Neural implicit scene representations, also
known as neural fields (Mildenhall et al., 2021a), have garnered significant interest in RGB-D SLAM
due to their expressive capacity and minimal memory requirements. iMap (Sucar et al., 2021) firstly
adopts a single MLP representation to jointly optimize camera pose and implicit map throughout
the tracking and mapping stages. However, it suffers from representation forgetting problems and
fails to produce detailed scene geometry. DI-Fusion (Huang et al., 2021) encodes the scene prior in
a latent space and optimizes a feature grid, but it leads to poor reconstruction quality replete with
holes. NICE-SLAM (Zhu et al., 2022) leverages a multi-level feature grid enhancing scene repre-
sentation fidelity and utilizes a local feature update strategy to reduce network forgetting. However,
it remains memory-intensive and lacks real-time capability. More recently, existing methods like
Vox-Fusion (Yang et al., 2022), Co-SLAM (Wang et al., 2023), and ESLAM (Johari et al., 2023)
explore sparse encoding or tri-plane representation strategy to improve the quality of scene recon-
struction and the system’s execution efficiency. All these methods have demonstrated impressive
results based on the strong assumptions of static scene conditions. The robustness of these systems
significantly decreases when dynamic objects appear in the environment. Our SLAM system aims
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Figure 1: The schematic illustration of the proposed method. Given a series of RGB-D frames, we simul-
taneously construct the implicit map and camera pose via multi-resolution hash gird with the geometric loss
Lsdf -m,Lsdf -t,Lfs,Ldepth, color loss Lcolor , and edge warp loss Ledge.

to enhance the accuracy and robustness of pose estimation under dynamic environments, which can
expand the application range for the NeRF-based RGB-D SLAM system.

Dynamic objects decomposition in NeRFs As the field of NeRF continues to advance, some
researchers are attempting to address the problem of novel view synthesis in the presence of dynamic
objects. One kind of solution is to decompose the static background and dynamic objects with
different neural radiance fields like (Martin-Brualla et al., 2021; Park et al., 2021a; Pumarola et al.,
2021; Park et al., 2021b; Gao et al., 2021; Chen & Tsukada, 2022; Wu et al., 2022). The time
dimension will be encoded in latent space, and novel view synthesis is conducted in canonical space.
Although these space-time synthesis results are impressive, these techniques rely on precise camera
pose input. Robust-Dynrf (Liu et al., 2023) jointly estimate the static and dynamic radiance fields
along with the camera parameters (poses and focal length), which can achieve the unknown camera
pose training. However, it can not directly apply to RGB-D SLAM system for large-scale tracking
and mapping. Another kind of solution is to ignore the dynamic objects’ influence by utilizing
robust loss and optical flow like Chen & Tsukada (2022); Sabour et al. (2023). Compared to the
dynamic NeRF problem, we often focus on the accuracy of pose estimation and the quality of static
reconstruction without a long training period. Thus, we also ignore modeling dynamic objects and
propose a robust loss function with a novel optimization strategy to recover the static scene map.

3 APPROACH

Given a sequence of RGB-D frames {Ii, Di}Ni=1, Ii ∈ R3, Di ∈ R, our method (Fig. 1) aims to
simultaneously recover camera poses {ξi}Ni=1, ξt ∈ SE(3) and reconstruct the static 3D scene map
represented by neural radiance fields in dynamic environments. Similar to most modern SLAM
systems (Klein & Murray, 2007; Newcombe et al., 2011), our system comprises two distinct pro-
cesses: the tracking process as the frontend and the mapping process as the backend, combined with
keyframe management {Fk}Mk=1 and neural implicit map fθ. Invalid sampling rays within dynamic
objects are filtered out using a motion mask generation approach. Contrary to the conventional
constant-speed motion model in most systems, we introduce an edge warp loss for optimization in
non-keyframes to enhance the robustness of pose estimation. Furthermore, keyframe poses and the
implicit map representations are iteratively optimized using differentiable rendering.
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3.1 IMPLICIT MAP REPRESENTATION

We introduce two components of our implicit map representation: an efficient multi-resolution hash
encoding Vα to encode the geometric information of the scene, and individual tiny MLP decoders
fϕ to render the color and depth information with truncated signed distance (TSDF) prediction.

Multi-resolution hash encoding We use a multi-resolution hash-based feature grid Vα =
{V l

α}Ll=1 and individual shallow MLPs to represent the implicit map following Instant-NGP (Müller
et al., 2022). The spatial resolution of each level is progressively set between the coarsest resolu-
tion, denoted as Rmin, and the finest resolution, represented as Rmax. Given a sampled point x
in 3D space, we compute the interpolate feature V l

α(x) from each level via trilinear interpolation.
To obtain more complementary geometric information, we concat the encoding features from all
levels as the input of the MLPs decoder. While simple MLPs can lead to the issue of catastrophic
forgetting (Sucar et al., 2021; Zhu et al., 2022), this mechanism of forgetfulness can be leveraged
to eliminate historical dynamic objects.

Color and depth rendering To obtain the final formulation of implicit map representation, we
adopt a two-layer shallow MLP to predict the geometric and appearance information, respectively.
The geometry decoder outputs the predicted SDF value s and a feature vector h at the point x. The
appearance decoder outputs the predicted RGB value c. Similar to Co-SLAM (Wang et al., 2023),
we joint encode the coordinate encoding γ(x) and parametric encoding Vα as:

fβ (γ(x), Vα(x)) 7→ (h, s), fϕ (γ(x),h) 7→ c, (1)

where {α, β, ϕ} are the learnable parameters. Following the volume rendering method in
NeRF (Mildenhall et al., 2021b), we accumulate the predicted values along the viewing ray r at
the current estimation pose ξi to render the color and depth value as:

Ĉ(r) = 1∑M
i=1 wi

∑M
i=1 wici, D̂(r) = 1∑M

i=1 wi

∑M
i=1 wizi, (2)

where wi is the computed weight along the ray, ci and zi are the color and depth value of the sam-
pling point xi. Since we do not directly predict voxel density σ like NeRF, here we need to convert
the SDF values si into weights wi. Thus, we employ a straightforward bell-shaped function (Azi-
nović et al., 2022), formulated as the product of two sigmoid functions σ(·).

wi = σ
(
si
tr

)
σ
(
− si

tr

)
, D̂var(r) =

1∑M
i=1 wi

∑M
i=1 wi(D̂ − zi)

2, (3)

where tr denotes the truncation distance with TSDF prediction, D̂var is the depth variance along this
ray. When possessing GT depth values, we opt for uniform point sampling near the surface rather
than employing importance sampling, with the aim of enhancing the efficiency of point sampling.

