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Abstract

Decomposing scene radiance into physically meaning-
ful components, including direct reflection, interreflection,
and scattering, enables a deeper understanding of scene
appearance. In this paper, we propose the first method to
perform multi-range radiance component separation using
only events captured by an event camera, without requir-
ing any additional frame-based measurements. QOur ap-
proach scans the scene by swiping line-shaped illumination
across it, while exploiting the event camera’s high temporal
resolution and wide dynamic range to recover both direct
and multiple global components corresponding to different
light propagation distances. To address the noise inherent
in event-integration-based radiance recovery, we present
a pixel-wise calibration strategy that leverages the repro-
ducibility of per-pixel noise patterns. We demonstrate that
this calibration is highly effective in suppressing noise, en-
abling stable recovery from subtle signals. Moreover, we
show that by detecting the timing at which the scanning
line passes each pixel, the same line-scan event data can
be exploited for coarse 3D reconstruction. Experimental
results on real scenes show that our event-based approach
achieves faster and finer component separation, while also
enabling coarse depth estimation without the exposure con-
trol required by frame-based cameras.

1. Introduction

Physics-based models have long played a crucial role in
computer vision, as they provide principled formulations
that allow problems to be solved in accordance with phys-
ical reflectance properties. Within this framework, separat-
ing scene radiance into direct and global components is a
fundamental task, since it yields a cleaner representation of
appearance that corresponds to the visual phenomena tar-
geted by physics-based modeling. In particular, isolating

the direct component, corresponding to light that reaches
the camera after a single surface reflection, directly sup-
ports the assumptions of such models and can significantly
enhance the accuracy and applicability of the vision ap-
proaches built upon them, such as photometric stereo [14]
and structured light 3D reconstruction [18]. In contrast,
the global component, which arises from interreflection,
scattering, and subsurface light transport, encodes valuable
information about material properties, supporting applica-
tions such as material classification [9] and scene editing
[14].

A pioneering work by Nayar et al. [14] introduced the
separation of direct and global components using a projec-
tor—camera system, which laid the groundwork for many
subsequent studies in this field. Wu et al. [29] used
an ultrafast time-of-flight (ToF) imaging system to dis-
tinguish between interreflection and subsurface scattering,
both included in global component. Other approaches at-
tempt to decompose the global components into near- and
far-range components based on light propagation distance
[9, 17, 19, 20]. The ring light imaging method [16] was
introduced to capture transient subsurface scattering by il-
luminating each surface point to form ring-shaped light pat-
terns with increasing radii. By analyzing the images corre-
sponding to each ring radius, this approach enables the esti-
mation of path-length-dependent subsurface light transport
using a conventional camera. However, it requires point-by-
point scanning, leading to long acquisition times and its use
in practical applications remains challenging.

This paper presents the first effective event-camera-
based method that relies solely on event-camera signals to
separate direct and multiple global radiance components,
ranging from near to far. Event cameras are now widely
utilized in various tasks of computer vision such as 3D re-
construction [4, 8, 12, 31], photometric stereo [32], and hy-
perspectral imaging [33], since they can offer high temporal
resolution and a broad dynamic range with small data size.
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Figure 1. Overview of the proposed event-camera method. The scene is scanned with vertical and horizontal line illuminations to approxi-
mate pseudo-square patterns at varying distances r. The event camera records temporal radiance changes to separate direct and multi-range
global components. The same data are also used for coarse 3D reconstruction via scan-line timing.

These properties are also useful for direct-global separation.
Zhou et al. [34] combined the frame-based camera with the
event camera and achieved real-time acquisition of the di-
rect and global components. While this method facilitates
rapid acquisition, it remains confined to two-component
separation and necessitates a training phase as part of the
process.

In contrast, our method separates finely into direct and
multiple global radiance components, ranging from near to
far range, only using an event camera. Our method scans the
scene by swiping line-shaped illumination while the event
camera records fine-grained temporal brightness changes
as the illumination moves relative to the observation point.
By leveraging the event camera’s high temporal resolution
and wide dynamic range, our method enables multi-range
light transport decomposition. We also propose a noise
mitigation strategy for integration-based radiance recovery
exploiting the reproducibility of pixel-wise noise patterns,
which significantly reduce the noise. Since the fine com-
ponent separation relies on subtle differences in the event
signal, this strategy is fundamental to our method. More-
over, the same event data used for radiance separation en-
ables coarse 3D reconstruction by exploiting the timing in-
formation when the scanning line passes each pixel. We
demonstrate that our approach achieves coarse 3D recon-
struction, along with finer separation with significantly less
data, which is hard to accomplish at the same time with a
conventional frame-based camera.

