
G-Memory: Tracing Hierarchical Memory for
Multi-Agent Systems

Guibin Zhang∗1, Muxin Fu∗2, Kun Wang3†, Guancheng Wan4, Miao Yu5, Shuicheng Yan1†
1NUS, 2Tongji University, 3NTU, 4WHU, 5A*STAR

∗ Equal Contribution, † Corresponding author
wang.kun@ntu.edu.sg, yansc@comp.nus.edu.sg

Abstract

Large language model (LLM)-powered multi-agent systems (MAS) have demon-
strated cognitive and execution capabilities that far exceed those of single LLM
agents, yet their capacity for self-evolution remains hampered by underdevel-
oped memory architectures. Upon close inspection, we are alarmed to discover
that prevailing MAS memory mechanisms (1) are overly simplistic, completely
disregarding the nuanced inter-agent collaboration trajectories, and (2) lack cross-
trial and agent-specific customization, in stark contrast to the expressive memory
developed for single agents. To bridge this gap, we introduce G-Memory, a hi-
erarchical, agentic memory system for MAS inspired by organizational memory
theory [1], which manages the lengthy MAS interaction via a three-tier graph
hierarchy: insight, query, and interaction graphs. Upon receiving a new user query,
G-Memory performs bi-directional memory traversal to retrieve both high-level,
generalizable insights that enable the system to leverage cross-trial knowledge,
and fine-grained, condensed interaction trajectories that compactly encode prior
collaboration experiences. Upon task execution, the entire hierarchy evolves by
assimilating new collaborative trajectories, nurturing the progressive evolution of
agent teams. Extensive experiments across five benchmarks, three LLM backbones,
and three popular MAS frameworks demonstrate that G-Memory improves success
rates in embodied action and accuracy in knowledge QA by up to 20.89% and
10.12%, respectively, without any modifications to the original frameworks. Our
codes are available at https://github.com/bingreeky/GMemory.

1 Introduction

As Large Language Models (LLMs) continue to redefine the frontier of artificial intelligence, LLM-
driven agents have exhibited unprecedented prowess in perception [2, 3, 4, 5], planning [6, 7, 8],
reasoning [9, 10], and action [11, 12], which have catalyzed remarkable progress across diverse
downstream domains, including code generation [13, 14], data analysis [15], embodied tasks [16] and
autonomous driving [3, 17, 18]. Building upon the impressive competencies of single agents, LLM-
based Multi-Agent Systems (MAS) have been demonstrated to push the boundaries of single model
capacity [19, 20, 21]. Similar to collective intelligence arising from human social collaboration [22,
23, 24], MAS orchestrates multiple agents [25, 26, 27], whether through cooperation [28, 29, 30, 31]
or competition [32, 33, 34], to transcend the cognitive and specialized limitations of solitary agents.

Self-Evolving Agents. What especially characterizes LLM agents is their self-evolving capacity,
i.e., the ability to continuously adapt and improve through interactions with the environment, as seen
in prior works where such adaptability has led to two- to three-fold quantitative improvements [35].
The central driving force behind such self-evolving nature is memory mechanism of agents [36, 37],
which parallels human abilities to accumulate knowledge, process past experiences, and retrieve

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/bingreeky/GMemory

Insight Graph Query Graph Interaction Graph

Verify the state of
objects before and

after action...

Insight
Query Check whether there is

an apple in the garden
Status Execution success!

Query
Check whether there

are more than two
oranges on the table

of the kitchen?
Status Execution fail!

Unconvincing!
You should ..

I will reclaim
the order more

clearly...

I found 2
apples, 1
orange.

OK, my task is
to check the

garden...

Insight Check all
possible locations before

reaching an conclusion on ... The answer now is YES!

CoT
(5.8e5 tokens)

ComplexCoT
(6.1e5 tokens)

AutoGen
(4.3e6 tokens)

DyLAN
(7.9e6 tokens)Token cost

on ALFWorld
benchmark

Performance (%)

T
ok

en
 c

os
t

(1
e+

6
)

Figure 1: (Left) We report the token cost of several single-agent and MAS baselines on ALFWorld
benchmark; (Right) The overview of G-Memory’s three-tier hierarchical memory architecture, en-
compassing the insight graph, query graph and interaction (utterance) graph.

relevant information. Previous successful memory mechanism designs, including both inside-trial
memory (i.e., context retained within solving one single query) and cross-trial memory (i.e., experi-
ence accumulated across multiple tasks) [38], have empowered agents to excel in diverse applications
such as personalized chat [36, 39, 40], recommendation [41], embodied action [42, 16], and social
simulation [19, 43, 44], enabling them to evolve into experiential learners that effectively leverage
past experiences and world knowledge.

Self-Evolving MAS. However, such self-evolving capacity remains largely absent in multi-agent
systems. Most existing MAS are still constrained by manually defined workflows, such as the
Standard Operating Procedures (SOP) in MetaGPT [21] and ChatDev [45], or rely on pre-defined
communication topologies in MacNet [46] and AgentPrune [30]. More recent automated MASs, such
as GPTSwarm [47], ADAS [48], AFlow [49], and MaAS [50] have made it to automatically optimize
inter-agent topologies or prompts, which, nevertheless, ultimately yield giant and cumbersome MAS
architectures, lacking the agility to self-adjust with accumulated collaboration experience.

Memory for MAS. The absence of the aforementioned self-evolving capacity is, in fact, rooted in
the lack of memory mechanisms specifically tailored for MAS. One may challenge this claim from two
perspectives: ❶ Do existing MASs lack memory mechanisms altogether? Not entirely. Classical MAS
frameworks such as MetaGPT, ChatDev, and Exchange-of-Thought [51] incorporate memory-related
designs. However, these are often limited to inside-trial memory [51], while cross-trial memory, if
present, remains rudimentary—typically involving the transmission of overly condensed artifacts
(e.g., final solutions or execution results) [21, 45, 46], and failing to enable meaningful learning from
collaborative experience. ❷ Why not directly transfer existing single-agent memory mechanisms to
MAS? Unfortunately, such a transfer is far from straightforward. The inherent nature of MAS, i.e.,
multi-turn orchestration across multiple agents [26, 27], leads to substantially longer task-solving
trajectories compared to single-agent settings (up to 10× more tokens, as demonstrated by Figure 1
(Left)). This poses a significant challenge to traditional retrieval-based memory designs [36, 37, 16],
as naive feeding of the entire long-context trajectory without proper abstraction from a collaborative
perspective offers little benefit. Given the aforementioned challenges, a natural question arises:

How can we design a memory mechanism capable of storing, retrieving, and
managing the lengthy interaction history of multi-agent systems, such that agent
teams can benefit from concise and instructive experience and insights?

The Present Work: G-Memory. In response to the above question, we introduce a
:
Graph-based

Agentic
:::::::
Memory Mechanism for LLM-based Multi-Agent Systems, dubbed G-Memory, which manages

the complex and lengthy interaction history of MAS through a three-tier hierarchical graph structure:

✱ Insight Graph, which abstracts generalizable insights from historical experience;
✱ Query Graph, which encodes meta-information of task queries and their connectivity;
✱ Interaction Graph, which stores fine-grained textual communication logs among agents.

Figure 1 (Right) visualizes these structures, and their formal definitions are placed in Section 3. When
a new query arrives, G-Memory efficiently retrieves relevant query records by leveraging the topology
of the query graph, and then traverses upward (i.e., query→insight graph) to extract associated high-
level insights and downward (i.e., query→interaction graph) to identify core interaction subgraphs
that are most pertinent to the task at hand, thereby mitigating information overload. Based on the

2

retrieved memory, G-Memory offers actionable guidance to the MAS, e.g., division of labor, task
decomposition, and lessons from past failures. Upon the completion of a task, all three levels of the
memory hierarchy are updated in an agentic manner, with newly distilled insights, enriched query
records, detailed MAS trajectories, and their level of detailed associations. Through this refinement,
G-Memory functions as a plug-and-play module that can be seamlessly embedded into mainstream
MAS frameworks, empowering evolving inter-agent collaboration and collective intelligence.

Our contributions are summarized as follows:

❶ Bottleneck Identification. We conduct a thorough review of existing multi-agent systems and
identify a fundamental bottleneck in their self-evolving capabilities, which is largely attributed
to the oversimplified memory architectures.

❷ Practical Solution. We propose G-Memory, a hierarchical agentic memory architecture for
MAS, which models complex and prolonged inter-agent collaboration through a three-tier
structure comprising insight, query, and interaction graphs.

❸ Experimental Evaluation. Extensive experiments across five benchmarks show that G-Memory
is (I) high-performing, improving state-of-the-art MAS by up to 20.89% and 10.12% on
embodied action and knowledge QA tasks, respectively; and (II) resource-friendly, maintaining
comparable or even lower token usage than mainstream memory designs.

2 Related Works
Single-Agent Memory. Memory serves as a primary driving force for agents to accumulate
experiences and explore the world through interactions with the environment [52, 53, 54, 55]. It
plays a critical role in both task-solving and social simulation LLM agents, and this work primarily
focuses on the former. Early research on agent memory was confined to simple inside-trial memory,
mainly addressing limitations posed by the LLM context window in chatbot applications, including
MemoryBank [36], ChatDB [39], MemoChat [40], and MemGPT [37], which typically adopt retrieval-
augmented generation (RAG)-style, similarity-based chunk retrieval. Subsequent developments
have progressed toward more cognitively inspired memory architectures, including (1) memory
scope extended to cross-trial memory like ExpeL [42] and Synapse [56]; (2) application domains
broadened to include computer control [56], embodied action [57], scientific discovery [58], coding
and reasoning [59]; and (3) management techniques evolved from coarse-grained textual similarity
toward more sophisticated abstraction and summarization of acquired knowledge and experiences [19],
as seen in A-Mem [60], Mem0 [61] and MemInsight [62]. More discussions are in Appendix D.