3.2 MOTION MASK GENERATION

For each input keyframe, we select its associated keyframes within a sliding window to compute
the dense optical flow warping set S. Note that optical flow estimation is conducted solely on
keyframes, thereby optimizing system efficiency. To separate the ego-motion of dynamic objects,
we additionally estimate the fundamental matrix F with inliers sampled from the matching set S.
Given any matching points oji,oki within S, we utilize matrix F to compute the Sampson distance
between corresponding points and their epipolar lines. By setting a suitable threshold eth, we derive
the warp mask M̂wf

j,k corresponding to dynamic objects as:

M̂wf
j,k :

{⋂M
i=1 1(

oT
jiFoki√
A2 +B2

< eth)⊗ Im×n

∣∣∣∣∀ (oji,oki) ∈ S

}
(4)

where A,B denotes the coefficients of the epipolar line, and m,n represents the size of the warp
mask, aligning with the current frame image’s dimensions. Additionally, j and k stand for the
keyframe ID, illustrating the optical flow mask warping process from the k-th to the j-th keyframe.
As illustrated in Fig. 1, to derive a more precise motion mask, we consider the spatial coherence of
dynamic object motions within a sliding window of length N and iteratively optimize the current
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motion mask. Subsequently, we integrate the warp mask and segment mask to derive the final motion
mask M̂j as:

M̂j = M̂wf
j,k ⊗ M̂wf

j,k−1 ⊗ M̂wf
j,k−2 · · · ⊗ M̂wf

j,k−N ∪ M̂sg
j , (5)

where ⊗ represents the mask fusion operation, which is applied when pixels corresponding to a
specific motion mask have been continuously observed for a duration exceeding a certain threshold
oth within a sliding window. Note that we do not focus on the specific structure of the segment
or optical flow network. Instead, we aim to introduce a general motion mask fusing method for
application in NeRF-based SLAMs.

3.3 JOINT OPTIMIZATION

We introduce the details on optimizing the implicit scene representation and camera pose. Given a
set of frames F , we only predict the current camera pose represented with lie algebra ξi in tracking
process. Moreover, we utilize the global bundle adjustment (GBA) (Wang et al., 2021; Lin et al.,
2021; Bian et al., 2023) to jointly optimize the sampled camera pose and the implicit mapping.

3.3.1 MAPPING

Photometric rendering loss To jointly optimize the scene representation and camera pose, we
render depth and color in independent view as Eq. 6 comparing with the proposed ground truth map:

Lrgb =
1

M

M∑
i=1

∥∥∥(Ĉ(r)− C(r)
)
· M̂i(r)

∥∥∥2
2
,

Ldepth =
1

Nd

∑
r∈Nd

∥∥∥∥
D̂(r)−D(r)√

D̂var(r)

 · M̂i(r)

∥∥∥∥2
2

,

(6)

where C(r) and D(r) denote the ground truth color and depth map corresponding with the given
pose,s respectively. M represents the number of sampled pixels in the current image. Note that
only rays with valid depth value Nd are considered in Ldepth. In contrast to existing methods,
we introduce the motion mask M̂j to remove sampled pixels within the dynamic object region
effectively. Moreover, to improve the robustness of pose estimation, we add the depth variance
D̂var to reduce the weight of depth outliers.

Geometric constraints Following the practice (Azinović et al., 2022), assuming a batch of rays
M within valid motion mask regions are sampled, we directly leverage the free space loss with
truncation tr to restrict the SDF values s(xi) as:

Lfs =
1

M

M∑
i=1

1

|Rfs|
∑

i∈Rfs

(s(xi)− tr)2, [ui, vi] ⊆ (M̂i = 1). (7)

It is unreasonable to employ a fixed truncation value to optimize camera pose and SDF values
in dynamic environments simultaneously. To reduce the artifacts in occluded areas and enhance
the accuracy of reconstruction, we further divide the entire truncation region near the surface into
middle and tail truncation regions inspired by ESLAM (Johari et al., 2023) as:

Lsdf =
1

M

M∑
i=1

1

|Rtr|
∑

i∈Rtr

(s(xi)− (D[ui, vi]− T · tr))2 , [ui, vi] ⊆ (M̂i = 1), (8)

where T denotes the ratio of the entire truncation length occupied by the middle truncation. Note that
we use the different weights to adjust the importance of middle and tail truncation in camera tracking
and mapping process. The overall loss function is finally formulated as the following minimization,

P∗ = argmin
P

λ1Lrgb + λ2Ldepth + λ3Lfs + λ4Lsdf -m + λ5Lsdf -t, (9)

where P = {θ, ϕ, α, β, γ, ξi} is the list of parameters being optimized, including fields feature,
decoders, and camera pose.
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3.3.2 CAMERA TRACKING PROCESS

The construction of implicit maps within dynamic scenes often encounters substantial noise and fre-
quently exhibits a lack of global consistency. Existing methods (Zhu et al., 2022; Wang et al., 2023;
Johari et al., 2023; Li et al., 2023) rely solely on rendering loss for camera pose optimization, which
makes the system vulnerable and prone to tracking failures. To solve this problem, we introduce
edge warp loss to enhance geometry consistency in data association between adjacent frames.

