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ABSTRACT

Federated domain generalization (FedDG) aims at equipping the federally trained
model with the domain generalization ability when the model meets new clients
with domain shifts. Among factors that possibly indicate generalization, the loss
landscape flatness of the trained model is an intuitive, viable, and widely studied
one. However, pursuing the flatness of the global model in the FedDG setting is
not trivial due to the restriction to preserve data privacy. To address this issue,
we propose GFM, a novel algorithm designed to seek Global Flat Minima of the
global model. Specifically, GFM leverages a global model-constrained adversarial
data augmentation strategy, creating a surrogate for global data within each local
client, which allows for split sharpness-aware minimization to approach global
flat minima. GFM is compatible with federated learning without compromising
data privacy restrictions, and theoretical analysis further supports its rationality
by demonstrating that the objective of GFM serves as an upper bound on the ro-
bust risk of the global model on global data distribution. Extensive experiments
on multiple FedDG benchmarks demonstrate that GFM consistently outperforms
previous FedDG and federated learning approaches.

1 INTRODUCTION

In recent years, federated learning has emerged as a popular paradigm for distributed learning with
data privacy preservation (Kairouz et al., 2021; Li et al., 2020; McMahan et al., 2017). In federated
learning, distributed clients keep their data locally and no data are shared across clients. The clients
collaborate on training the global model with the intervention of a central server. In each commu-
nication round, clients train their local models on their respective datasets and upload them to the
server. Then, the server aggregates these models to derive a global model, which is subsequently
distributed to all clients. In this way, the global model performs well on clients participating in the
training. However, in real scenarios, the federally-trained model may be deployed for clients which
don’t participate in the training and may experience domain shifts. This challenges the generaliza-
tion ability of the trained model, which is known as the federated domain generalization problem.

The challenge of federated domain generalization has garnered significant attention in recent
year (Guo et al., 2023b; Zhang et al., 2023a;b; Nguyen et al., 2022; Park et al., 2024). Most promis-
ing methods try to align the behaviors of local models from various perspectives. To give a few
examples, Zhang et al. (2023a) proposed aligning the feature distribution, Guo et al. (2023b) aimed
to learn domain-invariant representations by aligning the gradients, and Park et al. (2024) enabled
style sharing among different clients. In contrast to these studies, we concentrate more on the opti-
mization solution of the global model from the perspective of loss landscape flatness. There is sub-
stantial body of literature (Chen et al., 2021; Izmailov et al., 2018; Jastrzębski et al., 2018; Keskar
et al., 2016) on the relationship between loss landscape flatness and the model’s generalization abil-
ity. Moreover, empirical results in many centralized tasks illustrate the effectiveness of seeking flat
minima, including i.i.d. situations (Keskar et al., 2016; Izmailov et al., 2018; Foret et al., 2020),
centralized domain generalization (Cha et al., 2021), and incremental learning (Shi et al., 2021a).

However, in federated learning, the flatness of the global model is difficult to estimate and optimize
due to privacy concerns, making it a challenging problem. Some studies like FedSAM (Caldarola
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et al., 2022; Qu et al., 2022) bypassed this issue by instead focusing on seeking flat minima of
local models, hoping this would facilitate the flatness of the global model. However, it inevitably
results in sub-optimal solutions. These methods achieve their objective by employing the Sharpness-
Aware Minimizer (SAM (Foret et al., 2020)) during local updates on client models. To address the
limitations of local flatness methods, FedGAMMA (Dai et al., 2023) introduced global information
into local updates by correcting local gradients, ensuring that all clients adjust their updates toward
the global direction. However, this gradient correction is not explicitly connected to flatness, and
the SAM optimizer is still applied locally without modifications, making it fundamentally a method
for local flatness. FedSMOO (Sun et al., 2023) turned to enforce high consistency in local SAM
perturbations by approximating the global perturbation using ADMM. However, the approximation
is not strict, as the global perturbation is only computed in each round but required in every iteration.
Alternatively, Li et al. (2023) explored aggregation weights and demonstrated that weight shrinking
leads to flatter global minima. Nevertheless, their method relies on an additional proxy dataset to
determine the parameters, which may not always be feasible.

Given that the challenge arises from the lack of direct access to global data, we try to solve it in a
data-centric manner by decomposing the objective of seeking global flatness into two components:
seeking local flatness and enhancing global-local consistency. We begin with the homogeneous
setting, where the data from each local client lies in the same global data distribution. We show
that if local models are averaged in a convex combination, the robust risk of the global model is
upper-bounded by the convex combination of robust risks of the local models. This suggests that
seeking global flat minima by asking for local flatness is practically reasonable if clients are homo-
geneous. However, the homogeneous assumption does not hold in FedDG and the only source of
global information is the global model itself. Therefore, we propose a global model-constrained ad-
versarial data augmentation strategy to augment local data. The augmented data serves as a surrogate
for global data, thereby enhancing global-local consistency. These two schemes collaborate on the
same goal of approaching global flat minima, each playing a different role: the local flatness objec-
tive contributes to the “flatness” of the global model, while the global model-constrained adversarial
data augmentation strategy supplements information of the “global” data distribution. Furthermore,
theoretical analysis provides additional support for the validity of the proposed method by demon-
strating that the objective of GFM provides an upper bound to the robust risk of the global model on
the global data distribution. The main contributions of our work are summarized as follows:

• We propose a novel algorithm, GFM, which is specifically designed to seek global flat minima in
the federated learning task, which improve domain generalization performance while simultane-
ously maintaining data privacy.

• We have theoretically demonstrated that the objective of GFM constitutes a component of the
upper bound of the risk in the unseen domain. This is evidenced by indicating that the robust
empirical risks of local clients on augmented samples is an upper bound of the robust risk of the
global model on global data distribution.

• Through extensive experiments on a range of benchmarks, we show that our algorithm can achieve
consistently improved performance compared to previous SOTA methods.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

The federated domain generalization task aims to train a model that exhibits generalization per-
formance across both seen and unseen domains, adhering to the principles of privacy-preservation
inherent in federated learning. A domain is deemed “seen” if a client belonging to it participates in
the federated training procedure and vice versa. We denote the set of seen domains during training
as Ds = {Ds

i }
Ms
i=1, the set of unseen domains as Du = {Du

i }
Mu
i=1, and the set of all domains as

D = Ds ∪ Du. The data of client i comes from the domain Di (Di ∈ D) and the sampling of data
follows: (x, y) ∼ Di ⊂ X × Y . The model to be trained is referred to as f(·; θ) : X → Y , which
takes x as input and outputs the prediction for y, parameterized by θ. Formally, given a loss function
ℓ : Y × Y → R measuring the discrepancy of the prediction and the label, the ideal objective is as
follows:

min
θ

ED(θ) :=
1

Ms +Mu

∑
D∈D

E
(x,y)∼D

ℓ(f(x; θ), y). (1)
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In the FedDG setting, only seen clients are involved in training. Thus, the empirical objective is:

min
θ

ÊDs
(θ) :=

∑
Ds

i∈Ds

pi
∑

(x,y)∈D̂s
i

1

|D̂s
i |
ℓ(f(x; θ), y), (2)

where D̂s
i is the dataset of the i-th seen client sampled from Ds

i and pi = |D̂s
i |/

∑
j |D̂s

j |. The
gap between the practical and the ideal objective reveals the first difficulty of FedDG, wherein the
model is required to generalize to the unseen domains by learning knowledge from only data in seen
domains. The second challenge lies in the difficulty for the model to explicitly learn the invariant
relationship across different domains due to data privacy concerns. That is, each client preserves its
own data, which results in no data from different domains being observed simultaneously at a single
client. This inevitably leads to an overfitting trend to the local data domain during the local training
stage. How to aggregate information from different seen local data distributions with federated
principles and ensuring the model’s generalization ability to unseen domains remains a challenge.

2.2 RELATIONSHIP BETWEEN FLATNESS AND DOMAIN GENERALIZATION

The practical objective in Eq. (2) may have multiple solutions with similar values but different
flatness. Intuitively, the model with a flat minimum is more robust to distribution shifts and exhibits
better generalization capabilities. However, the commonly used optimizers in the training of deep
models tend to find sharp and shallow optima (Keskar et al., 2016), which is significant under the
federated situation (Caldarola et al., 2022). In the context of domain generalization, the impact
appears to be more severe due to the large domain shift. In this paper, we aim to seek flat minima
by minimizing the robust empirical risk, defined as:

Êγ(θ) := max
||∆||<γ

Ê(θ +∆), (3)

where γ denotes the radius defining a neighborhood around θ. A larger robust risk indicates the
presence of a direction within the neighborhood along which the empirical risk increases. The robust
risk directly relates to both flatness and optimality of θ when θ is a local minimum. To theoretically
understand the relationship between flatness and domain generalization, Cha et al. (2021) proposed
Theorem 1, which assumes a single test (unseen) domain T and the equal number of samples in each
domain. One can see Appendix E for the proof and other details.
Theorem 1. Consider a set of K covers {Θk}Kk=1 such that the parameter space Θ ⊂ ∪K

k Θk where

diam(Θ) := supθ,θ′∈Θ ∥θ − θ′∥2, K :=
⌈
(diam(Θ)/γ)

d
⌉

and d is dimension of Θ. Let vk be a
VC dimension of each Θk. Then, for any θ ∈ Θ, the following bound holds with probability at least
1− δ,

ET (θ) ≤ Êγ
Ds(θ) +

1

2Ms

Ms∑
i=1

Div(Di, T ) + max
k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
, (4)

where Ds is the set of train (seen) domains, n is the number of training samples per domain, and
Div(Di, T ) := 2 supA |PDi

(A)− PT (A)| is a divergence between two distributions.