To summarize, our contributions are as follows:

* We propose an efficient way for capturing approximate
multi-range light transport components separated due to

light propagation distance using line scanning illumina-
tion patterns.

* We implemented the approximate separation method on
an event camera for faster and finer acquisition with less
data compared to frame-based implementation.

 Using the same data as for the radiance component sepa-
ration, we also reconstruct the 3D shape of scene.

* We propose a noise mitigation method suitable for our
line scanning based separation.

2. Related Works
2.1. Radiance Component Separation

Direct-Global Component Separation. Direct-global
component separation divides scene radiance into exactly
two components: the direct component and the global com-
ponent. A pioneering method by Nayar et al. [14] employs
high-frequency illumination with complementary patterns
for radiance separation. While in theory only two comple-
mentary patterns are sufficient, in practice 6-8 patterns (or
more for complex scenes) are typically required to achieve
stable and reliable results. Afterwards, many methods have
been proposed to improve it in various directions. Gu et al.
[6] reduced the number of required images and improved
SNR by using multiple light sources. Motion compensa-
tion is employed [1] to enable direct-global separation in
dynamic scenes. The separation at high frame rates has
been achieved using the combination of high-speed cam-
era with temporal dithering of DLP projector [13], and hy-
brid RGB—event cameras with sweeping line occluders [34].
Some methods exploited image priors [5, 15, 25] to achieve



single-frame separation.

Finer Component Decomposition. Finer decomposition
aims to split radiance into multiple detailed components
rather than only direct and global. Lamond et al. [10] sep-
arated the direct component into diffuse and specular terms
by exploiting differences in their dependency on light inci-
dent direction. The global component can be further decom-
posed into the interreflection and the subsurface scattering
components by using the time of flight (ToF) imaging de-
vice [29] or applying independent vector analysis to differ-
ent direct components acquired under multiple frequency
illumination [24]. Near- and far-range global components
can be distinguished based on light propagation distance us-
ing sinusoidal patterns [20], primal-dual imaging [17, 19],
or synchronized projector—camera setups [9]. Seitz et al.
[22] decomposed the radiance by interreflection into mul-
tiple components that are contributed by specific number
of light bounces in the scene. Tanaka et al. [27] modeled
the appearance of translucent object using depth-dependent
point spread function and recovered inner slices of them
by exploiting multiple frequency checkerboard illumination
patterns.

Most prior finer decomposition methods [9, 17, 19, 20]
split the global component into only two categories: near-
and far-range. In contrast, our approach decomposes it into
multiple finer components corresponding to different light
propagation distances. While ring-light imaging [16] can
also achieve such fine separation, it is impractically slow
due to the need for capturing images under point-by-point
illumination on each surface point. We address this by
combining an event camera with line-scanning illumination,
greatly reducing acquisition time.

2.2. Event-Based Active Lighting

Event cameras record per-pixel brightness changes asyn-
chronously when the logarithmic irradiance exceeds a
threshold, offering high dynamic range, fine temporal res-
olution, and compact data storage. These properties make
them well-suited for active lighting applications across a va-
riety of tasks.

Direct-Global Component Separation. Zhou et al. [34]
introduced an event-guided system to separate the direct
and global components, which enables real-time acquisi-
tion. First, scene radiance is captured by an RGB frame-
based camera. Then using an event camera, they capture
the change in direct and global components when line oc-
cluder is swept over the light source. The captured image
and the event data are then fused using neural network to
form RGB results of direct and global image.

Although our approach doesn’t support real-time acqui-
sition, ours has three advantages over theirs. First, their
method can only separate into direct and global compo-
nents, while ours can further separate the global component

into multiple components. Second, our method only utilizes
the event camera, in other words, the frame-based camera is
not required. Third, they need to collect dataset for learning
on the neural network, while ours doesn’t have to.
Geometry Estimation. EventPS [32] used a high-speed ro-
tating light source to perform real-time photometric stereo
from continuous lighting changes. For depth sensing,
structured-light systems combining an event camera with a
laser-point projector [12] or digital light projector [8] have
been proposed. To reduce the effect of global components
on reconstruction accuracy, epipolar constraints have been
applied in software [4, 31]. Liu ef al. [11] combined an
event camera with a flying-spot projector, and the dual pho-
tography technique [23] to reconstruct 3D shape of trans-
parent objects in both line-of-sight and non-line-of-sight
scenes.

