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Abstract
The advent of test-time scaling in large lan-001
guage models (LLMs), exemplified by Ope-002
nAI’s o1 series, has advanced reasoning capa-003
bilities by scaling computational resource al-004
location during inference. While successors005
like QwQ, Deepseek-R1 (R1) and LIMO repli-006
cate these advancements, whether these models007
truly possess test-time scaling capabilities re-008
mains underexplored. This study found that009
longer CoTs of these o1-like models do not010
consistently enhance accuracy; in fact, correct011
solutions are often shorter than incorrect ones012
for the same questions. Further investigation013
shows this phenomenon is closely related to014
models’ self-revision capabilities - longer CoTs015
contain more self-revisions, which often lead016
to performance degradation. We then com-017
pare sequential and parallel scaling strategies018
on QwQ, R1 and LIMO, finding that parallel019
scaling achieves better coverage and scalability.020
Based on these insights, we propose Shortest021
Majority Vote, a method that combines parallel022
scaling strategies with CoT length characteris-023
tics, significantly improving models’ test-time024
scalability compared to conventional majority025
voting approaches.026

1 Introduction027

The release of the OpenAI o1 series models (Ope-028

nAI, 2024a,b) marked a pivotal advancement in029

the reasoning capabilities of Large Language Mod-030

els (LLMs), introducing a novel scaling paradigm,031

test-time scaling, which allocates more compute032

resources during test time. The test-time scaling033

have two dimensions, sequential and parallel (Zeng034

et al., 2024). Sequential scaling increase test-time035

compute by scaling the length of Chain-of-Thought036

(CoT) (Wei et al., 2022), while parallel scaling par-037

allely samples multiple solutions and pick the best038

one.039

Following o1’s success, models such as QwQ040

(Team, 2024), Deepseek-R1 (R1) (DeepSeek-AI041

R1-
67

1b

R1-
Dist

ill
-3

2b

R1-
Dist

ill
-1

4b

R1-
Dist

ill
-1

.5b QwQ
LI

M
O

0

2500

5000

7500

Le
ng

th

MATH

R1-
67

1b

R1-
Dist

ill
-3

2b

R1-
Dist

ill
-1

4b

R1-
Dist

ill
-1

.5b QwQ
LI

M
O

0

5000

10000

15000

AIME

R1-
67

1b

R1-
Dist

ill
-3

2b

R1-
Dist

ill
-1

4b

R1-
Dist

ill
-1

.5b QwQ
LI

M
O

0

2500

5000

7500

Le
ng

th

GPQA

R1-
67

1b

R1-
Dist

ill
-3

2b

R1-
Dist

ill
-1

4b

R1-
Dist

ill
-1

.5b QwQ
LI

M
O

0

5000

10000

15000 Omin-MATH

Correct Incorrect

Figure 1: The average length of correct solutions versus
incorrect solutions evaluated on the same questions.For
each question, solution lengths were averaged separately
for correct and incorrect responses, then averaged across
all questions.

et al., 2025) and LIMO (Ye et al., 2025) have 042

emerged as leading open-source successors, repli- 043

cating o1’s achievements and demonstrating com- 044

parable reasoning abilities. Although both QwQ, 045

R1 and LIMO demonstrate strong reasoning ca- 046

pabilities and the ability to generate lengthy CoT 047

at test time, the existence of true test-time scal- 048

ing where performance consistently improves 049

with longer CoTs remains to be verified for these 050

models. 051

To explore this question, we systematically inves- 052

tigate the relationship between CoT length and rea- 053

soning performance in QwQ, R1 and LIMO, chal- 054

lenging the conventional assumption that extended 055

reasoning chains inherently lead to improved ac- 056

curacy. Contrary to expectations, our analysis re- 057

veals that longer CoTs do not consistently improve 058

accuracy of these o1-like models. Notably, we 059

found that the average length of correct solutions is 060

shorter than that of incorrect ones for the same ques- 061
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tions, which is shown in Figure 1. This counterin-062