Theorem 1 indicates that the risk ET (θ) on the unseen domain T is upper bounded by the robust
empirical risk Êγ

D(θ) on the mixture of seen domain D, the sum of discrepancy between each seen
domain and the test domain, and confidence bound. As a result, the performance on the unseen
domains is directly related to the flatness of the seen domains.

3 METHOD

Taking Theorem 1 into consideration, we hypothesize seeking a flat optimal solution can ameliorate
the generalization performance, which is not satisfied in heterogeneous federated learning tasks
according to (Caldarola et al., 2022) and our experiments in Sec. 4.3. However, it is not trivial to
directly train a flat global model due to the data privacy concern. As a result, we propose GFM
to split the minimization of Êγ

D(θ) to local clients. To achieve this goal, we first split the seeking
of flatness in the global model into local models by assuming aggregation helps generalization.

3
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Then, to avoid the requirement of global data distribution, we propose a global model-constrained
adversarial data augmentation strategy. By combining these two parts, one can directly minimize
the upper bound of Êγ

D(θ) in local clients to seek global flatness.

3.1 SPLIT THE SEEKING OF FLATNESS TO LOCAL MODELS

The objective of seeking global flatness is to minimize the empirical robust risk Êγ
D(θ) as follows:

min
θ

Êγ
D(θ) = min

θ
max

||∆||<γ

∑
Ds

i∈Ds

pi
1

|D̂s
i |

∑
(x,y)∈D̂s

i

ℓ(f(x; θ +∆), y), (5)

where θ refers to the global model. This objective can’t be directly calculated in the federated
learning setting for two main reasons. First, the inner maximization step needs the gradients of the
global model which is hard to estimate during local updates. Second, the gradients are supposed to
be calculated on the global data which is not available for local clients. To that effect, we relax the
objective in GFM by its upper bound with the following assumption.

Assumption 1. If (1) data distributions {Di}MS
i=1 across clients exhibit a non-trivial degree of het-

erogeneity, and (2) each client has access to a sufficiently large local dataset to estimate the data
distribution. Then during the training phase, local models {θi}MS

i=1 and their aggregate
∑

i piθi,
when weighted by coefficients specific to clients, satisfy the following inequality:

ÊD(
∑
i

piθi) ≤
∑
i

piÊD(θi), (6)

where pi represents the coefficient of client i.

Assumption 1 focuses on the change in global risk before and after model aggregation, based on
the intuition that aggregating models enhances generalization, which aligns with common practices.
Furthermore, if Assumption 1 does not hold, it would imply that at least one local model outperforms
the global model (i.e., with lower risk). This suggests that training on a specific domain could result
in performance improvements across all domains, which appears counterintuitive in the context of
FedDG, where each client’s data is restricted to a single domain. It is worth noting that Eq. (6)
shares a similar structure with the convex basin assumption proposed in linear connectivity studies
(Entezari et al., 2021; Juneja et al., 2022). The convex basin assumption is stricter, as it considers all
convex combination coefficients {pi}Ms

i=1, while in federated learning, pi is usually fixed and relevant
to the number of training samples. In contrast, Assumption 1 is a mild assumption that empirically
holds during the federated training process (see more details in Sec. 4.4). With Assumption 1, we
derive the following upper bound:

Êγ
D(θ) ≤

∑
i

piÊγ
D(θi) =

∑
i

pi max
||∆i||<γ

1

|D̂|

∑
(x,y)∈D̂

ℓ(f(x; θi +∆i), y), (7)

where D̂ =
⋃

i D̂
s
i . Thus, the global objective is split into multiple local objectives as follows:

min
θi

max
∥∆i∥<γ

1

|D̂|

∑
(x,y)∈D̂

ℓ(f(x; θi +∆i), y). (8)

Eq. (8) indicates that the flatness of the local models on the global data distribution serves as an upper
bound for the flatness of the global model, providing a method to seek global flatness through local
updates. However, since the global data distribution is not accessible, we resort to seeking a surro-
gate. Notably, regularization-based methods can be applied in the absence of global data, though
they are sub-optimal since they do not explicitly address the issue, as discussed in Appendix C.3.

3.2 CREATE A SURROGATE FOR GLOBAL DATA

Because the major difference between global and local models is the data distribution that they
should handle, we argue that explicitly seeking and learning from a surrogate for the global data is
a more pertinent strategy for local updates. Regarding that the only source of global information in
local updates is the downloaded global model, we try to solve the problem by augmenting local data
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with the help of the global model. In this way, the augmented data can capture information beyond
the local domain.

To fulfill this vision, we first adopt the augmentation network proposed in (Suzuki, 2022). This
augmentation model, which consists of geometry and color augmentation modules, is fully optimiz-
able via gradient descent (see Appendix D.2 for more details). Formally, the augmentation network
is denoted as a(·;ϕ) : X → X , where it takes an input image and outputs an augmented version,
parameterized by ϕ. We employ the following reduction objective to optimize ϕi in each local client:

max
ϕi

1

|D̂i|

∑
(x,y)∈D̂i

[ℓ(f(a(x;ϕi); θi +∆i), y)− ℓ(f(a(x;ϕi); θ), y)] , (9)

where ∆i := argmax∆ ÊD(θi + ∆) is introduced to facilitate theoretical proof. The objective
above seeks to maximize the empirical risk for the local model, which functions as adversarial
augmentation, supplementing the information not retained by the local model. Simultaneously,
it minimizes the empirical risk for the global model, ensuring that the augmented images remain
recognizable by the global model. By combining these two objectives, the augmented data serves
as a meaningful surrogate for the global data, preserving global information during local training by
alternately minimizing the risk on the augmented data. To validate this, we empirically demonstrate
that the forgetting rate of the model trained on augmented data is lower than that of the model
trained on local data (see Appendix C.2 for more details). It is important to note that {ϕi} are not
designed to directly estimate the global data distribution in a static way. Instead, constrained by
the global model, the augmented data is adversarially learned. For simplicity, we denote Eq. (9) as
Êa(Di;ϕi)(θi+∆i)− Êa(Di;ϕi)(θ) (excluding the max operation). The resulting local objective with
data augmentation is:

min
θi

max
∥∆a∥<γ

1

|D̂i|

∑
(x,y)∈D̂i

ℓ(f(a(x;ϕi); θi +∆a), y)

s.t. ϕi = argmax
ϕi

[
Êa(Di;ϕi)(θi +∆i)− Êa(Di;ϕi)(θ)

]
. (10)

To be noticed, Eq. (10) above has theoretical value: the risk on the augmented images is an upper
bound of the risk on the global data. Assume the augmentation model is strong enough and denote
the parameters of the augmentation model that augments local distribution into global distribution
as ϕ̂i such that a(Di; ϕ̂i) = D. It is obvious that:

Êγ
D(θi) = ÊD(θi +∆i) = Êa(Di;ϕ̂i)

(θi +∆i) ≤ max
ϕi

Êa(Di;ϕi)(θi +∆i). (11)

Eq. (10) can be viewed as a practical substitute of maxϕi
Êa(Di;ϕi)(θi + ∆i) by restricting the

augmented data to the range where they are recognizable by the global model. It avoids destructive
adversarial augmentation with no limits. Thus, by assuming the inequality in the same form of
Eq. (11) holds (which is easy to hold in practice when optimizing ϕi):

Êγ
D(θi) ≤ Êa(Di;ϕi)(θi +∆i) s.t. ϕi = argmax

ϕi

Êa(Di;ϕi)(θi +∆i)− Êa(Di;ϕi)(θ), (12)

the generalization bound for the federated domain generalization task comes out as follows.
Theorem 2. Denote the local models as {θi}MS

i=1, the global model as θ, and the augmentation
models as {ϕi}MS

i=1. Suppose {θi}MS
i=1 satisfies Assumption 1, θ is the aggregate of {θi}MS

i=1 and
pi = 1/Ms. For any θ ∈ Θ, the following bound holds with probability at least 1− δ:

ET (θ) <
Ms∑
i

1

Ms
Êγ
a(Di;ϕi)

(θi) +
1

2Ms

Ms∑
i=1

Div(Di, T ) + max
k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
,

(13)

where ϕi = argmax
ϕi

Êa(Di;ϕi)(θi +∆i)− Êa(Di;ϕi)(θ).