Other Applications. Takatani et al. [26] proposed bispec-
tral difference imaging using temporally modulated illumi-
nation. Chen et al. [2] developed a practical indoor local-
ization system with multiple LEDs and event-based Gaus-
sian mixture tracking. Han et al. [7] introduced transient
event frequency for precise radiance recovery from high-
temporal-resolution event signals under active illumination.

3. Proposed Method

This section describes our method for separating radiance
components according to light propagation distance and
performing coarse 3D reconstruction. These are both per-
formed using the same measurements by an event camera
that records the radiance change during line illumination
sweeping over the scene. In Section 3.1, we first define
the direct and r-global components and introduce a practi-
cal approximation based on line-scanning illumination. We
then explain how these components can be recovered from
event-camera data in Section 3.2, and describe how timing
information in the same data enables coarse 3D reconstruc-
tion in Section 3.3. Finally, a denoising strategy crucial to
recovery of fine components separation is described in Sec-
tion 3.4.

3.1. Multi-Range Radiance Separation
3.1.1 Definitions of Direct and r-Global Components

When light is incident on a point on a surface, it may exit
near the incident point or reappear at a distant location af-
ter undergoing subsurface scattering or interreflection (Fig-
ure 1). Previous studies [9, 17, 19, 20] have demonstrated
that analyzing the distance between the incident and exit
points allows the separation of direct and near-/far-range
global components. To enable finer decomposition of light
transport, the radiance observed at the center of a ring-
shaped illumination pattern can be used [16]. We derive
a practical approach to estimate the radiance.



Let us first consider how the distance between the inci-
dent point and the observation point affects the appearance.
When only the surface point corresponding to pixel (i, j) is
illuminated, the radiance at (z,y) is given by I(x,y) =
T(i,j,x,y), where T is a light transport function of the
scene, representing how much light incident at the surface
point corresponding to (i, 7) transmits to the camera pixel
(,y).

When all scene points are illuminated, the radiance at
(z,y) can be expressed as the sum of the direct component
and the global component propagated from ring-shaped re-
gions at different radii:

Iall('r7 y) = Z T(laja z, y)
(1,9)
=T(x,y.z,y)+ > Y. T@jzy), O

r>0 (4,5)€D,
Dr {(i, )i =) + (5 —y)* =7},

where D, denotes the set of camera pixels forming a ring
of radius r centered at (x,y). The first term T'(z,y, z,y)
represents the direct component I; resulting from incident
light at the same location (z, y), while the second term rep-
resents the global component I, arising from indirect illu-
mination with ring-shaped patterns of varying radii (r > 0),
as examined in [16].

Here, we define r-global component I, for each dis-
tance 7 as:

IQT(xay) = Z T(Z,],,I,y) (2)

(i,4)€Dy

Our goal is to recover both the direct component /; and the
r-global component I, _for different radius 7.

3.1.2 Line-Scan Approximation

Accurate computation of I; and I, is possible by fully
measuring the light transport 7', e.g., via impulse illumi-
nation scanning. However, this requires as many mea-
surements as the number of pixels (H x W), where low
per-pixel radiance demands long exposures, and separating
multi-range global components needs even longer acquisi-
tion to capture subtle variations.

Instead of impulse illumination, we use horizontal and
vertical line illuminations to sweep over the scene, reduc-
ing the required measurements from H x W to H +W. We
approximate /4 and I, as the sum of the international com-
ponents generated by four-line illuminations positioned at
a certain distance in both horizontal and vertical directions:
left, right, top, and bottom. To achieve further efficient mea-
surement, we use an event camera which has high dynamic
range property and thus can detect fine variation without
long exposure.

Direct component

r-pixels r-pixels

Q

r-Global component

Figure 2. Approximation of the direct (above) and r-global (be-
low) components using line scanning. The direct component is
approximated with the difference of radiance when the line is pro-
jected exactly on the pixel and the line is on adjacent pixels. The
r-global component is approximated with four lines r pixels apart
from the center.

Let Ij'.‘Or denote the radiance observed when illuminating
the j-th row (horizontal line):

w
D (z,y) = Y T(i,j,z,y). 3)

i=1

Similarly, I}*" is the radiance when illuminating the ¢-th col-
umn (vertical line).