Memory in Multi-agent System. However, the memory mechanisms tailored for MAS remain
markedly underexplored. Some representative frameworks, such as LLM-Debate [20, 33] and
Mixture-of-Agent [63], omit memory components altogether. Others merely adopt simplistic inside-
trial memory schemes [46, 51]. Even in frameworks that attempt cross-trial memory [45], the memory
is merely compressed as the final outcome artifacts, overlooking the nuanced agent interactions.
Collectively, there is a pressing need for a principled memory architecture that can capture, organize,
and retrieve the inherently intricate task-solving processes unique to MAS [38].

LLM-based Multi-Agent Systems. Our work focuses on task-solving MAS, which, unlike their
single-agent counterparts, often lack the capacity for continual evolution through interaction with the
environment [64, 65]. Early frameworks such as AutoGen [13], CAMEL [24], and AgentVerse [66]
rely entirely on pre-defined workflows. More recent efforts [67, 68, 49, 48, 69, 31] introduce a
degree of adaptivity by generating dynamic MAS in response to environmental feedback. However,
such evolution is often one-shot: for example, AFlow [49] employs Monte Carlo Tree Search to
construct a complex MAS tailored to a specific task domain, which yet lacks the capacity to evolve
with increasing task exposure or transfer across domains [50, 70]. From this perspective, constructing
MAS with genuine self-evolving capabilities remains an open and challenging research frontier.

3 Preliminary
In this section, we establish the notation and formalize key concepts of multi-agent systems and
G-Memory’s hierarchical memory architecture.

Multi-agent System Formalization. Consider a multi-agent framework represented by a directed
graph G = (V, E), where |V| = N is the number of agents and E ⊆ V×V defines their communication

3

channels. Each node Ci ∈ V corresponds to an individual agent described by the quadruple:

Ci = (Basei,Rolei,Memi,Plugini), (1)

where Basei denotes the underlying large language model instance, Rolei specifies the agent’s
designated role or persona, Memi encapsulates its memory state, including past interactions or
external knowledge stores, and Plugini is the set of auxiliary tools (e.g., web-search engine).

Upon receiving a user query Q, the system evolves through T synchronous communication epochs.
At each epoch t, we derive a topological ordering π = [π1, . . . , πN] of the nodes such that if there is
an edge from πj to πk, then j < k, which guarantees that every agent processes its inputs only after
all its predecessors have acted. For each agent Ci in π, its output at iteration t is computed as:

r
(t)
i = Ci

(
P (t)
sys, Q, {r(t)j : Cj ∈ N−(Ci)}

)
,

where: r(t)i denotes the response generated by Ci (which may include reasoning steps, intermediate
analyses, or final proposals), P (t)

sys comprises global instructions (including each agent’sRi),N−(Ci)
is the set of in-neighbors of Ci, whose outputs serve as contextual inputs. After all agents have acted,
a global aggregation operator A fuses the collection of responses into an interim solution a(t):

a(t) = A(r(t)1 , . . . , r
(t)
N).

Common implementations for A include majority voting schemes [47], hierarchical summarization
via dedicated aggregator agents [13, 30], or simply adopting the final agent’s output as the answer [46].
These epochs iterate for t = {1, . . . , T} until either a preset limit is reached or an early-stopping
criterion is met [71], producing the final response a(T) to the query Q.

Memory Architecture. Our proposed G-Memory orchestrates and manages the memory of multi-
agent systems via the following three hierarchical graph structures:

[✱] Interaction Graph (Utterance Graph). For query Q, let G(Q)
inter = (U (Q), E(Q)

u) denote its
interaction trajectory, where (i) nodes U (Q) = {ui} represent atomic utterances, with each ui ≜

(Ai,mi) containing Ai ∈ V (speaking agent), and mi (textual content), (ii) Edges E(Q)
u ⊆ U (Q) ×

U (Q) follow temporal relationships: (uj , uk) ∈ E(Q)
u ⇐⇒ uj is transmitted to and inspires uk.

[✱] Query Graph. The query graph, storing previously tackled queries and metadata, is as follows:

Gquery = (Q, Eq) =
({

Qi,Ψi,G(Qi)
inter

}|Q|
i=1

, Eq
)
, (2)

whereQ = {qi} is the node set, node qi ≜ (Qi,Ψi,G(Qi)
inter) is composed of the original query Qi, task

status Ψi ∈ {Failed,Resolved}, and its associated interaction graph G(Qi)
inter . The edges Eq ⊆ Q×Q

encode semantic relationships between queries. The query graph enables retrieval beyond coarse
metrics such as embedding similarity, with its meticulous topology.

[✱] Insight Graph. The highest-level insight graph is featured as follows:

Ginsight = (I, Ei) =
(
⟨κk,Ωk︸ ︷︷ ︸

ιk

⟩|I|k=1, Ei
)
, (3)

where the node set I = {ιk} represents distilled insights, each node ιk is composed of the insight
content κk and the set of supporting queries Ωk ⊆ Q. The edges Ei ⊆ I × I × Q forming
hyper-connections where (ιm, ιn, qj) indicates insight ιm contextualizes ιn through query qj .

4 G-Memory
This section outlines the management workflow of G-Memory, as illustrated in Figure 2. Specifically,
upon the arrival of a new query Q, G-Memory first conducts coarse-grained retrieval to identify
pertinent trajectory records (▷ Section 4.1). It then performs bi-directional hierarchical memory
traversal: upward to retrieve collective cognitive insights, and downward to distill concrete procedural
trajectories (▷ Section 4.2). After the memory-augmented MAS completes the query execution,
the hierarchical memory architecture is jointly updated based on environmental feedback, thereby
achieving the institutionalization of group knowledge (▷ Section 4.3).

4

Query

Similarity-
based Retrival

1.
C

ore P
ath

E
xtraction

Are Deodato and
Alejandro both film

directors?

Insight

Iteration

Multi-agent
System

🤔 Query/Task
Topic:
Diffculty:

Embodied

Topic:
Diffculty:

Embodied

You are in the middle of a
room. Looking quickly around
you, you see a cabinet 6, a
cabinet 5, ... Your task is to:
put a clean egg in microwave.

Your task is to find a
butterfly egg in the
outside. Move it to the
green box in the bathroom.

Are both Lygodium or
Maxillaria a genus of orchids?

Topic:
Diffculty:

Web search

Trajectory Condensation

Collab. Experience

This history follows a chain-
style, collaboration strategy...

Failure Lessons

Take care when summarizing the
final result, DO NOT ...

Distilled Insights
Insight 1: Clearly identify key
entities and their roles, use
specific names and titles

Insight 2: Double-
check the relevance
of the search results

from

from and
Ensure the search
terms are precise

and directly
related to the

specific entity or
institution ... Memory Augmentation

Output
Solution

Environment
Feedback

Execution: Success
Token cost: 3,345
Tool calls: 3 ...

Update
Interaction

Update
Insights

Since both are confirmed
as film directors from
their respective countries,
the answer is Yes.

Interaction
Graphs

Query Graph

Interactions
CEO agent:
assigning tasks...
Thinker agent:
OK, I will...
Executor agent: ...

Insight Graph

Memory Augmentation

Black font: Notations

Symbols

Red font: Operations

: Forward Process

: Insight node : Query node

: Agent utterance node

: Edges btween nodes

Topic:
Diffculty:

Game

b1 is on b2., b2 is on b6.,
b3 is on b7., b5 is on b3.

downward
traversal

upward
traversal

Figure 2: The overview of our proposed G-Memory.

4.1 Coarse-grained Memory Retrieval
As a plug-in designed for seamless integration into mainstream MAS, G-Memory is triggered when
the MAS G encounters a new user query Q. As emphasized in organizational memory theory [1],
efficient knowledge retrieval typically begins with broadly relevant schemas prior to more fine-grained
access. Following this principle, G-Memory first performs a coarse-grained similarity-based retrieval
over the query graph Gquery to efficiently obtain a sketched set of queries QS :

QS = arg top-k
qi∈Q s.t. |QS |=k

(
v(Q) · v(qi)
|v(Q)| |v(qi)|

)
, (4)

where v(·) maps queries into fixed-length embeddings using models such as MiniLM [72]. While
Equation (4) retrieves semantically similar historical queries, the similarity may be only superficial or
noisy. Therefore, G-Memory further enlarges the relevant set via hop expansion on the query graph:

Q̃S = QS ∪
{
Qk ∈ Q | ∃Qj ∈ QS , Qk ∈ N+(Qj) ∪N−(Qj)

}
, (5)

where Q̃S is augmented with the 1-hop neighbors of QS on the query graph Gquery, and N+(·) and
N−(·) denote the out-neighborhood and in-neighborhood of node Qj , respectively. However, it
is suboptimal to directly feed these relevant records as input akin to certain single-agent memory
systems [40, 37]. On one hand, the excessive context length may overwhelm the LLM; on the other
hand, agents in MAS play distinct roles and should be assigned specialized memory tailored to
their functions. To address this, the next section introduces a bi-directional processing scheme in
G-Memory that operates over both abstract and fine-grained memory levels.

4.2 Bi-directional Memory Traversal
Subsequent to identifying the expanded set of relevant query nodes Q̃S within Gquery, G-Memory exe-
cutes a bi-directional memory traversal to furnish multi-granularity memory support. Specifically,
G-Memory first performs an upward traversal (Gquery → Ginsight), retrieving insight nodes that may
provide high-level guidance for the current task:

IS = ΠQ→I(Q̃S), ΠQ→I(Sq) ≜ {ιk ∈ I | Ωk ∩ Sq ̸= ∅} , (6)

where ΠQ→I is a query-to-insight projector that identifies all the insight nodes whose supporting
query sets intersect with the input query set, and the retrieved insights IS encapsulate distilled,
generalized knowledge potentially relevant for orienting the MAS G’s strategic approach to Q.