Theorem 2 shows that the risk on the test domain is upper bounded by the robust empirical risks
of local clients on augmented samples, combined with the domain discrepancy, and a confidence
bound. This implies that the performance on the unseen domain is directly related to the flatness of
the seen clients on augmented samples. More discussions about the Theorem 2 and Theorem 1 can
be found in Appendix B.1.
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Algorithm 1 Global Flat Minima

Input: global model θ = θ0, Ms seen clients models {θi}Ms
i=1 and datasets {Ds

i }
Ms
i=1, R rounds,

neighborhood radius γ > 0, local updates E, learning rate ρ, ρϕ, update interval c
Output: global model θR

1: Initialize global model θ0, augmentation models {ϕi}Ms
i=1

2: for r=1,2,· · · ,R do
3: on client i in parallel do
4: Initial local model θri = θr−1

5: for e=1,2,· · · ,E do
6: Sample a mini-batch Xi from Ds

i

7: Compute ∆ = γ∇θÊa(Di;ϕi)(θ
r
i )/∥∇θÊa(Di;ϕi)(θ

r
i )∥2 on Xi Inner maximization of θi

8: Compute gi = ∇θÊa(Di;ϕi)(θ
r
i +∆) Compute gradients on θi +∆

9: Update θri = θri − ρgi on Xi

10: if e % c == 0 then
11: Compute gϕi = ∇ϕi Êa(Di;ϕi)(θi)− Êa(Di;ϕi)(θ) on Xi

12: Update ϕi = ϕi + ρϕgϕi Update augmentation model ϕi

13: end if
14: end for
15: Update θr =

∑
i piθ

r
i

16: end for

3.3 OVERALL ALGORITHM

In this section, we present the practical and comprehensive algorithm of GFM. We begin by con-
sidering Eq. (10) in the local updates. From our experiments, the generalization performance is
negligibly affected by the inclusion of the term ∆i. Both θi and θi + ∆i exhibit similar effects
concerning augmentation; hence, we omit the plus operation to improve memory and computational
efficiency. For the inner maximization max∥∆a∥<γ , which aims to achieve flatness on augmented
data, we employ the SAM optimizer proposed in (Foret et al., 2020). SAM serves as an optimizer
for parameters of θi and the optimizing objective is of the min-max form:

min
θi

Êγ
a(Di;ϕi)

(θi) and max
ϕi

[
Êa(Di;ϕi)(θi)− Êa(Di;ϕi)(θ)

]
. (14)

We solve this problem iteratively, optimizing θi and ϕi in alternating steps. The updates of θi and
ϕi are adversarial, corresponding to Lines 5-12 in Algorithm 1. Specifically, ϕi is updated based
on the maximization objective maxϕi

[
Êa(Di;ϕi)(θi)− Êa(Di;ϕi)(θ)

]
, while θi is updated based on

the minimization minθi Ê
γ
a(Di;ϕi)

(θi). Proposition 1 provides the saddle point solution for the min-
max process under certain simplifications. The min-max process will converge to the saddle point
once the model reaches its neighborhood and will be stable. It can be inferred that the saddle point
solution described in Proposition 1 is desirable because it achieves comparable global performance
to the global model θ, as demonstrated by p(y|x; θ∗i ) = s ·p(y|x; θ). In this way, the local update can
be effectively supplemented with global information as stated, leveraging both the global model and
the augmentation model. The formal statement and further analysis can be found in Appendix F.
Proposition 1. (Informal) Construct θ∗i where p(y|x; θ∗i ) = s · p(y|x; θ) for any x in the support
set and its true label y. There exists ϕ∗

i such that θ∗i is the local minimum of Ea(Di;ϕ∗
i )
(θ∗i ). Then,

(θ∗i , ϕ
∗
i ) constitutes a saddle point solution of the min-max process.

After local updates, the models are uploaded to the server and averaged following FedAvg. The av-
eraged model is then distributed to each local client. The overall algorithm is shown in Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We use the following FedDG benchmarks to evaluate different methods: Digits-DG (Zhou et al.,
2020) (24,000 images, 10 classes, four domains), PACS (Li et al., 2017) (9,991 images, 7 classes,

6
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Table 1: Average classification accuracy using leave-one-domain-out validation. GFM (X) indicates
the method combining GFM and X.

Method Digits-DG PACS OfficeHome TerraInc Avg.ConvNet ResNet18 ResNet18 ResNet50

FL methods
FedAvg (McMahan et al., 2017) 67.46±0.27 82.56±0.47 64.82±0.28 44.23±0.69 64.77

Scaffold (Karimireddy et al., 2020) 68.30±0.79 82.54±0.25 64.56±0.20 42.70±0.46 64.53
FedDyn (Acar et al., 2021) 68.18±0.14 82.73±0.24 63.89±0.13 44.28±0.71 64.77

MOON (Li et al., 2021) 65.79±0.98 82.65±0.53 62.87±0.13 43.73±0.77 63.76
FedSAM (Caldarola et al., 2022) 66.67±0.49 83.36±0.22 65.28±0.35 45.16±1.36 65.12
FedGAMMA (Dai et al., 2023) 67.70±1.54 82.83±0.34 65.38±0.12 43.56±1.04 64.87
FedSMOO (Sun et al., 2023) 69.43±0.53 82.92±0.79 62.40±0.22 43.38±0.76 64.53

FedDG methods
FedSR (Nguyen et al., 2022) 68.21±0.38 83.20±0.83 63.99±0.31 42.97±0.93 64.59

GA (Zhang et al., 2023a) 68.45±0.16 83.39±0.61 65.11±0.05 45.59±0.98 65.64
StableFDG (Park et al., 2024) 67.80±0.89 84.22±0.72 64.61±0.02 44.48±0.14 65.28

FedIIR (Guo et al., 2023b) 69.25±0.25 83.94±0.16 60.64±0.33 46.88±0.80 65.18
GFM 69.72±0.99 84.46±0.42 65.57±0.19 46.02±1.04 66.44

GFM (GA) 71.32±0.64 84.97±0.22 66.08±0.20 46.91±0.54 67.32
GFM (FedIIR) 69.57±1.12 84.67±0.40 61.74±0.36 47.66±0.82 65.91

four domains), OfficeHome (Venkateswara et al., 2017) (15,588 images, 65 classes, four domains),
and TerraInc (Beery et al., 2018) (24,788 images, 10 classes, four domains). These benchmarks
were selected to cover a broad range of conditions in digital and real-world scenarios. Leave-one-
domain-out evaluation is carried out for all benchmarks, which by turn keeps data from one domain
as the unseen client for testing and distributes each other domain data to a training client. The
backbone architectures used are a CNN proposed in (Zhou et al., 2020) for Digits-DG, ImageNet-
pretrained ResNet18 (He et al., 2016) for PACS and OfficeHome benchmarks, and ImageNet-
pretrained ResNet50 (He et al., 2016) for the TerraInc benchmark. For the SAM optimizer, γ is
set as 0.02. More details can be found in Appendix D.

4.2 FEDDG PERFORMANCE

Two components of GFM are the novel augmentation strategy and the approach (SAM optimizer
in our experiments) minimizing the robust risk locally. Because it is orthogonal to some previous
works, we show the superior performance of GFM in two ways: 1) direct comparisons with previous
FedDG and federated learning (FL) baselines; and 2) combining GFM with other approaches. The
considered baselines are briefly introduced as follows:
FedAvg (McMahan et al., 2017): the commonly used baseline for the Federated learning.
Scaffold (Karimireddy et al., 2020): utilized variance reduction techniques to correct client drift.
FedDyn (Acar et al., 2021): incorporated dynamic regularization to improve convergence.
MOON (Li et al., 2021): applied contrastive learning between global and local models.
FedSAM (Caldarola et al., 2022): adopted SAM optimizer in local client training.
FedGAMMA (Dai et al., 2023): introduced a gradient matching mechanism with SAM optimizer.
FedSMOO (Sun et al., 2023): enforced high consistency in local SAM perturbations by ADMM.
FedSR (Nguyen et al., 2022): aimed to learn a simple data representation for better generalization.
GA (Zhang et al., 2023a): aggregated models in the server according to generalization gaps.
StableFDG (Park et al., 2024): enabled each client to explore novel styles by style sharing.
FedIIR (Guo et al., 2023b): aligned the gradients of different clients to derive an invariant classifier.
FedIIR and FedIIR (GFM) are not directly comparable to other baselines. (Appendix D.1)

Tab. 1 gives the summarized results of experiments with different methods, while detailed results
of each single test domain are given in Tab. 3 (Digit-DG and PACS) and Tab. 4 (OfficeHome and
TerraInc) in Appendix C.1. From these tables, we can conclude that GFM only (GFM + FedAvg)
can achieve SOTA performance on average and on many datasets. What’s more, the direct compar-
isons between FedSAM and GFM indicate the need beyond local flatness for FedDG, demonstrating
the effectiveness of the proposed global model-constrained adversarial data augmentation. Further,
combining GFM with other methods can consistently improve the generalization ability and achieve
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Figure 1: Quantitative results of flatness measured by Fγ(θ). Each column represents an indepen-
dent experiment. (For example, the first column represents the experiment with the photo domain
as the unseen test client in the leave-one-domain-out evaluation setting.) The train results are calcu-
lated on data of all seen clients, while the test results are on the unseen test domain. For each figure,
the Y-axis indicates the flatness Fγ(θ) and the X-axis indicates the radius γ.

(a) Photo (b) Art

(d) Sketch(c) Cartoon

3.60

1.60

0.77

0.44

0.30

0.24

0.22

0.20

3.60

1.60

0.77

0.44

0.30

0.24

0.22

0.20

3.60

1.60

0.77

0.44

0.30

0.24

0.22

0.20

3.40

1.85

1.19

0.91

0.79

0.73

0.72

0.70

3.40

1.85

1.19

0.91

0.79

0.73

0.72

0.70

3.65

1.87

1.13

0.82

0.69

0.64

0.62

0.60

3.65

1.87

1.13

0.82

0.69

0.64

0.62

0.60

3.65

1.87

1.13

0.82

0.69

0.64

0.62

0.60

2.60

1.36

0.82

0.58

0.48

0.44

0.42

0.40

2.60

1.36

0.82

0.58

0.48

0.44

0.42

0.40

2.60

1.36

0.82

0.58

0.48

0.44

0.42

0.40

3.40

1.85

1.19

0.91

0.79

0.73

0.72

0.70

Figure 2: Test loss surface visualization on PACS. In each subfigure, from left to right, the contours
belong to FedAvg, FedSAM, and GFM respectively. Triangle marks indicate local models and cross
marks indicate the global model. The color bars are log-normalized and one can approximately
compare flatness by observing the size of regions at or above the third level (high to low). We use a
similar visualization technique as in (Garipov et al., 2018).

better performance, especially for GFM (GA). GFM (GA) surpasses the previous SOTA method by
1.7 percent on average. The success of GFM (GA) can be attributed to improved flatness in both the
local training and the aggregation stage.