Edge reprojection loss For a 2D pixel p in frame i, we first define the warp function as DIM-
SLAM (Li et al., 2023) to reproject it onto frame j as follows:

pi→j = fwarp (ξji,pi, D(pi)) = KTji

(
K−1D(pi)p

homo
i

)
, (10)

where K and Tji represent the intrinsic matrix and the transformation matrix between frame i and
frame j, respectively. phomo

i = (u, v, 1) is the homogeneous coordinate of pi. Since the edge are
detected once and do not change forwards, we can precompute the distance map (DT) (Felzenszwalb
& Huttenlocher, 2012) to describe the projection error with the closest edge. For a edge set Ei in
frame i, we define the edge loss Ledge as

Ledge =
∑
pi∈Ei

ρ(Dj(fwarp (ξji,pi, D(pi))) · M̂j), (11)

where Dj denotes the DT map in frame j, and the ρ is a Huber weight function to reduce the
influence of large residuals. Moreover, we drop a potential outlier if the projection distance error is
greater than δe. The pose optimization problem is finally formulated as the following minimization,

ξ∗ji = argmin
ξji

λLedge, if j /∈ K (12)

To further improve the accuracy and stability of pose estimation, we employ distinct methods for
tracking keyframes and non-keyframes in dynamic scenes. Keyframe pose estimation utilizes the
edge loss to establish the initial pose, followed by optimization (Eq. 9). For non-keyframe pose
estimation, we optimize the current frame’s pose related to the nearest keyframe (Eq. 12).

4 EXPERIMENTS

Datasets We evaluate our method on two real-world public datasets: TUM RGB-D dataset (Sturm
et al., 2012) and BONN RGB-D Dynamic dataset (Palazzolo et al., 2019). Both datasets capture
indoor scenes using a handheld camera and provide the ground-truth trajectory.

Metrics For evaluating pose estimation, we adopt the RMSE and STD of Absolute Trajectory
Error (ATE) (Sturm et al., 2012). The estimated trajectory is oriented to align with the ground truth
trajectory using the unit quaternions algorithm (Horn, 1987) before evaluation. We also use three
metrics which are widely used for scene reconstruction evaluation following (Zhu et al., 2022; Li
et al., 2023): (i) Accuracy (cm), (ii) Completion (cm), (iii) Completion Ratio (< 5cm %). Since the
BONN-RGBD only provided the ground truth point cloud, we randomly sampled the 200,000 points
from both the ground truth point cloud and the reconstructed mesh surface to compute the metrics.
We remove unobserved regions that are outside of any camera’s viewing frustum and conduct extra
mesh culling to remove the noisy points external to the target scene (Wang et al., 2023).

Implementation details We adopt Co-SLAM Wang et al. (2023) as the baseline in our experi-
ments and run our RoDyn-SLAM on an RTX 3090Ti GPU at 10 FPS (without optical flow mask) on
the Tum datasets, which takes roughly 4GB of memory in total. Specific to implementation details,
we sample Nt = 1024 rays and Np = 85 points along each camera ray with 20 iterations for tracking
and 2048 pixels from every 5 th frames for global bundle adjustment. We set loss weight λ1 =
1.0, λ2 = 0.1, λ3 = 10, λ4 = 2000, λ1 = 500 to train our model with Adam (Kingma & Ba, 2014)
optimizer. Please refer to the appendix for more specific experiment settings.

4.1 EVALUATION OF GENERATING MOTION MASK

Fig. 2 shows the qualitative results of the generated motion mask. We evaluated our method on the
balloon and move no box2 sequence of the BONN dataset. In these sequences, in addition to
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Figure 2: Qualitative results of the generation motion mask. By iteratively optimizing the optical flow mask,
the fused optical mask can be more precise without noises. The semantic mask can only identify dynamic
objects within predefined categories.

ball ball2 ps trk ps trk2 mv box2 Avg.

iMAP*
Acc.[cm]↓ 16.68 31.20 35.38 54.16 17.01 30.89
Comp.[cm]↓ 27.32 30.14 201.38 107.28 20.499 77.32
Comp. Ratio[≤ 5cm%]↑ 25.68 21.91 11.54 12.63 24.86 19.32

NICE-SLAM
Acc.[cm]↓ X 24.30 43.11 74.92 17.56 39.97
Comp.[cm]↓ X 16.65 117.95 172.20 18.19 81.25
Comp. Ratio[≤ 5cm%]↑ X 29.68 15.89 13.96 32.18 22.93

Vox-Fusion
Acc.[cm]↓ 85.70 89.27 208.03 162.61 40.64 117.25
Comp.[cm]↓ 55.01 29.78 279.42 229.79 28.40 124.48
Comp. Ratio[≤ 5cm%]↑ 3.88 11.76 2.17 4.55 14.69 7.41

Co-SLAM
Acc.[cm]↓ 10.61 14.49 26.46 26.00 12.73 18.06
Comp.[cm]↓ 10.65 40.23 124.86 118.35 10.22 60.86
Comp. Ratio[≤ 5cm%]↑ 34.10 3.21 2.05 2.90 39.10 16.27

ESLAM
Acc.[cm]↓ 17.17 26.82 59.18 89.22 12.32 40.94
Comp.[cm]↓ 9.11 13.58 145.78 186.65 10.03 73.03
Comp. Ratio[≤ 5cm%]↑ 47.44 47.94 20.53 17.33 41.41 34.93

Ours(RoDyn-SLAM)
Acc.[cm]↓ 10.60 13.36 10.21 13.77 11.34 11.86
Comp.[cm]↓ 7.15 7.87 27.70 18.97 6.86 13.71
Comp. Ratio[≤ 5cm%]↑ 47.58 40.91 34.13 32.59 45.37 40.12

Table 1: Quantitative results on several dynamic scene sequences in the BONN-RGBD dataset. Recon-
struction errors are reported with the subsampling GT point cloud using a laser scanner, which is provided in the
original dataset. “X” denotes the tracking failures. The best results in RGB-D SLAMs are bolded respectively.

the movement of the person, there are also other dynamic objects associated with the person, such
as balloons and boxes. As shown in Fig. 2 final mask part, our methods can significantly improve
the accuracy of motion mask segmentation and effectively mitigate both false positives and false
negatives issues in motion segmentation.