Previous studies separate direct and global components
by assuming that the global component varies smoothly
across space. Likewise, in our scanned-line illumination
case, we assume that the global component under a given
line illumination changes smoothly, remaining similar when
the line position is slightly shifted. Thus, as illustrated in
Figure 2, the direct component at (x,y) can be approxi-
mated as:

1
Lo I = S (L% + L), )

where we omit (x, y) for brevity.

Similarly, the r-global component can be obtained by
combining the vertical and horizontal contributions of the
square light in Figure 2.

Iy L%, + LY+ L2+ L 5)
To confirm the validity of this approximation, we com-
pare the radiance under three illumination types—(1) ring-
shaped, (2) square-shaped, and (3) our pseudo-square il-
lumination from four lines across four materials: paper,
rubber, soap, and sponge (Figure 3). For more translu-
cent materials such as soap and sponge, stronger near-range
global components (i.e., for small radius r) are observed
under pseudo-square illumination, due to the influence of
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Figure 3. Comparison of radiance at specific point of four mate-
rials under ring-shaped illumination, square-shaped illumination,
and our proposed pseudo-square illumination formed by four line
illuminations at each distance from the point.

line light located outside the pseudo-square region. How-
ever, for larger r, the relative radiance takes similar decline
patterns. In contrast, for more opaque materials such as pa-
per and rubber, the r-global components are nearly identical
across all three illumination conditions, regardless of radius.

3.2. Event-Based Radiance Recovery under Line
Illumination

Each event camera pixel triggers when the change in loga-
rithmic radiance exceeds a contrast threshold: 6 for posi-
tive (brightening) changes and 0~ for negative (darkening)
changes. An event is then represented as (x, y, p, t), where
(z,y) is the pixel, p is the polarity (1 for brightening, O for
darkening), and ¢ is the timestamp. In summary, the event
signal at pixel (x, y) at time ¢ is given by:

(x,y,1,t) if logI.(x,y,t)
> log Ie (2, Y, tprev) + 607
(z,9,0,t) if logI.(x,y,t) (6)
<logle(z,y,tpey) — 60~
no events  otherwise,

where I.(x,y,t) represents the radiance at pixel (z,y) at
time ¢, and ¢, denotes the timestamp when the previous
event occurred.

Relative radiance value at time ¢ can be calculated by
integrating multiple events and exponentiating the relation
in (6) [3, 71

N(z,y,t) =n"(z,y,6)0" —n~(z,y,0)0~  (7)
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Figure 4. The radiance when the line is projected exactly on the
pixel is recovered from the peak of the net total number of events,
while the radiance when the line is on desired distance is recovered
from the net number of events at the time point with corresponding
time difference.

Ie(2,y.1)
Ie(xv Y, tO)

where t; is the timestamp at which the recording begins,
n™ and n~ represent the total number of positive and neg-
ative events, respectively, and [V is the net total number of
events that occurred at pixel (x,y) from ¢y to ¢. Following
the approach in [3, 7], we set I.(x,y,to) = 1 by initiating
the recording in a dark environment, thereby enabling re-
covery of the radiance value I.(x,y,t) with respect to the
brightness in the environment.

Next, we show how to recover I}, (z, ) for each r from
the event data captured during horizontal line scanning illu-
mination. The scanning speed v of the line illumination (in
pixels per second) is assumed to be pre-measured. First, we
detect the peak from the radiance transition at (x, y) to de-
termine the time when the line passes over row y (Figure 4):

= eXp(N(x, Y, t))7 (8)

tpeak = argmax N (z,y,t). 9)
t

Then, I'y‘oifr in Equations (4) and (5) can be obtained from

the recovered radiance at a time offset by r pixels:
I;(ﬂ):rr(xvy) :Ie(xvyatpeakir/v)- (10)

Similarly, I7%,. is recovered from vertical scanning data.
This enables the recovery of I E‘L and I)% . for all r us-
ing a single scan for horizontal and vertical line illumina-
tions, respectively. Since this method is applied uniformly
across all camera pixels, images of the direct component
and the r-global component can then be computed from

Equations (4) and (5).
3.3. 3D Reconstruction

tpeak Obtained from Equation (9) can be used to obtain a
coarse 3D geometry of the scene. As illustrated in Figure 5,
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Figure 5. Geometric relationship between the camera, reference
plane, and light rays for our coarse 3D reconstruction. We assume
that the light rays incident to the camera plane are perpendicular
to the plane, and the angles between the light rays and the normal
of the reference plane are constant across the scene.