4.3 FLATNESS COMPARISONS

In this section, we empirically compare the flatness of solutions found by GFM and other methods.
Specifically, we use expected loss value changes Fγ(θ) proposed in (Cha et al., 2021) as a metric.
For model with parameter θ, Fγ(θ) calculates the expected loss changes between θ and θ+ γ on the
sphere of radius γ as follows:

Fγ(θ) := E
||θ′||=||θ||+γ

[E(θ′)− E(θ)]. (15)

Large Fγ(θ) indicates the loss changes dramatically when moving from θ to the sphere of radius γ,
which reveals a sharp minimum and vice versa. One can effectively estimate Fγ(θ) with finite sam-
ples according to the Monte-Carlo method, because Fγ(θ) has an unbiased finite sample estimator
and is computationally efficient. In our experiments, Fγ(θ) is approximated with 50 samples. We
quantitatively measure Fγ(θ) of the global model trained by FedAvg, FedSAM, and GFM with all
unseen domains of the PACS dataset. FedAvg represents the baseline without a special design for
flatness, FedSAM focuses on the flatness of local models, while the proposed GFM tries to approach
global flatness. The results are reported in Fig. 1. We can conclude from it that both FedSAM and
GFM can help improve global flatness, and GFM can find flatter minima than both FedSAM and
FedAvg in all experiments and on both the seen train datasets and the unseen test dataset, which
verifies the effectiveness of GFM for seeking global flat minima.
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Figure 3: Empirical validation of Assumption 1 in the training stage on the PACS dataset.

Besides random directions measured by Fγ(θ), we also consider the special cases within the aggre-
gation plane. We plot the test loss surfaces of three local models and the aggregated global model
derived from different methods on the PACS dataset in Fig. 2. In a similar vein as (Caldarola et al.,
2022), models of clients in FedAvg are positioned in relatively high-loss regions and thus the re-
sulting global model is far away from a good minimum. Fortunately, seeking flatter minima in local
updates can ameliorate the situation and tend to find solutions in flatter and low-loss regions. Results
in Fig. 2 suggest that solutions of GFM on Art and Cartoon test domain meet this expectation strictly
while these on Photo and Sketch meet it partially by finding solutions in low-loss areas with com-
parable flatness. What’s more, the loss surfaces of FedSAM can be viewed as the “middle point”
between FedAvg and GFM.

4.4 EMPIRICAL VALIDATION OF ASSUMPTION 1

The essential premise for Theorem 2 to hold is the validity of Assumption 1. This section empiri-
cally examines if Assumption 1 holds. For better illustration, we compare risks calculated in three
different ways in the federated learning setting: ÊD(

∑
i piθi),

∑
i piÊD(θi), and

∑
i piÊDi

(θi).∑
i piÊDi

(θi) can be viewed as the lower bound of ÊD(
∑

i piθi) and
∑

i piÊD(θi) because it
averages the risk of the optimal model in each client. As for the other two terms, we assume
ÊD(

∑
i piθi) ≤

∑
i piÊD(θi) in Assumption 1, which is a natural assumption to make the aggre-

gation meaningful. The empirical results on the PACS dataset are given in Fig. 3. From it, we can
conclude that Assumption 1 holds empirically in every communication round for every test domain.

4.5 ABLATION STUDY

Table 2: Ablation Study
Method Digits PACS OfficeHome TerraInc Avg.
FedAvg 67.46 82.56 64.82 44.23 64.77
FedSAM 66.67 83.36 65.28 45.16 65.12
GCA 69.65 83.91 64.64 44.20 64.93
GFM 69.72 84.46 65.57 46.02 66.44

The core intuition behind the overall al-
gorithm is to approach global flatness.
In this section, we aim to investigate
the impact of improved flatness on the
global model. This analysis is chal-
lenging because global flatness is highly
coupled with the proposed global model-
constrained adversarial data augmentation (GCA) component. Furthermore, as an augmentation
strategy, GCA can independently influence generalization performance. To address this, we per-
form extensive ablation studies on GFM across a wide range of datasets to uncover insights into
global flatness.

The components of GFM include the global model-constrained adversarial data augmentation strat-
egy (GCA) and the SAM optimizer. Both GCA and SAM are applied during the local training stage
and can be used independently. This results in four possible combinations: (1) FedAvg: GFM re-
duces to the FedAvg baseline without the SAM optimizer and GCA. (2) FedSAM: GFM reduces to
the FedSAM baseline without GCA. (3) GCA: The FedAvg baseline enhanced with GCA. (4) GFM:
The complete method, incorporating both GCA and the SAM optimizer.

From the results in Table 2, we observe that FedSAM, leveraging local flatness, achieves improved
generalization performance in three cases, while GCA demonstrates significant effectiveness on the
Digits and PACS datasets. By combining the benefits of improved global flatness and the effective
data augmentation strategy, GFM achieves the best performance across four datasets. Notably, in
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the OfficeHome and TerraInc datasets, GCA alone does not enhance generalization performance,
which underscores the importance and effectiveness of the stated global flatness.

4.6 PARAMETER ANALYSIS

Figure 4: Influences of radius γ and update interval c.
The values are presented in logarithmic scale.

In this section, we demonstrate the se-
lection of hyperparameters. There are
two key hyperparameters in GFM: the ra-
dius γ and the update interval c. The
radius γ is a critical hyperparameter in
SAM-based methods, as it determines the
range of model perturbation. The optimal
value of γ varies across tasks, datasets,
and models. In our experiments, we con-
ducted a grid search for γ on the PACS
dataset to determine the appropriate value
for both FedSAM and GFM. For GFM,
the update interval c is fixed to 10. The results are shown on the left side of Figure 4. The accuracy
first increases and then decreases as γ increases, indicating the existence of a local optimum. This
behavior is expected because, with a small γ, FedSAM recovers to the FedAvg baseline (and GFM
reverts to the FedAvg+GCA baseline), resulting in reduced performance. Conversely, when γ is too
large, the SAM optimizer becomes unstable and struggles to converge. Notably, GFM exhibits a
relatively flatter optimum compared to FedSAM. This could be attributed to the improved consis-
tency of local models in GFM, which reduces the need for local flatness to achieve sufficient global
flatness. In our experiments, we found that γ = 0.02 achieves the optimal performance for both
methods. Therefore, we set γ = 0.02 for subsequent experiments on PACS and other datasets.

With γ fixed, we tune the update interval c, which controls the update frequency of the augmentation
model. With a larger value of c, the augmentation model tends to update less frequently with a
relatively low computational cost. As shown on the right side of Figure 4, the performance improves
with more frequent updates of the augmentation model. The strategy of alternating one iteration
of augmentation with one iteration of classification achieves the best performance. However, this
approach incurs a significantly higher computational cost, as illustrated in Appendix C.5. To balance
performance and efficiency, we set c = 10 for related experiments.

5 LIMITATIONS

One limitation of GFM is the increased computational cost for local updates. The inclusion of the
augmentation method and the SAM optimizer in the local client results in higher computational de-
mands compared to the baseline method. Details on the exact computational overhead and potential
trade-offs can be found in Appendix C.5. Another potential limitation of our current approach is the
restriction in the types of augmentation transformations. At present, the augmentation model is lim-
ited to applying color and geometry augmentations. However, other forms of augmentation, such as
Fourier-based transformations, could also be beneficial for domain generalization (DG). Identifying
and exploring additional augmentation techniques, or even leveraging generative models, represents
a promising avenue for future research.

6 CONCLUSION

In this paper, we propose a novel algorithm, named GFM, to seek global flat minima in FedDG. The
overall algorithm is explainable by viewing it as minimizing the upper bound of the robust risk of the
global model on the global data distribution. Specifically, we propose the global model-constrained
adversarial data augmentation strategy to seek a surrogate for global data and use sharpness-aware
minimization to pursue flatter minima. Flatness measurement and loss surface visualization experi-
ments validate the flatter minima of the global model found by GFM than by FedAvg and the method
seeking local flatness. Furthermore, extensive experiments on four FedDG benchmarks confirmed
the improved performance of GFM when comparing or combining with previous works.
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Stanisław Jastrzębski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos
Storkey. On the relation between the sharpest directions of dnn loss and the sgd step length. arXiv
preprint arXiv:1807.05031, 2018.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra. Linear connectivity
reveals generalization strategies. arXiv preprint arXiv:2205.12411, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. Selfreg: Self-
supervised contrastive regularization for domain generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9619–9628, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex). In International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pp. 5905–5914. PMLR, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M Hospedales. Episodic
training for domain generalization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1446–1455, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018a.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adver-
sarial feature learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5400–5409, 2018b.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10713–10722, 2021.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
Deep domain generalization via conditional invariant adversarial networks. In Proceedings of the
European conference on computer vision (ECCV), pp. 624–639, 2018c.

Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu. Revisiting weighted aggregation in federated learning
with neural networks. In International Conference on Machine Learning, pp. 19767–19788.
PMLR, 2023.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 7. Granada, Spain, 2011.

A Tuan Nguyen, Philip Torr, and Ser Nam Lim. Fedsr: A simple and effective domain generalization
method for federated learning. Advances in Neural Information Processing Systems, 35:38831–
38843, 2022.