4.2 EVALUATION OF MAPPING AND TRACKING

Mapping To better demonstrate the performance of our proposed system in dynamic scenes, we
evaluate the mapping results from both qualitative and quantitative perspectives. Since the majority
of dynamic scene datasets do not provide ground truth for static scene reconstruction, we adopt
the BONN dataset to conduct quantitative analysis experiments. We compare our RoDyn-SLAM
method against current state-of-the-art NeRF-based methods with RGB-D sensors, including NICE-
SLAM (Zhu et al., 2022), iMap (Sucar et al., 2021), Vox-Fusion (Yang et al., 2022), ESLAM (Johari
et al., 2023), and Co-SLAM (Wang et al., 2023), which are open source. The evaluation metrics have
been mentioned above at the beginning of Section 4.

As shown in Tab. 1, our method outperforms most of the neural RGB-D slam systems on accuracy
and completion. To improve the accuracy of pose estimation, we filter the invalid depth, which may
reduce the accuracy metric on mapping evaluation. The visual comparison of reconstructed meshes
with other methods (Curless & Levoy, 1996) is provided in Fig. 3. Our methods can generate a
more accurate static mesh than other compared methods. Since the baseline methods (Wang et al.,
2023) adopt the hash encoding to represent the implicit map, it may exacerbate the issue of the hash
collisions in dynamic scenes and generate the hole in the reconstruction map.
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Figure 3: Visual comparison of the reconstructed meshes on the BONN and TUM RGB-D datasets. Our
results are more complete and accurate without the dynamic object floaters. More examples are in the appendix.

Method f3/wk xyz f3/wk hf f3/wk st f3/st hf Avg.

Traditional SLAM methods ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D.
ORB-SLAM2(Mur-Artal & Tardós, 2017) 45.9 - 35.1 - 9.0 - 2.0 - 23.0 -
DVO-SLAM(Kerl et al., 2013) 59.7 - 52.9 - 21.2 - 6.2 - 35.0 -
DynaSLAM(Bescos et al., 2018) 1.7 - 2.6 - 0.7 - 2.8 - 2.0 -
ReFusion(Palazzolo et al., 2019) 9.9 - 10.4 - 1.7 - 11.0 - 8.3 -
MID-Fusion(Xu et al., 2019) 6.8 - 3.8 - 2.3 - 3.1 - 4.0 -
Droid-SLAM(Teed & Deng, 2021) 1.7 - 2.0 - 1.2 - 2.0 - 1.7 -

NeRF based SLAM methods ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D.
iMAP*(Sucar et al., 2021) 111.5 43.9 X X 137.3 21.7 93.0 35.3 114.0 33.6
NICE-SLAM(Zhu et al., 2022) 113.8 42.9 X X 88.2 27.8 45.0 14.4 82.3 28.4
Vox-Fusion(Yang et al., 2022) 146.6 32.1 X X 109.9 25.5 89.1 28.5 115.2 28.7
Co-SLAM(Wang et al., 2023) 51.8 25.3 105.1 42.0 49.5 10.8 4.7 2.2 52.8 20.0
ESLAM(Johari et al., 2023) 45.7 28.5 60.8 27.9 93.6 20.7 3.6 1.6 50.9 19.7
RoDyn-SLAM(Ours) 8.3 5.5 5.6 2.8 1.7 0.9 4.4 2.2 5.0 2.8

Table 2: Camera tracking results on several dynamic scene sequences in the TUM RGB-D dataset. “∗”
denotes the version reproduced by NICE-SLAM. “X” and “-” denote the tracking failures and absence of
mention, respectively. The metric unit is [cm]. Please refer to the appendix for more results.

Tracking To evaluate the accuracy of camera tracking in dynamic scenes, we compare our meth-
ods with the recent neural RGB-D SLAM methods and traditional SLAM methods like ORB-
SLAM2 (Mur-Artal & Tardós, 2017), DVO-SLAM (Kerl et al., 2013), Droid-SLAM (Teed & Deng,
2021) and traditional dynamic SLAM like DynaSLAM (Bescos et al., 2018), MID-Fusion (Xu et al.,
2019), and ReFusion (Palazzolo et al., 2019).

As shown in Tab. 2, we report the results on three highly dynamic sequences and one slightly dy-
namic sequence from TUM RGB-D dataset. Our system achieves advanced tracking performance
owing to the motion mask filter and edge-based optimization algorithm. We have also evaluated the
tracking performance on the more complex and challenging BONN RGB-D dataset, as illustrated in
Tab. 3. In more complex and challenging scenarios, our method has achieved superior results. While

8
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Method balloon balloon2 ps track ps track2 Avg.