we define a reference plane parallel to the camera plane and
recover the distance d from this plane to each object point.
For simplicity, we make the following two assumptions: (1)
The distance from the objects to the camera plane is suffi-
ciently large. (2) The light source produces rays at a con-
stant angle ¢ with respect to the normal of the reference
plane, and the scanning speed v of the projected line is con-
stant. From assumption (1), all light rays entering the cam-
era can be considered perpendicular to the camera plane.
Under these conditions, triangulation geometry yields:

Arw ;
~ tan¢ tan¢

where Az is the displacement of the illumination line be-
tween the reference plane and the object surface, and At
is the corresponding time difference. Since both v and ¢
are constant, d o< At, meaning that relative depth can be
estimated by measuring At.

To compute At, we first measure t;‘;gk using a flat ref-
erence plane. Subtracting this from #,c,x measured on the

3 . — ref
actual scene gives: At = tpeax — Lo

(1)

3.4. Pixel-Wise Denoising using Reproducible Noise

Radiance recovery by event integration often exhibits sig-
nificant noise, due to inter-pixel variation in the contrast
thresholds [7, 28, 30]. We observed that this noise pattern
is highly reproducible across different recordings under line
scanning illumination patterns (Figure 6).

To mitigate this noise, we employed an approach similar
to the flat-field correction [21] used in [30], but adopted it
specifically for our line scanning approach. Since positive
events dominate before ?,c.c and negative events dominate
after, we treat these intervals separately. First, for t < ?peax,
the deviation ratio is calculated as

Nref(xa Y, tpea.k)

= ; (12)
Nref (tpeak)

Phbefore (.23, y) =

where N™f represents the net total number of events of each
pixel from white-target scanning, and N™ represents its av-

Second recording

First recording

Figure 6. Radiance recovery results without denoising from line
scanning on a white target. Although the images in the left and
right columns come from different recordings, they exhibit very
similar noise patterns.

erage. Then, we correct the recovered radiance on scene

as fzcene(m7 Y, t) = eXp(NsCene(q;, Y, t)/pbefore(xv y)) For
t > tpeak, both pre- and post-t,e.x deviations contribute, so
calculate the deviation ratio as

NrEf(l'a Y, tafter) - NrEf(l’, Y, tpeak)
Nref(tafter) - Nref(tpeak) ’

Pafter (LC, y) = (13)

where t,; is a sufficiently later time than ?peax.
The final calibrated radiance is:
Nscene(x7 Y, tpeak)

Phefore (.’E, y)
\scene (x’ v, taf[er) _ ]\scene (x, v, tpeak)

pafter(za y)

Tscene
I e

(.13, Y, t) = exp{

+

}.
(14)

4. Experimental Results

We constructed measurement systems for an event-based
camera and performed the fine radiance component separa-
tion and 3D reconstruction in real scenes containing diverse
light transport effects. For clarity of discussion, the distance
r was defined in pixel units in Section 3. In practice, how-
ever, aligning the pixel units of the projector and camera
is challenging. Therefore, in the real-scene experiments, r
was defined with respect to the line thickness. To obtain ref-
erence results for the separation, we also implemented same
setting with a frame-based camera.

4.1. Experimental Setup and Conditions

Figure 7 shows our experimental setup, and Table 1 lists
the components. Line illuminations are generated by a DLP
projector and positioned by motorized stages.

For the frame camera (FLIR GS3-U3-23S6C-C), the
scan speed was set so that the line moved at most one pixel
between frames, resulting in about 60 s for two scans. For
the event camera, the scan speed was limited to avoid event-
rate saturation, yielding about 20 s for two scans. Event-
camera data sizes were much smaller than frame-camera
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Figure 7. Our imaging setup. A projector emits a line of light,
which is reflected by mirrors rotating horizontally and vertically.
The moving reflected line is then captured by the event camera.

ones. For example, for the flower-in-glass scene in Fig-
ure 10, the event-camera recording was about 500 MB,
while the frame-camera data was about 20 GB.

Equipment Manufacturer Model
Event camera CenturyArks SilkyEvCam HD
Light source Asahi Spectra MAX-S310

CEL5500-Fiber
OSMS-120YAW
HSC-103

DLP projector
Rotation stage
Stage controller

Digital Light Innovations
OptoSigma
OptoSigma

Table 1. Details of the equipment for the experimental setup.