Jungwuk Park, Dong-Jun Han, Jinho Kim, Shiqiang Wang, Christopher Brinton, and Jaekyun Moon.
Stablefdg: Style and attention based learning for federated domain generalization. Advances in
Neural Information Processing Systems, 36, 2024.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
sharpness aware minimization. In International Conference on Machine Learning, pp. 18250–
18280. PMLR, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C Yuen. Multi-adversarial discriminative deep
domain generalization for face presentation attack detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10023–10031, 2019.

Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-Ming Wu. Overcoming
catastrophic forgetting in incremental few-shot learning by finding flat minima. Advances in
neural information processing systems, 34:6747–6761, 2021a.

Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel
Synnaeve. Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937,
2021b.

Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong
Sun, and Dacheng Tao. Adasam: Boosting sharpness-aware minimization with adaptive learning
rate and momentum for training deep neural networks. Neural Networks, 169:506–519, 2024.

Yan Sun, Li Shen, Shixiang Chen, Liang Ding, and Dacheng Tao. Dynamic regularized sharpness
aware minimization in federated learning: Approaching global consistency and smooth landscape.
arXiv preprint arXiv:2305.11584, 2023.

Teppei Suzuki. Teachaugment: Data augmentation optimization using teacher knowledge. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10904–
10914, 2022.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5018–5027, 2017.

Shujun Wang, Lequan Yu, Caizi Li, Chi-Wing Fu, and Pheng-Ann Heng. Learning from extrin-
sic and intrinsic supervisions for domain generalization. In European Conference on Computer
Vision, pp. 159–176. Springer, 2020.

Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize
sharpness to achieve better generalization. Advances in Neural Information Processing Systems,
36, 2024.

Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. A fourier-based framework
for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14383–14392, 2021.

Liling Zhang, Xinyu Lei, Yichun Shi, Hongyu Huang, and Chao Chen. Federated learning for iot
devices with domain generalization. IEEE Internet of Things Journal, 2023a.

Ruipeng Zhang, Qinwei Xu, Jiangchao Yao, Ya Zhang, Qi Tian, and Yanfeng Wang. Federated do-
main generalization with generalization adjustment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3954–3963, 2023b.

Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei Zhang. Exact feature distribution matching
for arbitrary style transfer and domain generalization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 8035–8045, 2022.

Yuyang Zhao, Zhun Zhong, Fengxiang Yang, Zhiming Luo, Yaojin Lin, Shaozi Li, and Nicu Sebe.
Learning to generalize unseen domains via memory-based multi-source meta-learning for person
re-identification. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 6277–6286, 2021.

Qihuang Zhong, Liang Ding, Li Shen, Peng Mi, Juhua Liu, Bo Du, and Dacheng Tao. Improving
sharpness-aware minimization with fisher mask for better generalization on language models.
arXiv preprint arXiv:2210.05497, 2022.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-adversarial im-
age generation for domain generalisation. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 13025–13032, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training. arXiv preprint arXiv:2203.08065, 2022.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A RELATED WORK

Domain generalization Domain generalization aims to address the distribution shift problem
caused by domain gaps and enable the model to perform well not only on train domains but also on
test domains. Some researchers focus on the domain alignment idea (Li et al., 2018b;c; Shao et al.,
2019; Shi et al., 2021b) by bridging domain distribution gaps. There are also some works (Balaji
et al., 2018; Zhao et al., 2021; Li et al., 2019) considering meta-learning strategies to learn from
domain shifts. Other techniques including invariant risk minimization (Ahuja et al., 2020; Arjovsky
et al., 2019; Krueger et al., 2021), data augmentations (Huang et al., 2021; Xu et al., 2021; Zhang
et al., 2022), and self-supervised learning (Carlucci et al., 2019; Kim et al., 2021; Wang et al., 2020)
are also validated effectively in domain generalization. However, these centralized methods either
require domain labels or need data samples from all domains, which is not achievable in the feder-
ated learning setting due to the data privacy issue.

Federated domain generalization Federated domain generalization involves both domain gener-
alization and federated learning, which aims to bridge the participating gap of unseen clients with
domain shifts. Methods with different motivations are proposed to solve it. FedADG (Zhang et al.,
2023a) aligned each seen client’s data representation distribution by adversarial training for get-
ting universal representation, FedSR (Nguyen et al., 2022) tried to learn simple representation for
avoiding spurious correlation by regularizing the feature norm and conditional mutual information,
FedIIR (Guo et al., 2023b) implicitly learned invariant classifier by gradient alignment, GA (Zhang
et al., 2023b) focused on the averaging stage and adjusted coefficients of local models by their per-
formance, and StableFDG (Park et al., 2024) and CCST (Chen et al., 2023) proposed to utilize style
statistics in seen clients to help local training. Different from them, we try to approach the global
flatness for improved domain generalization ability.

Flat minima A popular perspective on the generalization of deep networks is that flat minima are
robust to test distribution shifts. This problem, explored early (Hinton & Van Camp, 1993; Hochre-
iter & Schmidhuber, 1994; 1997), has seen a resurgence in recent years (Dziugaite & Roy, 2017; Li
et al., 2018a; Jiang et al., 2019), showing a strong relation between flat minima and generalization.
Recent works seek flat minima either during optimization (Foret et al., 2020; Kwon et al., 2021;
Zhuang et al., 2022; Sun et al., 2024; Zhong et al., 2022) or via post-processing (Izmailov et al.,
2018; Cha et al., 2021). The former is exemplified by Sharpness-Aware Minimization (SAM) (Foret
et al., 2020), which minimized robust risk, while later works (Kwon et al., 2021; Zhuang et al., 2022;
Sun et al., 2024; Zhong et al., 2022) overcame the shortcomings of SAM or proposed new theoretical
explanations. Wen et al. (2024) comprehensively discussed the relationship between flatness, gen-
eralization, and SAM with respect to different architectures and data distributions. Post-processing
methods, such as SWA (Izmailov et al., 2018), exploited linear mode connectivity (Draxler et al.,
2018; Garipov et al., 2018; Juneja et al., 2022) by averaging models along SGD paths to improve
generalization. In this paper, we focus on the flatness of the global model in federated learning,
which is not directly optimizable.

B DISCUSSIONS

B.1 MORE DISCUSSIONS ABOUT THEOREMS

The distinction between Theorem 1 and Theorem 2 is in the first term on the RHS of Eq. (4)
and Eq. (13). To minimize the objective ET (θ), Theorem 1 suggests minimizing Êγ

Ds(θ), which
is straightforward in a centralized setting where data from each Ds

i is aggregated, and ∆ can be

estimated as ∆ = γ ∇ÊDs (θ)

|∇ÊDs (θ)| . However, in the federated learning scenario, where data remains

private, the global gradient ∇ÊDs(θ) is inaccessible, and therefore the global ∆ cannot be easily
estimated. This prevents clients from cooperating to minimize Êγ

Ds(θ), rendering Theorem 1 inap-
plicable in federated settings. In contrast, Theorem 2 suggests minimizing

∑Ms

i=1
1

Ms
Êγ
a(Di;ϕi)

(θi).
Here, ∆ (denoted as ∆i with slight abuse of notation) for each local model θi can be estimated

locally on a(Di;ϕi) by ∆ = γ
∇Êa(Di;ϕi)

(θi)

|∇Êa(Di;ϕi)
(θi)|

. The location of the maximization changes, and this

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

computation is performed locally during the clients’ updates. It is worth noting that the introduced
data-centric bounding inequality can not only be applied to Eq. (4) but also to other empirical risk
bounds, such as Theorem 1 in DomainDrop (Guo et al., 2023a).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RESULTS FOR EACH DOMAIN

Tab. 3 and Tab. 4 provide detailed results for each domain on Digits-DG, PACS, OfficeHome, and
TerraInc dataset.

Table 3: Results on Digits-DG and PACS. GFM(X) indicates the method combining GFM and X.

Method Digits-DG PACS
MNIST MNIST-M SVHN SYN Avg. Art Cartoon Photo Sketch Avg.

FedAvg 90.67 44.98 50.16 84.04 67.46 77.41 77.82 92.67 82.35 82.56
Scaffold 90.60 45.91 52.50 84.18 68.30 77.73 78.00 92.73 81.69 82.54
FedDyn 89.88 46.16 52.15 84.53 68.18 78.53 78.67 92.75 80.95 82.73
MOON 90.33 42.79 46.09 83.95 65.79 77.90 76.88 93.29 82.51 82.65
FedSAM 92.27 44.33 47.05 83.02 66.67 78.34 78.85 92.45 83.81 83.36
FedGAMMA 92.27 44.50 50.08 83.93 67.70 77.80 78.10 92.52 82.99 82.83
FedSMOO 90.29 44.38 57.90 85.15 69.43 78.77 77.49 90.84 84.58 82.92
FedSR 92.84 48.17 46.15 85.69 68.21 81.95 74.37 92.93 81.41 82.67
GA 91.34 44.53 53.24 84.70 68.45 80.93 77.30 94.49 80.84 83.39
FedSDG 88.56 49.34 51.18 82.11 67.80 81.61 78.81 94.71 81.76 84.22
FedIIR 92.28 49.95 51.30 83.46 69.25 82.13 77.27 93.91 82.46 83.94
GFM 92.22 46.28 56.27 84.12 69.72 80.34 78.27 92.53 86.70 84.46
GFM (GA) 93.37 48.21 57.69 85.99 71.32 82.96 76.92 93.99 86.00 84.97
GFM (FedIIR) 91.16 49.45 54.62 83.05 69.57 81.58 79.03 93.73 84.33 84.67

Table 4: Results on OfficeHome and TerraInc. GFM(X) indicates the method combining GFM and
X.