Beyond generalized insights, the fine-grained textual interaction history of the MAS is equally
valuable, as it reveals the underlying reasoning patterns that led to successful or failed collabo-
rations [67, 73, 74]. To utilize these concisely, in the downward traversal (Gquery → Ginteraction),

5

G-Memory employs an LLM-facilitated graph sparsifier SLLM(·, ·) to extract the core subgraph that
encapsulates essential inter-agent collaboration:

{ĜQi

inter}
|M |
i=1 =

{
SLLM(G(Qj)

inter , Q) | qj ∈ argtop-M
{q′k∈Q̃S} s.t. |·|=M

RLLM(Q, q′k)
}
, (7)

where RLLM(Q, qj) rates the relevancy of historical queries w.r.t. Q, and the sparsifier
SLLM(G(Qj)

inter , Q) constructs a sparsified graph Ĝ(Qj)
inter = (Û (Qj), Ê(Qj)

u) from the original G(Qj)
inter by

identifying and retaining dialogue elements. Please refer to Appendix C for their implementations.

Upon completing the bi-directional traversal, we obtain both generalizable insights (IS) and detailed
collaborative trajectories ({ĜQi

inter}
|M |
i=1). G-Memory then proceeds to provide specialized memory

support for each agent C ∈ V within the MAS G.

Memi ← Φ
(
IS , {ĜQi

inter}
|M |
i=1;Rolei, Q

)
, ∀Ci = (Basei,Rolei,Memi,Plugini) ∈ V, (8)

where the operator Φ(·; ·) evaluates the utility and relevance of each insight ιk ∈ IS and sparsified
interaction graph Ĝ(Qj)

inter concerning the agent’s specific role Rolei and the task Q (see Appendix C).
Based on this evaluation, Φ intializes each agent’s internal memory state Memi with filtered insights,
interaction snippets, summaries thereof, equipping it with pertinent historical context before it
participates in the subsequent reasoning epochs of the MAS. It is worth noting that G-Memory is
invoked at the onset of solving query Q in our implementation. However, practitioners may flexibly
configure more fine-grained invocation strategies, such as at the beginning of each MAS dialogue
round or selectively for specific agents, based on their needs.

4.3 Hierarchy Memory Update
After completing memory augmentation for each agent, the system G is executed as outlined in Sec-
tion 3, yielding a final solution a(T) and receiving environmental feedback, including execution status
Ψi ∈ {Failed,Resolved}, token usage, and other performance metrics. Subsequently, G-Memory
updates its hierarchical memory architecture to incorporate this new query. At the interaction level,
G-Memory traces each agent’s utterances to construct the interaction graph G(Q)

inter, which is then stored.
At the query level, a new query node is instantiated and added to the query graph Qquery:

qnew ← (Q,Ψ,G(Q)
inter), Nconn ← QR ∪

(⋃
ιk∈IS

Ωk

)
,

Enew ← {(qn, qnew) | qn ∈ Nconn}, Gnext
query ← (Q∪ {qnew}, Eq ∪ Enew),

(9)

where edges are established between qnew and (ii) the setQR containing the top-M relevant historical
queries identified in Equation (7), and (ii) the set of queries

⋃
ιk∈Iret

Ωk that support the insights IS
utilized for solving Q. Gnext

query denotes the updated query graph.

Finally, at the insight level, G-Memory integrates the learning from the completed query Q into the
insight graph Ginsight = (I, Ei). First, possible new insights summarizing the experience are generated
and structurally linked via a summarization function J (·, ·) (see prompt in Appendix C) as follows:

ιnew = (J (G(Q)
inter,Ψ), {qnew}), Ei, new ← {(ιk, ιnew, qnew) | ιk ∈ IS}
G′insight ← (I ∪ {ιnew}, Ei ∪ Ei, new)

(10)

where edges are added to connect the previously utilized insights which inspires the completion of Q
in Equation (6). Afterward, the supporting query sets (Ωk) for the utilized insights (IS) are updated
to include qnew, reflecting their relevance to this successful (or failed) application:

Inext ← (I \ Iret) ∪ {(κk,Ωk ∪ {qnew}) | ιk = (κk,Ωk) ∈ Iret} ∪ {ιnew}
Gnext
insight ← (Inext, Ei ∪ Ei, new),

(11)

where the final node set Inext incorporates the new insight and the updated versions of the utilized
insights, and the resulting graph Gnext

insight thus encapsulates the integrated knowledge. This continuous
update cycle across all hierarchical levels enables G-Memory to learn and adaptively refine its
collective memory based on ongoing experience.

6

Table 1: Performance comparison with single/multi-agent memory architectures on five benchmarks.
The underlying LLM backbone is GPT-4o-mini. We highlight the best and second best results.

MAS Memory ALFWorld SciWorld PDDL HotpotQA FEVER Avg.

AutoGen
COLM 2024

No-memory 77.61↑0.00 54.49↑0.00 23.53↑0.00 28.57↑0.00 57.13↑0.00 48.27↑0.00
Voyager 85.07↑7.46 62.36↑7.87 24.56↑1.03 32.32↑3.75 63.27↑6.14 53.52↑5.25

MemoryBank 74.96↓2.65 53.11↓1.38 20.41↓3.12 33.67↑5.10 61.22↑4.09 48.67↑0.40

Generative 86.36↑8.75 61.19↑6.70 25.53↑2.00 31.63↑3.06 60.20↑3.07 52.98↑4.71

MetaGPT 81.34↑3.73 61.91↑7.42 21.63↓1.90 32.67↑4.10 62.67↑5.54 52.04↑3.77
ChatDev 79.85↑2.24 50.96↓3.53 16.65↓6.88 24.49↓4.08 59.18↑2.05 46.23↓2.04
MacNet 76.55↓1.06 55.44↑0.95 22.94↓0.59 28.36↓0.21 60.87↑3.74 48.83↑0.56

G-Memory (Ours) 88.81↑11.20 67.40↑12.91 27.77↑4.24 35.67↑7.10 66.24↑9.11 57.18↑8.91

DyLAN
COLM 2024

No-memory 56.72↑0.00 55.38↑0.00 11.62↑0.00 31.69↑0.00 60.20↑0.00 43.12↑0.00
Voyager 66.42↑9.70 62.83↑7.45 15.10↑3.48 32.64↑0.95 62.24↑2.04 47.85↑4.73

MemoryBank 55.22↓1.50 54.74↓0.64 8.08↓3.54 29.59↓2.10 59.13↓1.07 41.35↓1.77
Generative 67.91↑11.19 64.16↑8.78 13.87↑2.25 29.29↓2.40 62.30↑2.10 47.51↑4.39

MetaGPT-M 69.40↑12.68 62.37↑6.99 14.45↑2.83 32.34↑0.65 60.20↑0.00 47.75↑4.63

ChatDev-M 46.27↓10.45 53.35↓2.03 10.75↓0.87 22.45↓9.24 58.33↓1.87 38.23↓4.89
MacNet-M 53.44↓3.28 54.32↓1.06 12.11↑0.49 30.12↓1.57 61.10↑0.90 42.22↓0.90

G-Memory (Ours) 70.90↑14.18 65.64↑10.26 18.95↑7.33 34.69↑3.00 64.22↑4.02 50.88↑7.76

MacNet
ICLR 2025

No-memory 51.49↑0.00 57.53↑0.00 12.18↑0.00 28.57↑0.00 60.29↑0.00 42.01↑0.00
Voyager 61.94↑10.45 64.53↑7.00 14.06↑1.88 32.65↑4.08 62.54↑2.25 47.14↑5.13

MemoryBank 50.00↓1.49 60.15↑2.62 8.64↓3.54 33.67↑5.10 61.22↑0.93 42.74↑0.73

Generative 62.69↑11.20 65.49↑7.96 7.92↓4.26 29.59↑1.02 63.27↑2.98 45.79↑3.78

MetaGPT-M 63.70↑12.21 65.27↑7.74 16.03↑3.85 31.00↑2.43 59.33↓0.96 47.07↑5.06

ChatDev-M 49.25↓2.24 56.58↓0.95 13.51↑1.33 29.00↑0.43 59.18↓1.11 41.50↓0.51
MacNet-M 53.44↑1.95 56.14↓1.39 13.59↑1.41 27.89↓0.68 59.20↓1.09 42.05↑0.04

G-Memory (Ours) 67.16↑15.67 68.11↑10.58 24.33↑12.15 35.69↑7.12 64.44↑4.15 51.95↑9.94

5 Experiment
In this section, we conduct extensive experiments to answer: (RQ1) How does G-Memory perform
compared to existing single/multi-agent memory architectures? (RQ2) Does G-Memory incur exces-
sive resource overhead? (RQ3) How sensitive is G-Memory to its key components and parameters?

5.1 Experiment Setup
Datasets and Benchmarks. To thoroughly evaluate the effectiveness of G-Memory, we adopt
five widely-adopted benchmarks across three domains: (1) Knowledge reasoning, including Hot-
potQA [75] and FEVER [76]; (2) Embodied action, including ALFWorld [77] and SciWorld [78];
(3) Game, namely PDDL [79]. Details on these benchmarks are in Appendix A.1.
Baselines. We select four representative single-agent memory baselines, including non-memory,
Voyager [16], MemoryBank [36], and Generative Agents [19], as well as three multi-agent memory
implementations from MetaGPT [21], ChatDev [45], and MacNet [46], denoted as MetaGPT-M,
ChatDev-M, and MacNet-M, respectively. Details are in Appendix A.2.
MAS and LLM Backbones. We select three representative multi-agent frameworks to integrate
with G-Memory and the baselines, including AutoGen [13], DyLAN [71], and MacNet [46]. More
details on the MAS setups are placed in Appendix A.3. For instantiating these MAS frameworks,
we adopt two open-source LLMs, Qwen-2.5-7b and Qwen-2.5-14b, as well as one proprietary
LLM, gpt-4o-mini. The deployment of Qwen series is via local instantiation using Ollama1, and
GPT models are accessed via OpenAI APIs.
Parameter Configurations. We implement the embedding function v(·) in Equation (4) with
ALL-MINILM-L6-V2 [80]. The number of the most relevant interaction graphs M in Equation (7) is
set among {2, 3, 4, 5}, and the number of relevant queries k in Equation (4) is set among {1, 2}. The
detailed ablation study on hyper-parameters is placed in Section 5.4.