tuitive finding underscores the need for a deeper063

understanding of the test-time scaling of o1-like064

models.065

To understand why the longer CoTs do not lead066

to the better performance, we compared the differ-067

ence between long CoTs and short CoTs, finding068

that long CoTs contain more self-revisions (“Wait”,069

“Alternatively”) than the short CoTs, which is070

shown in Appendix E. Inspired by that, we itera-071

tively prompted QwQ, R1 and LIMO for more self-072

revisions. Our observations revealed that QwQ and073

R1-Distill-1.5b exhibited performance degradation074

as the length of reflection increased. In contrast,075

R1-Distill-14b, R1-Distill-32b, and LIMO demon-076

strated initial performance improvements during077

early revisions, followed by oscillatory behavior078

in subsequent iterations. To further understand079

the limitations of sequential scaling, we evaluated080

the models’ capacity to revise incorrect answers.081

Our findings indicate that QwQ, R1 and LIMO all082

demonstrated limited ability to convert incorrect083

answers to correct ones during the revision pro-084

cess. Most revisions retained the original answers,085

and more concerning, both QwQ and R1-Distill-086

1.5b showed a higher propensity to change correct087

answers to incorrect ones rather than vice versa.088

These results reveal that self-revision ability is089

a key factor in the effectiveness of sequential090

scaling for o1-like models.091

Given the limited effectiveness of sequential scal-092

ing, we explored an alternative test-time scaling093

strategie, parallel scaling. Our comparative analy-094

sis of sequential and parallel scaling revealed that095

parallel scaling not only achieves the better cover-096

age (pass@k score) but also offers superior scala-097

bility compared to sequential scaling for QwQ and098

R1, which demonstrates that o1-like models have099

limited sequential-scaling capability, but strong100

parallel-scaling capability.101

Building on these findings, we propose a novel102

test-time scaling method, Shortest Majority Vote,103

which incorporate parallel scaling approaches with104

our insight on sequential scaling. In particular, this105

method leverages the observation that shorter solu-106

tions tend to lead to better performance compared107

to longer ones. Shortest Majority Vote improves108

majority vote by prioritizing clusters that have both109

more solutions and shorter solution lengths. Exper-110

imental results demonstrate that Shortest Majority111

Vote substantially outperforms conventional Ma-112

jority Vote, significantly improving the test-time113

scalability of both QwQ and R1 models. 114

Our contributions are as follows: 115

1) We systematically investigate the test-time 116

scaling capabilities of o1-like models QwQ, 117

R1 and LIMO, and find that their performance 118

can not be continuously improved through in- 119

creasing CoT length. 120

2) We reveal that insufficient self-revision capa- 121

bility of o1-like models is the primary reason 122

for their failure in sequential scaling. 123

3) We find that parallel scaling achieves better 124

coverage and scalability than sequential revi- 125

sion for o1-like models. 126

4) Based on our insights into sequential and 127

parallel scaling, we propose Shortest Major- 128

ity Vote, a test-time scaling method that en- 129

hances majority voting by considering solu- 130

tion length, significantly outperforming tradi- 131

tional methods. 132

2 Related Work 133

The success of o1 has ushered in a new scaling 134

paradigm, test-time compute scaling, which en- 135

ables continuous improvements in model perfor- 136

mance by increasing computational expenditure 137

during inference (OpenAI, 2024a,b). Currently, 138

scaling test-time compute can be approached in 139

two dimensions: parallel scaling and sequential 140

scaling (Snell et al., 2024; Zeng et al., 2024). 141

Parallel Scaling Parallel scaling typicallly sam- 142

ples multiple solutions in parallel and pick one 143

according to some guidence signal like reward. No- 144

table examples of parallel scaling include Best-of- 145

N Search (Cobbe et al., 2021; Sun et al., 2024; 146

Gui et al., 2024; Amini et al., 2024; Sessa et al., 147

2024), which is based on a reward model (Cobbe 148

et al., 2021; Lightman et al., 2024), and Majority 149

Vote (Wang et al., 2023), which exploits model un- 150

certainty. The primary distinction between these 151

approaches lies in the method used to select the 152

final solution or answer after sampling multiple 153

candidates. Both Best-of-N Search and Majority 154

Vote are parallel scaling techniques at the solution 155

level, while Tree-Search algorithms can be viewed 156

as parallel scaling at the token or step level. Beam- 157

Search (Qiu et al., 2024; Yu et al., 2024; Xie et al., 158

2023; Kool et al., 2019) and MCTS (Hao et al., 159

2023; Wan et al., 2024; Chen et al., 2024a; Zhang 160

et al., 2023) are classic examples of Tree-Search 161

algorithms. All parallel scaling methods rely on 162
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guidance signals to select the optimal token, step,163