Traditional SLAM methods ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D.
DynaSLAM(Bescos et al., 2018) 3.0 - 2.9 - 6.1 - 7.8 - 5.0 -
ReFusion(Palazzolo et al., 2019) 17.5 - 25.4 - 28.9 - 46.3 - 29.6 -
Droid-SLAM(Teed & Deng, 2021) 4.0 - 3.8 - 4.3 - 16.3 - 7.1 -

NeRF based SLAM methods ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D.
iMAP*(Sucar et al., 2021) 14.9 5.4 67.0 19.2 28.3 12.9 52.8 20.9 40.7 14.6
NICE-SLAM(Zhu et al., 2022) X X 66.8 20.0 54.9 27.5 45.3 17.5 55.7 21.7
Vox-Fusion(Yang et al., 2022) 65.7 30.9 82.1 52.0 128.6 52.5 162.2 46.2 109.6 45.4
Co-SLAM(Wang et al., 2023) 28.8 9.6 20.6 8.1 61.0 22.2 59.1 24.0 42.4 16.0
ESLAM(Johari et al., 2023) 22.6 12.2 36.2 19.9 48.0 18.7 51.4 23.2 39.6 18.5
RoDyn-SLAM(Ours) 7.9 2.7 11.5 6.1 14.5 4.6 13.8 3.5 11.9 4.2

Table 3: Camera tracking results on several dynamic scene sequences in the BONN RGB-D dataset. “∗”
denotes the version reproduced by NICE-SLAM. “X” and “-” denote the tracking failures and absence of
mention, respectively. The metric unit is [cm]. Please refer to the appendix for more results.

there is still some gap compared to the more mature and robust traditional dynamic SLAM methods,
our systems can drive the dense and textural reconstruction map to finish the more complex robotic
navigation tasks.

4.3 ABLATION STUDY

To demonstrate the effectiveness of the proposed methods in our system, we perform the ablation
studies on seven representative sequences of the BONN dataset. We compute the average ATE and
STD results to show how different methods affect the overall system performance. The results
presented in Tab. 4 demonstrate that all the proposed methods are effective in camera tracking.
This suggests that fusing the optical flow mask and semantic motion mask can promote better pose
estimation. At the same time, leveraging a divide-and-conquer pose optimization can effectively
improve the robustness and accuracy of camera tracking.

ATE (m) ↓ STD (m) ↓
w/o Seg mask 0.3089 0.1160

w/o Flow mask 0.1793 0.0739
w/o Edge opt. 0.2056 0.0829
RoDyn-SLAM 0.1354 0.0543

Table 4: Ablation study of proposed methods

Tracking (ms) Mapping (ms)
NICE-SLAM 3535.67 3055.58

ESLAM 1002.52 703.69
Co-SLAM 174.47 565.50

RoDyn-SLAM 159.06 675.08

Table 5: Time comparision of different methods.

4.4 TIME CONSUMPTION ANALYSIS

As shown in Tab. 5, we report time consumption (per frame) of the tracking and mapping without
computing semantic segmentation and optical flow. All the results were obtained using an exper-
imental configuration of sampled 1024 pixels and 20 iterations for tracking and 2048 pixels and
40 iterations for mapping, with an RTX 3090 GPU. Despite incorporating additional methods for
handling dynamic objects, our system maintains a comparable level of computational cost to that of
Co-SLAM.

5 CONCLUSION

We present RoDyn-SLAM, a novel dense RGB-D SLAM with neural implicit representation for
dynamic environments. The proposed system is able to estimate camera poses and recover 3D ge-
ometry in this challenging setup thanks to the motion mask generation that successfully filters out
dynamic regions. To further improve the stability and robustness of pose optimization, a divide-
and-conquer pose optimization algorithm is designed to enhance the geometry consistency between
keyframe and non-keyframe with the edge warp loss. The experiment results demonstrate that
RoDyn-SLAM achieves state-of-the-art performance among recent neural RGB-D methods in both
accuracy and robustness. In future work, a more robust keyframe management method is a promis-
ing direction to improve the system further.
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A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

General configuration Since the code base of our method is Co-SLAM (Wang et al., 2023), we
use a similar configuration for scene representation. We utilize a multi-resolution hash grid with
16 levels, ranging from Rmin = 16 to Rmax, with a maximum voxel size of 2cm for determining
Rmax. The voxel size of the color encoder is 0.04 cm, and for the SDF encoder, it is 0.02 cm.
We also employ the OneBlob encoding method with 16 bins. The above process is implemented
leveraging the tiny-cuda-nn lib. The shallow MLP is designed with two hidden layers, each having
a dimension of 32. The truncation distance tr is set to 5cm.

TUM RGB-D dataset We use a learning rate of 1e-2 for the camera tracking process. To obtain
more accurate joint optimization results, we employ the learning rate of 1e-3 in the mapping process.
The weights of each loss are λrgb = 1.0, λdepth = 0.1, λsdf m = 2000, λsdf t = 500, λfs = 10 . In the
tracking process, we iterate the optimization process 20 times. In the edge extraction process, we
utilize the Canny edge detection algorithm with a low threshold of 70 and a high threshold of 90.

BONN RGB-D dataset We also use a learning rate of 1e-2 and 1e-3 in the tracking and mapping
process, respectively. The weights of each loss are λrgb = 20.0, λdepth = 0.01, λsdf m = 2000, λsdf t

= 500, λfs = 5 . We also iterate the optimization process 20 times in the tracking process, like TUM
dataset.

Joint Optimization To obtain a more consistent implicit map, we joint optimize the sampled
camera pose and implicit map utilizing GBA operation. Before performing GBA, we first jointly
optimize the camera pose and implicit map for the current frame. We resample the current keyframe
with the Ni = 2048 sample points located out of the refined motion mask and perform optimization
for 30 iterations, incorporating edge reprojection loss and rendering loss. In the GBA stage, we fixed
the current frame pose and sample pixels as much as possible from the subset of historical keyframes.
The number of sampled pixels in the current frame is attenuated based on the distance interval from
the initial keyframe. When the system tracks more than 100 frames, the number of sampled points
for the current frame will be reduced to 100, maintaining a minimum sampling point count. As
we cannot perform loop closure operations like traditional SLAM, we do not introduce inter-frame
constraints based on edge warp loss. Instead, we employ render loss for the GBA operation.
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Metric Definition

Acc. mean
p∈P

(
min

p∗∈P∗
||p− p∗||1

)
Comp. mean

p∗∈P∗

(
min
p∈P

||p− p∗||1
)

Comp. Ratio[≤ 5cm%] mean
p∗∈P∗

(
min
p∈P

||p− p∗||1 < 0.05

)
ATE(RMSE) 1

N

∑N
i=1

√
1
K

∑K
k=1

∥∥∥xk,i ⊟ x̂+
k,i

∥∥∥2
2

Table 6: Evaluation Metrics. We show the evaluation metrics with their definitions that we use to measure
reconstruction quality. P and P ∗ are the point clouds sampled from the predicted and the ground truth mesh.