Method OfficeHome TerraInc
Art Clipart Product Real Avg. L100 L38 L43 L46 Avg.

FedAvg 57.88 53.45 73.65 74.28 64.82 53.03 41.64 46.05 36.18 44.23
Scaffold 56.87 53.84 73.51 74.03 64.56 51.76 40.91 42.65 35.49 42.70
FedDyn 56.94 52.73 72.55 73.32 63.89 51.82 40.55 46.29 38.44 44.28
MOON 55.45 51.90 71.72 72.42 62.87 51.00 43.29 44.48 36.16 43.73
FedSAM 57.13 55.46 74.39 74.14 65.28 55.26 40.83 46.13 38.42 45.16
FedGAMMA 57.34 55.10 74.58 74.51 65.38 53.70 37.65 46.26 36.53 43.56
FedSMOO 52.59 55.68 69.84 71.47 62.40 58.12 33.24 45.63 36.51 43.38
FedSR 56.40 53.94 72.07 73.55 63.99 50.22 38.99 44.11 38.55 42.97
GA 58.57 53.55 73.73 74.59 65.11 54.48 39.13 48.87 39.88 45.59
FedSDG 55.57 59.03 71.59 72.25 64.61 67.34 36.63 38.08 35.87 44.48
FedIIR 52.33 49.66 69.50 71.06 60.64 54.88 40.64 53.23 38.74 46.88
GFM 57.76 55.23 74.73 74.57 65.57 59.29 40.51 48.31 35.92 46.02
GFM (GA) 58.58 56.04 74.60 75.10 66.08 57.07 40.16 50.45 39.94 46.91
GFM (FedIIR) 54.30 51.35 69.49 71.84 61.74 60.02 38.75 54.16 37.70 47.66

C.2 IS AUGMENTED DATA A BETTER SURROGATE FOR GLOBAL DATA THAN LOCAL DATA?

To answer this question properly, we focus on the trained model after local updates. Proposition 1
suggests that the trained model performs similarly to the global model when converging to the saddle
point. Consequently, we evaluate the effect of augmented data and local data by measuring the mean
forgetting rate between the trained model and the global model on the global dataset D̂. The mean
forgetting rate is defined as:

R̄f =
1

Ms

Ms∑
i=1

ACC(θ; D̂)− ACC(θi; D̂)

ACC(θ; D̂)
, (A.1)
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Figure 5: Forgetting rate of different methods during the federated training process on PACS.

where ACC denotes the classification accuracy function. A smaller R̄f indicates that the model after
local updates keeps more knowledge of the global data distribution, which is a desirable property.

We conduct experiments on the PACS benchmark and present the forgetting rate throughout the en-
tire training process, as illustrated in Figure 5. Although R̄f exhibits significant fluctuations during
the training process, it is evident that GCA adopted in GFM effectively ameliorates the situation
of forgetting, particularly in the later stages of training when the global model becomes stronger.
These experiments provide a direct evaluation, demonstrating that augmented data serves as a better
surrogate for global data compared to local data.

C.3 RESULTS FOR REGULARIZATION-BASED METHODS

Table 5: Results of example instantiation of Eq. (A.2).
Method Art Cartoon Photo Sketch Avg.

FedAvg 77.41 77.82 92.67 82.35 82.56
SAM 78.74 79.42 92.61 83.17 83.49
LWF 79.74 78.65 93.87 80.90 83.29

SAM+LWF 79.26 79.05 92.69 83.79 83.70

Given that the updates in local data distri-
bution will incur catastrophic forgetting of
global knowledge, one can pursue the en-
hancement of consistency between global
and local models by knowledge distilla-
tion or penalizing model changes. In the
meantime, we try to optimize local mod-
els to a flat region. As a result, the objective thus should combine the local training term and
anti-forgetting term as follows:

min
θi

ÊDi
(θi) + Lγ

con(θ, θi), (A.2)

where Lcon measures the consistency between the global and local model. Some loss terms in
previous works can be viewed as a special case of Eq. (A.2), such as the dynamic regularization term
in (Sun et al., 2023). Here, we propose a simple baseline by adopting knowledge distillation (Li &
Hoiem, 2017) loss as Lcon and using SAM (Foret et al., 2020) optimizer. Results in Tab. 5 validate
the effectiveness of Eq. (A.2). Compared to the proposed method in this paper, regularization-based
methods can’t explicitly minimize Eq. (8) and achieve inferior performance.

C.4 IS GCA COMPATIBLE WITH OTHER AUGMENTATION?

Table 6: Results when combining GCA with other pop-
ular augmentation strategies on the PACS dataset.

Method Art Cartoon Photo Sketch Average
RA 83.04 78.46 93.83 83.50 84.71
+GCA 83.40 78.83 94.17 86.28 85.67
AA 82.57 77.43 93.91 84.47 84.60
+GCA 81.64 78.77 93.43 87.44 85.32
Cutout 76.98 77.77 92.12 80.74 81.90
+GCA 79.91 77.80 91.62 84.48 83.45

Though designed for supplementing
global information in the local training
stage, GCA has similar forms (i.e., color
transformation and geometric transfor-
mation) with other data augmentation
strategies. So if GCA is compatible with
other augmentation strategies remains un-
solved. To figure it out, we combine GCA
with three popular data augmentation
methods in classification tasks: RandAug-
ment (RA) Cubuk et al. (2020), AutoAugment (AA) Cubuk et al. (2019), and Cutout DeVries &
Taylor (2017). We conduct experiments on the PACS dataset and the results on PACS are shown
in Tab. 6. We can draw some conclusions from it: (1) some popular augmentation strategies like
RA and AA do a favor for the model’s generalization performance while others (Cutout) don’t;
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Table 7: Computation overhead comparison between GFM and FedAvg.
Digits-DG PACS OfficeHome TerraInc

time space time space time space time space
FedAvg V M,M V M,M V M,M V M,M
Scaffold ≈ V 4M, 2M ≈ V 4M, 2M ≈ V 4M, 2M ≈ V 4M, 2M
FedDyn ≈ V 3M,M 1.34V 3M,M ≈ V 3M,M ≈ V 3M,M
MOON ≈ V 3M,M 1.38V 3M,M ≈ V 3M,M ≈ V 3M,M
FedSAM 1.08V M,M 1.73V M,M 1.43V M,M 1.35V M,M
FedGAMMA 1.09V 4M, 2M 1.70V 4M, 2M 1.51V 4M, 2M 1.32V 4M, 2M
FedSMOO 1.22V 5M, 2M 2.00V 5M, 2M 1.72V 5M, 2M 1.48V 5M, 2M
FedSR ≈ V M,M ≈ V M,M ≈ V M,M ≈ V M,M
GA ≈ V M,M ≈ V M,M ≈ V M,M ≈ V M,M
GFM 1.42V 25.91M,M 2.86V 2.25M,M 2.01V 2.25M,M 1.55V 2.12M,M
GFM (GA) 1.45V 25.91M,M 2.92V 2.25M,M 1.95V 2.25M,M 1.62V 2.12M,M

(2) further combining popular augmentation with GCA can still gain a non-trivial improvement. It
indicates that though in similar forms, GCA can inject useful global information to the augmented
data to achieve consistent performance gains. As a result, GCA is compatible and can be used with
other data augmentation strategies practically.

C.5 COMPUTATION OVERHEAD AND POTENTIAL TRADE-OFFS

In GFM, an augmentation model is incorporated into local updates to better approach a flat op-
timization landscape, albeit with some additional computational overhead. We compare the time
and space overheads of GFM with other baseline methods. The space overhead is evaluated in two
aspects: the parameters used during local updates (former element in the space column) and the
parameters required for communication (latter element in the space column). From the results, it
can be observed that the additional parameters introduced by the augmentation model are relatively
small (0.25M for ResNet-18 and 0.12M for ResNet-50), except for the small ConvNet architecture.
Furthermore, the actual running time increases to approximately 1.5 to 1.7 times that of the FedSAM
baseline, with variations due to differences in data processing times. Notably, among methods that
aim to achieve flatter minima of the global model (including FedGAMMA, FedSMOO, and GFM),
our method imposes the lowest space constraints.

The increase in running time is influenced by three factors: (1) the forward pass of the augmenta-
tion model to generate augmented data, (2) the backward pass when optimizing the augmentation
model, and (3) the inner maximization within the SAM optimizer. Here, we focus on the first two
components introduced by the augmentation model. One potential trade-off to reduce computa-
tional cost is to decrease the update frequency of the augmentation model. As shown in Tab. 8,
reducing the frequency of updates for ϕ can lower the time cost by reducing the number of back-
ward passes. Another strategy is to use low-dimensional images as inputs to the deep augmentation
modules c(;ϕc) and g(;ϕg) (see Appendix D.2 for further clarification). Specifically, let x̄i be the
low-dimensional (e.g., 32x32) version of xi. The color and geometry parameters, αi, βi = c(x̄i;ϕc)
and A = g(x̄i;ϕg), can be obtained from x̄i and then applied to the original images (αi, βi need
upsampling to the original dimension). This approach reduces the computational cost associated
with the deep model during both the forward and backward passes. As shown in Table 9, dimension
of inputs to the augmentation module have minimal impact on the final performance. By utilizing
low-dimensional images as inputs, the computational cost of augmentation in GFM is reduced to
approximately 30% of the FedSAM baseline.