or solution from a set of candidates.164

Sequential Scaling Sequential scaling enhances165

test-time computation by generating progressively166

longer solutions along the sequence dimension.167

The most prevalent method of sequential scaling168

is Self-Revision, where Madaan et al. (2023) first169

generate an initial response and then iteratively170

evaluate and refine it based on self-assessment. In171

contrast, Chen et al. (2024b); Gou et al. (2024)172

leverage external feedback—such as signals from173

a code execution environment—rather than self-174

evaluation to enhance solutions.175

The effectiveness of sequential scaling with self-176

revision remains a contentious issue. Huang et al.177

(2024a); Kamoi et al. (2024) argue that models178

cannot achieve effective self-refinement without179

external feedback. Conversely, some researchers180

posit that evaluating a solution’s correctness is in-181

herently easier than generating a correct solution182

(Leike, 2022), suggesting that LLMs have the ca-183

pacity for self-evaluation. Kumar et al. (2024);184

Zhang et al. (2024) show that it is possible to teach185

LLM to self-refine through reinforcement learn-186

ing or supervised fine-tuning. Chen et al. (2024c)187

compared various test-time scaling algorithms and188

found that when feedback accuracy exceeds 90%,189

Self-Revision outperforms Best-of-N Search.190

o1-like Models The release of o1 (OpenAI,191

2024a,b) has further underscored the significance192

of sequential scaling, as o1’s CoT length is sub-193

stantially greater than that of conventional models.194

The research community has made significant ef-195

forts to reproduce the capabilities of o1 (Qin et al.,196

2024; Huang et al., 2024b; Jiang et al., 2024; Min197

et al., 2024; Muennighoff et al., 2025), with QwQ198

(Team, 2024) and R1 (DeepSeek-AI et al., 2025)199

and LIMO (Ye et al., 2025) emerging as the most200

successful attempts. However, Our findings reveal201

that for R1 and QwQ, extending solution length202

does not necessarily yield better performance due203

to the models’ limited self-revision capabilities.204

Parallel findings by Wang et al. (2025) attribute this205

phenomenon to model underthinking, where mod-206

els initially reach correct intermediate solutions but207

subsequently deviate toward incorrect conclusions208

during extended reasoning.209

3 Experiment Setting 210

Models Our experiments involved models from 211

the QwQ (Team, 2024), LIMO(Ye et al., 2025) 212

and Deepseek-R1 series (DeepSeek-AI et al., 213

2025), including Deepseek-R1, Deepseek-R1- 214

Distill-Qwen-32b, Deepseek-R1-Distill-Qwen-14b, 215

and Deepseek-R1-Distill-Qwen-1.5b. For simpl- 216

icy, we call these R1 models as R1-671b, R1- 217

Distill-32b, R1-Distill-14b and R1-Distill-1.5b re- 218

spectively. The models were run using SGLang 219

framework (Zheng et al., 2024), with the sampling 220

temperature set to 0.7 and the maximum generation 221

length set to 32k. We show the system prompt and 222

instructions used for evaluation in Appendix D. 223

Benchmark We conducted comprehensive evalu- 224

ations across four benchmarks: MATH-500 (Light- 225

man et al., 2024), AIME (AIMO, 2018), Omini- 226

MATH (Gao et al., 2024), and GPQA (Rein et al., 227

2023). While MATH-500, AIME, and Omini- 228

MATH focus on mathematical reasoning, GPQA 229

encompasses broader scientific domains. For 230

AIME evaluation, we utilized the AIMO validation 231

set, comprising 90 questions from AIME 22, 23, 232

and 24 (AIMO, 2018). Given the computational de- 233

mands of evaluating the full Omini-MATH dataset 234

(4.4K questions), we randomly sampled 500 ques- 235

tions to maintain efficiency. For GPQA, we focused 236

on the diamond subset containing 198 questions. 237

To ensure robust evaluation of answer correctness, 238

we employed both the OpenCompass (Contributors, 239

2023) and Qwen Math (Yang et al., 2024) evalua- 240

tors, considering an answer correct if validated by 241

either evaluator. 242

4 The Failure of Sequential Scaling 243

4.1 Invalid Scaling of CoT Length: Longer 244

CoTs Do not Improve Performance 245

To investigate whether the accuracy of QwQ, R1 246

and LIMO genuinely improves with increasing 247

CoT length, we sampled each model five times 248

on the same question and sorted the five solutions 249

by length in ascending order. We grouped the so- 250

lutions based on their rank in this sorted list, with 251

the i-th ranked solutions forming a distinct group. 252

For instance, all the longest solutions (rank 5) from 253

different questions formed one group, while all the 254

shortest solutions (rank 1) formed another, result- 255

ing in 5 comprehensive solution groups for analy- 256

sis. 257

We present the average lengths of the five groups 258
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Figure 2: Solutions of QwQ and R1 were categorized into different groups according to their length and evaluated
in terms of solution length (a) and accuracy (b). The categorization of solutions is progressed for each question
independently, i.e., all groups of solutions are corresponding to the same questions.