A.1.1 EXPERIMENTS METRICS DESCRIPTION

The equation for evaluating tracking and mapping performance is shown as Tab. 6, including Accu-
racy, Completion, Completion Ratio, and Absolute Trajectory Error (ATE). Accuracy measures the
proximity of reconstructed points to the ground truth and is defined as the mean distance between
reconstructed points and the ground truth. Completion assesses the degree to which ground truth
points are successfully recovered and is defined as the mean distance between ground truth points
and the reconstructed points. Completion Ratio represents the percentage of the points located in the
reconstructed mesh with the nearest points on the ground truth mesh within a 5 cm threshold. ATE
represents the mean of absolute trajectory error between the estimated and ground truth poses under
all measuring locations. In this paper, we evaluate our reconstructed mesh using the ground truth
point cloud of the whole scene provided by the BONN Dataset. Specifically, we first downsample
and filter the dense point cloud based on camera view projection to extract static point clouds for
each single small scene. Then, we calculate the transformation matrix to align the reconstructed
mesh with the ground truth mesh. Finally, we calculate the reconstruction metrics mentioned above
by randomly sampling 200000 points from the point cloud and mesh surfaces. Note that this strategy
may differ from the previous mesh-based sampling evaluation methods.

A.1.2 SYSTEM

This section introduces several essential operations for constructing our comprehensive visual
SLAM system.

Initialization When the first frame comes in, we initialize the implicit map using the ground truth
pose to establish the correct scale. The multi-resolution hash encoding and MLP decoders will then
be optimized over Ni iterations, following Eq. 6. After the initialization, the first frame will be
inserted into the keyframe set and held fixed. For dynamic objects that appear in the first frame, we
directly utilize a semantic segmentation mask M̂sg

1 to filter the sampled rays. Thus, the potential
influence of dynamic objects will be mitigated during the initial tracking period.

KerFrame selection Our system evenly inserts keyframes to ensure adequate observations and
data associations between consecutive frames. We also try the other inserted way, such as based
on the motion distance or the overlap between the current frame and the former keyframe. We find
that these methods can not result in a significant improvement in accuracy. Therefore, we adopt the
simple method to handle keyframe insertion in dynamic scenes. We also store a subset of pixels
to represent each keyframe like (Wang et al., 2023). Compared with the Co-SLAM, we resample
the pixels located out of the refined motion mask to represent the current keyframe in mapping
process. For the pose estimation in dynamic scenes, storing only 5% representative points for each
keyframe is insufficient, leading to the degeneracy of implicit representation and inadequate joint
optimization. Therefore, we store the 50% of the pixels located in valid sampling regions to generate
a subset that represents the keyframes. We also try to resample the high gradient point located on the
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Figure 4: Visual comparison of the rendering image on the TUM and BONN datasets.

edge to improve the representative capabilities. However, the results of pose estimation significantly
degrade. Thus, we finally use uniform sampling to generate the subset of pixels to represent each
keyframe.

Depth edge filtering Since the edges of dynamic objects are difficult to segment precisely, it
causes significant depth errors along the object boundaries, which is destructive for pose optimiza-
tion and static background reconstruction. For each generation of motion mask, we calculate the
DT map Dmask

j and exclude sampled rays for which the distance to the mask edge is less than δ.
Furthermore, we exclude rays with no ground truth depths and outlier pixels from each optimization
step. A pixel is classified as an outlier when the disparity between its measured depth and rendered
depth exceeds six times the median rendered depth error within the batch.

A.2 ADDITIONAL EXPERIMENTAL RESULTS ON TRACKING AND MAPPING

A.2.1 RENDERING RESULTS

To further demonstrate the performance of static scene reconstruction, we compared the rendered
image with the ground truth pose obtained from the generated static implicit map. We selected
two challenging sequences, person track from the BONN dataset and f3 walk xyz from the
TUM RGB-D dataset. These sequences involve complex motion, including dynamic objects (hu-
mans). As shown in Fig. 4, our method achieves a favorable rendering performance while enjoying
the benefits of the proposed methods. Meanwhile, our methods can fill the hole which can not
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Figure 5: Visual comparison of the trajectory error on the TUM and BONN RGB-D datasets.

be captured in the original depth image. It can make the scene representation smoother and more
complementing. We observed variations in rendering capabilities among different methods, which
resulted in differences in the presentation quality. Note that our methods can be incrementally im-
plemented in any existing baseline methods. Therefore, we don’t focus on the actual performance
of the code base Co-SLAM (Wang et al., 2023) but solely on the proposed methods’s ability and
effectiveness in addressing dynamic scene challenges.

A.2.2 TRACKING RESULTS

Tab. 7 shows the external experiment results of camera tracking on the BONN and TUM RGB-D
datasets. Compared with the recent neural RGB-D SLAM system, our methods achieve advanced
performance during the tracking process under dynamic environments. f2 desk person and
f3 long office represent the large scale lower dynamic scenes. Our methods can also predict
the accurate camera pose without the strong dynamic assumption, which can further demonstrate
the capability of pose estimation.