5.2 Main Results (RQ1)
Tables 1, 2 and 3 comprehensively report the performance of different memory architectures across
three LLM backbones and three MAS frameworks. We summarize the key observations as follows:

1http://github.com/ollama/ollama

7

http://github.com/ollama/ollama

Performance (%)

T
o

k
e

n
 C

o
s

t
(e

+
6

)

PDDL + AutoGen

T
o

k
e

n
 C

o
s

t
(e

+
6

)

Performance (%)

ALFWorld + AutoGen

T
o

k
e

n
 C

o
s

t
(e

+
6

)

Performance (%)

ALFWorld + DyLAN

Figure 3: Cost analysis of G-Memory. We showcase the performance versus the overall system token
cost when combined with different memory architectures.

Takeaway ➊: G-Memory consistently improves performance across all task domains and MAS
frameworks. As shown in Table 2, when integrated with AutoGen and MacNet (powered by
Qwen-2.5-7b), G-Memory surpasses the best-performing single-/multi-agent memory baselines
by an average of 6.8% and 5.5%, respectively. With the more capable Qwen-2.5-14b, the
improvement is even more pronounced: in Table 3, G-Memory boosts MacNet’s performance on
ALFWorld from 58.21% to 79.10%, achieving a substantial 20.89% gain.

Takeaway ➋: Multi-agent systems demand specialized memory designs. A thorough examination
of existing baselines reveals a surprising insight: most memory mechanisms fail to consistently
benefit MAS settings. In Table 2, baselines such as Voyager and MemoryBank degrade AutoGen’s
performance on PDDL by as much as 4.17% and 1.34%, respectively. We attribute this to the inability
of these methods to provide agent role-specific memory support, which is essential in the PDDL
strategic game tasks, where effective division of labor is critical to success. Even MAS-oriented
designs, such as ChatDev-M, result in a 2.32% performance drop when applied to MacNet+SciWorld.
We attribute this to ChatDev-M’s narrow memory scope—storing only the execution results of past
queries, which provides limited utility in embodied action environments. These findings highlight
the necessity of G-Memory’s core characteristics: role-specific memory cues, abstracted high-level
insights, and trajectory condensation—all of which are critical for effective memory in MAS.

5.3 Cost Analysis (RQ2)
To evaluate the efficiency of G-Memory in terms of token consumption, we visualize the performance
versus token cost trade-off across various settings, as shown in Figures 3 and 7. Our findings are:
Takeaway ➌: G-Memory achieves high-performing collective memory without excessive token
consumption. As depicted in Figure 3, G-Memory consistently delivers the highest performance
improvement (10.32% ↑ over no-memory setting on PDDL+AutoGen) while maintaining a modest
increase in token consumption (only 1.4 × 106). In contrast, MetaGPT-M incurred an additional
2.2× 106 tokens for a mere 4.07% gain. This clearly demonstrates the token-efficiency of G-Memory.
5.4 Framework Analysis (RQ3)
Sensitivity Analysis. Regarding the hop expansion, as shown in Figure 4a, 1-hop expansion
consistently yields the best or near-best performance across tasks, with peak accuracies of 85.82%
(ALFWorld), 55.24% (PDDL) in AutoGen. In contrast, 2-hop and 3-hop settings often degrade
performance, e.g., PDDL drops to 49.79% (2-hop). This suggests that excessive hop expansion may
introduce irrelevant insights during memory upward traversal, impairing task-specific reasoning.
Similarly, Figure 4b shows that the optimal k is among {1, 2}. Larger k values (e.g., k=5) can
significantly degrade the system performance, e.g., 7.71% ↓ on ALFWorld+AutoGen and 2.5% ↓
on FEVER+DyLAN, indicating that retrieving more queries may introduce task-irrelevant noise.
Collectively, we employ 1-hop expansion and k ∈ {1, 2} throughout the experiments.

Ablation Study. Figure 4c presents an ablation of G-Memory by isolating the impact of the high-
level insight module (IS in Equation (6)) and fine-grained interactions ({ĜQi

inter}
|M |
i=1 in Equation (7)).

As shown, removing either part leads to a consistent performance drop. When only fine-grained
interactions are enabled, the average scores drop by 4.47% ↓ for AutoGen and 3.82% ↓ for DyLAN

8

(a) Sensitivity analysis on #hop. (b) Sensitivity analysis on parameter k.

MAS Inter. Insi. PDDL FEVER

AutoGen
✔ ◦ 54.46 63.27
◦ ✔ 50.00 68.77
✔ ✔ 55.24 71.43

DyLAN
✔ ◦ 48.75 61.39
◦ ✔ 46.69 64.31
✔ ✔ 51.12 66.66

(c) Ablation study on two vari-
ants of G-Memory.

Figure 4: (a) Sensitivity analysis of the hop expansion in Equation (5); (b) Sensitivity analysis of
the number of selected queries k in Equation (4); (c) We study two variants of G-Memory: merely
providing high-level insights (i.e., the insights IS in Equation (6)) or fine-grained interactions (i.e.,
the core trajectories in Equation (7)). All the experiments here are done with Qwen-2.5-14b.

ALFWorld + AutoGen

Query
put a clean cloth
in countertop

AutoGen Team

 : Ensure all required items are accessible,
clean them, and return them to their designated storage
locations or the specified location after use.

Fine-grained Trajectory

High-level Insights

Solver agent
Ground
agent

Action
agent

For

 : After cleaning an item, ensure it is placed in
the designated storage location immediately to avoid
confusion or loss.

For

Task: put a clean egg in microwave.
Compressed Traj:

Go to
 Fridge
& Take
Egg

Execu-
tion

Success
... Go to

micro-
wave

Clean
first!

HotpotQA + DyLAN

Query DyLAN Team

Fine-grained Trajectory

High-level Insights

Task:

Compressed Traj:

Question:
Are both Lygodium
or Maxillaria
a genus of orchids?

verify that the search results are not mistakenly
referring to similar entities with similar names or
unrelated information.

Avoid mistakenly referring

Are Ruggero Deodato from Italy, and Mexican
Alejandro Springall, both film directors?"

Search
for Deodato

Identify
Deodato

Identify
Warning!

Re-search
for Deodato

Passed

...

PDDL + MacNet

Query MacNet Team

Fine-grained Trajectory

High-level Insights

Task:

Compressed Traj:

The goal is to satisfy the following conditions:
b2 is on b3., b3 is on b1.

Unstack b2
from b3

Check b1
and b3

Unstack b3
from b1

...

b1 is on b2., b2
is on b6., b3 is
on b7., b5 is on
b3., b6 is on
b5., b7 is on b4

edge
agent

For : Ensure that blocks are clear and in the

correct positions before attempting to stack them on
another block, because this prevents invalid actions and
ensures the blocks are placed correctly.

Check b3
and b2

Stack b2
on b3

Figure 5: Case study of G-Memory.

compared to the full method. Conversely, enabling only insights leads to smaller drops of 3.95%
and 3.39%. This indicates that while both components are contributive, interactions offer a slightly
greater impact, likely due to their preserving more fine-grained, dialogue-level contextual grounding.

5.5 Case Study
Figure 5 illustrates concrete memory cues provided by G-Memory across diverse tasks. For example, in
the ALFWorld+AutoGen setting, given the task query “put a clean cloth in countertop”, G-Memory
successfully retrieves a highly analogous historical query, “put a clean egg in microwave”—both
requiring the object to be in a clean state. Alongside this, G-Memory surfaces a critical trajectory
segment where the solver agent attempts to place the egg in the microwave before cleaning, prompting
the ground agent to intervene. This collaborative trajectory offers actionable guidance for the current
task. Moreover, the high-level insights retrieved by G-Memory prove equally valuable for task
execution. In the context of HotpotQA’s web search task, G-Memory retrieves an insight warning
against “mistakenly referring”, which helps prevent agents from incorrectly answering based on
similarly named individuals. Overall, G-Memory provides effective multi-level memory support
across varied domains, including embodied action, knowledge reasoning, and game environments.

6 Conclusion & Limitation
In this paper, we conduct a thorough examination of existing memory architectures designed for
multi-agent systems (MAS) and identify that their overly simplified designs fundamentally hinder
the systems’ capacity for self-evolution. To bridge this gap, we propose G-Memory, a hierarchical
memory framework that organizes the complex and extended interaction trajectories of MAS into
a three-tier graph hierarchy: the insight, query, and interaction graphs. G-Memory provides each
agent with customized and hierarchical memory cues, ranging from abstract, generalizable insights

9

to fine-grained, task-critical collaborative segments, and dynamically evolves its knowledge base
across episodes. Extensive experiments demonstrate that G-Memory can be seamlessly integrated
into state-of-the-art MAS frameworks, significantly enhancing their self-evolution capability, e.g., up
to 20.89% ↑ improvement on embodied action tasks. Limitations: Although G-Memory has been
evaluated across three domains and five benchmarks, further validation on more diverse tasks (e.g.,
medical QA) would strengthen its soundness, which we leave for future work.

Acknowledgment
This research is supported in part by NUS Start-up Grant A-0010106-00-00.