of solutions in Figure 2a. Since the grouping of259

solutions is based on their lengths, the differences260

in length between the groups are pronounced. The261

average length of the longest solutions is approx-262

imately twice that of the shortest solutions. This263

indicates that long-chain-of-thought (CoT) models264

like QwQ, R1 and LIMO exhibit a high diversity265

in the lengths of the solutions they sample.266

There is no clear correlation between the length267

of solutions and the model’s size. For example, R1-268

Distill-1.5b produces the longest solutions while269

QwQ (32b) generates the shortest. A comparison of270

solution lengths across different datasets shows that271

solutions for simpler datasets, such as Math, are272

significantly shorter than those for more difficult273

datasets, like AIME. This suggests that the model274

adjusts the solution length based on the difficulty275

of the problem.276

The accuracy of the five groups of solutions is277

presented in Figure 2b. Although there is a sig-278

nificant disparity in solution lengths across the279

groups, the differences in accuracy are much less280

pronounced. Notably, we do not observe a consis-281

tent improvement in accuracy for either QwQ or282

R1 as solution length increases. This trend holds283

true across all model variants as well as across284

all evaluated datasets. In some cases, we even285

observe an inverse scaling phenomenon, where ac- 286

curacy decreases with increasing CoT length, es- 287

pecially on more difficult datasets like AIME and 288

Omini-MATH. These findings cast doubt on the 289

presumed test-time scaling capabilities of o1-like 290

models, challenging the assumption that extended 291

reasoning chains inherently yield superior problem- 292

solving performance. 293

To make the relationship between CoT length 294

and accuracy more clear, we compared the lengths 295

of correct and incorrect solutions for the same ques- 296

tion. First, we identified questions that had both 297

correct and incorrect answers. For each of these 298

questions, we calculated the average length of cor- 299

rect and incorrect solutions. We then averaged 300

these values across all questions to determine the 301

overall average length for correct and incorrect so- 302

lutions. The results are shown in Figure 1. We 303

found that, for QwQ, R1 and LIMO, across all 304

model sizes and datasets, the length of correct solu- 305

tions is consistently shorter than that of incorrect so- 306

lutions. This observation suggests that longer CoTs 307

do not necessarily lead to better performance and 308

may even be associated with lower accuracy. More- 309

over, we observed that for weaker models, such 310

as QwQ and R1-Distill-1.5B, the gap in solution 311

length between correct and incorrect solutions is 312
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Figure 3: (a): The relationship between model accuracy
and the generation parameter Max Token Limitation.
(b): The relationship between solution length and the
average number of “wait” occur in a solution.