As shown in Fig. 5, we draw the absolute trajectory error map on the TUM and BONN RGB-D
dataset, which has been mentioned in Experiments. The red line in the sub-figures represents the
ground truth trajectory, the blue line represents the trajectory estimated by our system, and the errors
between them are connected by gray lines. We can clearly observe that RoDyn-SLAM (ours) can
achieve more robust and accurate pose estimation results under complete dynamic environments.
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Method ball trk ball trk2 mv box2 fr2/d ps fr3/wk rpy Avg.
ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D.

iMAP * 24.8 11.2 28.7 9.6 28.3 35.3 119.0 43.6 139.5 59.8 59.0 23.7
NICE-SLAM 21.2 13.1 27.4 9.7 31.9 13.6 X X X X 26.8 12.1
Vox-Fusion 43.9 16.5 84.9 26.8 47.5 19.5 X X X X 44.7 16.0
Co-SLAM 38.3 17.4 42.2 18.2 70.0 25.5 7.6 2.3 52.1 24.0 35.6 14.9
ESLAM 12.4 6.6 35.0 7.2 17.7 7.5 X X 90.4 48.2 31.7 14.1
Ours 13.3 4.7 21.3 11.7 12.6 4.7 5.6 2.1 7.8 4.9 10.6 4.7

Table 7: Camera tracking results on several dynamic scene sequences in the BONN RGB-D and Tum
dataset. “∗” denotes the version reproduced by NICE-SLAM. “X” denote the tracking failures. The best
results are bolded. The metric unit is [cm].

A.3 MORE EXPERIMENTS ON POSE OPTIMIZATION

(a) Render loss optimization on f3 sit half. (b) Edge loss optimization on f3 sit half.

(c) Render loss optimization on f3 walk xyz. (d) Edge loss optimization on f3 walk xyz.

Figure 6: Visual comparison of different pose optimization algorithm

To further demonstrate the effectiveness of our proposed pose optimization algorithm, we evaluate
the edge warp loss algorithm on non-keyframes with GT keyframe pose to compare the influence
of two different optimization methods. We compute the RMSE of absolute trajectory error(ATE)
with two different optimization algorithms. Note that the metric unit is [m] in this part. To better
demonstrate the performance of our methods, we show the relative pose estimation results to evalu-
ate the capability of pose estimation between adjacent frames. The final pose estimation results are
shown as Fig. 6. Compared with rendering loss, our algorithm reduces the ATE (Absolute Trajectory
Error) results in pose estimation by over 40 %, with an average improvement of 1.5 cm. We can
observe that utilizing the edge warp loss significantly enhances the accuracy and robustness of pose
estimation, resulting in a noticeable reduction in trajectory jitter. This also enhances the stability of
pose estimation in dynamic scenes, thereby preventing pose estimation divergence during optimiza-
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ball ball2 ps trk ps trk2 mv box2 Avg.

iMAP*
Acc.[cm]↓ 16.68 31.20 35.38 54.16 17.01 30.89
Comp.[cm]↓ 27.32 30.14 201.38 107.28 20.499 77.32
Comp. Ratio[≤ 5cm%]↑ 25.68 21.91 11.54 12.63 24.86 19.32

NICE-SLAM
Acc.[cm]↓ X 24.30 43.11 74.92 17.56 39.97
Comp.[cm]↓ X 16.65 117.95 172.20 18.19 81.25
Comp. Ratio[≤ 5cm%]↑ X 29.68 15.89 13.96 32.18 22.93

Vox-Fusion
Acc.[cm]↓ 85.70 89.27 208.03 162.61 40.64 117.25
Comp.[cm]↓ 55.01 29.78 279.42 229.79 28.40 124.48
Comp. Ratio[≤ 5cm%]↑ 3.88 11.76 2.17 4.55 14.69 7.41

Co-SLAM
Acc.[cm]↓ 10.61 14.49 26.46 26.00 12.73 18.06
Comp.[cm]↓ 10.65 40.23 124.86 118.35 10.22 60.86
Comp. Ratio[≤ 5cm%]↑ 34.10 3.21 2.05 2.90 39.10 16.27

ESLAM
Acc.[cm]↓ 17.17 26.82 59.18 89.22 12.32 40.94
Comp.[cm]↓ 9.11 13.58 145.78 186.65 10.03 73.03
Comp. Ratio[≤ 5cm%]↑ 47.44 47.94 20.53 17.33 41.41 34.93

TSDF-Fusion*
(w/gt pose&mask)

Acc.[cm]↓ 9.51 9.52 10.87 12.55 7.54 10.00
Comp.[cm]↓ 11.46 9.96 35.72 33.79 8.41 19.87
Comp. Ratio[≤ 5cm%]↑ 44.35 43.16 34.22 31.03 52.28 41.01

Ours(RoDyn-SLAM)
Acc.[cm]↓ 10.60 13.36 10.21 13.77 11.34 11.86
Comp.[cm]↓ 7.15 7.87 27.70 18.97 6.86 13.71
Comp. Ratio[≤ 5cm%]↑ 47.58 40.91 34.13 32.59 45.37 40.12

Table 8: Quantitative results on several dynamic scene sequences in the BONN-RGBD dataset. Recon-
struction errors are reported with the subsampling GT point cloud using a laser scanner, which is provided in
the original dataset. “X” denotes the tracking failures. The best results in RGB-D SLAMs are highlighted as
first , second

Method f1/rpy f1/xyz f2/rpy f3/l o Avg.

NeRF based SLAM methods ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D.
iMAP*(Sucar et al., 2021) 16.0 13.8 7.9 7.3 2.4 1.3 7.1 3.6 8.4 6.5
NICE-SLAM(Zhu et al., 2022) 3.4 2.5 4.6 3.8 8.1 5.0 X X 5.4 3.8
Vox-Fusion(Yang et al., 2022) 4.3 3.0 1.8 0.9 1.8 0.9 2.7 1.3 2.7 1.6
Co-SLAM(Wang et al., 2023) 3.9 2.8 2.3 1.2 2.5 1.4 3.3 1.9 3.0 1.9
ESLAM(Johari et al., 2023) 2.2 1.2 1.1 0.6 1.2 0.5 2.8 1.0 1.9 0.9
RoDyn-SLAM(Ours) 2.8 1.5 1.5 0.8 1.7 0.8 2.8 1.6 2.2 1.2

Table 9: Camera tracking results on several static scene sequences in the TUM RGB-D dataset. “∗”
denotes the version reproduced by NICE-SLAM. “X” and “-” denote the tracking failures and absence of
mention, respectively. The metric unit is [cm].

tion. The experiment results further demonstrate the effectiveness of our proposed methods in both
accuracy and robustness.