Table 8: Performance for different update intervals c.
Update Interval c 50 20 10 5 2 1

Time 2.34V 2.66V 2.86V 3.23V 4.51V 6.94V
ACC 83.99 84.04 84.46 84.42 84.87 84.97

C.6 VISUALIZATION OF AUGMENTED IMAGES

In this section, we present visualizations of the augmented images from the PACS dataset. As dis-
cussed in Appendix D.2, the augmentation model comprises only geometry and color augmentation
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Table 9: Impact of dimensions of inputs to the augmentation module.
Image Dimension 28× 28 56× 56 112× 112 224× 224

Time 2.30V 2.31V 2.44V 2.86V
ACC 84.35 84.30 84.37 84.46

Art

Cartoon

Photo

Sketch

Figure 6: Examples of augmented images on the PACS dataset.

modules, which do not drastically alter the semantic content of images. As illustrated in Fig. 6, the
changes primarily affect the "style" or "domain" of the images rather than their semantic meaning.

D OTHER DETAILS OF DATASETS AND IMPLEMENTATION

Specifically, Digits-DG is for digits recognition consisting of 4 different digits datasets including
MNIST (LeCun et al., 1998), MNIST-M (Ganin & Lempitsky, 2015), SVHN (Netzer et al., 2011),
and SYN (Ganin & Lempitsky, 2015), which vary in fonting styles, backgrounds, color, image
quality, and so on. For example, SVHN is collected in streets while images of SYN are synthesized.
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We follow the train-validation split as in (Zhou et al., 2020), where 480 samples per class per dataset
are for training and 120 for testing (24000 samples in total). PACS contains 9,991 images from four
different domains (photo, art, cartoon, and sketch) and has 7 object categories mainly about animals.
OfficeHome consists of 15,588 images from four different domains (art, clipart, product, and Real-
Word) and 56 object categories of everyday objects. Compared to PACS, it has fewer samples per
class. The TerraInc dataset has 24,788 images collected from 4 different cameras and 10 object
categories of wild animals. Different from PACS and OfficeHome, the objects in images of TerraInc
are not always centered. We follow the same train-validation split as in (Zhang et al., 2023b) for
PACS, OfficeHome, and TerraInc.

All networks are trained for 40 rounds with 5 local epochs per round, ensuring both local and global
convergence as in (Zhang et al., 2023b). We use the SGD optimizer with a batch size of 128 for
Digits-DG and 16 for the other datasets. Weight decay is set to 5e-4 for all models. The learning
rates are set to 5e-3, 1e-3, and 5e-4 for CNN, ResNet18, and ResNet50, respectively, with decay
by a factor of 0.1 at round 32 (i.e., 40 × 0.8). For optimization, we use SGD with a batch size of
128 for Digits-DG and 32 for the others. The learning rates for CNN, ResNet18, and ResNet50
are set to 5e-3, 1e-3, and 1e-3, respectively, without decay. For the compared methods, we tune
µ = 0.1, 1 for MOON (Li et al., 2021) , λ = 0.1, 0.01, 0.001 for FedDYN (Acar et al., 2021), and
λ = 0.01, 0.02, 0.05, 0.1, γ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 for FedSMOO (Sun et al., 2023). For
Scaffold (Karimireddy et al., 2020) and FedGAMMA (Dai et al., 2023), we follow the implemen-
tation of GA Zhang et al. (2023b), while for other methods, we use hyperparameters as reported in
respective papers. In all experiments, we report the mean (± std) results based on 3 random runs.

For the augmentation model, the geometry augmentation scale and color augmentation scale are set
as 0.125 and 0.2 for Digits-DG, PACS, and OfficeHome and set as 0.0625 and 0.1 for TerraInc.
The update interval of the augmentation model is set as 10. The number of data splits is set as 4.
The sampling augmentation frequency is set as 10. Other hyperparameters of training augmentation
models are kept the same as (Suzuki, 2022). In all experiments, we use an RTX 3090 GPU for
training.

D.1 DETAILS OF FEDIIR

It is important to note that FedIIR and FedIIR (GFM) are not directly comparable to other baselines.
FedIIR requires more communication rounds and fewer local epochs to improve gradient estimation
and alignment. Specifically, for both FedIIR and GFM (FedIIR), models are trained for 100 rounds
with only 1 local epoch per round.

D.2 AUGMENTATION MODEL

The augmentation model a(;ϕ) is defined as the composition of a color augmentation model c(;ϕc)
and a geometry augmentation model g(;ϕg). The color augmentation model c(;ϕc) takes xi ∈
R3×H×W as input and outputs color transformation parameters (αi, βi), where αi, βi ∈ R3×H×W

represent scaling and shifting factors, respectively. The augmented color is then computed as x̃i =
t(αi ⊙ xi + βi), where t(·) denotes a triangle wave function. The geometry augmentation model
g(;ϕg) : X → R2×3 also takes xi as input and outputs a residual affine parameter A ∈ R2×3. An
affine transformation is applied as x̂ = Affine(x̃, A+ I), where I is the identity matrix. The entire
procedure is differentiable, and both ϕc and ϕg are parameters of deep models. For further details,
refer to Section 4 of (Suzuki, 2022).

E PROOF OF THEOREMS

The proofs of Lemma 1, Lemma 3 and Theorem 1 are done similarly as in (Cha et al., 2021).

E.1 TECHNICAL LEMMAS

Consider a bounded instance loss function ℓ : Y × Y → [0, 1] such that ℓ(y1, y2) = 0 holds if
and only if y1 = y2. Then we can define the functional error EP (h1, h2) := EP (ℓ(h1(x), h2(x))).
Given two distributions P and Q, we have the following lemma.
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Lemma 1. The difference between the error with P and the error with Q is bounded by the diver-
gence between P and Q:

|EP (ℓ(h1, h2))− EQ(ℓ(h1, h2))| ≤
1

2
Div(P,Q) (A.3)

Proof. From the Fubini’s theorem, we have,

Ex∈P [ℓ(h1(x), h2(x))] =

∫ ∞

0

PP (ℓ(h1(x), h2(x)) > t)dt (A.4)

By using it, we have,

|EP (ℓ(h1, h2))− EQ(ℓ(h1, h2))| (A.5)

=

∣∣∣∣∫ ∞

0

PP (ℓ(h1(x), h2(x)) > t)dt−
∫ ∞

0

PQ(ℓ(h1(x), h2(x)) > t)dt

∣∣∣∣ (A.6)

≤
∫ ∞

0

|PP (ℓ(h1(x), h2(x)) > t)− PQ(ℓ(h1(x), h2(x)) > t)|dt (A.7)

≤ sup
t∈[0,1]

|PP (ℓ(h1(x), h2(x)) > t)− PQ(ℓ(h1(x), h2(x)) > t)| (A.8)

≤ sup
h1,h2

sup
t∈[0,1]

|PP (ℓ(h1(x), h2(x)) > t)− PQ(ℓ(h1(x), h2(x)) > t)| (A.9)

≤ sup
h∈H

|PP (h(x) = 1)− PQ(h(x) = 1)| (A.10)

≤ sup
A

|PP (A)− PQ(A)| = 1

2
Div(P,Q) (A.11)

where H := {I[ℓ(h1(x), h2(x)) > t]|h1, h2; t ∈ [0, 1]}.

Lemma 2. Denote D := 1
M

∑M
i=1 Di as the mixture distribution of M source distributions and

target distribution T , we have:

Div(D,T ) ≤ 1

M

M∑
i=1

Div(Di, T ). (A.12)

Proof. From the definition of Div(·, ·), we get,

Div(D,T ) = 2 sup
A

|PD(A)− PT (A)| (A.13)

= 2 sup
A

| 1
M

M∑
i=1

PDi
(A)− PT (A)| (A.14)

≤ 2 sup
A

1

M

M∑
i=1

|PDi
(A)− PT (A)| (A.15)

≤ 1

M

M∑
i=1

2 sup
A

|PDi
(A)− PT (A)| (A.16)

=

M∑
i=1

Div(Di, T ) (A.17)

Lemma 3. Consider a distribution P on input space and global label function f(·; θ) : X → Y . Let
{Θk ⊂ Rd, k = 1, · · · , N} be a finite cover of a parameter space Θ which consists of closed balls
with radius γ/2 where N := ⌈(diam(Θ)/γ)d⌉. Let θk ∈ argmaxΘk∩Θ EP (θ) be a local maximum
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in the k-th ball. Let a VC dimension of Θk be vk. Then, for any θ ∈ Θ, the following bound holds
with probability at least 1− δ.

EP (θ)− Êγ
P (θ) ≤ max

k

√
vk [ln (n/vk) + 1] + ln (N/δ)

2n
(A.18)

where Êγ
P (θ) is an empirical robust risk with n samples.