References
[1] James P Walsh and Gerardo Rivera Ungson. Organizational memory. Academy of management

review, 16(1):57–91, 1991.

[2] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied
multimodal language model. 2023.

[3] Shihao Wang, Zhiding Yu, Xiaohui Jiang, Shiyi Lan, Min Shi, Nadine Chang, Jan Kautz, Ying
Li, and Jose M Alvarez. Omnidrive: A holistic llm-agent framework for autonomous driving
with 3d perception, reasoning and planning. arXiv preprint arXiv:2405.01533, 2024.

[4] Sipeng Zheng, Jiazheng Liu, Yicheng Feng, and Zongqing Lu. Steve-eye: Equipping llm-based
embodied agents with visual perception in open worlds. arXiv preprint arXiv:2310.13255,
2023.

[5] Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu, Hao Zhao, Siheng Chen, and
Yanfeng Wang. Editable scene simulation for autonomous driving via collaborative llm-agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 15077–15087, 2024.

[6] Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Shiwei Lyu, Yue Shen, Lei Liang, Jinjie Gu,
Huajun Chen, and Ningyu Zhang. Knowagent: Knowledge-augmented planning for llm-based
agents. arXiv preprint arXiv:2403.03101, 2024.

[7] Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for
long-horizon tasks. arXiv preprint arXiv:2503.09572, 2025.

[8] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

[9] Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

[10] Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The landscape of emerging
ai agent architectures for reasoning, planning, and tool calling: A survey. arXiv preprint
arXiv:2404.11584, 2024.

[11] Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem
Gokmen, Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking
llms for embodied decision making. Advances in Neural Information Processing Systems,
37:100428–100534, 2024.

[12] Yijun Yang, Tianyi Zhou, Kanxue Li, Dapeng Tao, Lusong Li, Li Shen, Xiaodong He, Jing
Jiang, and Yuhui Shi. Embodied multi-modal agent trained by an llm from a parallel textworld.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
26275–26285, 2024.

10

[13] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework, August 01, 2023 2023.

[14] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence, 2024.

[15] Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science.
arXiv preprint arXiv:2402.18679, 2024.

[16] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language
Models. arXiv e-prints, page arXiv:2305.16291, May 2023.

[17] Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund, Andrew James Willmott, Danny
Birch, Daniel Maund, and Jamie Shotton. Driving with llms: Fusing object-level vector modality
for explainable autonomous driving. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 14093–14100. IEEE, 2024.

[18] Yuan Sun, Navid Salami Pargoo, Peter Jin, and Jorge Ortiz. Optimizing autonomous driving for
safety: A human-centric approach with llm-enhanced rlhf. In Companion of the 2024 on ACM
International Joint Conference on Pervasive and Ubiquitous Computing, pages 76–80, 2024.

[19] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, April 01,
2023 2023.

[20] Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. CoRR, abs/2305.14325,
2023.

[21] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, and
Chenglin Wu. Metagpt: Meta programming for multi-agent collaborative framework, August
01, 2023 2023.

[22] Marvin Minsky. Society of mind. Simon and Schuster, 1988.

[23] Push Singh. Examining the society of mind. Comput. Artif. Intell., 22(6):521–543, 2003.

[24] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. CAMEL:
communicative agents for "mind" exploration of large language model society. In NeurIPS,
2023.

[25] Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing
cognitive synergy in large language models: A task-solving agent through multi-persona self-
collaboration, July 01, 2023 2023. work in progress.

[26] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress
and challenges. CoRR, abs/2402.01680, 2024.

[27] Pouya Pezeshkpour, Eser Kandogan, Nikita Bhutani, Sajjadur Rahman, Tom Mitchell, and
Estevam Hruschka. Reasoning capacity in multi-agent systems: Limitations, challenges and
human-centered solutions. CoRR, abs/2402.01108, 2024.

[28] Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Schölkopf, Mrinmaya Sachan, and
Rada Mihalcea. Cooperate or collapse: Emergence of sustainability behaviors in a society of
llm agents. arXiv preprint arXiv:2404.16698, 2024.

[29] Rafael Pina, Varuna De Silva, and Corentin Artaud. Discovering causality for efficient coopera-
tion in multi-agent environments. CoRR, abs/2306.11846, 2023.

11

[30] Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei
Cheng, Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication
pipeline for llm-based multi-agent systems. arXiv preprint arXiv:2410.02506, 2024.

[31] Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, and
Yiyan Qi. Masrouter: Learning to route llms for multi-agent systems. arXiv preprint
arXiv:2502.11133, 2025.

[32] Qinlin Zhao, Jindong Wang, Yixuan Zhang, Yiqiao Jin, Kaijie Zhu, Hao Chen, and Xing Xie.
Competeai: Understanding the competition behaviors in large language model-based agents.
arXiv preprint arXiv:2310.17512, 2023.

[33] Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang,
Zhaopeng Tu, and Shuming Shi. Encouraging divergent thinking in large language models
through multi-agent debate. CoRR, abs/2305.19118, 2023.

[34] Wei Wang, Dan Zhang, Tao Feng, Boyan Wang, and Jie Tang. Battleagentbench: A benchmark
for evaluating cooperation and competition capabilities of language models in multi-agent
systems. arXiv preprint arXiv:2408.15971, 2024.

[35] Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompt-
ing improves reasoning in large language models, April 01, 2023 2023. Tech Report.

[36] Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing
large language models with long-term memory. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 19724–19731, 2024.

[37] Charles Packer, Vivian Fang, Shishir_G Patil, Kevin Lin, Sarah Wooders, and Joseph_E Gonza-
lez. Memgpt: Towards llms as operating systems. 2023.

[38] Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
arXiv preprint arXiv:2404.13501, 2024.

[39] Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. Chatdb:
Augmenting llms with databases as their symbolic memory. arXiv preprint arXiv:2306.03901,
2023.

[40] Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng
Wu. Memochat: Tuning llms to use memos for consistent long-range open-domain conversation.
arXiv preprint arXiv:2308.08239, 2023.

[41] Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah Cho, Xing Fan,
Xiaojiang Huang, Yanbin Lu, and Yingzhen Yang. Recmind: Large language model powered
agent for recommendation. arXiv preprint arXiv:2308.14296, 2023.

[42] Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
Llm agents are experiential learners. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19632–19642, 2024.

[43] Yuan Li, Yixuan Zhang, and Lichao Sun. Metaagents: Simulating interactions of human
behaviors for llm-based task-oriented coordination via collaborative generative agents. arXiv
preprint arXiv:2310.06500, 2023.

[44] Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao, Jinghua Piao, Huandong Wang, Depeng
Jin, and Yong Li. S3: Social-network simulation system with large language model-empowered
agents. arXiv preprint arXiv:2307.14984, 2023.

[45] Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and
Maosong Sun. Communicative agents for software development, July 01, 2023 2023. 25 pages,
9 figures, 2 tables.

[46] Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng
Yang, Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collab-
oration. arXiv preprint arXiv:2406.07155, 2024.

12

[47] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

[48] Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

[49] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating Agentic Workflow Generation, October 2024. arXiv:2410.10762.

[50] Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025.

[51] Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo, Junqi Dai, Xuan-Jing Huang, and
Xipeng Qiu. Exchange-of-thought: Enhancing large language model capabilities through
cross-model communication. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 15135–15153, 2023.

[52] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey
on large language model based autonomous agents. Front. Comput. Sci., 18, 2024.

[53] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong,
Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin,
Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng,
Xipeng Qiu, Xuanjing Huan, and Tao Gui. The rise and potential of large language model based
agents: A survey. arxiv preprint, abs/2309.07864, 2023.

[54] Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and
Yong Li. Large language models empowered agent-based modeling and simulation: A survey
and perspectives. CoRR, abs/2312.11970, 2023.

[55] Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent
systems: workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024.

[56] Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. arXiv preprint arXiv:2306.07863, 2023.

[57] Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin
Li, Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for
open-world environments via large language models with text-based knowledge and memory.
arXiv preprint arXiv:2305.17144, 2023.

[58] Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu
Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, et al. Chemagent: Self-updating library in large
language models improves chemical reasoning. arXiv preprint arXiv:2501.06590, 2025.

[59] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint, abs/2303.11366, 2023.

[60] Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem:
Agentic memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

[61] Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0:
Building production-ready ai agents with scalable long-term memory. arXiv preprint
arXiv:2504.19413, 2025.

[62] Rana Salama, Jason Cai, Michelle Yuan, Anna Currey, Monica Sunkara, Yi Zhang, and Yassine
Benajiba. Meminsight: Autonomous memory augmentation for llm agents. arXiv preprint
arXiv:2503.21760, 2025.

13

[63] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents
enhances large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

[64] Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin
Chen, Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving
agents. arXiv preprint arXiv:2406.18532, 2024.

[65] Xuechen Liang, Meiling Tao, Yinghui Xia, Tianyu Shi, Jun Wang, and JingSong Yang.
Self-evolving agents with reflective and memory-augmented abilities. arXiv preprint
arXiv:2409.00872, 2024.

[66] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie Zhou. Agentverse:
Facilitating multi-agent collaboration and exploring emergent behaviors in agents, 2023.

[67] Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang,
and Siheng Chen. Self-evolving multi-agent collaboration networks for software development.
arXiv preprint arXiv:2410.16946, 2024.

[68] Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun
Wang, Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication
topologies via graph neural networks. arXiv preprint arXiv:2410.11782, 2024.

[69] Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoa-
gent: Towards automatic multi-agent generation via evolutionary algorithms. arXiv preprint
arXiv:2406.14228, 2024.

[70] Guibin Zhang, Kaijie Chen, Guancheng Wan, Heng Chang, Hong Cheng, Kun Wang, Shuyue
Hu, and Lei Bai. Evoflow: Evolving diverse agentic workflows on the fly. arXiv preprint
arXiv:2502.07373, 2025.