A.4 MORE COMPARISON RESULTS ON RECONSTRUCTION

To better compare the reconstruction quality of current neural rgb-d SLAM methods in dynamic
scenes, we also evaluate the TSDF-Fusion reconstruction performance with gt pose and motion
mask in Tab. 8. Owing to the potential pose estimation error, our method does not match the ac-
curacy of TSDF-fusion in reconstruction precision. Thanks to the geometry estimation capabilities
of implicit neural representations for unobserved scene parts, our SLAM system achieves superior
completeness in the reconstructed mesh compared to the traditional TSDF-Fusion method. Simul-
taneously, due to pose estimation errors, there exists a certain deviation between the reconstructed
mesh from our method and the ground truth mesh, thereby causing the comparable performance of
the completion ratio.
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Co-SLAM Ours Co-SLAM Ours
Figure 7: Visual comparison of the detailed reconstructed meshes on several static scene in the TUM
RGB-D dataset. Compared with the baseline Co-SLAM Wang et al. (2023), our approach output more precise
3D structures in static scenes.(left: f1/rpy right: f3/long office)

Method f3/wk xyz f3/wk hf f3/wk st f3/st hf Avg.

Traditional SLAM methods ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D.
ORB-SLAM2(Mur-Artal & Tardós, 2017) 45.9 - 35.1 - 9.0 - 2.0 - 23.0 -
DVO-SLAM(Kerl et al., 2013) 59.7 - 52.9 - 21.2 - 6.2 - 35 -
DVO-SLAM (w/mask)(Kerl et al., 2013) 9.3 - 12.5 - 6.6 - 4.7 - 8.3 -
ORB-SLAM3(Campos et al., 2021) 28.1 12.2 30.5 9.0 2.1 1.1 2.6 1.6 15.9 6.0

NeRF based SLAM methods ATE S.D. ATE S.D. ATE S.D. ATE S.D. ATE S.D.
iMAP*(Sucar et al., 2021) 111.5 43.9 X X 137.3 21.7 93.0 35.3 114.0 33.6
NICE-SLAM(Zhu et al., 2022) 113.8 42.9 X X 88.2 27.8 45.0 14.4 82.3 28.4
Vox-Fusion(Yang et al., 2022) 146.6 32.1 X X 109.9 25.5 89.1 28.5 115.2 28.7
Co-SLAM(Wang et al., 2023) 51.8 25.3 105.1 42.0 49.5 10.8 4.7 2.2 52.8 20.0
ESLAM(Johari et al., 2023) 45.7 28.5 60.8 27.9 93.6 20.7 3.6 1.6 50.9 19.7
RoDyn-SLAM(Ours) 8.3 5.5 5.6 2.8 1.7 0.9 4.4 2.2 5.0 2.8

Table 10: Camera tracking results on several dynamic scene sequences in the TUM RGB-D dataset. “∗”
denotes the version reproduced by NICE-SLAM. “X” and “-” denote the tracking failures and absence of
mention, respectively. The metric unit is [cm].

A.5 MORE EXPERIMENT RESULTS ON STATIC SCENES

To better illustrate the advantages of our proposed methods, we also evaluate the ATE performance
on representative static sequences from the TUM dataset, as shown in Tab. 9. Actually, in static
scenes, the motion mask generation strategy becomes irrelevant. Thus, it can sufficiently demon-
strate the effectiveness of our proposed optimization strategy utilizing edge re-projection loss. Com-
pared with our baseline methods Co-SLAM (Wang et al., 2023), our methods can effectively improve
the accuracy of pose estimation. Notably, our proposed optimization algorithm is not restricted to
a specific slam system. In most neural rgb-d slam systems, the performance of pose estimation
heavily depends on implicit representation methods and the number of optimization iterations in
the mapping and tracking process. Compared with the E-SLAM, our SLAM system requires less
storage space and achieves real-time running at 10fps, despite several hours of training time needed
for E-SLAM. Consequently, our method strikes a well-balanced compromise between accuracy and
speed, demonstrating competitive performance of pose estimation when compared to state-of-the-art
methods.

Since the TUM RGB-D dataset does not provide ground truth point clouds for evaluating the re-
construction quality, we visualize the reconstructed mesh and compare it with our baseline method,
Co-SLAM, to showcase the effectiveness of our proposed methods. As shown in Fig. 7, our methods
utilize a divide-and-conquer pose optimization algorithm, enabling more accurate pose estimation
results and resulting in more precise and fewer floaters in the reconstructed mesh.

A.6 MORE COMPARISON RESULTS WITH THE TRADITIONAL SLAM METHOD

As shown in Tab. 10, we also evaluate the pose estimation results of the representative traditional
SLAM methods like ORB-SLAM3 and DVO-SLAM on the TUM dynamic datasets. Thanks to the
introduced motion mask generation methods and the divide-and-conquer pose optimization algo-
rithm, we can effectively improve the robustness and accuracy of pose estimation for current neural
RGB-D SLAM system in dynamic scenes.
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A.7 MORE VISUALIZATION RESULTS

As shown in Fig. 8, we also visualize more reconstruction mesh results on the TUM and BONN
RGB-D datasets. It is clear that our methods can significantly filter out the dynamic objects and
recover more accurate and plentiful geometry structure details of static scenes.
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Figure 8: Visual comparison of the reconstructed meshes on the BONN and TUM RGB-D datasets. Our
results are more complete and accurate without the dynamic object floaters.
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