significantly larger than for stronger models, such313

as R1-671b. This suggests that the invalid scaling314

phenomenon is more pronounced in the weaker315

models.316

4.2 Explaining Invalid Scaling: The Key317

Factor is the Failure of Self-Revision318

In Section 4.1, we observed the phenomenon that319

long solutions exhibit lower accuracy compared320

to short solutions. In this section, we investigate321

the underlying reasons for this phenomenon. We322

first analyzed how the maximum token limitation323

affects generation performance and confirmed that324

the observed invalid scaling phenomenon was not325

caused by constraints in the maximum token length.326

Next, we examined the differences between long327

and short solutions, finding that long solutions ex-328

hibit a higher frequency of self-revision. Moreover,329

our analysis suggests a strong correlation between330

self-revision, solution length, and accuracy.331

Max Token Limitation The max token limita-332

tion parameter controls the maximum number of333

tokens a model can generate for a question, which334

plays a critical role in influencing model accuracy,335

especially when generating long solutions. To ex-336

plore its impact, we tested several max token limita-337

tion values and compared the performance of QwQ,338

R1 and LIMO on the AIME benchmark. The re-339

sults are shown in Figure 3a, which revealed that340

16k is a key threshold: when the max token lim-341

itation is below this value, it significantly affects342

the model performance. However, increasing the343

max token limitation beyond 16k leads to dimin-344

ishing returns, particularly for QwQ. In our other345

experiments, we set the max token limitation to346

32k, suggesting that this parameter is not the main347

cause of invalid scaling.348

Difference between Short and Long CoT To 349

understand why long solutions of QwQ, R1 and 350

LIMO is not better than short solutions, we ana- 351

lyzed their differences. We observed that QwQ, 352

R1 and LIMO all primarily extend solution length 353

through self-revision, characterized by markers 354

such as “Wait” and “Alternatively”. We show some 355

examples of that in Appendix E. To quantify this 356

phenomenon, we counted the occurrences of “wait” 357

in solutions of QwQ, R1 and LIMO in Figure 3b. 358

The results demonstrates a strong linear correlation 359

between solution length and the frequency of self- 360

correction markers for all models. This suggests 361

that the mechanisms of self-revision may play a 362

significant role in generating longer solutions. 363

Scaling Solution Length with Self-Revision We 364

have tried to investigate the revision behaviors in- 365

side the sampled solutions, however, it is difficult 366

to extract the initial solution and the following revi- 367

sion exactly from QwQ, R1 and LIMO’s solutions. 368

Alternatively to that, we prompted the models to 369

continue thinking based on their sampled solutions. 370

QwQ, R1 and LIMO often conclude their solu- 371

tions with phrases like “final answer: ...”, and R1 372

additionally outputs a ‘</think>’ tag followed by a 373

final response. To facilitate smoother continuation 374

of the reasoning process, we removed the “final an- 375

swer” portion from the solutions. We then used the 376

keyword “Wait” or “Alternatively” as the prompt 377

to encourage self-revision. We calculated the prob- 378

abilities of the model predicting the next token as 379

“Wait” or “Alternatively” and selected the one with 380

the higher probability as the prompt. 381

We prompted QwQ, R1 and LIMO to continue 382

reasoning for 40 additional steps on the AIME 383

benchmark. We show the results in Figure 4c, 384

from which we observe that the solution length 385

increase almost linearly with additional steps. Af- 386

ter 40 steps, the solution length of QwQ and R1 is 387

almost third as their original length. 388

We show the accuracy after sequential revision 389

in Figure 4a and 4b. Our results reveal that the 390

accuracy of QwQ and R1-Distill-1.5b decreases 391

constantly as the number of reasoning steps in- 392

creases, while the accuracy of R1-Distill-32b, R1- 393

Distill-14b and LIMO initially improves and then 394

oscillates with further reasoning steps. Further anal- 395

ysis in Appendix B reveal that the improvement on 396

R1-Distill-32b, R1-Distill-14b and LIMO during 397

revisions mainly comes from the revision on short 398

solutions. These results corroborate our previous 399
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experimental findings, suggesting that longer solu-400

tions do not improve performance, especially for401

weaker models such as QwQ and R1-Distill-1.5b.402

These findings suggest that the reason why longer403

solutions do not consistently lead to better perfor-404

mance in QwQ, R1 and LIMO may lie in the failure405

of self-revision.406

Investigating Self-Revision Behavior To further407

investigate the effectiveness of self-revision, we408

analyzed the proportion of cases where the model409

corrected an initial incorrect answer to a correct410

one versus changing an initial correct answer to an411

incorrect one during scaling solution length. We412

found that, the proportions of changing a incor-413

rect answer to an correct one is extremely low,414

always below 10%. Notably, for QwQ and R1-415

Distill-1.5b, the proportion of changing a correct416

answer to an incorrect one was even higher than417

that of correcting an incorrect answer to a correct418

one. This observation helps explain why prompting419

QwQ and R1-Distill-1.5b to continue reasoning led420

to a decrease in accuracy. For simplicty, we call the421

proportions of changing a incorrect answer to an422

correct one as the successful-revision rate, while423

the reverse as the failed-revision rate.424

Although R1-Distill-32b, R1-Distill-14b and425

LIMO exhibit a higher successful-revision rate426

R1-32b R1-14b R1-1.5b QwQ LIMO

72% 70% 58% 32% 54%

Table 1: The proportion of the revisions that models
sitck to the original wrong answers.