[71] Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network:
An llm-agent collaboration framework with agent team optimization. CoRR, abs/2310.02170,
2023.

[72] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science
Studies, 1(1):396–413, 2020.

[73] Wanjia Zhao, Mert Yuksekgonul, Shirley Wu, and James Zou. Sirius: Self-improving multi-
agent systems via bootstrapped reasoning. arXiv preprint arXiv:2502.04780, 2025.

[74] Heng Zhou, Hejia Geng, Xiangyuan Xue, Zhenfei Yin, and Lei Bai. Reso: A reward-driven self-
organizing llm-based multi-agent system for reasoning tasks. arXiv preprint arXiv:2503.02390,
2025.

[75] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv:1809.09600, 2018.

[76] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a
large-scale dataset for fact extraction and verification. arXiv preprint arXiv:1803.05355, 2018.

[77] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning. arXiv preprint arXiv:2010.03768, 2020.

[78] Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld:
Is your agent smarter than a 5th grader? arXiv preprint arXiv:2203.07540, 2022.

[79] Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. arXiv preprint arXiv:2401.13178, 2024.

[80] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers. Advances
in Neural Information Processing Systems, 33:5776–5788, 2020.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim that multi-agent systems require more dedicated memory
architectures is both methodologically and empirically supported.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have thoroughly provided the relevant information (see Appendix A
and section 5.1).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: We have provided the relevant codes with clear instructions in an anonymous
link (See Abstract). All the datasets we used are publicly available and clearly cited.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have described the dataset setups and evaluation metrics in Appendix A.
All the hyperparameters are described in Section 5.1. There are no explicit dataset splits.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experimental results are the average of three runs to avoid the random
bias.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The information has been provided in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

Impact Statement

G-Memory introduces a structured, hierarchical memory architecture for multi-agent systems (MAS),
enabling large language model (LLM)-based agents to store, recall, and reason over past experiences
with enhanced task generalization and cooperation efficiency. The broader impacts of this work
include advancing the development of scalable and adaptive collective intelligence, with potential
applications in long-term robotic planning, real-world decision-making systems, and collaborative AI
assistants. However, if the underlying language model is compromised or adversarially manipulated,
the memory mechanisms could amplify incorrect reasoning. We urge responsible deployment of
this architecture with appropriate safeguards, including continual validation, adversarial robustness
checks, and alignment with human values.

A Experimental Details

A.1 Dataset Descriptions

In this section, we describe the datasets used in our experiments:

• ALFWorld [77] (available at https://alfworld.github.io/, MIT license) is a text-
based embodied environment featuring household tasks, where agents navigate and interact
with objects via natural language commands.

• ScienceWorld [78] (available at https://github.com/allenai/ScienceWorld,
Apache-2.0 license) is another text-based embodied environment designed for interac-
tive science tasks. Agents must navigate rooms and conduct experiments, testing their ability
to perform procedural reasoning and scientific exploration.

• PDDL is a game dataset from AgentBoard [79] (available at https://github.com/
hkust-nlp/AgentBoard, Custom properties), comprising a variety of strategic games
where agents use PDDL expressions to complete complex tasks.

• HotpotQA [75] (available at https://hotpotqa.github.io/, CC BY-SA 4.0 License)
is a multi-hop question answering dataset with strong supervision on supporting facts. It
evaluates the agent’s ability to retrieve and synthesize information, especially through web
search tools, for explainable reasoning.

• FEVER [76] (available at https://fever.ai/dataset/fever.html, Creative Com-
mons Attribution-ShareAlike License) is a knowledge-intensive dataset focused on fact
verification. Agents must validate claims using web search APIs, making it a benchmark for
evidence-based reasoning.

Evaluation Metrics. We use exact match accuracy for FEVER and HotpotQA. For ScienceWorld
and PDDL, we report the progress rate, and for ALFWorld, we use the success rate as the evaluation
metric.

21

https://neurips.cc/Conferences/2025/LLM
https://alfworld.github.io/
https://github.com/allenai/ScienceWorld
https://github.com/hkust-nlp/AgentBoard
https://github.com/hkust-nlp/AgentBoard
https://hotpotqa.github.io/
https://fever.ai/dataset/fever.html

A.2 Baseline Setup

In this section, we provide detailed descriptions of each baseline used in our comparison:

• Voyager: The Voyager memory is derived from the Voyager agent [16], where an embodied
agent continuously interacts with the Minecraft environment and creates new artifacts.
Memory serves as the core driver of the agent’s evolution. As Voyager’s memory design is
tailored for a single-agent setting, we adapt it to the multi-agent scenario by implementing
agent-specific history retrieval based on each agent’s visible dialogue context. Other single-
agent memory designs are adapted in a similar manner.

• MemoryBank: MemoryBank [36] mimics anthropomorphic memory behaviors by selec-
tively preserving and forgetting information. It incorporates a memory updating mechanism
inspired by the Ebbinghaus Forgetting Curve, allowing the agent to reinforce or discard
memory based on temporal decay and the relative importance of stored information.

• Generative: This memory baseline is based on [19], which includes both raw observational
memory and high-level reflective memory. The latter captures abstract thoughts generated by
the agent through reflection, providing a more structured and conceptualized representation
of experience.

• MetaGPT-M: The memory design originates from MetaGPT [21], focusing solely on
inside-trial memory—information stored internally during the resolution of a single task by
multiple agents.

• ChatDev-M: This memory design is adapted from ChatDev [45], which incorporates both
inside-trial and cross-trial memory. The inside-trial memory is passed from the central or
initiating agent at the beginning of each round to provide guidance based on prior interactions.
The cross-trial memory is relatively simple, storing past solutions to previous queries for
future retrieval. However, in our task, it does not effectively manage the information-rich
inter-agent collaboration.

• MacNet-M: This memory design is adopted from MacNet [46], where the inside-trial
memory consists solely of the final answers generated in the previous round. All non-artifact
dialogue contexts, i.e., the interaction trajectories among agents, are entirely discarded.

A.3 Multi-agent System Setup

In this section, we detail the setups of our three adopted MAS frameworks, AutoGen, DyLAN and
MacNet:

A.3.1 AutoGen

AutoGen [13] is a popular multi-agent orchestration framework, to coordinate interactions among
specialized agents for problem-solving tasks. Specifically, we utilize their A3 : Decision Making
structure, which is composed of: (1) a Solver Agent, responsible for generating solutions, initialized
with the system prompt “You are a smart agent designed to solve problems.”; (2) a Ground Truth
Agent, which critically evaluates the solver’s output and identifies potential errors based on a
reference standard; and (3) an Executor Agent, tasked with translating validated solutions into
executable commands. This modular design enables transparent, verifiable, and actionable multi-
agent collaboration.

A.3.2 DyLAN

DyLAN [71] is a debate-style framework similar to LLM-Debate, but incorporates a more efficient
agent-wise early stopping mechanism during multi-turn interactions. DyLAN utilizes an agent
selection algorithm based on an unsupervised metric, namely the Agent Importance Score, which
identifies the most contributive agents through a preliminary trial tailored to the specific task. In
our implementation of DyLAN, three agents engage in the debate, while an additional ranker agent
evaluates their relative importance.

22

A.4 MacNet

MacNet [46] is a representative work that explores decentralized and scalable multi-agent systems.
Its key feature lies in the absence of a central agent; instead, it introduces edge agents, which are
invoked between agent interactions to provide actionable instructions to the next agent based on the
previous agent’s outputs. In our implementation, we adopt the random graph topology from MacNet,
shown to be robust across diverse scenarios, and employ five agents in addition to the edge agents.

B Additional Experiment Results

B.1 RQ1 Results

Tables 2 and 3 present additional experimental results using Qwen-2.5-7b and Qwen-2.5-14b
as the LLM backbones. Appendix B.1 illustrates the success rate curves on ALFWorld as the
number of trials increases, comparing different MAS frameworks combined with various memory
architectures. As shown in Figures 6b and 6c, G-Memory consistently enables MAS frameworks to
achieve success with fewer trials and leads to higher final performance ceilings.

(a) The performance trajectory of
AutoGen on ALFWorld.

(b) The performance trajectory of
DyLAN on ALFWorld.

(c) The performance trajectory of
MacNet on ALFWorld.

B.2 RQ2 Results

Figure 7 provides additional comparisons of token cost across various benchmarks and MAS frame-
works when combined with different memory architectures. Overall, G-Memory incurs only a marginal
or no increase in token cost compared to classical baselines such as Generative and MetaGPT-M,
while consistently delivering the most significant performance improvements.

B.3 Latency Results

As shown in Table 4, G-Memory incurs only moderate inference overhead even when delivering
the most significant performance gains. For instance, on AutoGen+ALFWorld, it increases latency
by merely 9% compared to the no-memory baseline; (2) in some cases, G-Memory even improves
efficiency, e.g., on DyLAN+ALFWorld, it leads to a 20% speed-up, as helpful memory cues enable
the multi-agent system to reach correct actions more quickly and terminate the interaction earlier.

23

Table 2: Performance comparison with single/multi-agent memory architectures on five benchmarks.
The underlying LLM backbone is Qwen-2.5-7b. We highlight the best and second best results.

MAS Memory ALFWorld SciWorld PDDL HotpotQA FEVER Avg.