4.2. Pixel-Wise Denoising for Radiance Recovery

We applied the proposed pixel-wise calibration method
(Section 3.4) to mitigate integration noise. As shown in Fig-
ure 8, this calibration significantly reduces noise and makes
the difference in brightness among patches more apparent.
The decrease in the coefficient of variation was approxi-
mately 61% on average (Table 2).

Patch 1 2 3 4 5 6

036 039 045 058 0.78 1.47
0.06 0.10 0.18 024 028 1.11

Before denoise
After denoise

Table 2. Coefficient of variation in bottom 6 patches (white to
black) of color checker in Figure 8. The proposed denoising
method significantly reduces the coefficient of variation.

Before denoising

After denoising

Figure 8. Radiance recovery results on a color checker chart before
and after the proposed pixel-wise denoising. The raw integration
of events (left) suffers from strong pixel-wise noise patterns, while
the calibrated recovery (right) significantly reduces noise, reveal-
ing clean intensity levels across patches.

4.3. Radiance Separation and Depth Estimation on
Real Scenes

We present both monochrome results for scenes with low
chromatic variation and RGB results for high-color varia-
tion scene. RGB results were captured using the same high-
resolution monochrome event camera by sequentially pro-
jecting red, green, and blue line illuminations and combin-
ing the recovered channels. In RGB measurements, a band-
pass filter reduced illumination intensity, producing fewer
events and fewer separable components.

Figure 9 shows monochrome results from the frame and
event cameras. In the carved bone scene, a carved bone with
a hollow interior causes multi-scale interreflections: the
1-global component captures interreflections along outer-
surface pattern edges, while far-range globals reveal light
entering the interior, particularly in event-based results. In
the rice ball scene, the direct component shows surface
specularities, the 1-global component is dominated by sub-
surface scattering within grains, and far-range globals cap-
ture interreflections and scattering between grains.

Figure 10 shows RGB results. In the Anmitsu scene,
both methods capture surface colors in the direct component
and interreflections in globals, but event-based results more
clearly show the spatial shift of bright interreflection regions
as r increases. In the flowers-in-glass scene, petal globals
indicate interreflections, and the glass remains bright in far-
range globals due to refraction.

Overall, with the proposed denoising method, the event-
camera results achieve direct components with noise levels
comparable to those of the frame-based results, while the
high dynamic range of the event camera allows for clearer
capture of far-range global components.

Regarding the results of the coarse 3D reconstruction, all
of them appear to be roughly plausible including subsurface
scattering areas such as the apricot in Anmitsu. However,
in transparent areas such as the glass bowl, reconstruction
failed due to peak estimation error caused by refraction.



Carved bone

Building
blocks

Onigiri

Depth Map

15-global 21-global

Direct 1-global 3-global 7-global

Figure 9. Monochrome separation results on real scenes: Carved bone, Building blocks, and Onigiri. For each scene, the direct component
and multiple r-global components are reconstructed from event-camera data, along with the estimated depth map and coarse 3D recon-
struction. White-bordered images are reference results obtained by applying the proposed separation method to data captured with a
conventional frame camera. Due to the limited dynamic range of the frame camera, meaningful separation results beyond 7-global could
not be reliably recovered and are therefore not reported. Note that the brightness of each component has been adjusted for visualization.
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Figure 10. RGB separation results on real scenes: Anmitsu, Flowers in a glass bowl, and Pink flower. As in the monochrome results,
white-bordered images are reference results obtained from frame-camera data, which are shown only up to 7-global due to the limited
dynamic range of the frame camera. Note that the brightness of each component has been adjusted for visualization.

5. Conclusion tially via learning-based radiance recovery to complement
) missing events. Additionally, the current 3D reconstruc-

We proposed an event-camera framework for multi-range tion is limited to coarse geometry due to simplifying as-

radiance component separation using line-shaped illumina- sumptions. Careful calibration of the event camera and light

tion. It recovers direct and multiple global components, source could enable more precise metric reconstruction.

mitigates integration noise via pixel-wise calibration, and

enables coarse 3D reconstruction from the same data. Ex- Acknowledgments

periments show that our approach achieves finer separation
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approach significantly reduces acquisition time, it is still not
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dressing event-rate saturation at high scan speeds, poten-
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