than failed-revision rate, the increase of successful- 427

revision rate plateaus after approximately 10 steps, 428

with further revisions providing no additional ben- 429

efits. This observation explains why their accuracy 430

during sequential scaling initially increases with 431

multiple rounds of revision but later stabilizes with 432

fluctuations. 433

The successful-revision rate of QwQ, R1 and 434

LIMO are all below 10%, what is the outcome of 435

the model’s self-revision in unsuccessful cases? 436

We hypothesize that, in most instances, the model 437

simply keeps its original answer unchanged. To val- 438

idate that, we computed the proportion of instances 439

where the model persists with its original answer, 440

even when it is incorrect, and the results were as ex- 441

pected. As shown in Figure 5, when the original an- 442

swer is wrong, both R1-Distill-32b and R1-Distill- 443

14b maintain the original answer in over 70% of 444

cases. Although retaining the original answer does 445

not reduce accuracy, it also makes the scaling solu- 446

tion length ineffective. This phenomenon suggests 447
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Figure 6: (a): the coverage of sequential scaling and parallel scaling on AIME. (b): the accuracy of squential
revision and majority vote on AIME.

that the model’s ability to early stop may also be a448

critical factor influencing whether its performance449

improves with an increasing solution length.450

The above analysis indicates that the key factor451

determining whether o1-like models’ performance452

improve with an increase in solution length is their453

ability to self-revise. The model’s accuracy in-454

creases with the more incorrect answers revised to455

correct and vice versa.456

5 Sequential Scaling vs. Parallel Scaling457

Based on our experimental findings presented in458

Section 4.2, sequential scaling demonstrates lim-459

ited effectiveness for QwQ, R1 and LIMO. An460

alternative approach to scaling test-time compute461

is parallel scaling, which generates multiple solu-462

tions in parallel and selects the best one as the final463

answer.464

We compared the performance of sequential scal-465

ing and parallel scaling in terms of the coverage466

(pass@k score) and accuracy of QwQ and R1,467

which are shown in Figure 6a and 6b respectively.468

For sequential scaling, we iteratively prompt mod-469

els to self-revise for 40 steps. While for parallel470

scaling, we parallely sample 10 solutions. The cov-471

erage is evaluated by counting the proportion of472

whether multiple candidate answers contain a cor-473

rect one. In parallel scaling, coverage increases474

by one if at least one sampled solution is correct.475

Similarly, in sequential scaling, coverage increases476

by one if at least one revision iteration succeeds.477

Our findings show that, for the same number of478

generated tokens, parallel scaling provides a signif-479

icantly larger improvement in coverage compared480

to sequential scaling, for both R1-Distill-32b and481

QwQ. However, a practical parallel scaling method482

must select a final answer from a set of candidate 483

answers. We implement parallel scaling using ma- 484

jority vote (Wang et al., 2023) and sequential scal- 485

ing by taking the answer from the last revision as 486

the final answer. Since majority voting requires 487

at least three solutions to be effective, it does not 488

provide any benefit when scaling the number of 489

solutions from 1 to 2. In contrast, sequential revi- 490

sion is effective for R1-Distill-32b when scaling 491

the number of tokens to 10k, but further scaling 492

does not yield additional benefits. Additionally, 493

because sequential scaling involves attention over 494

a longer context, its computational cost is much 495

higher than that of parallel scaling when generating 496

the same number of tokens. 497

6 Application of Our Findings: Shortest 498

Majority Vote 499

Given the limitation of sequential scaling of the 500

current o1-like models, we turn to parallel scal- 501

ing techniques and incorperate it with our insight 502

on sequential scaling. Specifically, we propose a 503

new Parallel Scaling algorithm: Shortest Majority 504

Vote. Shortest Majority Vote is an extension of 505

Majority Vote, but it accounts for the length of the 506

solutions generated by the model. In the original 507

Majority Vote, solutions with the same answer are 508

grouped into a single category, and the number of 509

solutions in each category is counted, with the an- 510

swer corresponding to the category with the most 511

solutions selected as the final answer. In contrast, 512

Shortest Majority Vote not only counts the number 513

of solutions in each category, but also computes 514

the average length of the solutions in each category. 515

Let the number of solutions in the i-th category be 516

ci and the average solution length in that category 517
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Figure 7: Parallel-scaling performance of Majority Vote, Shortest and Shortest Majority Vote on AIME.