Vanilla
LLM

No-memory 37.31↑0.00 23.49↑0.00 10.86↑0.00 20.26↑0.00 48.17↑0.00 28.02↑0.00

Voyager 38.19↑0.88 24.11↑0.62 12.14↑1.28 19.12↓1.14 49.68↑1.51 28.65↑0.63

MemoryBank 40.30↑2.99 21.64↓1.85 14.36↑3.50 18.79↓1.47 47.66↓0.51 28.55↑0.53

Generative 39.16↑1.85 26.10↑2.61 11.37↑0.51 23.48↑3.22 52.50↑4.33 30.52↑2.50

AutoGen
COLM 2024

No-memory 52.99↑0.00 30.27↑0.00 16.17↑0.00 33.33↑0.00 58.74↑0.00 38.30↑0.00
Voyager 55.22↑2.23 26.70↓3.57 12.00↓4.17 34.29↑0.96 52.44↓6.30 36.13↓2.17

MemoryBank 53.37↑0.38 27.33↓2.94 14.83↓1.34 32.67↓0.66 59.45↑0.71 37.53↓0.77
Generative 62.69↑9.70 31.45↑1.18 17.88↑1.71 34.17↑0.84 61.25↑2.51 41.49↑3.19

MetaGPT-M 55.52↑2.53 32.44↑2.17 17.04↑0.87 35.36↑2.03 63.33↑4.59 40.74↑2.44

ChatDev-M 46.27↓6.72 28.67↓1.60 13.42↓2.75 31.11↓2.22 61.32↑2.58 36.16↓2.14
MacNet-M 53.18↑0.19 31.10↑0.83 16.89↑0.72 34.29↑0.96 58.43↓0.31 38.78↑0.48

G-Memory (Ours) 67.91↑14.92 34.89↑4.62 21.01↑4.84 37.34↑4.01 64.34↑5.60 45.10↑6.80

DyLAN
COLM 2024

No-memory 41.34↑0.00 29.84↑0.00 13.56↑0.00 24.29↑0.00 56.23↑0.00 33.05↑0.00
Voyager 51.49↑10.15 26.66↓3.18 10.62↓2.94 26.23↑1.94 55.39↓0.84 34.08↑1.03

MemoryBank 46.46↑5.12 26.99↓2.85 14.10↑0.54 22.44↓1.85 59.21↑2.98 33.84↑0.79

Generative 48.52↑7.18 31.55↑1.71 16.31↑2.75 26.54↑2.25 50.19↓6.04 34.62↑1.57

MetaGPT-M 42.54↑1.20 30.93↑1.09 14.47↑0.91 19.33↓4.96 57.22↑0.99 32.90↓0.15
ChatDev-M 39.85↓1.49 28.25↓1.59 7.14↓6.42 17.32↓6.97 50.67↓5.56 28.65↓4.41
MacNet-M 42.48↑1.14 28.22↓1.62 14.23↑0.67 25.12↑0.83 55.34↓0.89 33.08↑0.03

G-Memory (Ours) 52.99↑11.65 33.81↑3.97 20.71↑7.15 29.33↑5.04 63.67↑7.44 40.10↑7.05

MacNet
ICLR 2025

No-memory 44.03↑0.00 28.76↑0.00 13.36↑0.00 22.24↑0.00 55.12↑0.00 32.70↑0.00
Voyager 47.01↑2.98 28.88↑0.12 11.36↓2.00 25.67↑3.43 58.78↑3.66 34.34↑1.64

MemoryBank 52.24↑8.21 27.86↓0.90 13.33↓0.03 23.97↑1.73 54.18↓0.94 34.32↑1.61
Generative 48.51↑4.48 31.05↑2.29 14.04↑0.68 24.49↑2.25 56.08↑0.96 34.83↑2.13

MetaGPT-M 52.99↑8.96 29.87↑1.11 16.58↑3.22 25.51↑3.27 53.88↓1.24 35.77↑3.06

ChatDev-M 44.78↑0.75 26.44↓2.32 10.19↓3.17 16.32↓5.92 56.02↑0.90 30.75↓1.95
MacNet-M 43.55↓0.48 30.11↑1.35 12.91↓0.45 21.77↓0.47 50.71↓4.41 31.81↓0.89

G-Memory (Ours) 54.48↑10.45 32.23↑3.47 17.48↑4.12 27.53↑5.29 59.14↑4.02 38.17↑5.47

B.4 Case Study

B.4.1 Case Study on Insight Graphs

Figure 8 visualizes the high-level insights summarized by G-Memory on the ALFWorld benchmark
across different MAS frameworks and LLM backbones. Given that ALFWorld naturally consists of
diverse task categories, we further examine how insight nodes corresponding to different task types
are interconnected. Overall, we observe dense intra-category connections among insights derived
from similar tasks, while also noting the emergence of meaningful inter-category links, reflecting
transferable patterns across task domains.

B.4.2 Case Study on Query Graphs

Figures 9 to 11 visualize the query graphs constructed by G-Memory on the ALFWorld, PDDL,
and SciWorld benchmarks. Recall that a directed edge between two query nodes indicates that
the historical trajectory of one query offers useful guidance for the execution of another. We
observe emergent clustering patterns, where groups of semantically similar queries form densely
connected subgraphs, while sparser inter-cluster edges capture cross-task inspirations. These patterns
demonstrate G-Memory’s ability to effectively organize and relate collaborative experiences through
structured memory reasoning.

24

Table 3: Performance comparison with single/multi-agent memory architectures on five benchmarks.
The underlying LLM backbone is Qwen-2.5-14b. We highlight the best and second best
results.

MAS Memory ALFWorld SciWorld PDDL HotpotQA FEVER Avg.

AutoGen
COLM 2024

No-memory 74.63↑0.00 46.84↑0.00 44.92↑0.00 24.49↑0.00 63.27↑0.00 50.83↑0.00
Voyager 76.87↑2.24 59.00↑12.16 50.21↑5.29 31.33↑6.84 61.22↓2.05 55.73↑4.90

MemoryBank 70.15↓4.48 54.18↑7.34 39.54↓5.38 32.65↑8.16 64.29↑1.02 52.16↑1.33
Generative 74.63↑0.00 57.37↑10.53 54.46↑9.54 33.21↑8.72 63.27↑0.00 56.59↑5.76

MetaGPT-M 82.09↑7.46 58.86↑12.02 48.99↑4.07 31.63↑7.14 62.27↓1.00 56.77↑5.94

ChatDev-M 67.16↓7.47 40.69↓6.15 43.11↓1.81 31.77↑7.28 61.28↓1.99 48.80↓2.03
MacNet-M 73.65↓0.98 42.14↓4.70 45.94↑1.02 26.72↑2.23 64.69↑1.42 50.63↓0.20

G-Memory (Ours) 85.82↑11.19 60.62↑13.78 55.24↑10.32 34.61↑10.12 71.43↑8.16 61.54↑10.71

DyLAN
COLM 2024

No-memory 76.12↑0.00 53.24↑0.00 41.83↑0.00 30.61↑0.00 63.34↑0.00 53.03↑0.00
Voyager 72.39↓3.73 58.93↑5.69 48.54↑6.71 30.71↑0.10 65.31↑1.97 55.18↑2.15

MemoryBank 76.87↑0.75 57.92↑4.68 39.65↓2.18 29.59↓1.02 63.25↓0.09 53.46↑0.43
Generative 77.91↑1.79 61.52↑8.28 46.69↑4.86 31.33↑0.72 61.39↓1.95 55.77↑2.74

MetaGPT-M 79.10↑2.98 61.29↑8.05 49.75↑7.92 28.61↓2.00 64.11↑0.77 56.57↑3.54

ChatDev-M 74.63↓1.49 54.03↑0.79 44.44↑2.61 30.67↑0.06 62.25↓1.09 53.20↑0.18
MacNet-M 72.77↓3.35 52.22↓1.02 42.98↑1.15 29.22↓1.39 62.69↓0.65 51.98↓1.05

G-Memory (Ours) 81.34↑5.22 64.68↑11.44 51.12↑9.29 34.63↑4.02 66.66↑3.32 59.69↑6.66

MacNet
ICLR 2025

No-memory 58.21↑0.00 52.21↑0.00 41.74↑0.00 28.60↑0.00 64.65↑0.00 49.08↑0.00
Voyager 63.43↑5.22 60.24↑8.03 43.95↑2.21 29.67↑1.07 62.24↓2.41 51.91↑2.82

MemoryBank 62.21↑4.00 55.52↑3.31 38.26↓3.48 26.53↓2.07 65.22↑0.57 49.55↑0.47
Generative 73.13↑14.92 60.83↑8.62 44.00↑2.26 30.53↑1.93 65.31↑0.66 54.76↑5.68

MetaGPT-M 70.43↑12.22 59.70↑7.49 42.34↑0.60 26.26↓2.34 66.33↑1.68 53.01↑3.93

ChatDev-M 68.66↑10.45 45.98↓6.23 42.19↑0.45 29.49↑0.89 59.18↓5.47 49.10↑0.02
MacNet-M 60.45↑2.24 51.14↓1.07 39.22↓2.52 28.77↑0.17 62.42↓2.23 48.40↓0.68

G-Memory (Ours) 79.10↑20.89 61.74↑9.53 45.76↑4.02 32.33↑3.73 70.33↑5.68 57.85↑8.77

Table 4: Performance (%) and latency (s) comparison of different memory mechanisms on AutoGen
and DyLAN frameworks, along with ALFWorld and SciWorld benchmarks.

Method
AutoGen DyLAN

ALFWorld SciWorld ALFWorld SciWorld

Perf. Lat. Perf. Lat. Perf. Lat. Perf. Lat.

No-memory 77.61 19204 54.59 16953 56.72 33520 55.38 32408
Voyager 85.07 21754 62.36 16650 66.42 29628 62.83 31633
MemoryBank 74.96 15492 53.11 10104 55.22 31813 54.74 32925
Generative 86.36 20682 61.19 16674 67.91 31010 64.16 34038
MetaGPT-M 81.34 16021 61.91 15853 69.40 22936 62.37 32049
ChatDev-M 79.85 22347 50.96 12904 46.27 29739 53.35 33111
MacNet-M 76.55 21089 55.44 16882 53.44 24991 54.32 34815
G-Memory (Ours) 88.81 21113 67.40 17326 70.90 26726 65.64 33447

C Prompt Set

Query Relevance Filtration

task_relevency_system_prompt = """ You are an agent designed to score the relevance
between two pieces of text ."""

task_relevency_user_prompt = """ You will be given a successful case where you
successfully complete the task. Then you will be given an ongoing task. Do
not summarize these two cases , but rather evaluate how relevant and helpful
the successful case is for the ongoing task , on a scale of 1-10.