Proof. We first show for the local maximum of N covers, the following inequality holds:

P
(
max

k

[
EP (θk)− ÊP (θk)

]
> ϵ

)
≤

N∑
k=1

P
(
EP (θk)− ÊP (θk) > ϵ

)
(A.19)

≤
N∑

k=1

P
(
sup
θ∈Θk

[EP (θ)− ÊP (θ)] > ϵ

)
(A.20)

≤
N∑

k=1

(
en

vk

)vk

e−2nϵ2 (A.21)

By introducing a confidence error bound ϵk :=
√

vk[ln(n/vk)+1]+ln(N/δ)
2n and setting ϵ := maxk ϵk,

we get,

P
(
max

k

[
EP (θk)− ÊP (θk)

]
> ϵ

)
≤

N∑
k=1

(
en

vk

)vk

e−2nϵ2 (A.22)

≤
N∑

k=1

(
en

vk

)vk

e−2nϵ2k (A.23)

=

N∑
k=1

δ

N
= δ (A.24)

Thus, the maxk

[
EP (θk)− ÊP (θk)

]
≤ ϵ holds with probability at least 1 − δ. Based on this, we

consider EP (θ)− Êγ
P (θ). For any θ, there exists k′ such that θ ∈ Θk′ . Then, we get,

EP (θ)− Êγ
P (θ) ≤ EP (θ)− ÊP (θk′) (A.25)

≤ EP (θ)− EP (θk′) + ϵ (A.26)
≤ EP (θk′)− EP (θk′) + ϵ = ϵ (A.27)

Thus, EP (θ)− Êγ
P (θ) ≤ ϵ holds with probability at least 1− δ.

Lemma 4. Denote D :=
∑M

i=1 piDi as the global distribution. The robust risk of the global model
θ is bound by the weighted averaged robust risk of local models, where the weights are combination
coefficients:

Êγ
D(θ) ≤

∑
i

piÊγ
D(θi) (A.28)

Proof. From the Assumption 1 and the definition of Êγ , we have,

Êγ
D(θ) = ÊD(θ +∆) ≤

∑
i

piÊD(θi +∆) ≤
∑
i

piÊD(θi +∆i) =
∑
i

piÊγ
D(θi) (A.29)

where ∆ := argmax∆ ÊD(θ +∆) and ∆i := argmax∆ ÊD(θi +∆).
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E.2 PROOF OF THEOREM 1

Theorem 1. Consider a set of K covers {Θk}Kk=1 such that the parameter space Θ ⊂ ∪K
k Θk where

diam(Θ) := supθ,θ′∈Θ ∥θ − θ′∥2, K :=
⌈
(diam(Θ)/γ)

d
⌉

and d is dimension of Θ. Let vk be a
VC dimension of each Θk. Then, for any θ ∈ Θ, the following bound holds with probability at least
1− δ,

ET (θ) < Êγ
Ds(θ) +

1

2Ms

Ms∑
i=1

Div(Di, T ) + max
k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
, (A.30)

where Ds is the set of train (seen) domains, n is the number of training samples per domain, and
Div(Di, T ) := 2 supA |PDi

(A)− PT (A)| is a divergence between two distributions.

Proof. Defining the mixture distribution as Ds :=
∑Ms

i=1 Di, we have Êγ
Ds(θ) = Êγ

Ds(θ). By
applying Lemma 1 (taking f(·; θ) as h1 and true labeling function as h2), Lemma 3, and Lemma 2
respectively, we get,

ET (θ) ≤ EDs(θ) +
1

2
Div(T,Ds) (A.31)

≤ Êγ
Ds(θ) + max

k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
+

1

2
Div(T,Ds) (A.32)

≤ Êγ
Ds(θ) + max

k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
+

1

2Ms

Ms∑
i=1

Div(T,Di) (A.33)

= Êγ
Ds(θ) +

1

2Ms

Ms∑
i=1

Div(Di, T ) + max
k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
(A.34)

E.3 PROOF OF THEOREM 2

Theorem 2. Denote the local models as {θi}MS
i=1, the global model as θ, and the augmentation

models as {ϕi}MS
i=1. Suppose {θi}MS

i=1 satisfies Assumption 1, θ is the aggregate of {θi}MS
i=1 and

pi = 1/Ms. For any θ ∈ Θ, the following bound holds with probability at least 1− δ:

ET (θ) <
Ms∑
i

1

Ms
Êγ
a(Di;ϕi)

(θi) +
1

2Ms

Ms∑
i=1

Div(Di, T ) + max
k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
,

(A.35)

where ϕi = argmax
ϕi

Êa(Di;ϕi)(θi +∆i)− Êa(Di;ϕi)(θ).
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Proof. Defining the mixture distribution as Ds :=
∑Ms

i=1 Di, we get,

ET (θ) ≤ EDs(θ) +
1

2
Div(T,Ds) (A.36)

≤ Êγ
Ds(θ) + max

k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
+

1

2
Div(T,Ds) (A.37)

≤ 1

Ms

Ms∑
i

Êγ
Ds(θi) + max

k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
+

1

2
Div(T,Ds) (A.38)

≤ 1

Ms

Ms∑
i

Êa(Di;ϕi)(θi +∆i) + max
k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
+

1

2
Div(T,Ds)

(A.39)

≤ 1

Ms

Ms∑
i

Êγ
a(Di;ϕi)

(θi) + max
k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n
+

1

2
Div(T,Ds) (A.40)

1

Ms

Ms∑
i

Êγ
a(Di;ϕi)

(θi) +
1

2Ms

Ms∑
i=1

Div(Di, T ) + max
k∈[1,K]

√
vk ln (n/vk) + ln(K/δ)

n

(A.41)

where ∆i := argmax∆ ÊD(θi + ∆). The second inequality holds since Lemma 4 and the third
inequality holds because of Eq. (12).

F ANALYSIS OF MIN-MAX OPTIMIZATION

By replacing robust risk and empirical risk with population risk, we fucus on a simplified min-max
optimization objective, denoted as ∆E(θi, ϕi), as follows:

min
θi

max
ϕi

[
Ea(Di;ϕi)(θi)− Ea(Di;ϕi)(θ)

]
. (A.42)

Let q(x;ϕi) denote the probability density function of a(Di;ϕi), p(y|x; θ) represent the prediction
probability of the true label y given θ, p(y|x; θi) represent the prediction probability given θi, and
ℓ(·) denote the cross-entropy loss. The equation can then be reformulated as:

min
θi

max
ϕi

∫
q(x;ϕi)

(
ln p(y|x; θ)− ln p(y|x; θi)

)
dx. (A.43)

To begin, we consider the optimal solution of the maximization process. Define X∗ = {x | x =
argmaxx

(
ln p(y|x; θ)−ln p(y|x; θi)

)
} = {x∗

j}. Assuming the augmentation model is a sufficiently
powerful model with enough capacity, the optimal solution satisfies:

q(x;ϕi) =

|X∗|∑
j=1

wjδ(x− x∗
j ), (A.44)

where δ denotes the Dirac function, wj ≥ 0, and
∑

j wj = 1. Intuitively, the augmentation model
aims to generate samples that exhibit the largest prediction discrepancy with respect to the true
label. In the subsequent minimization step, θi seeks to improve its performance on these challenging
samples. Through this process, θi is guided to align its behavior with θ. The process continues until
θi can no longer improve its performance on these samples, and/or until the models reach a certain
equilibrium. Proposition 1 presents a saddle point solution for the min-max process.
Proposition 1. A saddle point solution exists for the min-max problem in Equation (A.42). Con-
struct θ∗i such that p(y|x; θ∗i ) = s · p(y|x; θ) for any x in the support set with true label y, where
s = 1

maxx p(y|x;θ) . Then, there exists ϕ∗
i such that θ∗i is the local minimum of Ea(Di;ϕ∗

i )
(θ∗i ). Conse-

quently, the pair (θ∗i , ϕ
∗
i ) constitutes a saddle point solution, satisfying ∆E(θ∗i , ϕi) ≤ ∆E(θ∗i , ϕ∗

i ) ≤
∆E(θi, ϕ∗

i ).
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Proof. We begin with the construction of ϕ∗
i . Denoting X̄ = {x|x = argmaxx p(y|x; θ)} = {x̄j},

we construct ϕ∗
i that satisfies:

q(x;ϕ∗
i ) =

|X̄|∑
j=1

wjδ(x− x̄j), (A.45)

where δ indicates the Dirac function, wj ≥ 0 and
∑

j wj = 1. As a result,

Ea(Di;ϕ∗
i )
(θ∗i ) =

∫
q(x;ϕ∗

i ) ln p(y|x; θ∗i )dx (A.46)

=

|X̄|∑
j=1

wj ln s · p(y|x̄; θ) (A.47)

= 0. (A.48)

Because cross-entropy is a convex function of prediction and Ea(Di;ϕ∗
i )
(θ∗i ) reaches the optimal

value, θ∗i is a minimum. Thus, ∆E(θ∗i , ϕ∗
i ) ≤ ∆E(θi, ϕ∗

i ) holds. Then, to prove ∆E(θ∗i , ϕi) ≤
∆E(θ∗i , ϕ∗

i ), we just need to prove that x̄ ∈ X∗ according to Equation (A.44). Because ln p(y|x; θ)−
ln p(y|x; θ∗i ) = ln s for any x in the support set, x̄ ∈ X∗ is valid. So, we get ∆E(θ∗i , ϕi) ≤
∆E(θ∗i , ϕ∗

i ), which concludes the proof.

The min-max process converges to the saddle point once it reaches its neighborhood. The saddle
point solution in Proposition 1 demonstrates comparable global performance to the global model θ,
as shown by: p(y|x; θ∗i ) = s·p(y|x; θ). In this way, the local update can be effectively supplemented
with global information, leveraging both the global model and the augmentation model.

Notably, a low value of s may limit the performance improvement of θ∗i . To address this limitation,
an auxiliary conditional distribution can be defined as:

pa(y|x) = min(t, p(y|x; θ)), (A.49)

where t ∈ (0, 1) is a hyperparameter. Using this auxiliary distribution, the final modified min-max
problem becomes:

min
θi

max
ϕi

∫
q(x;ϕi)

(
ln pa(y|x)− ln p(y|x; θi)

)
dx. (A.50)
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