Model Solutions
AIME GPQA

MV Shortest Shortest MV MV Shortest Shortest MV

R1-Distill-32b

2

59.77 62.22 62.22 61.41 62.52 62.52
R1-Distill-14b 58.88 60.44 60.44 51.21 52.32 52.32
R1-Distill-1.5b 24 27.55 27.55 15.25 15.35 15.35

QwQ 41.77 40.22 40.22 58.05 57.02 57.02
LIMO 56.66 60.88 60.88 50.46 54.56 54.56

R1-Distill-32b

16

72.88 61.99 73.77 63.33 61.21 63.53
R1-Distill-14b 71.77 62.00 71.55 56.16 56.66 56.46
R1-Distill-1.5b 40.00 26.22 42.22 29.59 27.77 30.20

QwQ 51.33 40.88 50.88 62.25 56.82 62.25
LIMO 68.88 62.22 70.00 55.58 50.15 55.89

Table 2: Performance comparison between Majority Vote (MV), Shortest and Shortest Majority Vote (Shortest MV)
on AIME and GPQA, when there are 2 and 16 solutions sampled.

be li. The score for category i in Shortest Majority518

Vote is computed as:519

si =
ci

log li
(1)520

and the final answer is chosen from the category521

with the highest score. The score si is designed522

with the assumption that the correct answer is more523

likely to appear in categories with a larger number524

of solutions and shorter solution lengths. Shortest525

Majority Vote offers two key advantages: first, it526

is particularly effective for some o1-like models,527

where performance deteriorates with increasing so-528

lution length; second, it enables the use of solution529

length as a guidence signal for identifying supe-530

rior solutions when candidate solutions are limited,531

especially in cases where conventional Majority532

Vote becomes ineffective due to having only two533

candidate solutions.534

We evaluated the performance of Shortest Ma-535

jority Vote and Majority Vote through experiments536

on the AIME and GPQA benchmarks, sampling 16537

solutions from QwQ, R1 and LIMO models. We538

implemented a simple baseline approach, denoted539

as "Shortest," which selects the answer from the540

solution with the minimal length. The experimen-541

tal results are presented in Table 2 and Figure 7.542

Table 2 demonstrates that Shortest Majority Vote 543

significantly outperforms both Majority Vote and 544

Shortest methods, particularly on the AIME bench- 545

mark. Figure 7 illustrates the parallel-scaling per- 546

formance of these three methods, showing that as 547

the number of generated tokens increases, Short- 548

est Majority Vote maintains superior performance 549

over both alternatives on AIME. The correspond- 550

ing parallel-scaling results for GPQA are provided 551

in Appendix C. Notably, while Shortest performs 552

better than Majority Vote when only two solutions 553

are sampled, it exhibits inferior performance in all 554

other scenarios. These empirical findings strongly 555

support the effectiveness of the Shortest Majority 556

Vote approach. 557

7 Conclusion 558

In this study, we challenged the assumption that 559

o1-like models like QwQ and R1 have test-time 560

scaling capability. We found that the longer solu- 561

tions not necessarily yield better performance, and 562

that sequential scaling through self-revision has 563

limited effectiveness. Based on these insights, we 564

developed Shortest Majority Vote, a parallel scaling 565

method that considers solution length, which sig- 566

nificantly outperformed traditional majority vote. 567
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Limitations568

1. Given the considerable cost of R1-671b, eval-569

uation on it was limited to the experiments570

in Figures 1 and 2, whereas distilled R1 was571

utilized for all subsequent.572

2. Our experimental framework was limited to573

static model checkpoints. Future research574

should investigate test-time scaling behavior575

using dynamic checkpoints in reinforcement576

learning settings.577

3. While the proposed shortest majority method578

may have limited applicability for models579

with strong sequential-scaling capabilities, so-580

lution length remains a valuable guidance sig-581

nal for candidate selection in parallel scaling582

scenarios. The method can be adapted to a583

Longest Majority Vote variant for such cases.584
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dataset used in the paper does not contain any pri-587
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Figure 8: The number of correct solutions and tokens
distributed across groups of different lengths.