Success Case:
{trajectory}
Ongoing task:
{query_scenario}

25

T
o

k
e

n
 C

o
s

t
(e

+
6

)

FEVER + AutoGen

Performance (%)

HotpotQA + AutoGen

Performance (%)

T
o

k
e

n
 C

o
s

t
(e

+
6

)

PDDL + DyLAN

Performance (%)

T
o

k
e

n
 C

o
s

t
(e

+
6

)

SciWorld + AutoGen

Performance (%)

T
o

k
e

n
 C

o
s

t
(e

+
6

)

Figure 7: Cost analysis of G-Memory. We showcase the performance versus the overall system token
cost when combined with different memory architectures.

Score: """

Graph Sparsifier

extract_true_traj_system_prompt = """You are an agent skilled at extracting key
points.

Given a task and a successful execution trajectory , your job is to identify the
critical steps needed to complete the task while filtering out less important
steps ."""

extract_true_traj_user_prompt = """
Note:
- Strictly follow the original trajectory; absolutely no steps that are not in the

trajectory should be added.
- Even in a successful trajectory , there may be some incorrect steps. Pay

attention to actions that correspond to "Nothing happens" observations , as
these actions are likely incorrect. Filter out these actions for me.

- You need to ensure that each step is at the finest granularity.
- You should strictly follow the output format in the example.

Here is the task:
Task
{task}

26

0 1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

Insights Graph

Inferred Categories

look_at_obj

pick_clean_then_place

pick_two_obj

pick_and_place

pick_cool_then_place

pick_heat_then_place

(a) Insight graph on gpt-4o-mini +Mac-
Net+ALFWorld.

0 1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

Insights Graph

Inferred Categories

look_at_obj

pick_clean_then_place

pick_two_obj

pick_and_place

pick_cool_then_place

pick_heat_then_place

(b) Insight graph on gpt-4o-mini +Dy-
LAN+ALFWorld.

0

1

2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Insights Graph

Inferred Categories

look_at_obj

pick_clean_then_place

pick_two_obj

pick_and_place

pick_cool_then_place

pick_heat_then_place

(c) Insight graph on Qwen-7b +Mac-
Net+ALFWorld.

0

1

2
3

4
5

6

7

8

9 10

11

12
13

14

15

16

17
18

1920

21

22

23

24

25

26

27

28

29

30

31

Insights Graph

Inferred Categories

look_at_obj

pick_clean_then_place

pick_two_obj

pick_and_place

pick_cool_then_place

pick_heat_then_place

(d) Insight graph on Qwen-7b +Dy-
LAN+ALFWorld.

0

1

2

3

4
5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

Insights Graph

Inferred Categories

look_at_obj

pick_clean_then_place

pick_two_obj

pick_and_place

pick_cool_then_place

pick_heat_then_place

(e) Insight graph on Qwen-14b +Auto-
Gen+ALFWorld.

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22
23

24

25

26

27

28

29

30

31

Insights Graph

Inferred Categories

look_at_obj

pick_clean_then_place

pick_two_obj

pick_and_place

pick_cool_then_place

pick_heat_then_place

(f) Insight graph on Qwen-14b +Dy-
LAN+ALFWorld.

Figure 8: Visualizations of insight graphs across different LLM backbones, MAS, and benchmarks.

Trajectory
{trajectory}

Output
"""

The prompt below is partially adapted from [42]. We would like to express our sincere gratitude for
their valuable implementation.

27

0

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
2829

30
31

32

33

34

35

36

37

38

39

40

41

42 43
44

45

46
47

48

49

50 51

52

53

54

55

56

57

58

59

60

61

62

6364

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95
96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124
125

126

127

128

129

130

131 132

133

Tasks Graph

Figure 9: Query graph optimized from ALFWorld dataset.

0
1

2

3 4

5

6
7

8

9

1011

12
13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

3839

40

41

42

43

44

45
46

47

48

49

50
51

52
53

54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

7576

77

7879

Tasks Graph

Figure 10: Query graph optimized from SciWorld dataset.

Inisght Summarization Function

learn_lessons_system_prompt_compare = """
You are an analysis -driven agent focused on learning from experience. You will be

provided with:
- A failed trajectory and its outcome ,
- A successful trajectory completing a similar task.

Your task is to analyze both trajectories and generate clear , actionable insights.
Your insights should highlight what the failed trajectory missed and how the
successful one addressed or avoided these pitfalls.

Requirements:
- All insights must be derived directly from contrasting the two trajectories.

28

0

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

1920

21
22

23

24

25

26
27

28

29 30
31

32

33 34

35

36 37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

Tasks Graph

Figure 11: Query graph optimized from PDDL dataset.

- Do not speculate or introduce steps not supported by the successful example.
- Focus on ** concrete behavioral or strategic differences ** between the two cases.
- Keep each insight concise and impactful.

Output Format:
- Start immediately with a numbered list.
- No introduction or explanation.
- Use this exact format:
1. Insight 1
2. Insight 2
3. Insight 3
...
"""

learn_lessons_user_prompt_compare = """
Successful trajectory
{true_traj}

Failed trajectory
trajectory
{false_traj}

Your output:
"""

learn_lessons_system_prompt_all_succ = """
You are an analysis -driven agent focused on learning from success. You will be

provided with a set of successful trajectories that completed a similar task.

Your goal is to analyze these successful examples and extract clear , actionable
insights that capture what contributed to their success. These insights will
serve as guidance for future agents working on similar tasks.

Requirements:
- All insights must be grounded in patterns or strategies observed across the

successful trajectories.
- Do not speculate or introduce steps not reflected in the provided examples.
- Focus on common behaviors , strategies , or decisions that consistently led to

positive outcomes.
- Keep each insight concise , specific , and impactful.

Output Format:
- Start immediately with a numbered list.
- No introduction or explanation.
- Use this exact format:
1. Insight 1

29

2. Insight 2
3. Insight 3
...
"""

learn_lessons_user_prompt_all_succ = """
Successful trajectorys
{true_trajs}

Your output:
"""

merge rules prompt
merge_rules_system_prompt = """ You are an agent skilled at summarizing and

distilling insights. You are given a list of insights that were previously
extracted from similar tasks. These insights may contain redundancy or
overlap.

Your job is to **merge and consolidate similar insights**, and output a refined
version that is **clear , actionable , and concise **.

NOTE:
- All merged insights **must be based strictly on the given inputs **. You are **

not allowed to make up** or infer any new information.
- The output should be easy to read and follow.

Output Format:
- Start your response directly with the numbered list , no preamble or explanations

.
- Each insight should be a short sentence.
- Use the following format exactly:
1. Insight 1
2. Insight 2
3. Insight 3
...
"""

merge_rules_user_prompt = """
Here are the current insights that need to be merged:
{current_rules}

Please consolidate and rewrite them into **no more than {limited_number}
refined insights **.

As the summarizing agent , remove redundancies , combine similar ideas , and ensure
clarity.

Your output:
"""

Customizing Memory for Agents

project_insights_system_prompt: str = """
You are a thoughtful and context -aware agent. You will be provided with a

successfully executed trajectory , a specific agent **role**, and a set of **
general insights ** applicable across all roles.

Your task is to **adapt these general insights ** into ** personalized insights **
that are specifically tailored to the given role and its trajectory. These
personalized insights should help the agent improve future performance by
aligning with their unique background , responsibilities , and perspective.

Make sure your output reflects an understanding of the role ’s context and promotes
actionable , role -relevant advice.

NOTE - Your output must strictly follow the format below:
1. Insight 1
2. Insight 2
3. Insight 3
...
"""

project_insights_user_prompt: str = """
Trajectory
{trajectory}

Agent ’s Role:

30

{role}

General Insights:
{insights}

Your Output (Personalized Insights for This Role):
"""

D Discussion with Related Works

In this section, we further discuss the relationship between G-Memory and several recent agent mem-
ory frameworks. For A-Mem [60], while both A-Mem and G-Memory aim to enhance the memory
capabilities of LLM agents, they differ in two key aspects. First, A-Mem is tailored for single-agent
scenarios, whereas G-Memory is designed for processing MAS’s lengthy and nuanced interaction
trajectory. Second, A-Mem emphasizes atomic memory construction for chatbot-style interactions,
while G-Memory focuses on distilling reusable strategies from collaborative task execution, where
fine-grained atomicity is neither required nor beneficial. For Mem0 [61], although it also employs
a graph-based structure, it remains within the chatbot paradigm. Its graph is closer to a knowledge
graph, where nodes represent factual entities and edges represent relations, fundamentally differing
from G-Memory’s agent-centric memory graphs that encode trajectories, decisions, and coordination
patterns across agents.

31

	Introduction
	Related Works
	Preliminary
	G-Memory
	Coarse-grained Memory Retrieval
	Bi-directional Memory Traversal
	Hierarchy Memory Update

	Experiment
	Experiment Setup
	Main Results (RQ1)
	Cost Analysis (RQ2)
	Framework Analysis (RQ3)
	Case Study

	Conclusion & Limitation
	Experimental Details
	Dataset Descriptions
	Baseline Setup
	Multi-agent System Setup
	AutoGen
	DyLAN

	MacNet

	Additional Experiment Results
	RQ1 Results
	RQ2 Results
	Latency Results
	Case Study
	Case Study on Insight Graphs
	Case Study on Query Graphs

	Prompt Set
	Discussion with Related Works