A Is Invalid Scaling Phenomenon Conflict846

to Findings of R1 technique Report?847

The training objective of R1 aims to improve model848

accuracy, yet we observe that correct solutions tend849

to be shorter than incorrect ones. This raises an850

intriguing question: Why does R1’s reinforcement851

learning (RL) training consistently produce longer852

solutions?853

To investigate this phenomenon, we analyzed854

five solutions per question, organizing them into855

groups by length in ascending order. Figure 8 il-856

lustrates the distribution of correct solutions across857

these groups.858

Our analysis revealed that correct solutions pre-859

dominantly appear in shorter-length groups, par-860

ticularly in the AIME dataset. However, when861

examining the token distribution, we found that862

correct solution tokens are concentrated in longer-863

solution groups. This apparent contradiction arises864

because the total token count is determined by both865

the number of solutions and the average tokens per866

solution. As shown in Figure 2a, solutions in the867

longest group contain nearly twice as many tokens868

as those in the shortest group. This explains why,869

despite having fewer individual solutions, longer870

solutions account for a greater share of the total871

tokens.872

We hypothesize that this discrepancy explains873

why RL training tends to produce longer solutions:874

the training process may favor generating longer875

solutions, even if they are less accurate, because876

they contribute more tokens to the gradient.877

B Further analysis on Sequential Scaling 878

on R1-Distill-14b, R1-Distill-32b and 879

LIMO 880

In Section 4.2, we observed that R1-Distill-14b, R1- 881

Distill-32b and LIMO demonstrated some perfor- 882

mance improvements after multiple rounds of self- 883

revision, followed by stabilization. Furthermore, in 884

Section 4.1, we found that the correct solutions gen- 885

erated by R1-Distill-14b, R1-Distill-32b and LIMO 886

were generally shorter than incorrect solutions. To 887

reconcile these seemingly contradictory findings 888

and further analyze how R1-Distill-14b, R1-Distill- 889

32b and LIMO benefit from self-revision, we con- 890

ducted a detailed analysis of self-revision outcomes 891

on both long and short solutions. Our methodol- 892

ogy for collecting long and short solutions involved 893

sampling five solutions for each question, ordering 894

them by length, and then segregating the longest 895

and shortest solutions into separate groups. The 896

results of self-revision on both short and long so- 897

lutions are presented in Figure 9. Our analysis 898

reveals that short solutions exhibited significant 899

performance improvements following self-revision, 900

while this trend was less pronounced for long so- 901

lutions. Therefore, the performance improvements 902

we observed through self-revision in R1-Distill- 903

14b, R1-Distill-32b and LIMO primarily stem from 904

the self-revision on short solutions. This suggests 905

that the relationship between accuracy and solution 906

length for these models is complex, demonstrating 907

neither a strictly positive nor negative correlation 908

with length. 909

C Parallel Scaling of Shortest Majority 910

Vote on GPQA 911

In Section 6, we demonstrated that our proposed 912

Shortest Majority Vote achieves superior test-time 913

scaling performance compared to the other two 914

methods on the AIME benchmark. In this section, 915

we present the parallel-scaling results on GPQA in 916

Figure 10. While Shortest Majority Vote consis- 917

tently outperforms the Shortest method on GPQA, 918

it does not exhibit significantly better parallel scal- 919

ing performance compared to Majority Vote on this 920

benchmark. This phenomenon might be attributed 921

to the smaller performance gap between short and 922

long solutions on GPQA compared to AIME, sug- 923

gesting that solution length plays a less critical 924

role in determining solution quality on the GPQA 925

benchmark, which can be observed from Figure 2b 926
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Figure 9: Accuracy of short solutions and long solutions of R1-Distill-14b (a) and R1-Distill-32b (b) during
sequential revision.
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Figure 10: Performance Comparison between Majority Vote and Shortest Majority Vote on GPQA.

D Prompt927

System prompt:928

System prompt

You are a helpful and harmless assistant.
You should think step-by-step.

929

Instruction for MATH-500, AIME and Omini-930

MATH:931

Instruction

Answer the question and enclose the final
answer in boxed{}

932

Instruction for GPQA:933

Instruction

Select the best answer from the following op-
tions. Output only the letter corresponding
to the correct answer, enclosed in boxed{}.

934
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E Examples of self-revision935

Examples

Wait, let me verify that again ...

Wait, but that seems straightforward,
but let me check if I got the constants right
...

Wait, but let me verify this to ensure
I didn’t make a mistake ...

Wait, so is the answer 756? But let
me check if this is consistent ...

Wait, but in 3D space, the centers
might not be coplanar? ...

Alternatively, try to find a general formula ...

Alternatively, consider that m is such
that m divides k where k is from 1 to 999 ...

Alternatively, maybe we can use mod-
ulo 8 to get constraints ...

Alternatively, perhaps there’s a smarter
approach ...

Alternatively, another way to think
about this problem is to recognize that w
and z are roots of unity ...

936
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